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Abstract. We study the dynamics of piecewise affine surface homeomorphisms from the
point of view of their entropy. Under the assumption of positive topological entropy,
we establish the existence of finitely many ergodic and invariant probability measures
maximizing entropy and prove a multiplicative lower bound for the number of periodic
points. This is intended as a step towards the understanding of surface diffeomorphisms.
We proceed by building a jump transformation, using not first returns but carefully selected
‘good’ returns to dispense with Markov partitions. We control these good returns through
some entropy and ergodic arguments.

1. Introduction
Introduced by Anosov and Smale in the 1960s [15], uniform hyperbolicity is at the core
of dynamical system theory. The corresponding systems are well understood since, in
particular, the works of Sinai, Bowen and Ruelle (see, e.g., [23]) and it is now a central
challenge to try to extend our understanding beyond these systems [2]. We propose that
robust entropy conditions provide a way to do this for new open sets of dynamical systems,
by implying a non-uniform but global hyperbolic structure, especially with respect to
measures maximizing entropy (see §1.1 for definitions).

Such invariant probability measures can be thought of as describing the ‘complexity’ of
the dynamics. These measures exist as soon as the dynamics is compact and C∞ (see [29])
or somewhat hyperbolic [14], although they are known to fail to exist in finite smoothness
for interval maps [5, 32] and diffeomorphisms of four-dimensional tori [27]. Uniqueness
problems are usually much more delicate and can be solved only after a global analysis of
the dynamics which we propose to do under entropy conditions.

† Current address: Laboratoire de Mathématique (UMR 8628), C.N.R.S. and Université Paris-Sud, 91405 Orsay
Cedex, France.
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Entropy expansion is such a condition. It requires the topological entropy (see §1.1)
to be strictly larger than the supremum of the topological entropies of all smooth
hypersurfaces. It is robust in the sense that it is open in the C∞ topology. Entropy-
expanding C∞ maps T : M→ M have a finite number of ergodic and invariant probability
measures maximizing the entropy. Their periodic points satisfy a multiplicative lower
bound:

lim inf
n→∞,p|n

e−nhtop(T )#{x ∈ M | T n x = x}> 0 (1.1)

for some integer p ≥ 1 (a period) (see [10, 12] for precise definitions and statements
including other results).

Entropy expansion is satisfied by plane maps of the type (x, y) 7→ (1.9− x2

+ εy, 1.8− y2
+ εx) for small ε (see [7]). On the interval, the condition reduces to non-

zero topological entropy. In fact, entropy expansion can be understood as a generalization
of some aspects of one-dimensional dynamics. Indeed, the previous results were first
proved by Hofbauer [19, 20] for piecewise monotone maps on the interval and our approach
has built on his techniques [8].

The techniques used in the above-mentioned papers do not apply to diffeomorphisms
(e.g. a diffeomorphism is never entropy-expanding). However, many properties of interval
maps generalize to surface diffeomorphisms so the following are generally expected.

CONJECTURE 1. Consider a C1+ε diffeomorphism (ε > 0) of a compact surface with non-
zero topological entropy.

The collection of ergodic and invariant probability measures with maximal entropy is
countable (possibly finite or empty) and the periodic points satisfy a multiplicative lower
bound if there exists at least one measure with maximal entropy.

CONJECTURE 2. Consider a C∞ diffeomorphism of a compact surface with non-zero
topological entropy.

The collection of ergodic and invariant probability measures with maximal entropy is
finite and the periodic points satisfy a multiplicative lower bound.

By a result of Newhouse [29], all C∞ maps of compact manifolds have at least one
measure of maximum entropy. Also a classical theorem of Katok [22] states that if T is a
C1+ε , ε > 0, diffeomorphism of a compact surface M , then the number of periodic points
satisfies a logarithmic lower bound:

lim sup
n→∞

1
n

# log{x ∈ M | T n x = x} ≥ htop(T ),

i.e. a weak version of (1.1).
This paper presents a proof of the analog of Conjecture 2 in the easier case of piecewise

affine homeomorphisms. This replaces distortion of smooth diffeomorphisms by the
singularities of the piecewise affine maps. However, this preserves substantial difficulties.
Indeed, there exist piecewise affine maps on surfaces without a maximum measure
(see Appendix C, although the examples known to the author are discontinuous—or
continuous but piecewise quadratic) or with infinitely many maximum measures (see also
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Appendix C). Thus this setting, beyond its own interest as a simple and rather natural class
of dynamics, is challenging enough to allow the development of new tools which we hope
will apply to diffeomorphisms.

1.1. Definitions and statements. Let M be a compact two-dimensional manifold
possibly with boundary, affine in the following sense. There exists a distinguished atlas
of charts:
• identifying the neighborhood of any point of M with an open subset of {(x, y) ∈ R2

|

x ≥ 0 and y ≥ 0};
• inducing affine changes of coordinates.
These charts are called the affine charts. The phenomena we are considering are
independent of the global topology, so we could in fact restrict ourselves to the special
cases M = T2 or M = [0, 1]2.

A continuous map T : M→ M is said to be piecewise affine if there exists a finite
partition P of M such that for every A ∈ P , A and T (A) are contained in affine charts
which map them to polygons of R2 with non-empty interiors and T : A→ T (A) is affine
with respect to these affine charts. It is convenient to replace the partition P by the
collection P̃ of the interiors of the elements of P . Such a partition P̃ (a partition up to
the boundaries of its elements) is called an admissible partition with respect to T . We drop
the tilde in the sequel.

Let us recall some facts about entropy (we refer to [16, 35] for further information). The
entropy of a non-necessarily invariant subset K ⊂ M is a measure of the ‘number of orbits’
starting from K . Recall that the (ε, n)-ball at x ∈ M is {y ∈ M | ∀k = 0, 1, . . . , n − 1
d(T k y, T k x) < ε}. The entropy of K is, according to the Bowen–Dinaburg formula [3]:

h(T, K ) := lim
ε→0

h(T, K , ε) with h(T, K , ε) := lim sup
n→∞

1
n

log r(ε, n, K ) (1.2)

where r(ε, n, K ) is the minimal number of (ε, n)-balls with union containing K . The
topological entropy is htop(T ) := h(T, M).

The entropy of an ergodic and invariant probability measure µ can be defined similarly,
according to [22]

h(T, µ) := lim
ε→0

h(T, µ, ε) with h(T, µ, ε) := lim sup
n→∞

1
n

log r(ε, n, µ)

where r(ε, n, µ) is the minimal number of (ε, n)-balls whose union has a µ-measure of at
least λ, for a constant λ ∈ (0, 1) (h(T, µ) is independent of λ).

The variational principle states that for T : M→ M (in fact, for any continuous self-
map of a compact metric space [35]):

htop(T )= sup
µ

h(T, µ) (1.3)

where µ ranges over the T -invariant and ergodic probability measures.
The following combinatorial expression for topological entropy follows from

observations of Newhouse and will be the starting point of our investigations.
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PROPOSITION 1.1. Let T be a piecewise affine homeomorphism of a compact surface.
The topological entropy of T is given by

htop(T )= lim sup
n→∞

1
n

log #{A0 ∩ f −1 A1 ∩ · · · ∩ f −n+1 An−1 6= ∅ | Ai ∈ P}. (1.4)

Remark 1.2. The above entropy formula was also obtained by Sands and Ishii [21] by
different methods.

Misiurewicz and Szlenk [28] established the same formula for piecewise monotone
maps of the intervals.

The proof is given in §2.1.
The variational principle (1.3) brings to the fore the ergodic and invariant

probability measures µ such that h(T, µ)= supν h(T, ν)= htop( f ). We call them
maximum measures. A corollary of the proof of the previous proposition is the following
existence result (compare with the examples in Appendix C).

COROLLARY 1.3. A piecewise affine homeomorphism of a compact surface has at least
one maximum measure.

Our main result, finally established in §5.1, is the following.

THEOREM 1. Let T : M→ M be a piecewise affine homeomorphism of a compact affine
surface. Assume that htop(T ) > 0. Then there are finitely many ergodic, invariant
probability measures maximizing the entropy (or maximum measures).

We also obtain as by-products (see §§5.2 and 5.3) the following results.

PROPOSITION 1.4. Let T : M→ M be a piecewise affine homeomorphism of a compact
affine surface with non-zero topological entropy. The periodic points satisfy a
multiplicative lower bound.

PROPOSITION 1.5. Let T : M→ M be a piecewise affine homeomorphism of a compact
affine surface. Let S be the singularity locus of M, that is, the set of points x which have
no neighborhood on which the restriction of T is affine.

For any ε > 0, there is a compact invariant set K ⊂ M \ S such that

htop( f |K ) > htop( f )− ε.

Moreover, f : K → K is topologically conjugate to a subshift of finite type (see [26]).

1.2. Outline of the proof. We use an alternative approach to the explicit construction of
Markov partitions. We ask less of geometry and use more combinatorics, ergodic theory
and entropy estimates to accommodate the resulting non-uniqueness of representation.
More precisely, we build small rectangles admitting many returns with ‘good properties’
which allows the construction of a jump transformation and establish semi-uniform
estimates, that is, uniform estimates holding on subsets of measures that are lower bounded
with respect to any large entropy measure. The finite number of maximum measures for
the jump transformation follows from the results of Gurevič on countable state Markov
shifts. However, the jump transformation is not a first return map to an a priori defined
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good set. Hence, a careful study of the relation between the jump transformation and the
original dynamics is needed to conclude that the maximum measures of both systems can
be identified. In fact, we analyze more generally large entropy measures, i.e. invariant and
ergodic probability measures with entropy close enough to the supremum.

Let us outline the proof. We start in §2 by introducing the natural symbolic dynamics
of the piecewise affine map using the partition defined by the singularities of T . We first
show that this symbolic dynamics has the same entropy as T . This is both a significant
result and a fundamental step in our approach. We then establish that the (local) stable
W s(x) and unstable W u(x) manifolds of points x ∈ M , i.e. the sets of points with the
same past or future with respect to the partition P , are line segments outside of an entropy-
negligible subset. These line segments can be arbitrarily short and their length may vary
discontinuously. However, we prove semi-uniform lower bounds for their lengths and
angles, using the conditional entropy with respect to the past or the future. A corollary of
these bounds is that the boundary of the partition is negligible with respect to all ergodic
invariant probability measures with non-zero entropy.

