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Abstract
In Qualitative Comparative Analysis (QCA), empirical researchers use the consistency value as one, if not

sole, criterion to decide whether an association between a term and an outcome is consistent with a set-

relational claim. Braumoeller (2015) points out that the consistency value is unsuitable for this purpose.

We need to know the probability of obtaining it under the null hypothesis of no systematic relation. He

introduces permutation testing for estimating the p value of a consistency score as a safeguard against

false positives. In this paper, I introduce permutation-based power estimation as a safeguard against false-

negative conclusions. Low powermight lead to the false exclusion of truth table rows from theminimization

procedure and the generation and interpretation of invalid solutions. For a variety of constellations between

an alternative and null hypothesis and numbers of cases, simulations demonstrate that power estimates can

range from 1 to 0. Ex post power analysis for 63 truth table analyses shows that evenunder themost favorable

constellation of parameters, about half of them can be considered low-powered. This points to the value of

estimating power and calculating the required number of cases before the truth table analysis.

Keywords: false negatives, permutation, power, Qualitative Comparative Analysis, randomization tests,

set theory

1 Introduction

The consistency value fulfills an important role in Qualitative Comparative Analysis (QCA).

Empirical QCA researchers use it as one, if not exclusive criterion to distinguish associations

between a term and an outcome supporting the inference that a set relation is present from

associations that fail to support it (Ragin 2006).1 Braumoeller (2015) recently pointed out that

the consistency score is unsuitable for this purpose because we need to know the probability of

obtaining such a value under the null hypothesis that there is, in fact, no set relation. Without

determining the probability, we might commit a false positive by incorrectly inferring that a set

relation is in place when it is not. Braumoeller shows for fuzzy-set QCA (fsQCA) that permutation

tests allow one to derive the distribution of consistency values for calculating the p value and

statistical significance for the observed consistency score.2

Permutation tests and p-value calculation are valuable additions to the QCA toolbox for

avoiding falsepositives.However, it is equally valuable toknowtheprobability of rejecting thenull

hypothesis when it is false. This is a matter of the power of a truth table analysis that is inversely

related to the probability of committing a false negative. So far, there has beenno consideration of

the role of power for truth table analyses in the QCA literature, although it is essential to avoiding

producing and interpreting false QCA solutions.3

1 A “term” can be a single condition, a conjunction or a disjunction of conditions and conjunctions.

2 An analytical solution is available for crisp-set (csQCA) and multivalue QCA (mvQCA) for which the distribution of

consistency values is known (Braumoeller 2015, 484–485). In combination with false-positive testing, Braumoeller argues

that we should correct for multiple testing (2015, 478–479). This issue is not relevant for power analysis.

3 I speak of “QCA” to reference the general approach of studying set relations andof “truth table analysis”when I specifically

refer to the processing of set-relational data for deriving a solution (Schneider and Wagemann 2012, 11).
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In this paper, I introduce power analysis to further the development of truth table analyses and

equip empirical researchers with a new tool that will contribute to the validity of their results. I

first discuss what a null hypothesis and an alternative hypothesis are in QCA because they need

to be specified for power estimation (Section 2). Throughout the paper, I discuss power analysis

for set-relational analyses on sufficiency and note here that all arguments generalize to studies

of necessity because they invoke consistency values for making similar decisions. Drawing on the

distinction between a null and alternative hypothesis, I elaborate on the benefits of high power

for a truth table analysis and the consequences of low-powered studies (Section 3). I argue that

lowpower canhave two consequences. First, it implies a high probability of falsely excluding truth

table rows from the truth table minimization as being inconsistent that are in fact consistent. The

solution derived from a wrong set of truth table rows cannot be identical to the true solution.

However, the false and true solutions are not unrelated because the false solution is a subset

of the true one. Second, even if this problem did not exist, low power might lead us to interpret

minimal terms in the solution that are consistent as actually being inconsistent. The consequence

is identical to the first problem because the solution we falsely take as the correct solution is a

subset of the true solution we would obtain in a sufficiently powered study.

In Section 4, I present the setup for permutation tests that estimate power depending on

different null and alternative hypotheses and numbers of cases. The results in Section 5 show that

power estimates range from 1 to 0, with 48 simulations out of 75 displaying power of less than

0.5 and 15 have a power estimate of more than 0.8. The simulations show that power is positively

correlatedwith the difference in the consistency values of the null and alternative hypothesis. The

relationship between the number of cases and power is more involved because it is conditional

on the difference between the consistency scores of the alternative and null hypothesis in ways

described in detail in Section 5.2. In Section 6, I estimate power ex post for 63 published truth

table analyses. Some are strongly powered, but about half of them display low power even under

the most favorable null and alternative hypothesis.

The simulations and results speak in favor of calculating power prior to the truth table analysis

and making adjustments to the sample size, if possible, to reach a desired level of power

(Section 7). Section 8 extends the discussion to crisp-set and multivalue QCA and points out

that power estimation for them differs from fsQCA in terms of the number of cases feeding into

the procedure. In Section 9, I conclude by arguing that false-positive testing as introduced by

Braumoeller and false-negative testing are complementary and should be used in tandem in

empirical QCA research.

2 Alternative Hypotheses and Null Hypotheses in QCA

The terms “null hypothesis” and “alternative hypothesis” are neither used in empirical QCA

research nor discussed in the methods literature.4 This might not seem surprising because QCA

is cast as a method that is different from quantitative research in which these terms are common

(Ragin 2008, ch. 10, 11). However, the absence of these terms from the QCA literature does not

necessarily mean that they are inherently inapplicable. On the contrary, the consistency value of

a term is central to two stages of aQCA interested in a sufficient solution. The idea of an alternative

and a null hypothesis about consistency scores come into play at these stages: first, when we

assign outcome values to truth table rows to prepare the truth table forminimization and, second,

when we interpret a QCA solution as the result of a simplified truth table.5

4 Except for the null hypothesis for Braumoeller (2015) and Ragin (2000) who later again dropped it and replaced it with the

idea of consistency and formulas for calculating it.

