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We study the behaviour of the steady-state voltage potentials in a material composed of

a two-dimensional object surrounded by a rough thin layer and embedded in an ambient

medium. The roughness of the layer is supposed to be ε-periodic, ε being the magnitude of the

mean thickness of the layer. For ε tending to zero, we determine approximate transmission

conditions in order to replace the rough thin layer by these conditions on the boundary of

the interior material. This paper extends the previous works (Poignard, 2009, Math. Meth.

Appl. Sci., vol. 32, pp. 435–453; Poignard et al., 2008, IEEE Trans. Magnet., vol. 44, no. 6,

pp. 1154–1157) of the third author, which deal with smooth thin layers.

1 Introduction

In this paper, we study the steady-state potential in a dielectric material with a rough thin

layer. The roughness of the layer is supposed to be ε-periodic, and the mean thickness

of the layer is of order ε, ε being a small positive parameter. The computation of the

electric steady-state potential in such domains leads to numerical difficulties inherent in

the geometry.

In order to tackle the problem we derive approximate transmission conditions, which

generally speaking consist in replacing its influence by added source terms on the limit

curve of the layer (when the thickness equals zero). That amounts to removing the

rough layer from the original problem (this avoids geometric difficulties), and in order to

remedy the error because of this simplification, we add source terms in the transmission

conditions: the steady-state potential and the fluxes across the membrane are no longer

continuous.

1.1 Motivation

Rough layers appear in many research area. For instance in geophysics the bottom of the

oceans and the shores are rough with respect to the large-scale flow. In tribology, many

surfaces present a granular aspect at the microscopic scale. The motivation of this paper
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Hygroscopic water

Free waterQuartz + Clay

Figure 1. Schematic of the assembly of quartz grain and clay surrounded by a thin layer of the

hygroscopic water. The ambient medium is composed by free water.

comes from a collaborative research with Schlumberger on the electrical modelling of

silty soils.

In the simplest models, silty soils are composed of water, clay and quartz. The clay leaves

are organised on the surface of the quartz grains. Because of their electrical properties,

the presence or the lack of clay leaves changes considerably the effective properties of

soils. Actually, since they are electrically charged, the clay leaves have the water molecules

stuck around them. This changes the electric properties of the so-called bound water or

hygroscopic water [14, 15]. This phenomenon occurs on few layers of water molecules;

therefore the hygroscopic water is modelled by a rough thin layer. The assembly of the

quartz grains and the clay leaves is modelled by an electrically homogeneous domain with

non-zero conductivity, while the ambient medium is free water (see Figure 1).

The goal of this paper is to understand the effect of the hygroscopic water on the

steady-state electric potential.

1.2 Statement of the problem

For sake of simplicity, we deal with the two-dimensional case; however the three-dimen-

sional case may be studied in the same way up to few appropriate modifications. Let Ω

be a smooth bounded domain of �2 with connected boundary ∂Ω. For ε > 0, we split Ω

into three subdomains: D1, Dm
ε and D0

ε ; D1 is a smooth domain strictly embedded in Ω

(see Figure 2).

We denote by Γ its connected boundary. The domain Dm
ε is a thin oscillating layer

surrounding D1. We denote by Γε the oscillating boundary of Dm
ε :

Γε = ∂Dm
ε \ Γ .
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Figure 2. Geometry of the problem.

The domain D0
ε is defined by

D0
ε = Ω \

(
D1 ∪ Dm

ε

)
.

We also write

D0 = Ω \ D1.

We define the piecewise-constant function σ : Ω → � by

σ(z) =

⎧⎪⎪⎨⎪⎪⎩
σ1, if z ∈ D1,

σm, if z ∈ Dm
ε ,

σ0, if z ∈ D0
ε ,

where σ1, σm and σ0 are given positive constants1. The function σ represents the conduct-

ivity of the domain Ω.

Let g belong to Hs(∂Ω), for s � 1/2, and denote by uε the unique function satisfying

∇ · (σ∇uε) = 0, in Ω, (1.1a)

uε|∂Ω = g. (1.1b)

Observe that for all ε > 0, the domains Ω, D1, Dm
ε and D0

ε are smooth. Hence the above

function uε belongs to H1(Ω), and moreover it belongs to Hs+1/2(D1), Hs+1/2(D0
ε ) and

1 The same following results hold if σ0, σ1 and σm are given complex functions with imaginary

parts (and respective real parts) with the same sign.
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Hs+1/2(Dm
ε ). Our aim is to give the first two terms of the asymptotic expansion of uε for ε

tending to zero.

Several papers are devoted to rough boundaries and derivations of equivalent boundary

conditions [1, 2, 3, 8]. In a recent paper Basson and Gérard-Varet [4] derived approximate

boundary condition for a boundary with random roughness. The analysis of these previous

papers is essentially based on the construction of the so-called wall law, which is a

boundary condition imposed on an artificial boundary inside the domain. The wall law

only reflects the large-scale effect on the oscillations. Note also that in Chapter 8 of their

book, Marchenko and Khrushlov [10] presented equivalent boundary conditions in the

very general framework of the elliptic operators with an even degree using homogenisation

techniques. We emphasise that all the previous works deal with a problem simpler than

ours, since the partial differential equation is studied either in Ω \ D0
ε or in Ω \ Dm

ε , and

homogeneous Dirichlet boundary conditions are imposed on the rough boundaries.

In this paper, since the rough thin layer is an imperfectly conducting material embedded

in an ambient domain, the electric potential satisfies the steady-state potential in the

whole domain Ω, including the rough layer Dm
ε . Hence we are definitely interested in the

approximate transmission conditions, and therefore we cannot apply straightforwardly

the previous results to our problem. In an earlier paper [11], the third author of the

current paper derived the first-order approximate conditions for a thin weakly oscillating

layer. This paper is an extension of [11] to the case of an ε-periodic thin layer with

thickness of order ε. The main idea of the analysis comes from the paper of Abboud et

Ammari [1] and is completely different from the analysis of [11], which was based on

an appropriate change of variables. Here, the boundary-layer correctors are obtained by

solving an elliptic partial differential equation in an appropriate infinite band with width

equal to 1. The well-posedness of the problems and the optimal error estimates are proved

to justify our expansion.

The outline of the paper is as follows: In Section 2 we perform a suitable change of

variables in order to derive our asymptotics in the simplest way. We also give a preliminary

result, which will be useful to prove the formal asymptotics of Section 3. Section 4 is

devoted to the justification of our equivalent transmission conditions. We conclude by

presenting few numerical simulations performed by Ciuperca, Perrussel and Poignard [6].

We shall first present our main result.