At this point, one would like to conclude by an argument of the following type. If
there was a large number of maximum measures, then one could find two of them, both
giving positive measure to a set S of points with local stable and unstable manifolds much
larger than the diameter of S. Hence, one could ‘jump’ back and forth between typical
orbits of each of the two measures. However, one could expect such mixing to allow the
construction of a measure with greater entropy, a contradiction. However, establishing the
increase in entropy seems to require estimates that are too fine (of a multiplicative, rather
than logarithmic type). We are thus lead to build a jump transformation with Markov
properties which will reduce the problem to loop counting on a graph, for which these fine
estimates exist (and, indeed, the uniqueness of the maximum measure has been established
in this setting by Gurevič).

Section 3 is devoted to building a Markov structure representing the large entropy
dynamics. We first build arrays of Markov rectangles which contain a significant
proportion of the dynamics. These are approximate rectangles in the sense they contain
open subsets of points with local manifolds that do not cross (‘holes’ in the local product
structure). However, we can ensure that the relative measure of such points is very small.
Our techniques, however, require T to be replaced by some high power T L .

We then define hyperbolic strips following the geometric picture of Markov rectangles
usual in uniformly hyperbolic dynamics. We provide tools to build many such strips around
typical orbits of large entropy measures, using visits to the Markov rectangles while the
stable and unstable manifolds are both ‘rather large’.

These hyperbolic strips are Markov in the sense that they can be freely concatenated
as soon as they end and begin in the same rectangle. However, to obtain a useful
Markov representation from this, one needs an invariant way of ‘cutting’ typical orbits
into concatenations of such hyperbolic strips. A fundamental difficulty arises here: there
exist incompatible decompositions, i.e. which do not admit a common refinement. There
does not seem to be an a priori natural set the visits to which could be used to define
invariantly the above ‘cutting’†.

† Note that shadowing lemmas à la Katok [22] give comparable results for surface diffeomorphisms. The problem
is to find invariant decompositions.
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We conclude §3 by selecting among hyperbolic strips a subset of admissible strips
to obtain uniqueness in the decomposition of forward orbits (this weak uniqueness will
require a more detailed ergodic analysis in §5). We obtain a notion of good return times
and a Markov structure.

The more technical §4 relates the good return times to geometric and combinatorial
properties involving the visits to the Markov rectangles and their holes. It is shown that
large entropy measures cannot have too large average good return times.

Finally, §5 proves the main results. We lift large entropy measures of T to the jump
transformations as finite extensions. Using that the latter is isomorphic to a countable state
Markov shift, a result of Gurevič [17] allows us to conclude the proof of the theorem.

Proposition 1.4 rests on a classical estimate of Vere-Jones [34] on the number of loops of
countable oriented graphs together with a combinatorial argument to transfer this estimate
to periodic points of T .

Proposition 1.5, the possibility of approximating in entropy of the whole map by a
compact set away from the singularity set, follows from a similar property of countable
state Markov shifts: they are approximated in entropy by finite state Markov shifts
according to Gurevič.

There are three appendices: Appendix A recalls some facts about measure-theoretic
entropy, Appendix B proves a lifting theorem for the tower defined by a return time and
Appendix C gives some examples of piecewise smooth maps.

1.3. Some comments. The results presented here allow an analysis of the maximal
entropy measures of a simple and natural class of dynamics by representing them with
countable state Markov shifts. Along the same lines, one can probably make the
representation more precise to obtain further results, for instance:
• classification by the topological entropy and periods up to isomorphisms modulo

entropy-negligible subsets [4];
• precise counting of isolated periodic points, e.g. the existence of a meromorphic

extension of the Artin–Mazur zeta function as in [12];
• uniqueness of the maximal entropy measure under a transitivity assumption and/or

a bound on the number of maximum measures in terms of the cardinality of the
partition P .

In a slightly different direction, one would like to understand the nature of the symbolic
dynamics of piecewise affine surface homeomorphisms (see §2.1). Is there a tractable
class of subshifts containing these symbolic dynamics, i.e. a class that would do for
piecewise affine surface homeomorphisms what subshifts of quasi-finite type [11] do for
piecewise monotone interval maps?

It would also be natural to apply the techniques of this paper to more general dynamics.
First, piecewise homographic surface homeomorphisms can be analyzed in the same way.
Then one could try to analyze other general classes of piecewise affine maps, especially in
higher dimensions (e.g. uniformly expanding maps or entropy-expanding maps or entropy-
hyperbolic homeomorphisms [13]). Most of these questions are still open despite some
partial results (see, e.g., [9, 25, 33]) and we should stress that new problems appear
immediately. From the point of view of entropy alone:
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• there exist piecewise affine continuous maps on surfaces and piecewise affine
homeomorphisms in dimension three for which the right-hand side of (1.4) is strictly
larger than the entropy (see Examples 1 and 3 in the Appendix C);

• Example 4 in Appendix C is a piecewise affine discontinuous map on a surface with
no maximum measure (one can give a continuous, piecewise quadratic version of
it, see Example 5); however, the author is not aware of examples of continuous
piecewise affine maps without maximum measures.

For diffeomorphisms, the main difficulty with our approach is finding a link between
short stable/unstable manifolds and small entropy, e.g. one would need to relate small
Lyapunov charts to entropy bounds for a smooth diffeomorphism. An analysis of
C1 diffeomorphisms with non-zero topological entropy with dominated splitting is in
preparation.

2. Pointwise estimates
2.1. Symbolic dynamics. We define a symbolic dynamics for the map T using some
admissible partition P , that is, a finite collection of disjoint open polygons with dense
union. A key step is showing that ∂P has zero measure with respect to any µ ∈ P0

erg(T ),
where Ph

erg(T ) denotes the set of ergodic, invariant probability measures of T with
h(T, µ) > h.

Definition 2.1. Let P be an admissible partition. x ∈ M is nice if for every n ∈ Z, T n x
belongs to an element An of the admissible partition P . The sequence A ∈ PZ thus defined
is the P-itinerary of x .

The symbolic dynamics of (T, P) is

6 := {A ∈ PZ | ∃x ∈ M ∀n ∈ Z T n x ∈ An}

endowed with the shift map σ(A)= (An+1)n∈Z.

A standard result (see, e.g., [35]) states that since 6 is a subshift, it admits at least
one maximal entropy measure. Hence, a ‘close enough’ relation between the invariant
measures of 6 and T will imply the existence of a maximum measure also for T . By
the variational principle, we also obtain that T and 6 have the same topological entropy.
The Misiurewicz–Szlenk formula for T will then follow. Indeed, for a subshift such as 6,
the topological entropy is computed by counting the cylinders, [A0 · · · An−1] := {x ∈6 |
x0 · · · xn−1 = A0 · · · An−1}, that is

htop(6)= lim
n→∞

1
n

log #{[A0 · · · An−1] 6= ∅ | A ∈ Pn
}.

Neither T nor its symbolic dynamics is an extension of the other in general, hence it is
convenient to introduce the following common extension:

6 n M := {(A, x) ∈ PZ × M | ∀n ∈ Z T n x ∈ An} with T̂ (A, x)= (σ A, T x).

The close relation between the measures of T and 6 alluded to above is the following.
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LEMMA 2.2. Both maps π1 :6 n M→6 and π2 :6 n M→ M are entropy preserving:
for every invariant probability measure µ on 6 n M, h(σ, π1µ)= h(T, π2µ)= h(T̂ , µ).
Moreover, π1 and π2 induce onto maps between the sets of (ergodic) invariant
probability measures.

In particular, the topological entropies of the three systems are equal by the variational
principle recalled in (1.3).

The proof of the above lemma rests on two geometric/combinatorial properties. The
first is the following observation by Newhouse, which is very specific to our setting (it is
false in higher dimensions or without the invertibility assumption, see Appendix C).

LEMMA 2.3. The multiplicity entropy [6]

hmult(T ) := lim sup
n→∞

1
n

log max
x∈M

mult(Pn, x) with mult(Q, x) := #{A ∈ Q | x ∈ Q}

is zero for any piecewise affine homeomorphism of a surface.

The second is a property of linear maps.

LEMMA 2.4. Let d ≥ 1. For each n ≥ 0, let Tn : Rd
→ Rd be a linear map. Then

lim
ε→0

lim sup
n→∞

1
n

log max{#S | ∀0≤ k < n diam(Tk−1 · · · T1T0S)≤ 1 and

∀x 6= y ∈ S ∃0≤ k < n such that ‖Tk−1 · · · T1T0(x − y)‖> ε} = 0.

We leave the easy proofs of Lemmas 2.3 and 2.4 to the reader.

Proof of Lemma 2.2. Lemma 2.3 (respectively Lemma 2.4) implies that for all x ∈ M
(respectively 6), for i = 2 (respectively i = 1),

h(T̂ , π−1
i {x})= 0

(this is the entropy of a subset as recalled in (1.2)). Now, π1 :6 n M→6 and π2 :

6 n M→ M are both compact topological extensions. Hence, one can apply Bowen’s
result [3]:

h(T̂ , µ̂)= h(σ, π1µ)= h(T, π2µ)

for all invariant probability measures µ̂ of 6 n M . 2

2.2. Invariant manifolds and Lyapunov exponents. For a fixed partition P , we have the
following.

Definition 2.5. The stable manifold at A ∈6 is the following set (convex in the
affine charts):

W s(A) :=
⋂
n≥1

T−n An .

The unstable manifolds W u(A) are defined by replacing n ≥ 1 by n ≤−1 in the above
equation.

https://doi.org/10.1017/S0143385708000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000953


Piecewise affine surface homeomorphisms 1731

The Lyapunov exponents along the stable or unstable direction at A ∈6 are

λu(A) := lim
n→±∞

1
n

log ‖(T n
A )
′±1
‖
±1 and λs(A) := lim

n→±∞

1
n

log ‖(T n
A )
′∓1
‖
∓1

where T n
A is the affine composition (T |An−1) ◦ · · · ◦ (T |A0) (if n ≥ 0) or [(T |A−1) ◦ · · · ◦

(T |An)]
−1 (if n < 0).

Any nice x ∈ M defines a unique itinerary A and we write W s(x) for W s(A), λu
+(x) for

λu
+(A) and so on.

The first goal of this section is the following ‘non-singularity’ result.

PROPOSITION 2.6. Let µ ∈ P0
erg(T ). The following hold:

• µ(∂P)= 0 (in particular, µ-almost every x ∈ M is nice);
• the Lyapunov exponents exist and satisfy λs(x)≤−h(T, µ) < 0< h(T, µ)≤ λu(x)

for µ-almost every x ∈ M;
• W s(x) and W u(x) are line segments containing x in their relative interiors int W s(x)

and int W u(x) for µ-almost every x ∈ M.