5 In the analysis of necessary relations, only the second part matters because tests for necessity are based on the data table

as opposed to the truth table (Schneider andWagemann 2012, 69–76). If a test for necessity is blended with an analysis of

sufficiency (Thiem 2014, 492–498), both stages matter in the same way as in a standalone analysis of sufficiency.
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Onecanargue that the verymeaningof the consistency value implies analternativehypothesis,

H1, which represents our expectation about the true consistency value of an empirical relation

between sets. The consistency value captures the degree to which an empirical association

between a term X and the outcome Y is in accordwith the ideal, perfect relation of sufficiency as it

is defined in propositional logic (Ragin 2006).6 The ideal set relation is equivalent to an empirical

set relation displaying a consistency value of 1 because classic propositional logic underlying QCA

does not feature deviations from the ideal. Because a perfect set relation can be taken as the

benchmark for interpreting any empirical consistency value, one can argue that H1 entails an

expected consistency score of 1, which can be formalized as cH 1 = 1.

A consistency value of 1 for H1 is in line with logic and also reflects the understanding of QCA

as a case-oriented, Y -centered method that seeks to fully explain the cases’ set membership

values for the outcome (Ragin 1987, ch. 5). However, it is not mandatory to fix cH 1 at 1 because

it should reflect the researcher’s subjective, theoretical expectation about the consistency of a

set relation. The most important aspect for specifying cH 1 seems to be whether one believes

that the empirical relation between X andY is deterministic on an ontological level, that is, the

observed consistency value would be unity with complete data measured without any error, and

so forth.7 Empirically, the observed consistency value might still be less than 1, but the belief in

ontological determinismwould allowone to set cH 1 to 1. If it is thought the relation is probabilistic

on an ontological dimension or one emphasizes epistemological probabilism, the set relation is

assumed to fail the ideal from logic, even with perfect data, and so forth. This could be reflected

in the specification of cH 1 at a value of less than 1, the lower bound being the consistency value of

the null hypothesis (see below).8 In empirical research, one should not mechanically set cH 1 to 1,

but consider the consistency value one expects to govern a set relation.

Following its conventional use, the null hypothesis, H0, should cover the largest possible

consistencyvaluecH 0 representinganempirical association that is inconsistentwith thestatement

that a set relation is given. In empirical research, this value is automatically fixed by determining

theminimum consistency threshold that a term needs to surpass.9 For sufficient relations, a value

of 0.75 is customarily taken as theminimally acceptable consistency valuewith the option of fixing

it at a higher level (Ragin 2006, 293).10

NeitherH1 norH0 need to be the same during both stages of the analysis. ForH0, it is common

practice to invoke different thresholds over the course of the truth table analysis (see Section 6).

In deciding about the assignment of outcome values to truth table rows, empirical researchers

frequently choose consistency thresholds higher than the minimally acceptable value of 0.75 (for

example,Mello 2012). A commonstrategy is to search for gapsor jumps in the consistency valuesof

two adjacent rows that are ranked by their consistency values (for example, Freitag and Schlicht

2009, 63). For example, if one truth table row has a consistency of 0.87 and the next row only

0.8, we assign an outcome value of 1 to the former and of 0 to the latter, based on the belief

that the conjunctions represented by the rows stand in a qualitatively different relationship to

the outcome.11

6 Braumoeller andGoertz (2000)developanalternative strategy in theanalysis of necessity not requiringa consistency value

that was only introduced six years later by Ragin (2006).

7 See Hug (2013) and Thiem, Spöhel and Dusa (2015) for measurement error in QCA.

8 For a discussion of power, there is no need to delve into the debate about whether it is more appropriate to assume

determinism or probabilism (for example, Hug (2013) and Ragin (2014, 82–84)), as this is an issue about which every QCA

researcher needs to form her own opinion.

9 See (Ragin 2008, ch. 7) on the threshold in a truth table analysis.

10 The minimally acceptable value for the analysis of necessary relations is 0.90 by convention (Schneider and Wagemann

2012, 143).

11 In light of more recent developments, the consistency value should not be mechanically used for assigning outcome

values. In addition to a consistency value above the chosen threshold, there should not be problems due to skewed set

membership values, formalized in the PRImeasure (Schneider andWagemann 2012, Section 9.2), there should be no truly

contradictory cases and at least one typical case should bemember of a row (Schneider andWagemann 2012, chaps. 6, 11).
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The assignment of outcome values based on gaps is common, but it has the potential to create

an ambiguity that translates into uncertainty about the exact value of cH 0. In the hypothetical

example, for the assignment of outcome values it does not matter whether the consistency

threshold is fixed at 0.86 or 0.81. However, it makes a difference for power estimation because

we need to fix cH 0 at a specific value and because the level of power depends on the level of cH 0

(see Section 5). For power analysis and, for the sake of transparency more generally, empirical

researchers should not only identify gaps in consistency values, but also specify a consistency

score when preparing the truth table for minimization.

For the second stage at which consistency plays a role, the interpretation of a QCA solution is

usually not based on an explicit threshold distinguishing between sufficient and non-sufficient

minimal terms. Implicitly, this means the threshold is fixed at 0.75 as the conventional minimum.