1.3 Main result

Notation 1.1 We first present the conventions used all along the paper:

• All the closed curves are trigonometrically (counterclockwise) oriented.

• We generically denote by n the normal to a closed smooth curve of �2 outwardly directed

to the domain enclosed by the curve. Moreover n⊥ is the tangent vector to Γ .

• Let C be a curve of �2, and let u be a function defined in a tubular neighbourhood of C.

We define u|C± by

∀x ∈ C, u|C± (x) = lim
t→0+

u(x± tn(x));
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moreover if u is differentiable, we define ∂nu|C± and ∂tu|C± by

∀x ∈ C, ∂nu|C± (x) = lim
t→0+

∇u(x± tn(x)).n(x),

∂tu|C± (x) = lim
t→0+

∇u(x± tn(x)).n⊥(x),

where ‘.’ denotes the Euclidean scalar product of �2.

Let � be the torus �/�. Since Γ is a smooth closed curve of �2 of length 1, it is

parameterised by its curvilinear coordinate:

Γ = {Ψ (θ), θ ∈ �}.

Let κ be the curvature of Γ , and let f be a smooth 1-periodic and positive function. For

sake of simplicity, we suppose that 1/2 � f � 3/2. Choose d0 such that

0 < d0 <
1

2 ‖κ‖∞
. (1.2)

For any ε ∈ (0, d0) such that2 f(0) = f(1/ε), the rough boundary Γε is taken to be

Γε = {Ψε(θ) = Ψ (θ) + εf(θ/ε)n(θ), θ ∈ �}.

The closed curves C1 and C0 are defined by

C0 = {0} × �, C1 = {(f(y), y), ∀y ∈ �} .

The exterior normal to C1 is denoted by nC1
and nC0

is the exterior normal to C0:

nC0
=

(
1

0

)
, nC1

=
1√

1 + (f′(y))2

(
1

−f′(y)

)
. (1.3)

Define now the couple (A0, a0), where A0 is a continuous vector field and a0 is a constant

vector, which are given by the unique solution of the following problem:

ΔA0 = 0, in � × � \ (C0 ∪ C1), (1.4a)

σ0∂nA
0|C+

1
− σm∂nA

0|C−
1

= (σm − σ0)nC1
, (1.4b)

σm∂nA
0|C+

0
− σ1∂nA

0|C−
0

= −(σm − σ0)nC0
, (1.4c)

A0 →x→−∞ 0, A0 →x→+∞ a0. (1.4d)

Remark 1.2 The existence and the uniqueness of the couple (A0, a0) is discussed in

Lemma 2.2. This couple leads to the definition of the boundary-layer corrector (see The-

orem 4.1) and enables us to write our approximate transmission conditions.

2 For sake of simplicity, we deal with periodic roughness. Since Γε is a closed continuous curve,

ε is necessary 1/N, where N is an integer. All along the paper this assumption holds.
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We denote by D1 and D2 the two following vectors:

D1 = (σ0 − σm)

[∫ 1

0

f(y) dy nC0
+

∫ 1

0

A0(f(y), y) dy

]
+ (σm − σ1)

∫ 1

0

A0(0, y) dy − σ0a
0

and

D2 = (σm − σ0)

[∫ 1

0

A0(f(y), y)f′(y) dy −
∫ 1

0

f(y) dy

(
0

1

)]
.

Let u0 be the unique solution to the following problem:

Δu0 = 0, in D0 ∪ D1, (1.5a)

σ0∂nu
0|Γ+ = σ1∂nu

0|Γ− , (1.5b)

u0|Γ+ = u0|Γ− , (1.5c)

u0|∂Ω = g. (1.5d)

And define u1 by

Δu1 = 0, in D0 ∪ D1, (1.5e)

σ0∂nu
1|Γ+ = σ1∂nu

1|Γ− − κD1 ·
(

∂nu
0|Γ+

∂tu
0|Γ+

)
+ D2 · ∂t

(
∂nu

0|Γ+

∂tu
0|Γ+

)
, (1.5f)

u1|Γ+ = u1|Γ− + a0 ·
(

∂nu
0|Γ+

∂tu
0|Γ+

)
, (1.5g)

u1|∂Ω = 0. (1.5h)

In the following remark, Remark 1.3, we discuss the existence and uniqueness of the

potentials u0 and u1. However, in order to shorten the paper, we leave it to the reader to

prove the two following assertions.

Remark 1.3 (Existence and uniqueness of the potentials u0 and u1) We just give here the

sketch of the proofs.

• With g ∈ Hs+1/2 for s � 0, it is well known that the function u0 exists and is unique in

H1(Ω). Moreover, u0 has the following regularity:

u0|ω ∈ H1+s(ω), for ω ∈ {D0,D1}.

• Observe that if u1 exists, it is obviously unique. Suppose now that g ∈ H3/2+s, with s � 0.

Hence ∂nu
0|Γ+ and ∂tu

0|Γ+ belong to H1/2+s(Γ ), and therefore there exists G ∈ H1+s(D1)

such that

G|Γ = a0 ·
(

∂nu
0|Γ+

∂tu
0|Γ+

)
.

Define v1G by v1G = u1 in D0 and v1G = u1 +G in D1. Then using the variational formulation

of the problem satisfied by v1G and applying straightforwardly the well-known Lax–Milgram

theorem we infer the existence and the uniqueness of v1G in H1(Ω), and therefore u1 exists
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and is unique. Moreover using the same argument as Li and Vogelius (see the Appendix,

p. 147, of [9]) and since G ∈ H1+s(D1) we infer

u1|ω ∈ H1+s(ω), for ω ∈ {D0,D1}.

Our main result is presented in the next theorem.

Theorem 1.4 Suppose that g belongs to H7/2(∂Ω). Let W be

W = uε − (u0 + εu1).

Then, for any domain ω0 and ω1 respectively compactly embedded in Ω \ D1 and in D1 and

for any s ∈]1, 2] there exist ε0 > 0 and C > 0 such that for any ε ∈ (0, ε0),

‖W‖H1(ω0) � Cε1+1/s,

‖W‖H1(ω1) � Cε1+1/s.

Remark 1.5 It is possible to give the precise behaviour of uε in a neighbourhood of Γ with

the help of boundary-layer correctors (see Theorem 4.1).

Remark 1.6 Observe that the influence of the curvature appears in the definition of u1, while

no curvature was present at the first order for a weakly oscillating thin layer [11]. Actually

if no oscillation occurs in the thin layer, i.e. if f is constant, then A0 is independent on y

and equals

A0 =

(
A0

1

A0
2

)
,

where

A0
1(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if x < 0,

σ0 − σm

σm
x if 0 < x < f

σ0 − σm

σm
f if x > f,

,

and A0
2 = 0.