Proof. Let µ ∈ P0
erg(T ). As we have not yet proved that almost every x ∈ M is nice, we

have to work in the extension 6 n M to be able to speak of itineraries, invariant manifolds
and so on. By compactness, there exists an invariant and ergodic probability measure µ̂ of
T̂ :6 n M←↩ such that π2µ̂= µ. We have h(T̂ , µ̂) > 0 by Lemma 2.2.

We first consider the invariant manifolds.

CLAIM 2.7. We claim that for µ̂-almost every (A, x) ∈6 n M: (i) W u(A) is a line
segment; (ii) x is not an endpoint of this segment.

Proof. To begin with, observe that W u(σ A)⊂ T (W u(A)) so that dim(W u(σ A))
≤ dim(W u(A)). As µ̂ is invariant and ergodic, dim(W u(A))= d µ̂-almost everywhere
for some d ∈ {0, 1, 2}. Claim (i) above is that d = 1.

Let P̂ be the natural partition of6 n M (coming from the canonical partition of6). By
Lemma 2.2, (T̂ , µ̂) has the same entropy as the corresponding symbolic system. Thus,
h(T̂ , µ̂)= h(T̂ , µ̂, P̂). Using conditional entropy (see Appendix A) we can compute
h(T̂ , µ̂, P̂) as Hµ̂(P̂|P̂

−) where P̂− :=
∨

n≥1 T n P̂ . Observe that A 7→W u(A) is P̂−-
measurable.

We exclude the cases d = 0, 2 by contradiction. Assume first d = 0, i.e. W u(A) is a
single point x ∈ M for µ̂-almost every (A, x) ∈6 n M . This implies that

h(T̂ , µ̂)= Hµ̂(P̂|P̂
−)= lim

n→∞

1
n

Hµ̂(P̂
n
|P̂−)≤ hmult(T, P)= 0,

a contradiction, excluding the case d = 0.
Now assume d = 2, so µ̂-almost every W u(A) is the closure of the interior of W u(A).

By construction, two distinct unstable manifolds have disjoint interiors. Therefore, there
can only be countably many of them, after discarding a set of zero µ̂-measure. In particular,
W u(A)=W u(A0) on a set of positive measure for some A0. By Poincaré recurrence,
there exists an integer n > 0 such that T n(W u(A0))=W u(A0). This implies that π1µ̂ is
periodic, hence 0= h(σ, π1µ̂)= h(T̂ , µ̂). The contradiction proves (i).
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We now turn to (ii). If x ∈ ∂W u(A), then T (x) ∈ ∂W u(σ (A)). Thus if (ii) is false,
then x ∈ ∂W u(A) µ-almost everywhere. However, this implies that, for any ε > 0 and
any large n,

nh(T̂ , µ̂) = Hµ̂(P̂
n
|P̂−)≤ log 2+ log max

x∈M
#{A ∈ Pn

| A 3 x}

≤ log 2+ (hmult(T, P)+ ε)n.

As hmult(T, P)= 0, it would follow that h(T̂ , µ̂)= 0, a contradiction. 2

We now turn to the exponents. First they do exist by the classical Oseledets theorem
(see, e.g., [23]).

CLAIM 2.8. For π1µ̂-almost every A ∈6, the Lyapunov exponents satisfy λs(A) < 0
< λu(A).

Remark 2.9. The above result is a consequence of the Ruelle–Margulis inequality
[23, p. 669] once we prove that µ(∂P)= 0.

Proof. We establish the existence of a positive Lyapunov exponent µ-almost everywhere.
The existence of a negative exponent will follow by considering T−1. Let ‖ · ‖A be some
measurable family of norms. Consider the family ‖ · ‖′A, A ∈6 defined by

‖v‖′A := ‖v‖A/|W
u(A)|A for v ‖W u(A)

where | · |A is the length with respect to ‖ · ‖A (using the affine structure). As T (W u(A))
⊃W u(σ A), we have that ‖T ′|Eu(A)‖′A ≥ 1 (where Eu(A) is the unstable direction at
A: the invariant family of directions defined by W u(A)) for µ-almost every A ∈6.
Here T (W u(A))=W u(σ A) µ-almost everywhere would imply h(T̂ , µ̂)= Hµ̂(P̂|P̂

−)

= 0. Hence, ‖T |Eu(A)‖′A > 1 on a set of positive measure and

λu(A)=
∫

log ‖T ′|Eu(B)‖′B dµ̂(B) > 0

for µ-almost every A ∈6. 2

We finish the proof of Proposition 2.6.
Let µ ∈ P0

erg(T ). Let µ̂ be a lift of µ to 6 n M . By Lemma 2.2, h(T̂ , µ̂)
= h(T, µ) > 0.

Claims 2.7 and 2.8 prove all of the claims of the proposition except µ(∂P)= 0.
Now, W u(A) and W s(A) are line segments µ-almost everywhere by Claim 2.7. Their

directions carry distinct Lyapunov exponents by Claim 2.8, hence they must make a non-
zero angle µ-almost everywhere. If x ∈ ∂P , then T x or T−1x would be the end point of at
least one of these line segments, a contradiction. Hence, µ(∂P)= 0. 2

That µ(∂P)= 0 for all ergodic invariant probability measures with non-zero entropy
has the following immediate but important consequence.

COROLLARY 2.10. The partially defined map π :6′→ M

{π(A)} :=
⋂
n≥0

T k[A−k · · · Ak]
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with 6′ the subset of 6 where the above intersection is indeed a single point, defines an
entropy-preserving bijection between the sets of ergodic, invariant probability measures
of T and of 6 with non-zero entropy.

2.3. Semi-uniform estimates. We obtain now more quantitative estimates, which we call
semi-uniform in the sense that they are uniform on a set of uniformly lower-bounded mass
for all large entropy measures. To state these results, we need the following ‘distortion’
estimate. By compactness of M and invertibility of T ,

d(T ) := sup
{

log
‖T ′(x).u‖

‖T ′(x).v‖

∣∣∣∣ x ∈ M, u, v ∈ R2
\ {0}, ‖u‖ = ‖v‖

}
<∞.

PROPOSITION 2.11. For any µ0 < htop(T )/d(T ), there exist h0 < htop(T ), θ0 > 0 and

`0 > 0 such that for any µ ∈ Ph0
erg(T ), the following properties occur jointly on a set of

measure at least µ0:

ρ(x) := min
σ=s,u

d(x, ∂W σ (x))≥ `0, (2.1)

α(x) := 6 (W s(x), W u(x)) > θ0. (2.2)

Here 6 (W s(x), W u(x)) is the angle between the two lines defined by W s(x) and W u(x).
We declare α(x)= ρ(x)= 0, if W s(x) or W u(x) fail to be line segments.

Remark 2.12. In fact we obtain a number µ0 < 1 arbitrarily close to one satisfying (2.1).
However, this is not the case for (2.2). We believe that this cannot be done. Indeed, one
can easily build a smooth surface diffeomorphism with non-zero entropy such that for some
µ∗ > 0 and h∗ > 0, there are invariant probability measures with entropy at least h∗ such
that the stable and unstable directions make an arbitrarily small angle on a set of measure at
least µ∗. We do not know whether these measures can be taken to have entropy arbitrarily
close to the topological entropy or if piecewise affine examples exist.

We first prove the lower bound on angles by comparing the distortion with the entropy.

CLAIM 2.13. For any 0< h1 < htop(T ), there exists θ1 > 0 such that the set where

α(x) > θ1 has measure at least h1/d(T ) for all measures µ ∈ Ph1
erg.

The Ruelle–Margulis inequality applied to (T, µ) and (T−1, µ) (which is valid as T ′ is
constant on each element of P and µ(∂P)= 0) yields

htop(T )≤
λu(µ)− λs(µ)

2
=

1
2

∫
M

log
‖T ′(x)|Eu(x)‖

‖T ′(x)|E s(x)‖
dµ(x). (2.3)

By continuity there exists θ1 > 0 such that, for all u, v ∈ R2
\ {0} with 6 (u, v)≤ θ1,

for all x ∈ M \ ∂P, log
‖T ′(x) · u‖

‖T ′(x) · v‖
≤ h1.

Therefore, setting m := µ({x ∈ M : α(x) > θ1}):

2h(T, µ)≤ m · d(T )+ (1− m) · h1
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so that, assuming h(T, µ) > h1:

m ≥
2h(T, µ)− h1

d(T )− h1
≥

2h(T, µ)− h1

d(T )
>

h1

d(T )
.

This proves Claim 2.13.

CLAIM 2.14. For any µ3 < 1, there exists `0 > 0 such that

for all µ ∈ Ph3
erg(T ), µ({x ∈ M | d(x, ∂W u(x)) > `0}) > µ3 (2.4)

for h3 = htop(T )(1− (1− µ3)/4).

To prove (2.4) let ε = (1− µ3)htop(T )/2> 0, 3 be a Lipschitz constant for T ,
n ≥ log 2/ε be a large integer and r = r(ε, n) > 0 be a small number such that

max
x∈M

#{A ∈ Pn
| B(x, r) ∩ A 6= ∅} ≤ 1

2 e(hmult(T,P)+ε)n and #Pn
≤ e(htop(T )+ε)n .

Let µ ∈ Ph3
erg(T ), X0 := {x ∈ M | d(x, ∂W u(x))≤3−nr} and denote by µ|X0 the

normalized restriction of µ to X0. Using standard facts about entropy (see Appendix A)
we obtain

nh(T, µ) = Hµ(P
n
|P−)≤ Hµ(P

n
∨ {X0, M \ X0}|P

−)≤ Hµ({X0, M \ X0})

+µ(X0)Hµ|X0(P
n
|P−)+ (1− µ(X0))Hµ|M\X0(P

n
|P−)

≤ log 2+ µ(X0) sup
x∈X0

log #{A ∈ Pn
| A ∩ X0 ∩W u(x) 6= ∅}

+ (1− µ(X0)) log #Pn

≤ log 2+ µ(X0)(hmult(T, P)+ ε)n + (1− µ(X0))(htop(T )+ ε)n.

Hence,

h(T, µ) ≤ (1− µ(X0))htop(T )+ µ(X0)hmult(T, P)+ ε +
1
n

log 2

= htop(T )+ 2ε − µ(X0)(htop(T )− hmult(T, P)).

implying that

µ(X0)≤
htop(T )− h(T, µ)+ 2ε

htop(T )− hmult(T, P)
≤

htop(T )− h(T, µ)+ 2ε

htop(T )
< 1− µ3

using hmult(T, P)= 0 and h(T, µ) > h3. The claim is proved.