As long as the consistency threshold for the assignment of outcome values is not 0.75, which it

sometimes is (see Section 6), a single empirical study invokes two different null hypotheses at

different stages of the analysis.

A rationale for choosing different values of cH 0 and also of cH 1 over the course of a truth table

analysis is that they might relate to terms of varying complexity, where complexity is measured

by the number of conjuncts in a configuration (see McCluskey 1956). If the truth table rows that

are taken as sufficient for the outcome are simplified in the truth table analysis, which usually is

the case, the minimally sufficient terms in the solution are less complex than the sufficient truth

table rows. Complexity is positively associated with the consistency value, that is, more complex

terms tend to have consistency values equal to or higher than any other term that lacks at least

one conjunct (Schneider and Wagemann 2012, 291–293). The formulation of different null and

alternative hypotheses at both parts of the analysis would reflect that the terms to which the

hypotheses apply are not identical and have different consistency scores for mechanical reasons.

For the estimation of power, the specification of different levels of cH 1 and cH 0 is not a problem as

long as the values of cH 1 and cH 0 at each stage of the analysis are transparent.

3 Consequences of High and Low Power

“Power” is the probability of rejectingH0when it is false. Power equals 1-β , β being the probability

ofmaking the type-II error of not rejectingH0when it is false, that is, ofmakinga falsenegative. In a

high-powered study, theobservedconsistency values allowus to separate terms that are sufficient

from those that are not with a high rate of accuracy. Low power manifests itself differently at

the two stages at which it matters, but the consequences for deriving and interpreting the QCA

solution are similar.

First, when we assign outcome values to truth table rows, the probability of erroneously

excluding rows from the minimization process increases as power decreases. This happens if the

true, unknown consistency value of a truth table row is above cH 0, but the row’s observed score

happens to fall below cH 0. If we commit a false negative and assign an outcome value of 0 when

it should be 1, the QCA solution we derive cannot be identical to the true solution we would

obtain if wewere correctly assigning the outcome values. The reason is that assigning an outcome

value of 0 excludes this row from the minimization process. The excluded row cannot contribute

to singling out redundant conjuncts and the simplification of the truth table rows that do enter

into the minimization procedure (Ragin 1987, ch. 6). Conjuncts that we could correctly identify as

redundant if we had included the falsely excluded row appear to be non-redundant and remain

falsely part of the QCA solution. Even if no minimization is possible, the derived solution would

be different because a conjunction would bemissing from it. A false negative stands in the way of

deriving the true solution, but thewrong solution is not completely unrelated to the true one. The
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failure tominimize some configurations implies that thewrong solution is amore complex version

of the true solution, making the wrong solution is a subset of the true one.12

Second, low power comes into play in interpreting a QCA solution. Even if we do not commit

a false negative when assigning outcome values, we may make one when interpreting the

consistency values of the terms in a QCA solution. In a low-powered study, the observed

consistency score of a term might fall below 0.75, the conventional minimum, with a high

probability, although the true consistency value is above0.75.Wewould have formally derived the

true solution, but fail to recognize it as such, only giving a theoretical interpretation of the terms

with a consistency value of 0.75 or higher. The consequences of too little power in the second stage

are similar to those in the first stage because the exclusion of some terms from the theoretical

discussion of the solution means focusing on a subset of the true model.

4 Permutation-based Power Analysis

4.1 Estimation procedure
I estimate power with permutation tests as a simple technique for deriving the distribution of the

quantity of interest. One advantage of permutation tests is thatwe do not have to assume that the

data at hand represent a random sample of a population (see Section 8 below, and Good (1994,

ch. 1) and Carsey and Harden (2013, Section 8.2)). For my purpose, the quantity of interest is the

consistency value of a term that can be a condition, conjunction or disjunction of conditions or

conjunctions.13 In principle, one can easily estimate power before doing a fuzzy-set truth table

analysis. We neither need to know theminimal terms of the QCA solution nor dowe need to know

the consistency value of any term or truth table row because the specification of cH 1 and cH 0 is

independent of them. Regarding the number of cases as the third ingredient to power estimation

(see Section 4.1), for fsQCA it suffices to know the total number of cases in the truth table analysis

becauseall cases contribute to theconsistencyvalueof each truth table rowand term inasolution.

This differs for crisp-set QCA and multivalue QCA, the discussion of which I relegate to Section 8

because I first need to explain how power estimation is performed for fsQCA. The estimation

procedure is summarized in Figure 1.

We firsthave to formulateH1, stating that theconsistencyvalue iscH 1, andH0 thatdistinguishes

consistent from inconsistent terms based on the consistency score cH 0. The starting point of

power estimation is the assumption that H1 is correct. For any observational data, we do not

know the data-generating process andwhether it was generated in accordwithH1. Consequently,

permutation tests for power estimation must be based on simulated data generated such that it

is in accord with H1 and produces the consistency score cH 1.
14 If we set cH 1 to 1, the consistency

value for any simulateddatasetmustbe 1. Let usdenotea simulateddataset as si , i beinga running

index because we have to sample data multiple times for power estimation (see below). Each si

consists of a term X and an outcomeY for which we observe set membership values for n cases.

A simulated dataset si is the starting point for the permutation test. We permute the

dataset by keeping the cases’ membership in the term fixed and randomly assign them the

outcome membership of another case in the data, that is, we resample outcome values without

replacement (Braumoeller 2015, 479). Let us refer to the permuted data as rj . r stands for

randomized permutation and j is a running index for the number of permutations per simulated

12 The consequences of lowpower are similar to setting the consistency threshold for the truth table too high (Schneider and

Wagemann 2012, 291–293).