Then we easily obtain

D1 =

(
0

0

)
, D2 =

(
0

(σ0 − σm)f

)
.
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Hence we obtain the following approximate transmission conditions for u1:

Δu1 = 0, in D0 ∪ D1, (1.6a)

σ0∂nu
1|Γ+ = σ1∂nu

1|Γ− + (σ0 − σm)f∂2
t u

0|Γ+ , (1.6b)

u1|Γ+ = u1|Γ− +
σ0 − σm

σm
f∂nu

0|Γ+ , (1.6c)

u1|∂Ω = 0, on ∂Ω, (1.6d)

which are the transmission conditions given in [11, 12].

2 Preliminary analysis

2.1 The equivalent problem in a tubular neighbourhood of Γ

It is convenient to write problem (1.1) in a smooth tubular neighbourhood Ωd0 of Γ ,

given, for some distance d0 satisfying (1.2), by

Ωd0 = {z ∈ �2, dist(z, Γ ) < d0}.

Denote by Γ−d0
and Γd0

the closed curves respectively defined by

Γ−d0
= ∂Ωd0 ∩ D1, Γd0

= ∂Ωd0 ∩ D0
ε .

We consider the following Steklov–Poincaré operators:

L1 : H1/2(Γ−d0
) −→ H−1/2(Γ−d0

),

L0 : H1/2(Γd0
) −→ H−1/2(Γd0

),

T : H1/2(∂Ω) −→ H−1/2(Γd0
).

Using the convention of the direction of the normals (see Notation 1.1), we define the

operator L1 by

∀φ ∈ H1/2(Γ−d0
), L1(φ) =

∂u

∂n

∣∣∣∣
Γ−d0

,

where u is the harmonic function in Ω \ (D0 ∪ Ωd0 ) equal to φ on Γ−d0
. The operator L0

is defined by

∀φ ∈ H1/2(Γd0
), L0(φ) = − ∂u

∂n

∣∣∣∣
Γd0

,

where u is the harmonic function in Ω \ (D1 ∪ Ωd0 ) equal to φ on Γd0
and vanishing on

∂Ω. Similarly T equals:

∀χ ∈ H1/2(∂Ω), T (χ) = − ∂u

∂n

∣∣∣∣
Γd0

,

where u is the harmonic function in Ω \ (D1 ∪ Ωd0 ) equal to χ on ∂Ω and vanishing

on Γd0
. Moreover the operators T , L0 and L1 satisfy the following inequalities, for a
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d0-independent constant C:

∀g ∈ H1/2(∂Ω), |T g|H−1/2(Γd0 ) � C |g|H1/2(∂Ω) , (2.1a)

∀u ∈ H1/2(Γd0
), |L0u|H−1/2(Γd0 ) � C |u|H1/2(Γd0 ) , (2.1b)

∀u ∈ H1/2(Γ−d0
), |L1u|H−1/2(Γ−d0 ) � C |u|H1/2(Γ−d0 ) . (2.1c)

Furthermore, the following coercivity inequalities hold:

∀u ∈ H1/2(Γd0
), (L0u, u)L2(Γd0 ) � C |u|2H1/2(Γd0 ) , (2.1d)

∀u ∈ H1/2(Γ−d0
), (L1u, u)L2(Γ−d0 ) � C |u|2H1/2(Γ−d0 ) . (2.1e)

Problem (1.1) is then equivalent to

∇ · (σ∇uε) = 0, in Ωd0 , (2.2a)

∂nu
ε|Γd0 + L0u

ε|Γd0 = −T g, on Γd0
, (2.2b)

∂nu
ε|Γ−d0

− L1u
ε|Γ−d0

= 0, on Γ−d0
. (2.2c)

2.2 The problem in local coordinates

Denote by Φ the smooth diffeomorphism

∀ (η, θ) ∈ (−d0, d0) × �, Φ(η, θ) = Ψ (θ) + ηn(θ).

Since d0 < 1/‖κ‖∞, the open neighbourhood of Γ denoted by Ωd0 can be parameterised

as follows:

Ωd0 = {Φ(η, θ), (η, θ) ∈ (−d0, d0) × �}.
For ε > 0, Ωd0 is split into the three subdomains, namely Ω1, Ωm

ε and Ω0
ε , which are

defined with the help of the smooth 1-periodic function f:

Ω1 = {Φ(η, θ), (η, θ) ∈ (−d0, 0) × �},
Ωm
ε = {Φ(ηf(θ/ε), θ), (η, θ) ∈ (0, ε) × �},

Ω0
ε = Ωd0 \ (Ω1 ∪ Ωm

ε ).

Let O = (−d0, d0) × � and denote respectively by O1, Om
ε and O0

ε the domains:

O1 = (−d0, 0) × �,

Om
ε = {(ηf(θ/ε), θ) ∈ (0, ε) × �},

O0
ε = O \ O1 ∪ Om

ε .

We also denote by Ω0 and O0 the respective domains Ω \ Ω1 and O \ O1. Define the

oscillating curve γε by

γε = {(εf(θ/ε), θ), θ ∈ �}.
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We write γs = {s} × � for any s ∈ �. The Laplacian written in (η, θ)-coordinates equals

Δη,θ =
1

1 + ηκ(θ)
∂η((1 + ηκ(θ))∂η) +

1

1 + ηκ(θ)
∂θ

(
1

1 + ηκ(θ)
∂θ

)
.

We also need the normal derivatives on Γ and Γε in (η, θ)-coordinates. In the following,

the notation ∇η,θ denotes the derivative operator:

∇η,θ =

(
∂η

∂θ

)
.

Let u be defined on Ω, and define v on (−d0, d0) × � by

∀(η, θ) ∈ (−d0, d0) × �, v(η, θ) = u ◦Φ(η, θ).

The following equalities hold, for a sufficiently regular function u:

∂nu|Γ = ∂ηv|η=0,

∂nu|Γd0 = ∂ηv|η=d0
,

∂nu|Γ−d0
= ∂ηv|η=−d0

and

∂nu|Γε =
1√

(1 + εκf(θ/ε))2 + (f′(θ/ε))2

[
(1 + εκf(θ/ε))∂ηv − f′(θ/ε)

1 + εκf(θ/ε)
∂θv

]∣∣∣∣
γε

.

Moreover, we define the bounded linear operators Λ0 : H1/2(γd0 ) → H−1/2(γd0 ) and

Λ1 : H1/2(γ−d0 ) → H−1/2(γ−d0 ) as follows:

(Λ0ϕ,ψ) = (L0(ϕ ◦ Φ−1), ψ ◦ Φ−1), ∀ ϕ,ψ ∈ H1/2(γd0 ),

(Λ1ϕ,ψ) = (L1(ϕ ◦ Φ−1), ψ ◦ Φ−1), ∀ ϕ,ψ ∈ H1/2(γ−d0 ).