Proof of Proposition 2.11. Claim 2.13 gives θ0 > 0 such that (2.2) holds on a set of measure

at least htop(T )/2d(T ) with respect to all measures in Phtop(T )/2
erg (T ). Claim 2.14 applied

to T and T−1 with µ3 = 1− htop(T )/8d(T ), shows that for

h0 = htop(T )

(
1−

1
32

htop(T )

d(T )

)
≥ htop(T )/2,

(2.2) and (2.1) hold jointly on a set of measure at least htop(T )/4d(T ) with respect to all

measures in Ph0
erg(T ). 2
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3. Construction of the Markov structure
Roughly speaking, the estimates of the previous section allow us to build a collection of
(non-uniform) ‘Markov rectangles’ which will ‘control enough’ of the dynamics to analyze
all measures of large entropy.

3.1. Markov rectangles

Definition 3.1. A (Markov) rectangle is a closed topological disk R contained in an affine
chart and bounded by four line segments, alternatively included in stable and unstable
manifolds, making the unstable boundary, ∂u R = ∂u

1 R ∪ ∂u
2 R, and the stable boundary,

∂s R = ∂s
1 R ∪ ∂s

2 R, respectively. See Figure 2.
A Markov array is a finite collection of Markov rectangles with disjoint interiors.

Not every passage of an orbit inside a rectangle is useful. We need the following
properties.

Definition 3.2. A point x is controlled by a rectangle R if x is nice, belongs to R and
if W s(x) and W u(x) each intersects ∂R in two points. Note that control depends on
the partition P used to define W u(x) and W s(x). If necessary we speak of control with
respect to P .

Here x ∈ R is 10-controlled if, moreover, ρ(x) > 10 diam R where ρ was defined
in (2.1); x ∈ R is s-controlled if x is nice, x ∈ R and W s(x) intersects ∂R in two points.

The set of controlled (respectively 10-controlled, s-controlled) points is denoted by
κ(R) (respectively κ10(R), κs(R)).

A point is controlled by a Markov array R if it is controlled by one of the rectangles of
the array. We define κ(R), κ10(R), κs(R) in the obvious way.

Using the previous lower bounds on the lengths and angles of invariant manifolds we
first prove the following lemma.

LEMMA 3.3. There exist numbers h0 < htop(T ) and µ0 > 0 and a Markov array R such

that for all µ ∈ Ph0
erg(T ),

µ(κ10(R)) > µ0.

Our analysis requires the following slightly stronger statement (i.e. we only tolerate
‘small holes’).

LEMMA 3.4. There is µ0 > 0 such that for any ε0 > 0, there exist a number h0 < htop(T )

and a Markov array R such that for any µ ∈ Ph0
erg(T ):

• µ(κ10(R)) > µ0;
• µ(R \ κ10(R)) < ε0µ0.

This will be obtained by subdividing the rectangles in the Markov array from Lemma 3.3
into sub-rectangles that are much smaller than most stable/unstable manifolds.

The final twist is that as we replace the partition P by the convex partition P R generated
by P and the Markov array R (see Figure 1), some invariant manifolds may shrink,
say W̃ u(x) :=

⋂
n≥1 T n P R(T−n x)( W u(x), diminishing the set of controlled points.

Indeed, W̃ u( f (x))( W u( f (x)) when W u(x) crosses the boundary of a rectangle from
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FIGURE 1. The convex partition P̃ refining both P (outside lines) and R (the two quadrilaterals at the center).

R before crossing ∂P(x). We shall see, however, that if these intersections are sufficiently
separated in time, then W̃ u(x)=W u(x) for most points x ∈R with respect to large entropy
measures. To guarantee that large separation, we use the following construction.

Definition 3.5. If R is an array of Markov rectangles contained in an element of P and
L is a positive integer, then the (R, L)-extension of (M, T, P, R) is (M+, T+, P+, R+),
defined in the following way:
• M+ = M × {0, . . . , L − 1};
• T+(x, k)= (T x, k + 1 (mod L));
• P+ is the finite partition of M+ which coincides with a copy of P on each M × {k}

for k 6= 0 and coincides on M × {0} with a copy of P R;
• R+ = {R × {0} | R ∈R}.

The conclusion of this section is the following result.

PROPOSITION 3.6. Let (M, T, P) be a piecewise affine surface homeomorphism with
non-zero entropy. There exist µ0 > 0, h0 < htop(T ) such that for any ε0 > 0, there is a
Markov array R and a positive integer L0 with the following properties. Fix any L+ ≥ L0

and let (M+, T+, P+, R+) be the (R, L+)-extension of (M, T, P, R).
For each µ ∈ Ph0

erg(T ), there exists an ergodic invariant probability measure µ+ of T+
with π(µ+)= µ (where π(x, k)= x) such that:
(i) L+ · µ+(κ10(R+)) > µ0;
(ii) L+ · µ+(R+ \ κ10(R+)) < ε0 · µ0.
The above controlled sets are defined with respect to the invariant manifolds relative to P+
(which contains the Markov array R+).

Note that it is enough to prove our results (Theorem 1 and Propositions 1.5 and 1.4) for
some periodic extension.

We now prove Lemmas 3.3 and 3.4 and Proposition 3.6. We begin by the following
lemma.

LEMMA 3.7. Given `0 > 0 and 0< θ0 < 2π , there exists a finite collection of rectangles
R(1), . . . , R(Q) such that:
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(1) diam(R(i)) < `0/10;
(2) any x ∈ M with ρ(x) > `0 and 6 (W u(x), W s(x)) > θ0 belongs to at least one R(i).

This easily implies Lemma 3.3 using Proposition 2.11 and observing that the finite
collection of rectangles above can be subdivided by boundary lines such as those of Fact 3.9
below so that their interiors become disjoint, defining the required Markov array R.

Proof of Lemma 3.7. Let

K∗ := {x ∈ M | ρ(x) > `0 and 6 (W u(x), W s(x)) > θ0}.

Let {K j }
Q
j=1 be a finite partition of K∗ whose elements have diameter less than θ0`0/100

and lie within an affine chart of M . We fix j .
Recall that the collection of closed subsets K of the compact metric space M is a

compact space with respect to the Hausdorff metric:

d(A, B)= inf{ε > 0 | A ⊂ B(B, ε) and B ⊂ B(A, ε)}

where B(A, ε) is the ε-neighborhood of the set A, i.e. {x ∈ M | d(A, x) < ε}.
The easy proofs of the following two facts are left to the reader.

FACT 3.8. Let An
∈6(T, P) converge to A+. By taking a subsequence, W s(An) also

converges in the Hausdorff metric, say to H ⊂ M. Then H ⊂W s(A+).

FACT 3.9. Assume that K j is as above. Then there exist two points x1, x2 ∈ K j , two
non-trivial line segments L1, L2 and two itineraries A1, A2

∈6(T, P) with the following
properties:
• L i is contained in the boundary of W s(Ai ) as a subset of M;
• in some affine chart, K j lies between the two lines supporting L1 and L2.
We call (L1, L2) a pair of stable boundary lines of K j .

We now prove Lemma 3.7. Consider two distinct one-dimensional stable manifolds
W s(A) and W s(B) which intersect in a single point p. The point p must be the endpoint
of at least one of them: otherwise, if An 6= Bn , then p ∈ ∂An ∩ ∂Bn and both W s(A) and
W s(B) are parallel to the same segment of ∂An ∩ ∂Bn . Thus, their intersection contains a
non-trivial line segment.

Observe that if x, y ∈ K j , W u(x) and W u(y), which are line segments, must have
disjoint relative interiors or be parallel and overlapping. Thus,

6 (W u(x), W u(y))≤ θ0/50.

As 6 (W u(z), W s(z)) > θ0 for all z ∈ K , we obtain

6 (W u(x), W s(y)) > θ0/2.

Consider a pair of ‘stable boundary lines’ (respectively ‘unstable boundary lines’) given
by Fact 3.9 applied to (T, K j ) (respectively applied to (T−1, K j )). Let R( j) be the
rectangle bounded by these four line segments; R( j) is contained in the intersection of
two strips with almost parallel sides of width≤ diamK j and making an angle at least θ0/2.
Hence,

diam(R( j)) < 5 diam(K j )/θ0 < `0/20.

On the other hand, R( j)
⊃ K j , hence

⋃
j R( j)

⊃ K∗. 2
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Proof of Lemma 3.4. Apply Lemma 3.3 to obtain R, µ0 > 0 and h0 < htop(T ). Recall that
ρ(x) is the distance between x and the endpoints of its invariant manifolds (or zero if one
of those is not a line segment).

By Claim 2.14 applied with µ3 := 1− ε0µ0/2 to T and T−1, there exist h1 < htop(T )
and `1 = `1(ε0µ0) such that

for all µ ∈ Ph1
erg(T ), µ({x ∈ M | ρ(x) < `1}) < ε0µ0.

Let us cut each large rectangle R from R into sub-rectangles R′ with diameter at most
`1/10, obtaining a new Markov array R′. Using Fact 3.9 again, we can do this by finitely
many stable and unstable manifolds (or line segments bounding those). Observe that
κ10(R′)⊃ κ10(R) and that the points in R′ \ κ10(R′)which have line segments as invariant
manifolds are `1-close to an endpoint of their stable/unstable manifold. Hence,

µ(κ10(R′))≥ µ(κ10(R))≥ µ0 and µ(R′ \ κ10(R′))≤ ε0µ0

for all µ ∈ Ph1
erg(T ). 2

Proof of Proposition 3.6. We apply Lemma 3.4 with ε0/2 obtaining µ0 > 0 (independent
of ε0), h0 < htop(T ) and a Markov array R. Let P R be the convex partition defined
previously. We go to the (R, L+)-extension (M+, T+, P+) of (M, T, P) for some
large integer L+ to be specified. As we have observed, there always exists an ergodic,
T+-invariant measure µ+ extending µ. After replacing it by its image under (x, i) 7→
(T j x, i + j mod L+) for some constant j ∈ {0, 1, . . . , L+ − 1}, we may obtain an
ergodic extension µ+ such that

L+ · µ+(κ10(R)× {0})≥ µ(κ10(R))≥ µ0.

As the extension is finite-to-one, µ+ has the same entropy as µ.
Let x ∈ M . If the unstable manifold for T+,

W u
+(x, 0) :=

⋂
n≥1

T n
+P+(T

−n
+ (x, 0)),

is strictly shorter than W u(x)× {0}, then it is bounded by T kL+
+ (y, 0)with y an intersection

point of W u(T−kL+x) for some k ≥ 1, with one of the new boundary segments, I , of P R.
Hence, PkL+(T−L x) is determined by the past of T−kL+x and I picked among finitely
many choices. Note that this number of choices depends only on P and R but not on L+.

