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THE COSMOLOGICAL PRINCIPLE

BY D. E. LITTLEWOOD

Received 7 March 1955

Many models of the universe have been proposed, by de Sitter, Milne, Bondi and Gold,
Hoyle and others. The observed data being insufficient, the models are usually based
on some simple hypothesis. The simplest is the cosmological principle, namely, that
apart from local irregularities the universe presents the same general aspect at every
point. Milne (5) has used a restricted form of the principle, namely, that the aspect is
independent of spatial position but is dependent on the observed time from some fixed
epoch in the past. Bondi and Gold(i) have proposed the 'perfect cosmological
principle' that the aspect is completely independent of space and time.

It can be shown, almost without mathematical calculation, that the perfect cosmo-
logical principle leads to a perfectly precise model for the universe which has some
remarkable characteristics. As in Milne's cosmology, it is convenient to introduce
both a £-scale and a T-scale. But whereas in Milne's cosmology, according to the
T-scale there is an infinite past and future, but according to the £-scale only a finite
past, in the universe of the perfect cosmological principle there is an infinite past and
future in the i-scale, but in the T-scale only a finite future. There is not an isolated point
event, as in the past of Milne's cosmology, but there is a bounding flat future 3-space
in a flat space-time such that all processes are speeded up to infinity as they approach
it, thus making the apparent future time appear infinite. According to the more
conventional £-scale the space-time has a constant curvature. It is in fact the geometry
of de Sitter.

It is assumed that the speed of light in vacuo is independent of the frequency. This
defines a local metric at every point. The geometry of space-time therefore must
necessarily be Riemannian subject to an arbitrary conformal transformation.

It may be remarked here that whereas the Riemannian nature of space-time can
thus be demonstrated a priori, such elaborations as affine connexions, torsion, non-
symmetric g^'s are superfluous conceptions which may have interesting mathematical
consequences, but could only be justified in a description of the universe if remarkable
coincidences could be demonstrated between mathematical predictions and observed
events.

The Riemannian nature of the universe is subject to an arbitrary conformal trans-
formation. This arbitrariness may be eliminated if it is assumed that a certain spectral
line of, say, a calcium atom gives a frequency independent of position. The cosmo-
logical principle would then imply that all spectral lines have fixed frequencies. The
Riemannian geometry is then precise. The metric implied will be referred to as the
2-scale.

It is assumed that there is at every point a preferred direction in space-time corre-
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sponding to the mean velocity of the stars in the neighbourhood. Taking local co-
ordinates (x, y, z, t) with metric

if the preferred time axis is in the direction (xx, yx, zv tx), consider the differential
equation ,

x-t dx -\- v-t dy -\- Z-. dz — t-tdt = 0.

It is a consequence of the cosmological principle that this differential equation
should be integrable, since the spatial directions normal to the preferred time axis
must be isotropic.

Integration of the differential equation thus leads to a one-parameter system of
3-spaces 2(. The suffix t will be a measure of the time interval in proceeding from one
S( to another in the direction of the preferred time axis. By the cosmological principle
this time interval is independent of position on Ej.

The cosmological principle also implies that these 3-spaces Sj are isotropic and have
a constant curvature which might be positive, zero or negative.

Since the universe appears to be expanding these 3-spaces cannot be geodesically
flat in space-time, since a parallel displacement into the future would expand any
length.

It is now convenient to make a conformal transformation. Instead of denning our
metric by the frequencies of spectral lines, let us define it in relation to the mean
distance between galaxies. Call this the r-scale. The metrics of the i-scale and the
r-scale could coincide for one specific 2t, say when t = 0, but shifting from one 2, to
another, the r-scale metric would change from the £-scale metric so that the distances
between galaxies for the r-scale metric would remain constant.

Suppose that the apparent age of the universe as measured by observed velocities
of recession is ta. Put 7j n ,

at = Uar.
™ dd dt
Then —- = —.

giving

Thence

Setting T = 0 when t —0,

dT =

T =

we have

6 = e'l'o.

dtjd = e-M

K-t^lto

T =

As t->ao, T becomes t0, so that in the r-scale the future is finite.
Since, in the T-scale, a parallel displacement of a distance in St into the future would

leave the length invariant, it is clear that 2, is geodesically flat in space-time. Its
intrinsic curvature could still be positive, zero or negative, however. But since it is
geodesically flat, this curvature will not change with time. Let its constant value be
+ 1/RZ. Then the intrinsic curvature of T,t according to the f-scale is ± ljR262. But
according to the cosmological principle this intrinsic curvature must be independent
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of time, and 0 = etllo is certainly dependent on the time. The only possibility is that
R is infinite, there is no curvature in 2,, which is in fact a Euclidean 3-space.

It follows that, according to the r-scale, space-time is flat. There is a finite future.
At a time t0 hence there is a flat singular 3-space. Frequencies of spectral lines speed
up as they approach this singular 3-space according to the formulae

r = *0(l - e-*l'o), t = tQlog [1/(<0-T)].

Turn now to the more conventional £-scale. The curvature of space-time can be
found by formulae given in a previous paper (4) for the change in values of the
Riemann—Christoffel tensor due to a conformal transformation. Since space-time is
flat according to the r-scale, the conformal curvature must be identically zero also for
the £-scale. It is sufficient therefore to consider the components of the Ricci tensor Rif.
The formula is

Take the metric as dx\ + dx\ + dx\ — dx%,

so that T is replaced by x0. The conformal transformation from the r-scale to the

is 3A

at = ,

where e$ = ef''<>,

so that 4> = t/t0 = - log (1 - T/t0) = - log (1 - x0/t0).

Thus ^0 = ll(t0 - x 0 ) , <p00 = l/(t0 - x o ) \

and all other first and second derivatives are zero.