According to (2.1), there exists an ε-independent constant C > 0 such that

∀u ∈ H1/2(�), (Λ0u, u)L2(�) � C |u|2H1/2(�) , (2.3a)

∀u ∈ H1/2(�), (Λ1u, u)L2(�) � C |u|2H1/2(�) . (2.3b)

It is convenient to denote by ∂Φn v|γε the following quantity:

∂Φn v|γε =
1√

(1 + εκf(θ/ε))2 + (f′(θ/ε))2

[
(1 + εκf(θ/ε))∂ηv − f′(θ/ε)

1 + εκf(θ/ε)
∂θv

]∣∣∣∣
γε

.

With this notation, we can write our initial problem (1.1) in local coordinates. Denoting

by vε the solution to problem (1.1) in (η, θ)-coordinates,

vε = uε ◦Φ.
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Then vε is continuous and satisfies

Δη,θv
ε = 0, in O1 ∪ Om

ε ∪ O0
ε , (2.4a)

(1 + d0κ)∂ηv
ε|η=d0

+ Λ0v
ε|η=d0

= −(T g) ◦Φ, (2.4b)

(1 − d0κ)∂ηv
ε|η=−d0

− Λ1v
ε|η=−d0

= 0, (2.4c)

with the following transmission conditions:

σ0 ∂Φn v
ε
∣∣
γ+
ε

= σm ∂Φn v
ε
∣∣
γ−
ε
, (2.4d)

σm ∂ηv
ε|η=0+ = σ1 ∂ηv

ε|η=0− . (2.4e)

2.3 Preliminary result

Denote by C the infinite cylinder � × �. Split C into the three subdomains Y0, Ym and

Y1 defined by

Y1 = (−∞, 0) × �,

Ym = {(ηf(θ), θ), ∀(η, θ) ∈ (0, 1) × �} ,
Y0 = � × � \

(
Y1 ∪ Ym

)
.

The closed curves C1 and C0 are defined by

C0 = {0} × �, C1 = {(f(y), y), ∀y ∈ �} .

Remember that the normals to the respective curves C0 and C1, which are respectively

denoted by nC0
and by nC1

, are defined by (1.3). We also introduce the piecewise constant

function σ̃ : C → � by

∀(x, y) ∈ C , σ̃(x, y) =

⎧⎪⎪⎨⎪⎪⎩
σ1 in Y1,

σm in Ym,

σ0 in Y0.

(2.5)

Notation 2.1 In this paper, we use the following notation:

• Sper(�×�) is the space of the periodic square-integrable functions in the second variable,

which decay exponentially when the first variable goes to infinity.

• For any function g ∈ L2(�) (respectively g ∈ L2(� × �)) we denote by {ĝk}k∈� (respect-

ively {ĝk(x)}k∈�) the coefficients of the Fourier expansion of g (respectively g(x, ·)), that

is

g(y) =
∑
k∈�

ĝke
2πiky (respectively g(x, y) =

∑
k∈�

ĝk(x)e
2πiky).
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Lemma 2.2 Let F belong to Sper(� × �), and suppose that there exist

M > supy∈� |f(y)|, C > 0, δ0 ∈ [0, 2π[ and a family {pk(x)}k∈� of regular functions defined

on |x| > M satisfying

|pk(x)| � Ceδ0|k|(x−M) for x > M,

|pk(x)| � Ce−δ0|k|(x+M) for x < −M, (2.6)

such that F has the following Fourier expansion on |x| > M:

F(x, y) =
∑
k∈�∗

F̂k(M)pk(x)e
−2π|k|(x−M)e2πiky, ∀ x � M,

F(x, y) =
∑
k∈�∗

F̂k(−M)pk(x)e
2π|k|(x+M)e2πiky, ∀ x � −M.

Let ϕ and ψ be two smooth functions respectively defined on C0 and C1 such that∫
C0

ϕ(σ) dσ +

∫
C1

ψ(σ) dσ +

∫
�×�

σ̃(x, y)F(x, y) dx dy = 0.

Then there exists a unique couple (α, a), where α is a continuous function and a is a constant,

such that

Δα = F, in Y1 ∪ Ym ∪ Y0, (2.7a)

σ0∂nα|C+
1

= σm∂nα|C−
1

+ ψ, (2.7b)

σm∂nα|C+
0

= σ1∂nα|C−
0

+ ϕ, (2.7c)

α →x→−∞ 0, α →x→+∞ a. (2.7d)

Moreover, α decays exponentially for x tending to −∞, and α − a decays exponentially for

x tending to +∞.

Proof To prove this lemma, we rewrite problem (2.7) in the finite strip [−M,M] × �. The

solution α can be written as a Fourier expansion:

α(x, y) =
∑
k∈�

α̂k(x)e
2πiky.

Replacing α by its expansion in (2.7) and according to the hypothesis on F we infer

α̂0(x) = α̂0(M) for x � M,

α̂k(x) =

(
α̂k(M) +

F̂k(M)

4π|k|

∫ +∞

M

pk(t)e
−4π|k|(t−M) dt− F̂k(M)

4π|k|

∫ x

M

pk(t) dt

)
e−2π|k|(x−M)

− F̂k(M)

4π|k|

∫ +∞

x

pk(t)e
−4π|k|(t−M) dt · e2π|k|(x−M) for x � M, k� 0
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and

α̂0(x) = α̂0(−M) for x � −M,

α̂k(x) =

(
α̂k(−M) +

F̂k(−M)

4π|k|

∫ −M

−∞
pk(t)e

4π|k|(t+M) dt− F̂k(−M)

4π|k|

∫ −M

x

pk(t) dt

)
e2π|k|(x+M)

− F̂k(−M)

4π|k|

∫ x

−∞
pk(t)e

4π|k|(t+M) dt · e−2π|k|(x+M) for x � −M, k� 0.