A standard counting argument shows that if this happened on a subset of M × {0} with
µ+-measure at least 1

2ε0µ0 · L
−1
+ , then

h(T, µ)= h(T+, µ+)≤ (1− 1
2ε0µ0)htop(T )+ ε(L+)

where ε(L)→ 0 as L→∞. This is strictly less than htop(T ) if L+ is large enough
(which we ensure by taking L0 large). So it is excluded for large entropy measures.
The (R, L)-periodic extension (M+, T+, P+, R+) has the required properties for all large
integers L+. 2
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R H V

FIGURE 2. From left to right: a rectangle R, an s-rectangle H and a u-rectangle V . The (approximately) red
horizontal (respectively blue vertical) line segments are segments of stable (respectively unstable) manifolds.

3.2. Hyperbolic strips. The homeomorphism (M, T, P) is some piecewise affine
surface homeomorphism with non-zero entropy and R is some Markov array with
R⊂ P (eventually (M, T, P, R) will be the previously built periodic extension
(M+, T+, P+, R+)). We use Figure 2 to define finite itineraries that can be freely
concatenated. This is adapted from uniformly hyperbolic dynamics.

Definition 3.10. A quadrilateral Q u-crosses a rectangle R ∈R if Q ⊂ R and its boundary
is the union of two subsegments of the stable boundary of R (the stable boundary of Q)
and two line segments (the unstable boundary of Q), these four segments being pairwise
disjoint, except for their endpoints. An s-crossing is defined similarly.

A u-rectangle is a quadrilateral which u-crosses some rectangle R ∈R and whose
unstable boundary is made of two segments of unstable manifolds. An s-rectangle is
defined similarly (see Figure 2).

For n ≥ 1, a hyperbolic n-strip (or just n-strip) is an s-rectangle S such that int T k(S) is
included in some element of P for each k = 0, . . . , n − 1 and T n(S) is a u-rectangle. A
hyperbolic strip is an n-strip for some n ≥ 1.

We write Pb
a (x) for

⋂b
k=a T−(k−a)P(T k x) (we assume implicitly that x is nice—this

fails only on an entropy-negligible set by Proposition 2.6).

FACTS 3.11. The following is immediate.
(1) A hyperbolic n-strip is necessarily of the form Pn

0 (x) for some x ∈ R.
(2) Two hyperbolic strips are either nested or have disjoint interiors.

We now give some tools to build hyperbolic strips.

LEMMA 3.12. For 0< m < n, if Pm
0 (x) and Pn

m(x) are both hyperbolic strips, then so
is Pn

0 (x).

This is easy to show using Figure 3. Sufficiently long invariant manifolds allow the
construction of hyperbolic strips from scratch.

LEMMA 3.13. Let x ∈ κ10(R) and n ≥ 1 such that T n x ∈ κ10(R). Then Pn
0 (x) is a

hyperbolic strip.

Observe that the weaker condition x ∈ κ(R) ∩ T−nκ(R) does not imply that Pn
0 (x) is

a hyperbolic strip.
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FIGURE 3. Proof of Lemma 3.12: (a) Pn
0 (x)⊂ Pm

0 (x)⊂ R; (b) the u-rectangle T m (Pm
0 (x)) crossing the

s-rectangle Pn
m (x) (both inside R′); (c) T n Pn

0 (x)⊂ T m Pn
m (x)⊂ R′′ (R, R′, R′′ ∈R).

FIGURE 4. Construction of the hyperbolic strip in the proof of Lemma 3.13 (left: time zero around R; right:
time n around R′; approximately (vertical) horizontal lines are segments of (un)stable manifolds; dashed lines
are (pre)images of regular manifolds. The outer (green) ‘diamond’ is L . The central (yellow) rectangle inscribed

in L is the hyperbolic strip.

Proof. See Figure 4. Let R, R′ be the elements of R containing x and T n x . Consider the
diamond (the quadrilateral) L generated by W s(x) and T−nW u(T n x). By convexity, L is
contained in T−1 Pn

1 (x).
Consider one side [uv] of T n L with u /∈ R′ and d(x, u) > 10 · diam(R′). Let {a}

:= [uv] ∩ ∂s R′. We have d(u, v)≥ d(u, T n x)− diam(R′)≥ 9diam(R′). Hence, d(v, a)
≤ diam(R′)≤ (1/9)d(u, v).

Let (abcd) be the quadrilateral defined by the points of ∂T n L ∩ ∂R′. It u-crosses R′. It
remains to prove that L s-crosses R so that R ∩ T−n Q is the desired hyperbolic strip and
must be Pn

0 (x).
It is enough to check that T−n

{a, b, c, d} lies outside of R. The map being piecewise
affine, d(T−nv, T−na)≤ (1/9)d(T−nu, T−nv). Hence, d(x, T−nv)≥ 10 · diam(R), so
T−na is outside of R. The same holds for the pre-images of b, c, d . 2

COROLLARY 3.14. Let n ≥ 1 be such that Pn
0 (x) is a hyperbolic strip and T n x ∈ κ10(R).

If m > n satisfies T m x ∈ κ10(R), then Pm
0 (x) is also a hyperbolic strip.

Proof. By Lemma 3.13, Pm
n (x) is a hyperbolic strip. Apply Lemma 3.12 to conclude. 2

We need the following technical fact.
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LEMMA 3.15. Let µ be an atomless invariant probability measure. For µ-almost every
x ∈ κs(R), for some R ∈R and all n ≥ 1, the intersection of W s(x) with ∂u R is disjoint
from all of the vertices of Pn , n ≥ 1. In particular, ∂u R ∩ ∂Pn(x) is the union of two
non-trivial segments.

Proof. We proceed by contradiction assuming that the above fails: on a subset of κs(Ri )

with positive measure at least one of these intersection points coincides with a vertex z of
the polygon ∂Pn(x) (so W s(z)=W s(x)). Reducing this subset, we assume the vertex z to
be fixed, say z+.

By Poincaré recurrence, there must exist infinitely many n ≥ 0 such that T n x ∈W s(z+).
Considering two such integers n1 < n2, we obtain that T n2−n1(W s(z+))⊂W s(z+). This
implies that all points of W s(z+) converge to a periodic orbit. Thus, the ergodic
decomposition of µ has an atom, a contradiction. 2

We show that if x ∈ κs(R), then subsequent visits to κ10(R) either give a hyperbolic
strip or a shadowing property which will lead to an entropy bound.

LEMMA 3.16. Let x ∈ κs(R) and 0≤ m < n be such that T m x, T n x ∈ κ10(R). Excluding
a set of zero measure of points x, if Pn

0 (x) is not a hyperbolic strip then Pm
0 (x) determines

Pn
0 (x) up to a choice of multiplicity four.

Proof. We know that W s(x) crosses the rectangle R ∈R containing x . Hence,
Lemma 3.15 implies that ∂Pm

0 (x) ∩ ∂
u R is the union of two unstable, non-trivial segments:

[a, b], [c, d]. Let [a′, b′], [c′, d ′] be their images by T m
|Pm

0 (x). Let Q′ be the quadrilateral
generated by them. By convexity Q′ ⊂ T m(Pm

0 (x)).
Here H := Pn

m(x) is a hyperbolic strip by Lemma 3.13. We know that Q′ and H
intersect. If int H ∩ {a′, b′, c′, d ′} = ∅, then Q′ would go across H , and Pm

0 (x) would
be a hyperbolic strip, contrary to assumption.

Thus, at least one of the four vertices a, b, c, d determined by Pm
0 (x) is contained in

int H : this point determines H and therefore Pn
0 (x) as claimed. 2

3.3. Admissible strips and good returns. In this section, R is some Markov array with
R⊂ P . Hyperbolic strips defined above have no uniqueness property: a point x ∈ κs(R)
sits in an infinite sequence of nested hyperbolic strips. This motivates the following notion.

Definition 3.17. For n ≥ 1, the admissible n-strips are defined by induction on n. A 1-strip
is always admissible. For n > 1, an admissible n-strip S is an n-strip such that for all
1≤ m < n such that S is included in an admissible m-strip, T m(S) meets the interior of no
hyperbolic strip. An admissible strip is an admissible n-strip for some n ≥ 1.

Figure 5 shows a hyperbolic n-strip S (hatched) which is not admissible.

Definition 3.18. Let (M, T, P) be a piecewise affine surface homeomorphism with a
Markov array contained in P .

For a point x ∈ M , the (good) return time is τ = τ(x), the minimal integer τ ≥ 1 such
that both of the following conditions hold:
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T mS '

T mS

H

FIGURE 5. An example of a non-admissible n-strip S. For some 0< m < n, S is contained in some m-strip
S′ (hence T m S′ u-crosses) and T m S meets the interior of some hyperbolic strip H . The above represents
T m S ⊂ T m S′ and H . Point x is at the crossing of the stable and unstable lines and point o is slightly below,
on the same unstable line. The four (green) s-crossing rectangles are the maximum hyperbolic strips. In such
a situation, it might be possible to then split the itinerary of S into that of S′ followed by that of H , yielding a
choice for representing the itinerary of any point like o above, at each of its visit to S. Compare with Lemma 3.22.

• x belongs to an admissible τ -strip;
• T τ (x) ∈ κs(R).
These conditions are defined with respect to some partition containing some Markov array.

If there is no such integer τ , then we set τ(x)=∞.

Remark 3.19. Note that, at this point, we break the symmetry between the future and
the past.

We shall use repeatedly the following obvious observation.

FACT 3.20. If n is the smallest integer such that Pn
0 (x) is a hyperbolic strip (equivalently:

Pn
0 (x) is an n-strip which is not contained in a k-strip for any k < n; Pn

0 (x) does not meet
a k-strip distinct from Pk

0 (x) for any k < n; Pn
0 (x) is a hyperbolic strip which is maximum

with respect to inclusion) then Pn
0 (x) is an admissible n-strip.

Remark 3.21. One could consider the following changes in the definition of admissibility.
(i) Replacing ‘T m(S) meets no hyperbolic strip’ by ‘T m(S) meets no admissible strip’

would not change the notion. Indeed, suppose that T m(S) meets a hyperbolic strip
H . Let k ≥ 1 be the smallest integer such that H is contained in a k-strip, say Hk . The
minimality of k implies that Hk is admissible and Hk ⊃ H so that T m(S) meets Hk .
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(ii) Replacing ‘S is included in an admissible m-strip’ by ‘S is included in a hyperbolic
m-strip’ would exclude some admissible strips and so would cause a problem in the
proof of the (key) Claim 4.2 (for the proof that k = ni in the notation there).

Admissibility gives the following uniqueness property. Denote the one-sided symbolic
dynamics by 6+(T, P)= {A0 A1 A2 · · · ∈ PN | A ∈6(T, P)}.