13 The consistency values are calculated differently for individual conditions, conjunctions and disjunctions (Schneider and

Wagemann2012, ch. 2), but this is irrelevant to estimatingpower. I assumeone is interested in thepower ofwhat I generally

refer to as a term.

14 This differs from permutation tests for false-positive testing because it estimates the probability of getting a consistency

value for observed data if the null hypothesis of no systematic set relation is true (Braumoeller 2015, 478). False-positive

testing based on H0 formulated as such does not require specifying cH 0.
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Figure 1. Summary of procedure for power estimation.

dataset si . I rely on randomized permutation tests because the number of cases quickly becomes

too large for an exact permutation test that involves all possible permutations of the data (see

Section 5 and Supplementary Appendix). A randomized permutation test permutes a simulated

dataset si j times, j being smaller than the total number of possible permutations. For each

permuted dataset rj , we calculate the consistency value cj for the set relation of interest between

X andY . The process of permuting the same simulated dataset si and calculating consistency

scores is iterated until j becomes sufficiently large to construct a distribution over all consistency

values c1 to cj . The distribution makes it possible to locate the consistency value cH 0 in the

distribution and derive the corresponding p value pH 0 by performing a left-sided significance

test.15 We reject H0 if pH 0 is smaller than the chosen level of α , which is what we expect because

we know H0 is false, and fail to reject it otherwise.

There are no unambiguous guidelines for howmany permutations j are needed per simulated

dataset si to test H0. I follow the guideline that j should be large enough to receive a precise

estimate of pH 0 (Braumoeller 2015, 479–480). The larger j becomes, themore precise the estimate

and the more meaningful it becomes to test the consistency value cH 0 for significance. The

standard error of pH 0 is the p value divided by
√
j and means we should be on the safe side

when permuting each dataset si 10000 times. In the simulations and power analysis for empirical

studies, I take into account the uncertainty of pH 0 by calculating its 95% confidence interval

(two-sided) and testing whether the upper bound of the interval is smaller than α .

The process of simulating datasets according to H1 and permuting them j times is repeated

until i becomes sufficiently largebecauseweneed to know the long-runprobability of rejectingH0

when it iswrong.When i is largeenoughandwehave tested cH 0 for eachdataset si for significance,

the power estimate is the number of tests forwhichwe could rejectH0 relative to the total number

15 The test is left-sided because cH 0 must be smaller than cH 1.
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of tests i . For example, a power estimate of 0.17 means that 17% of all tests of H0 turned out

to be significant. There is no solid rule for how large i should be, but, initially, 1000 simulations

seem appropriate for estimating power. Whether the chosen i is large enough for a reliable power

estimate can be visually examined by plotting the running power estimate against i (see Figure 4

below). We can infer that i is sufficiently high to produce a reliable estimate if it settles into a

specific range after a certain number of simulations. If the estimate is still moving up and down

after i simulations, i should be increased until the estimate stabilizes and a reliable estimate can

be derived.

Inpractice, theexanteestimationofpower is notpossible for the truth table analysis if outcome

values are assigned to rows based on a gap between the consistency values of adjacent rows (see

Section 2).16 Theprecise value of cH 0 thendependsonwhere the gap is and, if there is one,weonly

know this after creating the truth table and looking at the consistency values of its rows. Although

wecancalculatepower following thisprocedure, it ispreferable tocalculate itbeforehandbecause

the decision about cH 0 should not depend on where a gap happens to be. Instead, it should be

considered a general decision to bemade independent of the data.17

4.2 The relation between power and its determinants
The relation between H1 and H0 and the power estimate should be the same as in quantitative

research, while there is a difference as to the number of cases. Keeping cH 1 and n fixed (but see

below), cH 0 should be negatively correlated with power. Holding cH 0 and n constant, cH 1 should

be positively correlatedwith power. More generally, the larger the difference between cH 1 and cH 0,

the better we are able to distinguish between them empirically and themore often we are able to

reject H0 if it is wrong.

In quantitative research, more cases mean higher power because the standard error of the

estimate decreases and it becomes easier to empirically distinguish H0 from H1. In QCA, more

cases entail more information, which should contribute to a less widely dispersed distribution of

permutation-based consistency values. In contrast to quantitative research, however, this does

not necessarily imply that power increases with a growing number of cases. The smaller the

number of cases, the more likely it gets that we simulate a dataset for which the permuted

consistency values are always close to 1. This happens if all cases in the simulated dataset have

membership values in the term that are close to 0. Themembership values in the outcome is then

likely to be larger than membership in the term and the consistency score is 1. If the membership

value in X is small but not zero, we might assign membership values inY that are smaller than

in X and introduce a small degree of inconsistency. However, the small membership in X puts a

cap on the degree to which this case can push the overall consistency value below 1 and it should

not matter much (Ragin 2006, 295). For the permuted distribution of consistency values derived

from such a dataset, this means it is narrow and located at the upper end of the range of possible

values going from 0 to 1. Unless the chosen value of cH 0 is very close to 1, we are able to reject the

null hypothesis because cH 0 falls into the left tail of the permuted distribution.

The more cases we use for simulating data, the less likely it is that they all receive small

membership values in the term. Compared to a small-n setting, the location of the permuted

distributed on the range of possible consistency values should be closer to the center of the scale.

Because we perform a left-sided test of the consistency value of cH 0, it is therefore possible that

we reject H0 if n is small and fail to reject it if n is large. This probability should decrease as the

difference between cH 1 and cH 0 increases because an increasing difference makes it more likely

that the consistency value of cH 0 falls into the left tail of any permuted distribution.