Let us now introduce the operators Q : H1/2(�) → H−1/2(�) and

RM, R−M : H−1(�) → L2(�) by

∀u ∈ H1(�), Qu(y) = 2π
∑
k∈�∗

|k|ûkeiky,

∀u ∈ H−1(�), RMu(y) =
∑
k∈�∗

(∫ +∞

M

pk(t)e
−4π|k|(t−M) dt

)
ûke

2πiky,

∀u ∈ H−1(�), R−Mu(y) =
∑
k∈�∗

(∫ −M

−∞
pk(t)e

4π|k|(t+M) dt

)
ûke

2πiky.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.8)

Because of hypothesis (2.6) these operators are well defined. We infer the following mixed

boundary condition on x = M:

∂xα|x=M + Qα|x=M = −RMF |x=M. (2.9)

Similarly, on x = −M we obtain

∂xα|x=−M − Qα|x=−M = R−MF |x=−M. (2.10)

Problem (2.7) is then equivalent to problem (2.11), written in the strip [−M,M] × �,

Δα = F, in (Y1 ∪ Ym ∪ Y0) ∩ [−M,M] × �, (2.11a)

σ0∂nα|C+
1

= σm∂nα|C−
1

+ ψ, (2.11b)

σm∂nα|C+
0

= σ1∂nα|C−
0

+ ϕ, (2.11c)

with the mixed boundary conditions

∂xα|x=M + Qα|x=M = −RMF |x=M, (2.11d)

∂xα|x=−M − Qα|x=−M = R−MF |x=−M. (2.11e)

The variational formulation of (2.11) is then

∀v ∈ H1([−M,M] × �), A (α, v) = B(v), (2.12)
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where A and B are given by

A (u, v) =

∫
[−M,M]×�

σ̃∇α.∇v dxdy + σ0 < Qα|x=M, v|x=M >

+ σ1 < Qα|x=−M, v|x=−M >,

B(v) = −
∫

[−M,M]×�
σ̃F(x, y)v(x, y) dxdy −

∫
C0

φ(σ)v(σ)dσ −
∫

C1

ψ(σ)v(σ)dσ

− σ0

∫
�

RMF(M, y)v(M, y) dy − σ1

∫
�

R−MF(−M, y)v(−M, y) dy.

The continuity of B on H1([−M,M] × �) and of A on (H1([−M,M] × �))2 easily come

from calculations in the Fourier variable. From the Poincaré inequality we also deduce

that A is coercive on H1([−M,M] × �)/�.

On the other hand, from the hypothesis on F , we infer∫
[M,+∞[×�

F(x, y) dy dx =

∫ ∞

M

(∫
�
F(x, y) dy

)
dx = 0,

and similarly ∫
]−∞,−M]×�

F(x, y) dy dx = 0.

We also have ∫
�

RMF(M, y) dy =

∫
�

R−MF(−M, y) dy = 0,

which gives

B(1) = 0.

So we have a unique solution of (2.12) up to an additive constant, and we can choose

this constant such that ∫
�
α(−M, y) dy = α̂0(−M) = 0.

We then have

a = α̂0(M) =

∫
�
α(M, y) dy.

The exponential decay of α−a at +∞ and of α at −∞ come from the expressions of α̂k(x)

for k� 0. �

Remark 2.3 Suppose that for |x| large enough F equals F(x, y) = F1(x, y)F2(x), where F1

is a harmonic function and F2 is such that

∃ C > 0 and δ0 ∈ [0, 2π[ such that |F2(x)| � Ceδ0|x|, ∀ x

(for example if F2 is polynomial). Then F satisfies obviously the hypothesis of Lemma 2.2.
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3 Formal asymptotics

3.1 Zeroth-order approximation

Let v0 be the continuous ‘background’ solution defined by

Δη,θv
0 = 0, in O1 ∪ O0,

(1 + d0κ)∂ηv
0|η=d0

+ Λ0v
0|η=d0

= −(T g) ◦Φ,
(1 − d0κ)∂ηv

0|η=−d0
− Λ1v

0|η=−d0
= 0,

σ0∂ηv
0|η=0+ = σ1∂ηv

0|η=0− .

A classical regularity result implies that for g ∈ Hs(∂Ω), the potential v0 belongs to H1(Ω),

and moreover it has Hs+1/2-regularity in O1 and in O0. In this section, we suppose that g

is as regular as necessary so that the involved quantities are well defined. Rigorous proof

of the formal asymptotic expansion is performed in the next section.

Denote by w0 the error vε − v0. This continuous function is the unique solution to

Δη,θw
0 = 0, in O1 ∪ O0,

(1 + d0κ)∂ηw
0|η=d0

+ Λ0w
0|η=d0

= 0,

(1 − d0κ)∂ηw
0|η=−d0

− Λ1w
0|η=−d0

= 0,

σ0∂Φn w
0|γ+

ε
= σm∂Φn w

0|γ−
ε

+ (σm − σ0)∂
Φ
n v

0|γε ,
σm∂ηw

0|η=0+ = σ1∂ηw
0|η=0− + (σ0 − σm)∂ηv

0|η=0+ ,

w0|∂Ω = 0, on ∂Ω.

Since we are interested in the derivation of terms up to order 1, we throw away all the

terms which are a priori of order smaller than ε2. This approximation will be rigorously

justified in the next section.

Using the explicit expression for the normal derivative on γε, we infer

∂Φn v
0|γε =

1 − εκf(θ/ε)/(1 + (f′(θ/ε))2) + O(ε2)√
1 + [f′(θ/ε)]2

[(1 + εκf(θ/ε))∂ηv
0|γε

− f′(θ/ε)(1 − εκf(θ/ε) + O(ε2))∂θv
0|γε ]. (3.1)

A Taylor expansion in the η-variable implies

∂ηv
0|γε = ∂ηv

0|η=0+ + εf(θ/ε)∂2
ηv

0|η=0+ + O(ε2),

∂θv
0|γε = ∂θv

0|η=0+ + εf(θ/ε)∂2
η,θv

0|η=0+ + O(ε2).
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From the above equalities, we infer

∂Φn v
0|γε =

1√
1 + (f′)2

∂ηv
0|η=0+ − f′√

1 + (f′)2
∂θv

0|η=0+

+ ε

{
κf√

1 + (f′)2

[(
1 − 1

1 + (f′)2

)
∂ηv

0|η=0+

+

(
1 +

1

1 + (f′)2

)
∂θv

0|η=0+

]
+

f√
1 + (f′)2

∂2
ηv

0|η=0+

− f′f√
1 + (f′)2

∂2
ηθv

0|η=0+

}
+ O(ε2), (3.2)

where f and f′ are regarded as functions of θ
ε
. Since

∂2
ηv

0|η=0+ = −κ∂ηv
0|η=0+ − ∂2

θv
0|η=0+

and on writing

n⊥
C1

=
1√

1 + (f′)2

(
f′

1

)
,

we infer [
σ∂Φn v

0
]
γε

= (σ0 − σm)nC1
(θ/ε).∇η,θv

0|η=0+

+ ε(σ0 − σm)

{
κf(θ/ε)

( nC0
(θ/ε)√

1 + (f′(θ/ε))2

− 2 + (f′(θ/ε))2

1 + (f′(θ/ε))2
nC1

(θ/ε)
)

· ∇η,θv
0|η=0+

− f(θ/ε)n⊥
C1

(θ/ε).∂θ∇η,θv
0|η=0+

}
+ O(ε2). (3.3)

Observe also that [
σ∂nv

0
]
η=0

= (σ0 − σm)nC0
(θ/ε).∇η,θv

0|η=0+ .