LEMMA 3.22. A positive itinerary A ∈6+(T, P) can be decomposed into at most one
way as an infinite concatenation of admissible strips.

Proof. Consider two distinct decompositions of A into admissible strips, that is, n0 = 0
< n1 < n2 < · · · and m0 = 0< m1 < m2 < · · · , such that Ani · · · Ani+1 and Ami · · ·

Ami+1 are admissible strips for all i ≥ 0. By deleting the identical initial segments, we
can assume that the decompositions differ from the beginning, say n1 < m1. It follows
that the admissible m1-strip H := [A0 · · · Am1 ] is contained in the n1-admissible strip
[A0 · · · An1 ]. Thus, T n1(H) meets [An1 · · · An2 ] which is another admissible strip,
contradicting admissibility. 2

4. Analysis of large return times
In this section (M, T, P) is a piecewise affine homeomorphism with positive topological
entropy. We first analyze the implications of a long return time τ(x) from a geometric and
then a combinatorial point of view. We then apply this to invariant measures with very
large ‘average’ return times to bound the entropy of these measures.

4.1. Geometric analysis. We analyze geometrically the implications of a large
return time.

PROPOSITION 4.1. Let (M, T, P) be a piecewise affine surface homeomorphism and let
R⊂ P be a Markov array. Let x ∈ κs(R) and let 1≤ N ≤ τ(x).

Let 0≤ N1 ≤ N2 ≤ N0 < N be defined as follows:
• 0< N0 < N is the smallest integer such that T N0 x ∈ κ10(R) and P N0

0 (x) is a
hyperbolic strip (we set N0 := N if there is no such integer);

• 0≤ N1 < N is the smallest integer such that T N1 x ∈ κ10(R) (we set N1 := N0 = N
if there is no such integer);

• 0≤ N2 < N0 is the largest integer such that T N2 x ∈ κ10(R) (we set N2 := N1 = N0

if there is no such integer);
• n1, . . . , nr (r ≥ 0) are the admissible times, that is the successive integers in

{0≤ k < N | Pk
0 (x) is an admissible strip}

with the convention nr+1 = N;
• mi1, . . . , mis(i) (s(i)≥ 0) are the hyperbolic times, that is, for each i , the successive

integers
{ni < m < ni+1 | Pm

0 (x) is a m-strip and T m x ∈ κs(R)}

with the convention mis(i) := mi1 := ni+1 and s(i)= 0 if the above set is empty.
Then P N (x) is determined, up to a choice of multiplicity 4 · 2r , by:
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(1) the integers N1, N2, r and ni , mi1, mis(i) for 1≤ i ≤ r;
(2) P(T k x) for k ∈ [[0, N1]] ∪ [[N2, n1[[;
(3) P(T k x) for k ∈

⋃r
i=1[[ni , mi1]] ∪ [[mis(i), ni+1]] \ [[0, N1]].

(Here [[a, b[[ denotes the integer interval with a included and b excluded, etc.)

Proof. The inequality 0≤ N1 ≤ N2 ≤ N0 is checked easily.

We can assume that N1 < N , as otherwise there is nothing to show.

We first claim that P N1
0 (x) determines P N2

0 (x) up to a choice of multiplicity four.

If N1 ≥ N0, then N1 = N2 = N0 and there is nothing to show. Otherwise N1 ≤ N2 < N0

and T N1 x, T N2 x ∈ κ10(R). As P N2
0 (x) is not hyperbolic this implies, by Lemma 3.16, the

above claim.

It remains to prove the following claim. 2

CLAIM 4.2. Except for an entropy-negligible subset of points x ∈ M, the following holds.
Given some 1≤ i ≤ r with s(i) > 0, Q := Pmi1

ni (x) and integers ni , mi1, mis , there are
only two possibilities for Pmis

ni (x) (s denotes s(i)).

Proof. Let R, R′ ∈R be the rectangles containing T ni x, T mi1 x and let ` be the line
segment through T ni x , directed by W s(T ni x) and bounded by ∂R. We first show that
` 6⊂ Q.

We have T ni x /∈ κs(R) as τ(x) > ni . Thus, W s(T ni x) does not s-cross R: ` 6⊂

W s(T ni x). There exists k > ni such that T k−ni ` is not contained in the closure of an
element of P . Take k ≥ 1 minimal. If one had k > mi1, then T mi1−ni `⊂W s(T mi1 x)
(recall that T mi1 x ∈ κs(R′)) so that for all k ≥ mi1, T k−ni ` would be contained in an
element of P , implying `⊂W s(T ni x), a contradiction. Thus, k ≤ mi1 and ` 6⊂ Q
as claimed.

Disregarding an entropy-negligible set of points x , we can assume that ` divides Q into
two subsets with non-empty interiors, say Q+, Q−. There cannot exist stable manifolds
that s-cross R both in Q+ and Q−: by convexity this would imply that W s(T ni x) also s-
crosses. Thus, there is an s-rectangle in R disjoint from κs(R) which contains at least one
of Q+, Q−. Let W s(B+) (‘above’) and W s(B−) be the stable manifolds bounding this gap
(recall Fact 3.8). Also at least one of W s(B±) (say W s(B+)) is not contained in Q so the
interior of Q does not meet W s(B+). Thus, Q determines W s(B+): it is the ‘lowermost’
stable manifold ‘above’ Q which crosses R. Likewise W s(B−) is the ‘uppermost’ stable
manifold ‘below’ W s(B+) which crosses R.

By definition, S := Pmis
0 (x) is hyperbolic. Also mis ∈ ]]ni , ni+1[[ is not admissible,

hence there exists 0< k < mis < ni+1 such that S is included in an admissible k-strip and
T k(S) meets an admissible strip. If k < ni , then the same admissible strip would preclude
the admissibility of Pni

0 (x) is admissible. The contradiction shows that k ≥ ni . As ni+1 is
the smallest admissible time after ni , k = ni .

Thus, T ni (S) meets an admissible strip which must be either ‘above’ W s(B+) or
‘below’ W s(B−). This implies that Pmis

ni (x) meets, and therefore contains, W s(B±) ∩ R
(for one of the signs ±). It follows that Q determines Pmis

ni (x), up to a binary choice. 2
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4.2. Combinatorial estimates

Remark 4.3. In the remainder of this section, the controlled sets and return times are
understood to be with respect to the partition P+ and the Markov array R+ ⊂ P+ of some
periodic extension as defined in Definition 3.5.

We extract from Proposition 4.1 the following complexity bound.

PROPOSITION 4.4. Let (M, T, P) be a piecewise affine surface homeomorphism and
let R be a Markov array. Let ε∗ > 0 and let C∗ = C∗(ε∗) <∞ be such that

for all n ≥ 0 #(P R)n ≤ C∗e
(htop(T )+ε∗)n .

For each positive integer L, let (M+, T+, P+) be the (L , R)-extension of (M, T, P).
Let L , N ≥ 1, M, R, S ≥ 0 be some integers. Consider I = I(N , L , M, R, S) the set

of cylinders (P+)N (x) for x ∈ κs(R+) such that, in the notation of Proposition 4.1 applied
to the periodic (L , R)-extension:
• τ(x)≥ N;
• r = R and #{mi j ≥ N0 | 1≤ i ≤ r, 1≤ j ≤ s(i)} = S;
• N2 − N1 = M.
Let ρ > R/N. Then

log #I ≤ (htop(T )+ ε∗)(N − L(S − R)− M + S)+ K∗(ρ, N )N + (ρ + 3/N )N log C∗

where K∗(·) and K∗(·, ·) are universal† functions satisfying K∗(ρ, N ) ↓ K∗(ρ) when
N →∞ and K∗(ρ) ↓ 0 when ρ→ 0.

The proof of the above result uses the following lemma.

LEMMA 4.5. In the notation of Proposition 4.1:
(1) n1 is the smallest integer such that (P+)

n1
0 (x) is hyperbolic and n1 ≤ N0;

(2) {ni | 1≤ i ≤ r} ⊂ {0≤ k < N | T k
+x ∈R+ \ κ(R+)};

(3) {N0 ≤ k < N | T k
+x ∈ κ10(R+)} ⊂ {mi j | 1≤ i ≤ r and 1≤ j ≤ s(i)}.

Proof. By definition n1 is the smallest integer such that (P+)
n1
0 (x) is an admissible strip

so (1) is just Fact 3.20.
With (P+)

ni
0 (x) being an admissible strip, T ni

+ x ∈R+. We have ni < N so T ni
+ x /∈

κ(R+), proving (2).
The mi j are the times m ∈]]n1, N [[ (or, equivalently, m ∈ [[0, N [[ by property (1)) such

that T m
+ x ∈ κs(R+) and (P+)m0 (x) is a hyperbolic, but not admissible, strip. As (P+)

N0
0 (x)

is a hyperbolic strip and T N0
+ x ∈ κ10(R+), Corollary 3.14 gives that N0 ≤ k < N and

T k
+x ∈ κ10(R+) implies that (P+)k0(x) is a hyperbolic strip. This strip cannot be admissible

as T k
+x ∈ κs(R+) and k < N , hence such k is some mi j , proving (3). 2

Proof of Proposition 4.4. According to Proposition 4.1, given N , M , R and S, to determine
an element of I(N , L , M, R, S) we need to specify:

† Here K∗ does not depend on any of the data T : M→ M, N , M, R, S, L , C∗, ε∗.
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(1) the integers N1, N2, n1, . . . , nR and mi1, mis(i) for i = 1, . . . , R;
(2) the itineraries (P+)N1(x), (P+)

n1−1
N2

(x) (if n1 > N2) and (P+)
N−1
nr+1(x);

(3) (P+)
mi1
ni (x), (P+)

ni+1
mis(i)(x) for each i = 1, . . . , r ;

(4) a choice among 4 · 2R .
Observe that N1 ≤ N2 ≤ N0. Using property (3) of Lemma 4.5 (in particular, that N0 is
some mi j ), it follows that

#
( r⋃

i=1

]]mi1, mis(i)[[ \ ]]N1, N2[[

)
≥ #

( r⋃
i=1

]]mi1, mis(i)[[ \ ]]0, N0[[

)
≥ #

⋃
i=1,...,r

1≤ j<s(i)
mi j≥N0

]]mi j , mi j + L[[ ≥ (S − R)(L − 1)≥ (S − R)L − S

recalling the definitions of L and S. Hence, the number of choices for those items is
bounded by:

(1)
(N

2

)(N
R

)3
where

(a
b

)
= a!/b!(a − b)! is the binomial coefficient;

(2–3) C R+2
∗ exp((htop(T )+ ε∗)(N − (S − R)L − M + S));

(4) 4 · 2R .
Recalling that†

( n
αn

)
∼ (1/

√
2πα(1− α))n−1/2eH(α)n as n→∞, i.e. log

( n
αn

)
≤ H(α)n

+ C(α) and that k ∈ [[0, (n − 1)/2]] 7→
(n

k

)
is increasing, the stated bound follows with

K∗(ρ, N )= 3H(ρ)+ ρ log 2+ 3N−1 log N + N−1 log 4C(ρ). 2

4.3. Large average return times and entropy. We are going to apply the previous
estimates linking long return times either to visits to the holes (R \ κ(R)) or to low entropy.
We show that for a suitable choice of the parameters of our constructions, large entropy
measures have finite average return time.