16 Ex post power analysis means power is estimated after one has derived the truth table or the solution.

17 This guideline adheres to the argument that design decisions in QCA should not be made conditional on the data

(Schneider and Wagemann 2012, 41).
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In sum, it follows that the relation between n and power is conditional on the difference

between cH 1 and cH 0. For a sufficiently largedifference, power shouldbe increasingas thenumber

of cases increases. What a “sufficiently large difference” is cannot be determined here in the

abstract and will be reconsidered on the basis of the simulation results.

5 A Simulation Analysis

5.1 Setup and results
The simulations take a comprehensive perspective by evaluating the extent to which power

depends on different formulations of H1, H0 and levels of n .
18 This is necessary for evaluating

the relationship between the three parameters and power and for offering broad guidance to

empirical QCA researchers. I calculate power for consistency values of cH 1 and cH 0 in the range

of 1 to 0.75 and in intervals of 0.05. If cH 1=1, I estimate power for values of cH 0 equaling 0.95, 0.9,

0.85, 0.8 and 0.75 as the conventionally minimally acceptable value in a QCA on sufficiency; if cH 1

is 0.95, cH 0 is fixed at 0.9, 0.85, 0.8 and 0.75; and so on until the last pair of values is cH 1=0.8 and

cH 0=0.75.
19 The numbers of cases is set to 10, 20, 30, 40 and 50.

Each value of n is combined with each possible combination of cH 1 and cH 0, yielding 75

constellations in total. For each combination of cH 1, cH 0 and n , I simulate 1000 datasets in

accord with H1. Each simulated dataset is permuted 10000 times to retrieve the distribution of

consistency values for a dataset i . For each distribution, I calculate the upper bound of the 95%

confidence interval of pH 0 and test its significance for an α of 0.05. The power estimates derived

from simulations with the parameter values for cH 1, cH 0 and n are summarized in Figure 2.

The estimated levels of power convey that they can reach levels considered high in statistical

research. The bar chart in Figure 3 summarizes the simulation results by collapsing the estimates

into intervals of 0.1 and counting how many estimates fall within each interval. 15 out of 75

estimates are higher than 0.8, which is conventionally taken as high power (Ellis 2010, ch. 3). Of

these 15 estimates, nine fall in the range of 0.9–1 and 6 in the range of 0.8–0.9. This indicates that

power can be high in truth table analyses, but the broader view reveals that power is moderate

or low for most combinations of the three parameters. Only a total of 27 estimates are above 0.5,

meaning that for 48 constellations, the probability of correctly rejecting H0 is a coin flip or less.

The category of 0–0.1 is the mode of the distribution of power estimates with a count of 26.

As a check as to whether 1000 simulations are sufficient to reliably estimate power, Figure 4

presents two plots illustrating how the power estimate develops over the course of the 1000

simulations. The left chart captures the largest possible differencebetween cH 1 and cH 0 for an n of

10. The right panel contains thepower estimates for the smallest possible differencebetweenboth

hypotheses and an n of 50. Both panels indicate that 1000 simulations clearly suffice for getting

a reliable estimate. In both setups, the power estimate stabilizes at around 200 simulations and

remains in a narrow range as the number of simulations increases.

The results in Figure 2 corroborate the arguments about the effect of choosing cH 1, cH 0 and n

onpower. Each of the five panels shows that if we keep n fixed, power increaseswith an increasing

difference between cH 1 and cH 0. The relationship between n and power ismore involved because

the results showthat theeffectofn is conditional on cH 1 and cH 0. For cH 1 = 1and cH 1 = 0.95,more

cases only yield higher power if the difference between cH 1 and cH 0 is larger than 0.1. If cH 1 = 0.9

and cH 1 = 0.85, power is estimated to be higher for a larger number of cases if the difference is

more than 0.05. For those parameter constellations for which power gets larger as n increases,

increasing n from 10 to 50 promises an increase power up to 0.25 to 0.35 points. On the other

18 The reproduction material is available on Dataverse (Rohlfing 2017).

19 In principle, the simulations on sufficiency should entail a power analysis for necessity because the minimum value of

cH 0 for necessary relations is 0.90. The only difference between a power analysis for necessity and sufficiency lies in how

consistency is calculated (Ragin 2006).
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Figure 2. Power estimates for five values of cH 1 and cH 0.

hand, if the difference between cH 1 and cH 0 is sufficiently small, power is estimated to be higher

for a smaller number of cases with amaximumdifference of about 0.15 points (cH 1 = 1, cH 0 = 0.9,

n = 10 vs. n = 50).

Anadditional insight is that thepowerestimates arenot similar for the samedifferencebetween

cH 1 and cH 0. For example, for n = 50 power is about 0.1 if cH 1 = 1 and cH 0 = 0.9. In contrast, we

get a power estimate of about 0.5 if we fix cH 1 at 0.85 and cH 0 at 0.75. The conditional relationship

between n and the power estimate requiresmore scrutiny because itmight seem counterintuitive

and is different from quantitative research.

5.2 The relationship between n and power estimates
An empirical examination of the link between n and power estimates requires taking a look at

the permuted distributions of consistency values that underlie an individual estimate. Figure 5

contains two panels, each with ten distributions of permutation-based consistency values.20 The

rugs at the bottom denote the 5%-quantile of a curve.

The figure conveys three insights. First, the distributions tend to be less smooth with 10 cases

than with 50 cases. This is to be expected because the number of possible permutations and

consistency values is more restricted with 10 cases than with 50. Second, the distributions are

20 I limit the illustration to ten distributions to keep the figure comprehensible.
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Figure 3. Summary of power estimates.

narrower with 50 cases than with 10 cases because more cases imply more information about

the distribution under the assumption H1 is correct. Third, with 50 cases, the dispersion of

the consistency values of the 5th percentile of each curve are closer to each other than with

10 cases. The range of 5%-quantiles goes from 0.69 to 0.94 for 10 cases and from 0.8 to 0.89

for 50 cases.