We now define the vector field A0 from which we will obtain the boundary-layer corrector

of order 0. From ∫
C1

nC1
(σ) dσ −

∫
C0

nC0
(σ) dσ =

(
0

0

)
and Lemma 2.2, there exists a unique couple (A0, a0) (where A0 is a continuous vector

field and a0 a constant vector) such that

ΔA0 = 0, in � × � \ (C0 ∪ C1),

σ0∂nA
0|C+

1
− σm∂nA

0|C−
1

= (σm − σ0)nC1
,

σm∂nA
0|C+

0
− σ1∂nA

0|C−
0

= −(σm − σ0)nC0
,

A0 →x→−∞ 0, A0 →x→+∞ a0.
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We define now the boundary-layer corrector of order 0, v0BL on O by

v0BL(η, θ) =

⎧⎨⎩ε
(
A0(η/ε, θ/ε) − a0

)
· ∇η,θv

0|Γ+ , if η > 0,

εA0(η/ε, θ/ε) · ∇η,θv
0|Γ+ , if η < 0.

Remark 3.1 Using the equations satisfied by A0, we observe that A0 decays exponentially

for x → −∞, and similarly A0 − a0 decays exponentially for x → ∞.

From equality (3.1) with v0 replaced by v0BL, we deduce

∂Φn v
0
BL|γε =

(
1√

1 + (f′)2

∂A0

∂x
− f′√

1 + (f′)2

∂A0

∂y

)
· ∇η,θv

0|η=0+

− ε
f′√

1 + (f′)2
(A0 − a0) · ∂θ∇η,θv

0|η=0+

+ εκf

(
[(1 + (f′)2)−1/2 − (1 + (f′)2)−3/2]

∂A0

∂x

+ [(1 + (f′)2)−1/2 + (1 + (f′)2)−3/2]f′ ∂A0

∂y

)
· ∇η,θv

0|η=0+ + O(ε2).

Taking into account the fact that

1√
1 + (f′)2

[
σ

∂A0

∂x

]
C1

− f′√
1 + (f′)2

[
σ

∂A0

∂y

]
C1

=

[
σ

∂A0

∂n

]
C1

,

we obtain[
σ∂Φn v

0
BL

]
γε

= (σm − σ0)nC1
· ∇η,θv

0|η=0+ + ε(σm − σ0)

× f′√
1 + (f′)2

(A0 − a0) · ∂θ∇η,θv
0|η=0+ + εκf

(
2√

1 + (f′)2

[
σ

∂A0

∂x

]
C1

− (σm − σ0)
2 + (f′)2

1 + (f′)2
nC1

)
· ∇η,θv

0|η=0+ + O(ε2). (3.4)

Therefore, using (3.3) and (3.4) we infer

[
σ∂Φn (v0 + v0BL)

]
γε

= (σ0 − σm)ε

{
κ

f(θ/ε)√
1 + (f′(θ/ε))2

(
nC0

+
2

σ0 − σm

[
σ

∂A0

∂x

]
C1

)
· ∇η,θv

0|η=0+

−
(
fn⊥

C1
+

f′√
1 + (f′)2

(A0 − a0)

)
· ∂θ∇η,θv

0

}
+ O(ε2). (3.5)

On the other hand, for any v regular enough, we have

Δη,θv = ∂2
ηv + ∂2

θv + ((1 + ηκ)−2 − 1)∂2
θv +

κ

1 + ηκ
∂ηv − ηκ′

(1 + ηκ)3
∂θv.
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Now from the equation satisfied by A0 we obtain

Δη,θv
0
BL = 2

∂A0

∂y
· ∂θ∇η,θv

0|η=0+ − 2ηκ+ η2κ2

(1 + ηκ)2

(
1

ε

∂2A0

∂y2
· ∇η,θv

0|η=0+

+ 2
∂A0

∂y
· ∂θ∇η,θv

0|η=0+

)
+

κ

1 + ηκ

∂A0

∂x
· ∇η,θv

0|η=0+

− ηκ′

(1 + ηκ)3
∂A0

∂y
· ∇η,θv

0|η=0+ + O(ε),

which gives, when applied with η = xε,

Δη,θv
0
BL = κ

(
∂A0

∂x
− 2x

∂2A0

∂y2

)
· ∇η,θv

0|η=0+ + 2
∂A0

∂y
· ∂θ∇η,θv

0|η=0+ + Õ(ε), (3.6)

where Õ(ε) denotes any function of order ε when |η|/ε is bounded and decays exponentially

for |η|/ε tending to infinity.

3.2 First-order approximation

For a function u defined in O0 ∪ O1, we denote by [u]|γε the jump of u across γε:

[u]|γε = u|γ+
ε

− u|γ−
ε
.

Using equalities (3.3), (3.4) and (3.6) we deduce that the function W0 defined by W0 =

vε − (v0 + v0BL) satisfies

Δη,θW
0 = κ(θ)G1

(
η

ε
,
θ

ε

)
· ∇η,θv

0|η=0+ + G2

(
η

ε
,
θ

ε

)
· ∂θ∇η,θv

0|η=0+ + Õ(ε),

(1 + d0κ)∂ηW
0|η=d0

+ Λ0W
0|η=d0

= gε0+,

(1 − d0κ)∂ηW
0|η=−d0

− Λ1W
0|η=−d0

= gε0−,

with the following transmission conditions:

σ0∂ΦnW
0|γ+

ε
− σm∂ΦnW

0|γ−
ε

= ε
[
κ(θ)B1(θ/ε) · ∇η,θv

0|η=0+ + B2(θ/ε) · ∂θ∇η,θv
0|η=0+

]
,

σm∂ηW
0|η=0+ − σ1∂ηW

0|η=0− = 0

and

[W 0]|γε = 0, [W 0]|η=0 = εa0 · ∇η,θv
0|η=0+ ,
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where G1, G2, B1 and B2 are given with the help of (3.5) and (3.6) by

G1 = −
(

∂A0

∂x
− 2x

∂2A0

∂y2

)
,

G2 = −2
∂A0

∂y
,

B1 = − f√
1 + (f′)2

(
(σ0 − σm)nC0

+ 2

[
σ

∂A0

∂x

]
C1

)
,

B2 = (σ0 − σm)

(
fn⊥

C1
+

f′√
1 + (f′)2

(A0 − a0)

)

and

gε0+ = −(1 + d0κ)∂ηv
0
BL(η0, θ) − Λ0(v

0
BL|η=η0

),

gε0− = −(1 − d0κ)∂ηv
0
BL(−η0, θ) + Λ1(v

0
BL|η=−η0

).