Hence e** Rti = 3gij/(t0 -xo)\

Thus R1X = i?22 = R33 = - #00 = 3/^.

The space-time has a constant curvature which is positive for the spatial and
negative for the temporal directions. It should be noted first that space-time is
isotropic and the preferred time axis has no geometrical distinction. The metric is
that of the de Sitter universe (see (2)).

The fact that the space curvature is positive implies that the spatial universe is
finite, a somewhat surprising result, since the 3-spaces ~Lt are obviously infinite. But
the Xt are not geodesically flat. The spatial universe is generated by the geodesies
through a fixed point which are at that point normal to the preferred time axis. The
equation to such a geodesic in the (x0, ccj-plane will now be found.

The differential equation of a geodesic is given in (4) as
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where v = dxjdt. Since the metric in the (x, £)-plane is x2 — t2, clearly x and t are inter-
changeable, so that the equation can be written

dx\~ dx0
(l

, dx0where v = -^,
dxx

1 being zero. Thence v -=— =

Integrating, with a suitable constant of integration, we find

l -»»= l / ( l - a^ /g« .

Further integration, again with a suitable constant of integration, gives

which is a hyperbola with parametric equations

xx = t0 sinh u, x0 = to( 1 — cosh u).

The metric in the r-scale along the geodesic gives

ds2 = tl{coBh.2u-s\nh.2u)du2,

so that ds = todu.
In the i-scale the metric is

ds — Y~^—j- = tosechudu.
1 — xojto

The radius of the universe up to the point T = — oo is thus

tosech.udu = [2<0tan eu]o° = \irt0

The circumference of the universe at this radius is

Km 277-â sechM = 2nt0.
U-J-00

The volume of the universe is

/*00 /*0O

4:nxlsech3ut0du = 47rfjH si
Jo Jo

That portion of the universe to which the stars are accessible at the speed of light is

confined to the region «f + asf + a| < t2.

this limit corresponds to sinhzt = 1, coshtt = ^2.
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The volume of the accessible part of the universe is thus

2nt%[2 tan-1 e" - tanh u sech u]^+^

The accessible portion of the universe is thus confined to the fraction in — 2)/2n of
the total volume.

Here is the paradox of a finite universe which is continually expanding but yet
remaining the same size. The explanation is that in the far inaccessible portion the
velocity of recession is sufficiently near to the velocity of light for the Fitzgerald
contraction effect to outweigh the effect of expansion.

The question has been raised as to whether the velocity of recession of distant
galaxies exceeds the velocity of light or only approaches light speed as a limit. In the
3-space S, the velocity of recession will exceed the velocity of light. This is possible
because the 3-space is not geodesic. In the finite geodesic 3-space the recession velocity
approaches the speed of light as a limit. Because of the Fitzgerald effect the density
of matter increases along this geodesic 3-space, so that the total amount of matter in
the universe is infinite.

The fact that the curvature is isotropic is remarkable. One would expect the
preferred time axis to be geometrically distinct. The isotropy occurs only because
ôo ~~ 0o happens to be zero.

On the face of it there would appear to be an irreconcilable conflict with Einstein's
general theory. It is fundamental to Einstein's theory that matter is associated with
an anisotropic curvature. Even when allowance is made for cosmological terms, the
difficulty remains. The only possible means of reconciling the two theories is to postulate
a cosmological term which is itself anisotropic and which would exactly cancel out,
in the mean, the anisotropic terms due to the presence of matter. There are two
objections to such a hypothesis.

The introduction of a cosmological term at all is rather distasteful. That it should
be anisotropic is even more objectionable. This objection, however, is not fatal, and
the hypothesis could be accepted if it proved to be necessary.

The second objection is the improbability that the two anisotropic terms should
exactly cancel in the mean. This objection might be considered fatal if it were valid,
but a closer examination shows that in fact it is not valid. It will be shown that the
introduction of an anisotropic cosmological term will lead to matter distribution
such that the smoothed out curvature will converge to the isotropic de Sitter metric.

Thus, if we consider as above a conformal transformation from a non-expanding
space, the component of curvature

will only trivially be affected by the presence of matter, and must be identified with
the corresponding component of the anisotropic cosmological term, i.e. it will be
constant. With a suitable choice of unit, put

+ 2<j>'*) = 3 .
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Changing to 6 = e*, we obtain 66" + 6'2 = 04,

and putting p = 0', 6p6p^
0/(7

Integration gives 62p2 = 6e + K.

If K = 0 this gives very readily the isotropic de Sitter metric. If K =f= 0 integration
involves elliptic functions, but the behaviour of the integral can be deduced without
integration.

Suppose that measurements are taken again after a period in which the universe
doubles in size, but new units are chosen so that the new rate of expansion is taken to
be the same as in the original measurements. Clearly 6 must be replaced by

6' = \6.

In order that the equation dp 2 _ fl4
Pd6+P =

may be conserved, clearly p must be replaced by

p' = lp.

The equation 62p2 = 66 + K

then becomes 6'2p'2 = 6'* + \K,

and the effective value of K is replaced by Kj8. Clearly the universe converges fairly
rapidly to the de Sitter metric.

The only valid objection to the cosmological principle, from this aspect, would
therefore seem to be the necessity for postulating an anisotropic cosmological term.
The seriousness of such an objection must be a matter for individual judgement.

This modification of Einstein's equations was proposed by Hoyle(3). The only
slight difference is that Hoyle proposes a constant rate of creation of matter. With
a given constant anisotropic cosmological term the rate of creation of matter will
depend on the rate of expansion of space. But this will approach a constant value as
the metric approaches the de Sitter metric, so that the distinction converges to zero.
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