Figure 5 highlights that the power estimates in Figure 2 have a very different basis in terms of

the permuted distributions. To make the basis transparent and enhance interpretation of power

estimates, I report the point estimate together with the underlying distribution of 5%-quantiles.

I propose presenting the 5%-quantiles instead of the p values because the latter can be less

insightful. Two permuted distributions can have a different shape and location on the possible

Figure 4. Development of power estimate over simulations.
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Figure 5. Consistency value distributions and 5%-quantiles for ten simulations.

range of consistency values, but yield two p values that are so small that it becomes little

insightful to compare them.21 This information should also be presented if we were running exact

permutation tests because the variability of the quantiles is tied to the number of cases and not to

thedegree towhicha randomizedpermutation test approaches theexact test (seeSupplementary

Appendix). Figure 6 contains sina plots for an n of 10 to 50 in steps of 10 cases, each for five values

of cH 1. For orientation, each figure includes two dashed lines representing cH 0 = 0.95 (upper line)

and cH 0 = 0.8 (lower line). In visual terms, the share of dots above the line relative to all dots is

the estimated level of power.

For each value of cH 1, the dispersion of 5%-quantiles decreases as n increases. The figure

demonstrateswhy this hasdirect implications for thepower estimate andwhypower canbe larger

for fewer cases. If cH 1 = 1 and n = 10, the wider distribution of quantiles implies that some are

above 0.95, that is, they allow us to reject H0. The larger n gets, the narrower the distribution

becomes, the fewer quantiles are above the line and the lower thepower estimate. In combination

with this insight, the lower dashed line demonstrates that the power estimate is conditional on

the difference between cH 1 and cH 0 because power then increases as n increases. The five panels

further show that the location of a distribution on the y -axis depends on the value of cH 1. The

lower the value of cH 1, the more the distribution moves south on the y -axis. Taken together, this

means that the number of cases determines the width of the distribution and the value of cH 1 its

location on the range of consistency values.

The distribution’s location on the y -axis is central for understanding why power estimates can

differ widely for the same difference between cH 1 and cH 0. This can be illustrated with the panels

21 The confidence interval for the quantiles is not relevant here because we do not want to estimate a population quantity.

Neither is the confidence interval of the power estimate insightful. With 1000 simulations, the standard error is always very

small and only differs marginally across power estimates.
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Figure 6. Distribution of 5%-quantiles for five values of cH 1.

for cH 1 = 1 and cH 1 = 0.85 and values of cH 0 that are 0.1 points lower, which are the values that I

also discussed in Section 5 in relation with Figure 2. Power is higher if we set cH 1 to 0.85 instead

of 1 because there is a bigger share of quantiles that is larger than the respective value of cH 0.

In simple terms, it means that if we reduce cH 1 and cH 0 by the same amount, it can happen that

the distribution of quantiles moves south on the y -axis, but less so than cH 0. As a consequence

of this asymmetry, the difference between cH 1 and cH 0 remains constant and the power estimate

increases.22

For power estimation in empirical research, the bottom line is that the larger the variability of

quantiles, themore careful we should be in interpreting the power estimate. If power is estimated

to be higher for fewer cases, it is best to consider it an artifact of the low information contained

in a small number of cases and, if possible, increase the number of cases to estimate power (see

Section 7).

22 Figure 2 shows that this is not always the case. For cH 1 = 1 and cH 1 = 0.95, power is higher for the former if we estimate
it for values of cH 0 that are 0.2 points smaller.
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Figure 7. Distribution of parameters for 63 truth table analyses.

6 Ex post Power Analysis for Empirical QCA Studies
Simulations allow one to determine how power depends on the specification of H1, H0 and the

number of cases, but necessarily remain silent on the power of empirical QCA studies. To get a

better idea of how large power is in empirical research, I distill the consistency thresholds for

assigningoutcomevalues to truth table rowsand thenumberof cases from63 truth table analyses

published in 2014 and 2015.23 No author explicitly devises an alternative hypothesis, whichmakes

it necessary to simulate power for different assumed levels of cH 1. As for the simulations, cH 1 is

first set at 1 and gradually decreased in intervals of 0.05 as long as cH 1 remains larger than the

chosen consistency threshold in the truth table analysis.

The ex post estimation of power is confined to the consistency thresholds and does not

additionally cover the consistency values of the solution terms. The value of cH 0 would be set to

0.75 for all studiesbecause theydonotexplicitly specify ahigheroneand theonlydifferencewould

be the number of cases. Compared to the simulations, the analysis does not promise significant

additional insights. This is different for the consistency thresholds because, together with the

number of cases, they vary considerably across the empirical studies. Figure 7 summarizes the

two parameters for the 63 truth table analyses.

The number of cases ranges from a minimum of 8 to a maximum of 123, with a median of 31.

The consistency threshold variable has a minimum of 0.7 and a maximum of 1 and has a median

number of 0.8. For the maximum value of cH 0 = 1, it automatically follows that power is 0. A

threshold of 0.7, which is specified in two analyses, falls below the conventionalminimumof 0.75.

As this is only a convention, it is possible to set cH 0 at this level and test the associated level of

power for different values of cH 1.
24

Figure 8 summarizes the distribution of power estimates for each level of cH 1. The number of

power estimates underlying the distribution decreases with a decreasing level of cH 1 because

23 The 63 analyses are distributed across 37 articles running a fuzzy-set QCA because some runmultiple truth table analyses.