We now define the following vectors, for k = 1, 2:

Dk =

∫
�×�

σ̃Gk dxdy +

∫
C1

Bk dσ, (3.7)

with σ̃ defined in (2.5). Simple calculations give

D1 = (σ0 − σm)

[∫ 1

0

f(y) dy nC0
+

∫ 1

0

A0(f(y), y) dy

]
+ (σm − σ1)

∫ 1

0

A0(0, y) dy − σ0a0

and

D2 = (σm − σ0)

[∫ 1

0

A0(f(y), y)f′(y) dy −
∫ 1

0

f(y) dy

(
0

1

)]
.

Define v1 by

Δη,θv
1 = 0, in O1 ∪ O0,

(1 + d0κ)∂ηv
1|η=d0

+ Λ0v
1|η=d0

= 0,

(1 − d0κ)∂ηv
1|η=−d0

− Λ1v
1|η=−d0

= 0,

with the following transmission conditions:

σ0∂ηv
1|η=0+ − σ1∂ηv

1|η=0− = κD1 · ∇η,θv|0η=0+ + D2 · ∂θ∇η,θv|0η=0+ ,

v1|η=0+ − v1|η=0− = a0 ·
(
∇η,θv

0
)

|η=0+ .

Denote by w1 the following quantity:

w1 = W 0 − εv1.
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Since we have

∂Φn v
1|γε = nC1

· ∇η,θv
1|η=0+ + O(ε),

and since ∂ηv
1|η=0+ = nC0

.∇η,θv
1|η=0+ , w1 satisfies

Δη,θw
1 = κ(θ)G1 · ∇η,θv

0|η=0+ + G2 · ∂θ∇η,θv
0|η=0+ + Õ(ε),

(1 + d0κ)∂ηw
1|η=d0

+ Λ0w
1|η=d0

= gε0+,

(1 − d0κ)∂ηw
1|η=−d0

− Λ1w
1|η=−d0

= gε0−,

with the following transmission conditions:

[
σ∂Φn w

1
]
γε

= ε
(
κ(θ)B1(θ/ε).∇η,θv

0|η=0+ + B2(θ/ε).∂θ∇η,θv
0|η=0+

)
− ε(σ0 − σm)nC1

.∇η,θv
1|η=0+ + O(ε2),[

σ∂ηw
1
]
η=0

= − ε
(
κ(θ)D1.∇η,θv

0|η=0+ + D2.∂θ∇η,θv
0|η=0+

)
+ ε(σ0 − σm)nC0

.∇η,θv
1|η=0+

and

[w1]|γε = 0, [w1]|η=0 = 0.

We now introduce the two following problems defined in �×�. For j = 1, 2, let (A1,j , a1,j)

with A1,j continuous satisfy

ΔA1,j = Gj, in � × � \ (C0 ∪ C1),

σ0∂nA
1,j |C+

1
− σm∂nA

1,j |C−
1

= Bj,

σm∂nA
1,j |C+

0
− σ1∂nA

1,j |C−
0

= −Dj,

Aj1 →x→−∞ 0, A1,j →x→+∞ a1,j .

According to Lemma 2.2 and Remark 2.3 and using (3.7) it is clear that the above

problems are well posed. Define now the boundary-layer corrector of order 1 on O by

∀η > 0,

v1BL(η, θ) = ε2(κ(θ)[A1,1(η/ε, θ/ε) − a1,1] · ∇η,θv
0|η=0+

+ [A1,2(η/ε, θ/ε) − a1,2] · ∂θ∇η,θv
0|η=0+

+ [A0(η/ε, θ/ε) − a0] · ∇η,θv
1|η=0+),

∀η < 0,

v1BL(η, θ) = ε2(κ(θ)A1,1(η/ε, θ/ε) · ∇η,θv
0|η=0+

+ A1,2(η/ε, θ/ε) · ∂θ∇η,θv
0|η=0+ + A0(η/ε, θ/ε) · ∇η,θv

1|η=0+).
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4 Justification of the expansion

Suppose now that g belongs to H7/2(∂Ω). Then v0 belongs to H4(O0) and H4(O1). Hence

we can differentiate the function W 1 = W 0 − εv1 − v1BL, which therefore satisfies

Δη,θW
1 = Fε(η, θ), in O1 ∪ Om

ε ∪ O0
ε ,

(1 + d0κ)∂ηW
1|η=d0

+ Λ0W
1|η=d0

= gε1+,

(1 − d0κ)∂ηW
1|η=−d0

− Λ1W
1|η=−d0

= gε1−,

with the following transmission conditions:

σ0∂ΦnW
1|γ+

ε
= σm∂ΦnW

1|γ−
ε

+ ε2Rε1,

σm∂ηW
1|η=0+ = σ1∂ηW

1|η=0− + ε2Rε2

and

W 1|γ+
ε

= W 1|γ−
ε
,

W 1|η=0+ = W 1|η=0− + ε2
(
κa1,1.∇η,θv

0|η=0+ + a1,2.∂θ∇η,θv
0|η=0+ + a0.∇η,θv

1|η=0+

)
.

The function Fε is smooth with respect to the η-variable, while it is square-integrable in

the θ-variable. Moreover it satisfies

|Fε(η, .)|L2(�) �

{
Cε, if η � cε,

decays exponentially for η/ε tending to infinity,

which implies that for all s ∈ [1, 2] there exists cs > 0 such that

‖Fε‖Ls(O) � csε
1+1/s. (4.1)

Simple calculations lead to the following estimates:

|Rε1|L2(γε)
� C, (4.2a)

|Rε2|L2(γ0) � C, (4.2b)∣∣gε1±
∣∣
L2(γ±d0 )

� C1e
−C2/ε. (4.2c)

Theorem 1.4 is a straightforward consequence of the following theorem.

Theorem 4.1 For any s ∈]1, 2] there exists cs > 0 independent of ε such that

∥∥W 1
∥∥
H1(D1)

+
∥∥W 1

∥∥
H1(D0)

� csε
1+1/s.
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Proof To prove the estimate, we write the problem satisfied by W 1 in local coordinates.