Recall the good return time τ : κs(R)→ N̄ (possibly infinite) of Definition 3.18. We
define τn(x), n ≥ 1, inductively by τ1(x)= τ(x) and τn+1(x)= τ(T τn(x)(x)) (τn+1(x)
=∞ if τn(x)=∞).

The essential supremum of a function f over a subset X with respect to a measure µ is

µ-supx∈X f (x) := inf
X ′=X [µ]

sup
x∈X ′

f (x)

where X ′ ranges over the measurable subsets of X such that µ(X \ X ′)= 0 (X and f are
assumed to be measurable). Our key estimate is as follows.

PROPOSITION 4.6. There exist h2 < htop(T ) and L2 <∞ with the following property.
Consider the Markov array R defined by Proposition 3.6. For any integer L+ ≥ L2,
let (M+, T+, P+, R+) be the L+-periodic extension of Definition 3.5. Then, for each
µ ∈ Ph2

erg(T+), the good return time with respect to P+ and R+, satisfies

τ∗(µ)= µ-supx∈R+τ∗(x) <∞ where τ∗(x) := lim sup
n→∞

1
n
τn(x).

† We have f (t)∼ g(t) if and only if limt→∞ f (t)/g(t)= 1 and H(t)=−t log t − (1− t) log(1− t).
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Remark 4.7. We make the following remarks.
(1) That τ∗(x) <∞ almost everywhere already ensures that almost every point in κ(R)

has a good return. However, we need more.
(2) The proof below does not provide a semi-uniform bound on τ∗ as our estimates below

depend on the speed of convergence of some ergodic averages (see Remark 4.8).

Proof of Proposition 4.6. The first step of the proof fixes a Markov array R and a periodic
extension of T and finds a candidate upper bound for τ∗(µ). The second step defines a
language (a collection of words of increasing lengths) with small entropy. The final step
shows that large average return times imply that this language is enough to describe the
measure. A large average can therefore happen only for low entropy measures.

Step 1: The Markov array. We apply Proposition 3.6 and obtain first numbers µ0 > 0
and h0 < htop(T ). We let 0< ε0 <min(htop(T ), 1)/200 be small enough so that in the
notation of Proposition 4.4:

K∗(ε0µ0) <
µ0

100
htop(T ). (4.1)

We pick L∗ to be so large that, for all `≥ L∗

K∗(ε0µ0, `) <
µ0

100
htop(T ). (4.2)

Proposition 3.6 now gives an integer L2(T, ε0, L∗)≥ L∗ and a Markov array R such that
the following holds.

For each L+ ≥ L2, any µ ∈ Ph0
erg(T ) can be lifted to an ergodic invariant probability

measure µ+ on the periodic extension (M+, T+, P+, R+) satisfying

L+µ+(κ10(R+)) > µ0 and L+µ+(R+ \ κ(R+)) < ε0µ0.

Recall that P R denotes the convex partition of M generated by P and R.
We fix ε∗ := (µ0/100)htop(T ) and define C∗ = C∗(P R, ε∗) <∞ as in Proposition 4.4.

Note that C∗ does not depend on L+. Hence, possibly after increasing L+, we may
assume that

L+ >
log C∗

(µ0/100)htop(T )
.

Fix `∗ ≥ L∗ so large that 3 log C∗/`∗ < (µ0/100)htop(T ).
We omit the sharp subscript in the sequel so that M, T, P, µ, µ0 in fact denote

M+, T+, P+, µ+, µ0+ (in particular, L+µ0 is the originalµ0). To refer to the originalµ or

µ0, we write µ[ or µ0[. It will be a convenient exception to continue to write P R for P
R[

[ .
We let

h2 :=max(h0, htop(T )(1− 0.9L+µ0)) < htop(T )

and fix some µ ∈ Ph2
erg(T ) together with µ+ as above. According to the Birkhoff ergodic

theorem, one can find K1 ⊂ M and L1 <∞ such that

µ(M \ K1) < ε0µ
2
0/(106 log #P R) (4.3)
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and, for all x ∈ K1,

for all n ≥ L0 :=
ε0µ0

1000
L1,

∣∣∣∣1n #{0≤ k < n | T k x ∈ κ10(R)} − µ(κ10(R))
∣∣∣∣< ( µ0

1000

)2

.

for all n ≥ L1,
1
n

#{0≤ k < n | T k x ∈R \ κ(R)}< ε0µ0. (4.4)

Remark 4.8. The above L1 is the only estimate in the proof of this proposition which does
not seem semi-uniform.

Increasing `∗ if necessary, we assume

`∗ ≥ (1000/µ0)L1

and `
(
`

`/`∗

)
≤ e(L+µ0/100)htop(T )·` for all `≥ `∗.

We set

τmax :=
1000 log #P R

µ0
`∗. (4.5)

To prove that τ∗(µ)≤ τmax, we assume by contradiction that

M1 :=

{
x ∈ κ(R)

∣∣∣∣ lim sup
n→∞

1
n
τn(x) > τmax

}
has positive µ-measure. (4.6)

Step 2: Low entropy language. For each integer `≥ 1 we define a set C(`) of P R-words
of length ` as

C(`) :=
⋃

`1+···+`k=`
k≤`/τmax

C(`1, . . . , `k).

Here C(`1, . . . , `k) is the set of all concatenations γ1 · · · γk where each γm (1≤ m ≤ k)
is a word (i.e. a finite sequence) of length |γm | = `m satisfying the following requirements.
• Type 1 requirement: γm is an itinerary from I(`m, L+, M, R, S) (in the notation of

Proposition 4.4) with

`m ≥ `∗, L+(S − R)+ M − S ≥
98

100
L+µ0`m and

R <
min(htop(T ), 1)

200
L+µ0`m;

(4.7)

recall that L+µ0 is the original µ0, independent on L+.
• Type 2 requirement: the sum of the lengths of these segments is less than

(L+µ0/500 log #P)`.
Observe that the union defining C(`) has at most `

(
`

[`/τmax]

)
≤ e(L+µ0/100)htop(T )` terms. It

remains to bound #C(`1, . . . , `n).
By Proposition 4.4, the logarithm of #I(`m, L+, M, R, S) under condition (4.7) is

bounded by

(htop(T )+ ε∗)(`k − (L+(S − R)+ M − S))+ K (ε0µ0, `k)`k + (2R + 3) log C∗

≤ htop(T )

(
1+

L+µ0

100

)(
1−

98
100

L+µ0

)
`k +

2L+µ0

100
htop(T )`k + 3 log C∗

≤ htop(T )

(
1−

94
100

L+µ0

)
`k + 3 log C∗

≤ htop(T )(1− 0.93L+µ0)`k, (4.8)
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Hence,

#C(`) ≤ exp((L+µ0/100)htop(T )`)× exp(htop(T )(1− 0.93L+µ0)`)

×(#P R)(L+µ0/500 log #P R)`
≤ eh2`. (4.9)

Step 3: Consequence of large return times. We are going to show that, for all x ∈ κ(R), all
large enough integers n:

τn(x) > τmax · n H⇒ Pτn(x)(x) ∈ C(τn(x)). (4.10)

Observe that this will imply that any ergodic and invariant measure µ such that τ∗(µ)
> τmax has entropy at most h2 using Proposition A.2 with (4.9) and:
• M0 := {x ∈ M | {n ≥ 0 | T−n x ∈ M1} is infinite} (recall (4.6));
• ai (x) :=min{ j ≥ i | T− j x ∈ M1} for all i ≥ 1;
• bi (x) := τn(T−ai (x)x) with n a positive integer such that τni (x)≥max(ai (x),

τmax · ni );
concluding the proof of Proposition 4.6. We now prove (4.10).

Let x ∈ κ(R). We consider a large integer n such that τn(x) > τmax · n. Equation (4.3)
and the ergodic theorem give

1
τn(x)

#{0≤ k < τn(x) | T
k x /∈ K1}< ε0µ

2
0/(106 log #P R).

Let N := τn(x) and, for k = 0, . . . , n − 1, let Ik be the integer interval [[τk(x), τk+1(x)[[
and `k := #Ik .

Let B1 ⊂ [[0, n[[ be the set of those integers 0≤ k < n such that

#{m ∈ Ik | T
m x /∈ K1} ≥

ε0µ0

1000
`k .

The union of those segments Ik occupies only a small proportion of [[0, N [[:∑
k∈B1

`k ≤
1000
ε0µ0

×
ε0µ

2
0

106 log #P R N ≤
µ0

1000 log #P R · N .

Let B2 ⊂ [[0, n[[ be the set of k such that `k ≤ `∗. They also occupy a small proportion∑
k∈B2

`k ≤ `∗n ≤ `∗
N

τmax
≤

µ0

1000 log #P R · N ,

by the choice of τmax.
Therefore, the segments Ik for k ∈ B1 ∪ B2 satisfy the type 2 requirement in the

definition of C(`). It is enough to prove that the remaining Iks satisfy the type 1
requirement.

For such segments Ik , p1 :=min{p ≥ 0 | T p+τk (x)x ∈ K1} satisfies

p1 ≤
ε0µ0

1000
`k (4.11)

by the definition of B1. By the definition of B2,

`k ≥ `∗ ≥
1000
µ0

L1 =
106

ε0µ
2
0

L0. (4.12)
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This fulfills the first requirement of (4.7).
Hence, in the notation of Proposition 4.4,

N1 :=min{ j ≥ 0 | T τk (x)+ j x ∈ κ10(R)} ≤ p1 + L0 ≤
ε0µ0

500
`k . (4.13)

Also, by (4.4) and `k − p1 ≥ L1:

#{ j ∈ [[τk(x)+ p1, τk+1(x)[[ | T
j x ∈ R \ κ(R)}< ε0µ0(`k − p1).