The selection of articles is based on a keyword search of theWeb of Science database using the search strings “QCA” and

“Qualitative Comparative Analysis” in the search field “topic”.

24 The inclusionof studieswith cH 0 = 0.7 slightly biases thepower analysis in favor of estimatinghigher power levels because
power increases with an increasing difference between cH 1 and cH 0.
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Figure 8. Ex post power estimates for 63 truth table analyses.

studies that set the consistency threshold higher than the assumed level of cH 1 have to be

excluded from the estimation procedure. The numbers of estimates are given next to the value

of cH 1 on the x -axis and show that they range from 63 for cH 1 = 1 to 14 for cH 1 = 0.8.

The results of the power analysis are mixed if we set cH 1 to the most favorable value of 1. The

medianestimate is 0.81 andmeets the valueof 0.8 that conventionally denoteshighpower. For the

maximum value of cH 1, this means half of the studies can be said to have sufficient power while

the other half does not. The distribution of power estimates is left-skewed and the first quartile is

0.3, meaning the probability of correctly rejecting H0 is one out of three for 19 studies.

If we fix cH 1 at 0.95, the third quartile is 0.89, which is high, and there are 17 analyses with

a p value of at least 0.8. The median estimate drops to 0.50 and 30 of 59 studies have an equal

probability of correctly or falsely rejectingH0. The distribution of power estimates is wide and the

first quartile is only 0.07, implying that 16 truth table analyses run a high risk of committing a false

negative.

For all values of cH 1 that are 0.9 or less, the distribution of power estimates becomes right-

skewed and the median estimate decreases. It drops to 0.27 for cH 1 = 0.9 and falls below 0.10

if cH 1 equals 0.85 and 0.8.
25 For cH 1 = 0.9, the third quartile equals 0.68 and falls short of

reaching a power level of 0.8. In absolute numbers, 11 studies out of 45 reach the conventional

value indicating high power. If cH 1 is 0.85, the number of analyses reaching a power estimate of at

least 0.8 drops to four out of 36. The third quartile takes a value of 0.49, meaning that 27 studies

correctly reject H0 with the probability of a coin flip.

In a broader view, the ex post estimates confirm the simulation results in Section 5 because

power decreases with a decreasing value of cH 1. If we take a power of value of 0.8 as the

benchmark for high power, the estimates show that empirical studies can reach that level.

However, the results are mixed at best because even under the most favorable value of 1 for cH 1,

almost half of the analyzed truth table analyses do not reach a value of 0.8.

7 Ex ante Calculation of Power and Required Number of Cases
For empirical researchers planning a truth table analysis, the benefit of considering power before

the analysis is that they can estimate how many cases are needed to reach a desired level of

power, given the preferred alternative and null hypothesis. In principle, this can only be done if

one has the opportunity to collectmore cases. If this is possible, estimating the required level of n

25 On a low level, the median is higher if cH 1 is 0.8 compared to 0.85. The number of truth table analyses underlying the

distribution of power estimates decreases with a decreasing value of cH 1 and should be interpreted the more cautiously

the fewer analyses feed into the distribution.
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Table 1. Cases required for achieving different power levels.

Hypotheses Power

cH 1 cH 0 0.7 0.8 0.9

1 0.8 10 20 40

0.95 0.8 43 57 80

0.9 0.75 25 35 50

0.85 0.75 90 125 180

0.8 0.75 4600 6500 9000

needs the parameters cH 1, cH 0,α as input and the required level of power as the target parameter.

Because it is simulation-based, calculating n has to take an iterative approach by startingwith the

best guess as to howmany cases are needed and running the simulations. Based on a comparison

of the estimated power and the target level, n has to be adjusted and the simulation run again

until the desired degree of power is reached.26

If one is not able to add cases, either because the entire population is already covered or

because this is not feasible due to resource constraints or for other reasons (Ragin 2000, chaps.

2, 7), one should use the parameters cH 1, cH 0 and n to estimate power and derive the probability

of making the right decision.

For five different combinations of cH 1 and cH 0 and an α of 0.05, Table 1 exemplifies howmany

cases one needs to achieve a power level of 0.7, 0.8 and 0.9.27 The case numbers do not exactly

yield the desired level of power, but come sufficiently close.28 Depending on the alternative and

null hypothesis and the desired level of power, the required number of cases can be relatively

small with 10 cases, but can also go up to 9000 cases if the difference between cH 1 and cH 0 is

small and the required power level large.29 For each parameter combination, one can further see

that an increase in the target level of power by 0.1 points leads to a disproportionate increase in

the requirednumber of cases. Compared to an increase of power from0.7 to 0.8, lifting thedesired

level from 0.8 to 0.9 entails an increase in n by a factor of 1.3 (cH 1 = 0.8, cH 0 = 0.75) to about 2

(cH 1 = 0.95, cH 0 = 0.8).

Although it depends on the research question and data at hand, it seems safe to argue that

thousands of cases are not available for a truth table analysis in most QCA studies. In particular,

the number of cases is limited in macro research with countries or regions as the spatial unit of

analysis, which traditionally has been and remains the main type of data subject to a truth table

analysis (Marx, Rihoux and Ragin 2014). In such a situation, calculating the required number of

cases is still valuable because it makes transparent howmany cases we are lacking to achieve the

desired level of power.

8 Power Estimation for Crisp-set QCA and Multivalue QCA

Crisp-set QCA (csQCA) and multivalue QCA (mvQCA) involve sets that only establish qualitative

differences between cases (Schneider andWagemann 2012, ch. 1). In principle, this feature of sets

incsQCAandmvQCAallowsususing thebinomialdistribution for calculatingp values (Ragin2000,

chaps. 4, 5; Braumoeller 2015, 484–485). However, this implies the assumption that the cases

at hand were randomly sampled from a population. This assumption is often not met because

26 An R package qcapower includes a routine for estimating power after a truth table analysis and the required number of
cases before a truth table analysis is done. The packagewill be available under http://github.com/ingorohlfing/qcapower.