We consider a function p ∈ H2(O1) such that

p = κa1,1.∇η,θv
0|η=0+ + a1,2.∂θ∇η,θv

0|η=0+ + a0.∇η,θv
1|η=0+ on η = 0,

∂ηp = 0 on η = 0,

p = ∂ηp = 0 on η = −d0,

and we set

Ŵ 1 = W 1 + ε2p1O1 ,

where 1O1 denotes the characteristic function of O1. Then Ŵ 1 is continuous and satisfies

Δη,θŴ
1 = Fε(η, θ), in Om

ε ∪ O0
ε ,

Δη,θŴ
1 = Fε(η, θ) + ε2Δη,θp, in O1,

(1 + d0κ)∂ηŴ
1|η=d0

+ Λ0Ŵ
1|η=d0

= gε1+,

(1 − d0κ)∂ηŴ
1|η=−d0

− Λ1Ŵ
1|η=−d0

= gε1−,

σ0∂Φn Ŵ
1|γ+

ε
= σm∂Φn Ŵ

1|γ−
ε

+ ε2Rε1,

σm∂ηŴ
0|η=0+ = σ1∂ηŴ

0|η=0− + ε2Rε2.

Now multiplying the main equations by σ(1 + ηκ)ϕ and integrating by parts, we infer the

following variational formulation for Ŵ 1 ∈ H1(O):∫
O
σD∇η,θŴ

1 · ∇η,θϕ+ σ0 < Λ0Ŵ
1, ϕ > +σ1 < Λ1Ŵ

1, ϕ >

= −
∫

O
σ(1 + ηκ)Fεϕ− ε2σ1

∫
O
(1 + ηκ)Δη,θpϕ+ σ0

∫
γd0
gε1+ϕ− σ1

∫
γ−d0

gε1−ϕ

− ε2
∫
γε

√
(1 + εκf)2 + (f′)2√

1 + (f′)2
Rε1ϕ− ε2

∫
γ0

Rε2ϕ, ∀ ϕ ∈ H1(O),

where D is the diagonal matrix with elements 1 + ηκ and 1/(1 + ηκ).

Taking ϕ = Ŵ 1, using inequalities (4.1) and (4.2) and using also a result of Bonder

et al. [5], since the amplitude and the period of the oscillations of Γr
ε have the same order,

we infer the result. �

Remark 4.2 Since the boundary-layer corrector v1BL is of order ε2 in L2(O) we infer that

for any s ∈]1, 2]

‖vε − v0 − v0BL − εv1‖L2(O) � Csε
1+1/s.

5 Conclusion

In this paper, we have proved the efficiency of our transmission conditions to tackle the

numerical difficulties inherent in the geometry of a rough thin layer. Even though we have

considered here the periodic case, the same analysis with much more tedious calculations

can treat the quasi-periodic case.
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The main feature of our result is the following: unlike the case of the weakly oscillating

thin membrane (see [11]), if the period of the oscillations of the rough layer is similar to its

thickness, then the layer influence on the steady-state potential cannot be approximated

by only considering the mean effect of the rough layer.

Actually, if we were to consider the mean effect of the roughness, the approximate

transmission conditions would be these presented in (1.6), by replacing f by its average

f̃. Observe that our transmission conditions (1.5) are very different, since they involve the

curvature of Γ and the normal and tangent derivatives of u0. More precisely, denote by

ũ1 the first-order approximation of the mean effect of the layer. Then according to (1.6)

ũ1 satisfies

Δũ1 = 0, in D0 ∪ D1, u1|∂Ω = 0, on ∂Ω,

σ0∂nũ
1|Γ+ = σ1∂nũ

1|Γ− + (σ0 − σm)f̃∂2
t u

0|Γ+ ,

ũ1|Γ+ = ũ1|Γ− +
σ0 − σm

σm
f̃∂nu

0|Γ+ ,

while we remember that the ‘real’ first-order u1 satisfies

Δu1 = 0, in D0 ∪ D1, u1|∂Ω = 0,

σ0∂nu
1|Γ+ = σ1∂nu

1|Γ− − κD1 ·
(

∂nu
0|Γ+

∂tu
0|Γ+

)
+ D2 · ∂t

(
∂nu

0|Γ+

∂tu
0|Γ+

)
,

u1|Γ+ = u1|Γ− + a0 ·
(

∂nu
0|Γ+

∂tu
0|Γ+

)
.

The motivation of this work comes from a collaboration with Schlumberger to model

silty soils. However we are confident of the importance of such results in other research

areas, for instance in the mathematical study of radiation patterns created by periodic

structures of phased-arrays antennas. These antennas are formed by the superposition

of a great number of identical electromagnetic horns, and very slight changes in the

above analysis would lead to the appropriate transmission conditions. We conclude this

paper by illustrating our theoretical results with the numerical simulations obtained by

Ciuperca, Perrussel and Poignard and presented in [6]. The mesh generator Gmsh [7] and

the finite-element library Getfem++ [13] have been used to perform simulations.

The computational domain Ω is delimited by the circles of radius 2 and of radius 0.2

centred on 0, while D1 is the intersection of Ω with the concentric disc of radius 1. The

rough layer is then described by f(y) = 1 + 1
2
sin(y). One period of the domain is shown

Figure 3(a). The Dirichlet boundary data are identically 1 on the outer circle and 0 on

the inner circle.

The conductivities σ0, σ1 and σm equal 3, 1 and 0.1 respectively. The computed coeffi-

cients3 issued from problem (1.4) are given in Table 1.

The numerical convergence rates for the H1-norm in D1 of the three errors uε − u0,

uε − u0 − εu1 and uε − u0 − εũ1 as ε goes to zero are given Figure 4. As predicted by the

3 The convergences at the infinity in problem (1.4) are exponential, and hence it is sufficient to

compute problem (1.4) for |x| � M, with M large enough to obtain a0 with a good accuracy.
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Figure 3. (Colour online) Representation of one period of the domain and the corresponding

errors with approximate solutions u0 and u0 + εu1 for ε = 2π/30. Please note that the error in the

rough layer should not be consisdered because a proper reconstruction of the solution in it is not

currently implemented.

Order 0
Estimated exponent: 0.83
Order 1
Estimated exponent: 1.8

ε

Order 1, mean effect

Estimated exponent: 1.19

Figure 4. (Colour online) The H1-error in the cytoplasm versus ε for three approximate solutions.
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Table 1. Coefficients issued from problem (1.4). Three significant digits are kept.

a0
1 a0

2 D1
1 D1

2 D2
1 D2

2

19.3 0 0 0 −0.0499 −3.87

theory, the rates are close to 1 for order 0 and for order 1 with the mean effect, whereas

the rate is close to 2 for the ‘real’ order 1 equal to uε − u0 − εu1.
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