27 I use the values for cH 1, cH 0 and power for illustration, as every QCA researcher would have to decide for herself where to

fix the values.

28 Achieving the exact degree of power is hardly feasible in a simulation-based framework because the results vary slightly,

depending on the set.seed() option one specifies in R.
29 Figures 2 and 5 indicate that some combinations of values of cH 1 and cH 0 make it impossible to achieve high levels of

power. This is discussed in more detail in the Supplementary Appendix.
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the cases were not selected randomly, or the cases constitute the population, or because the

population cannot be easily demarcated (Ragin 2000, chaps. 2, 7; Athey and Imbens 2016, 7–8).

Permutation tests do not require the assumption of random sampling from a population and

allow one to estimate p values without invoking the binomial distribution for csQCA andmvQCA.

In randomization inference, the rationale for calculating p values is our uncertainty about the

unobserved, potential outcomes of each case (Abadie et al. 2014, 1). This source of uncertainty

is different from the uncertainty that underlies the analytical calculation of p values because

it follows from random sampling from a population. Formally seen, randomization analysis is

not simply the resampling-based equivalent to the analytical calculation of p values, but has a

different rationale for deriving the p value for a quantity of interest. Because the random-sampling

assumption can be infeasible or problematic in csQCA and mvQCA, permutation-based power

analysis can also be done for these two variants.30

A crucial difference between fsQCA and the two other variants lies in the number of cases that

enter into the power analysis and the implications for ex ante power estimation. For fsQCA, n

equals the total number of cases because all cases feed into the consistency score of each truth

table row and term of a solution. In csQCA and mvQCA, n equals the number of cases that are

members of the row or term under scrutiny because only these cases affect the consistency value

(see Schneider and Wagemann 2012, Section 5.2). This makes it impossible to calculate power ex

ante as described in Section 7. We can only estimate power for the assignment of outcome values

to truth table rows after we have determined howmanymembers the truth table row in question

has. Similarly, we can only estimate power for terms in a QCA solution after we have produced the

solution and know howmany cases are members of a term.

If one wants to estimate power ex ante in csQCA or mvQCA without running a truth table

analysis, theonly feasible route is to assumehowmanycasesmight fall in a truth table row. For the

assignment of outcome values to truth table rows, the upper limit is the total number ofmembers

in the analysis and the lower limit is 1. It is possible that all cases fall in one truth table row, but

it is more reasonable to assume a lower number than the total number of all cases. However, this

cannot be more than an informed guess that might be far from the actual number of members in

a row.

A similar protocol can be followed for terms in the QCA solution. The upper bound of

members of a term equals the number of cases across all consistent truth table rows entering

the minimization procedure. The lower bound is the minimum number of cases in a consistent

truth table row. This shows that power analysis is possible with csQCA and mvQCA, but that ex

ante power estimation differs from fsQCA because of uncertainty about the size of n feeding into

power estimate.

9 Conclusion

QCA is often used for testing hypotheses and the consistency value plays a central role in this

regard. Thus far, the consistency score is takenat face value and there is little reflectiononwhether

the value is the product of a systematic or a non-systematic process. Building on recent work in

false-positive testing (Braumoeller 2015), I introduce the idea of power analysis for the analysis

of truth tables. I argue that it is meaningful to specify an alternative and a null hypothesis in

QCA and use them for permutation-based power analysis. Power increases with an increasing

difference between the consistency values of the null and alternative hypotheses. Except for

specific constellations between the values of both hypotheses, power also increases with an

30 The analytical and resampling-based p values are not always identical in quantitative research (Abadie et al. 2014, 1), but
they should be the same in QCA. Still, in my eyes, permutation testing is preferable because it avoids the false impression

that the cases are assumed to be a random sample. In practical terms, it can be done because the computational costs of

permutation analysis should be within reasonable limits for the usual number of cases in a truth table analysis.
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increasing number of cases. The consequences of low power in QCA are important because it

implies a high probability of designating a term as inconsistent with a set-relational claim that

should be considered consistent. For the QCA solution as the result of a truth table analysis, this

translates into a high probability of deriving a wrong model that is, however, a subset of the true

model.

Ex post power analyses of published truth table analyses indicate that empirical research can

reach high levels of power when assigning outcome values to truth table rows. Even in the most

favorable setting, however, the picture is mixed because about half of 63 truth table analyses fail

to reach 0.8 as the value conventionally denoting high power. Future empirical studies should

estimate power ex ante and,whenever possible, select the appropriate number of cases achieving

the desired level of power.

In combinationwith false-positive testing, power estimation and false-negative testing can add

to the rigor of empirical QCA research. From a broader perspective, the discussion of power and

false negatives on the one hand, and false positives (Braumoeller 2015) on the other points to a

trade off when assigning outcome values to truth table rows. Avoiding a false positive is more

likely if the consistency threshold is high because we hope for a consistency value of a term that

is in the right tail of the permuted distribution of consistency scores (Braumoeller 2015, 479–482).

At the same time, a high threshold makes it more likely to commit a false negative because of

a small difference between the consistency values stipulated by the alternative hypothesis and

null hypothesis. Although it is possible that a study suffers from neither a false positive nor a false

negative, QCA researchers should determine the probabilities of both types of error and carefully

weigh their consequences in the context of their research question and empirical analysis.
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