Hence, using point (2) of Lemma 4.5:

R ≤ r ′ := #{ j ∈ Ik | T
j x ∈R \ κ(R)}< 2ε0µ0`k . (4.14)

Note that this implies R ≤ `k · µ0 min(htop(T ), 1)/200, part of the type 1 requirement. It
remains to show the lower bound on L+(S − R)+ M .

First, similarly to (4.14):

|#{ j ∈ Ik | T
j x ∈ κ10(R)} − µ(κ10(R))`k |<

µ0

500
`k .

Setting, again as in Proposition 4.4,

N0 :=min{ j ≥ 0 | T τk (x)+ j (x) ∈ κ10(R) and P j (T τk (x)x) is hyperbolic}

(observe that N0 might be large) and S := #{mi j > N0 | i, j} we obtain, using point (3) of
Lemma 4.5,

S ≥ s′ := #{ j ∈ ]]τk(x)+ N0, τk+1(x)[[ | T
j x ∈ κ10(R)}.

Also, M := N2 − N1 = [N0]κ − N1 where

[t]κ :=max{n ∈ [[0, t[[ | T n x ∈ κ10(R)}

(we define [t]κ := t if there is no such integer). To complete our estimate, we consider
two cases.

First case: N0 < p1 + L1. We use the trivial bound M ≥ 0, (4.11), (4.12) and (4.4)
to obtain

s′ ≥ #{ j ∈ [[τk(x)+ p1 + L1, τk+1(x)[[ | T
j x ∈ κ10(R)}

≥
499
500

µ0(`k − p1 − L1)≥
498
500

µ0`k .

Hence,

L+S + M ≥
498
500

L+µ0`k ≥
99

100
L+µ0`k . (4.15)

Second case: N0 ≥ p1 + L1. Using the definition of p1, K1 and L0:

s′ ≥ µ(κ10(R))((1− 10−3)(`k − p1)− (1+ 10−3)(N0 − p1)).

From (4.11),

s′ ≥
998

1000
µ(κ10(R))`k −

1001
1000

µ(κ10(R))N0.
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Hence, using (1001/1000)L+µ(κ10(R))≤ 1 and M = [N0]κ − N1:

L+S + M ≥
998
1000

L+µ(κ10(R))`k −
1001
1000

L+µ(κ10(R))N0 + [N0]κ − N1

≥
998
1000

L+µ0`k − (N0 − [N0]κ)− N1.

In light of (4.13), to prove that (4.15) also holds in this second case it is enough to show
the following.

CLAIM 4.9. For any 0≤ t ≤ `k , t − [t]κ ≤ (µ0/250)`k .

Proof. We distinguish two cases. First assume that [t]κ < p1 + L0. Then t , the first
visit to κ10(R) after [t]κ , is bounded by the first visit after p1 + L0, i.e. using (4.13) and
`k ≥ (1000/µ2

0) which follows from (4.12):

t − [t]κ ≤ t ≤ p1 + L0 +
1000
999

µ−1
0 ≤

4
1000

µ0`k

proving the claim in this case. Second we assume that [t]κ > p1 + L0. Then

(1− µ0/1000)µ(κ10(R))(t − p1)

≤ #{ j ∈ [[τk(x)+ p1, τk(x)+ t[[ | T j x ∈ κ10(R)}
= #{ j ∈ [[τk(x)+ p1, τk(x)+ [t]κ ]] | T

j x ∈ κ10(R)}
≤ (1+ µ0/1000)µ(κ10(R))([t]κ + 1− p1). (4.16)

So t − p1 ≤ (1+ 3µ0/1000)([t]κ + 1− p1). Hence,

t − [t]κ ≤
3

1000
µ0[t]κ + 2≤

4
1000

µ0`k,

proving the claim. 2

In both cases, (4.15) together with (4.14) implies

L+(S − R)+ M − S ≥
98

100
L+µ0`k . (4.17)

This establishes the remaining part of the type 1 requirement on Pτk+1(x)
τk (x)

(x) for all

k ∈ [[0, n[[\(B1 ∪ Bk). Hence, Pτn(x)(x) belongs to C(τn(x)), concluding the proof
of (4.10) and of Proposition 4.6. 2

From the above proof the following result also holds.

COROLLARY 4.10. We have τ : κs(R)→ N̄∗ has eventually bounded gaps in the sense of
Appendix B with respect to any large entropy measure.

Proof. Given µ, a large entropy measure, we fix τmax as in (4.5) and we proceed by
contradiction assuming that for each large t > τmax, there is a set of positive µ-measure S
with the following property. For each x ∈ S, there exist sequences of integers nk ∈ Z and
mk ∈ N∗ such that

τmk (T
n

k x) > t · mk and sup
k

inf{|i | | i ∈ [[nk, nk + τmk (T
n
k x)[[}<∞.

(the case of improper orbits is similar and easier and left to the reader). It is now enough
to apply Proposition A.2 using (4.9)–(4.10) to obtain that h( f, µ)≤ h2, a contradiction. 2
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5. Proof of the main results
We finally prove the main results by building a Markov system from the arbitrary
concatenations of admissible strips and relating it to the dynamics of the piecewise affine
homeomorphism. This is done in the analysis of large entropy measures and then used for
the other claims.

5.1. Maximal entropy measures. We prove Theorem 1 about the finite number of
maximum measures.

Step 1: Tower. Fix a Markov array R as in Proposition 3.6, defining a (R, L+)-periodic
extension (M+, T+, P+, R+) of (M, T, P, R). This may only increase the number of
maximum measures as it is a finite topological extension. Let 6 :=6(T+, P+) be its
symbolic dynamics (see Definition 2.1). Corollary 2.10 shows that it is enough to prove
the results for 6.

We now build an invertible tower (see Appendix B) 6̂ over 6. This is done by defining
a return time τ :6τ → N∗ for some 6τ ⊂6.

Definition 5.1. An extended admissible P+-word is a word w0 · · · wn over P+ such that
[w0 · · · wn] is an admissible strip; w0 · · · wn−1 is the associated admissible P+-word.

For a sequence A ∈6, we define inductively

t1(A) := sup{n ≥ 1 | A0 · · · An is an extended admissible word} ∈ N∗ ∪ {−∞,∞}

and tn+1(A)= t1(σ tn(A)(A)) (or tn(A) if it was infinite). Let

6τ := {A ∈6 | ∀n ≥ 1, tn(A) ∈ N∗}.

We tacitly exclude entropy-negligible subsets of points of M+ and of 6 (these
correspond by Lemma 2.10).

CLAIM 5.2. We claim that 6τ coincides with the set of P+-itineraries of the points
x ∈ κs(R+).

Proof. We know that x has a finite good return time m := τ(x) by Proposition 4.6. Let
A ∈6 be its itinerary. Observe that S0

:= A0 · · · Am−1 is admissible and T m
+ x ∈ κs(R+).

By induction, A splits into a concatenation of admissible words S0S1S2
· · · . The cylinders

defined by the finite concatenations S0S1
· · · Sk Aτk+1(x), k ≥ 0, are hyperbolic strips.

Clearly t1(A)≥ τ(x). Now, if H := (P+)n0(x) is hyperbolic with n > m, then H is
contained in S0 (an m-admissible strip) and T m H meets the hyperbolic strip S1. Hence,
H cannot be admissible, proving that t1(A)= τ(x) <∞. That tn(A) <∞ for all n ≥ 1
follows from invariance. Hence, A ∈6τ .

For the converse, let A ∈6τ and denote by x the point with itinerary A. Here
[A0 · · · Am] is an admissible strip for m = t1(A) so A0 ∈R. If k = tn(A), then [A0 · · · Ak]

is a concatenation of admissible strips, hence a k-strip. As k is arbitrarily large, it follows
that W s(x), the intersection of the previous strips, must cross A0, proving x ∈ κs(R). 2
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By construction, for all A ∈6τ , σ t1(A)(A) ∈6τ . Hence, t1 is a return time and defines
an invertible tower T̂ : 6̂→ 6̂ in the sense of Appendix B. Moreover, Corollary 4.10
shows that any large entropy measure µ on 6(T+, P+) has eventually bounded gaps in the
sense of Definition B.2. By Proposition B.3, any such measure can be lifted to 6̂ and any
invariant probability measure of 6̂ is a finite extension of one in 6(T+, P+) (in particular,
both measures have the same entropy).

It follows also that h(T̂ ) := supµ h(σ |hS, µ)= htop(6) so that maximum measures of

6 lift to maximum measures of T̂ .
To prove the theorem it is therefore enough to show that the tower 6̂ has finitely many

ergodic measures of maximal entropy.

Step 2: Markov structure. Recall the following definition (see [18] for background).

Definition 5.3. A Markov shift is a space of sequences

6(G) := {x ∈ VZ | ∀n ∈ Z xn→ xn+1 in G}

where G is an oriented graph with a countable set of vertices V together with the left
shift σ .

We also recall that a graph G as above is (strongly) irreducible if for every (A, B) ∈ V 2,
there is a path from A to B on G. A (strongly) irreducible component is a subgraph with
this property maximum with respect to inclusion.

It will be convenient to say that w′ is a follower of w if the two are admissible words
w, w′ in the sense of Definition 5.1, and s being the first symbol of w′, the concatenation
ws is an extended admissible word.

CLAIM 5.4. Let G be the oriented graph with vertices (w, i) where w is any admissible
word and 0≤ i < |w| (| · | is the length of the word) and arrows

(w, i)→ (w, i + 1) if i + 1< |w|, (w, |w| − 1)→ (w′, 0) if w′ is a follower of w.

The tower 6̂ is measurably conjugate† to the Markov shift 6(G).

Proof. Define p :6(G)→ 6̂ by p(α)= (A, ω) ∈6 × {0, 1}Z where, if αn =: (w0 · · ·

w`−1, k), then An = wk and ωn = 1 if and only if k = 0. Observe that the sequence A thus
obtained is a concatenation of admissible words so A ∈6. Also, whenever m and n are
two successive integers with ωm = ωn = 1, An An+1 · · · Am is an admissible word. Finally
ωm = 1 for infinitely many positive and negative integers m. The proof of Claim 5.2 shows
that σm A ∈6τ for all such m, so that (A, ω) ∈ 6̂. Thus p is well-defined and is clearly a
measurable conjugacy. 2

Step 3: Conclusion

Proof of Theorem 1. We know that G has at most one irreducible component for each
vertex of the type (w0, 0). These correspond to the finitely many rectangles in the Markov
array R. Hence, by a classical result of Gurevič [17],6(G) with h(6(G)) <∞ has finitely
many maximum measures, proving the main theorem. 2

† That is, there is a bimeasurable bijection ψ : 6̂→6(G) such that ψ ◦ T̂ = σ ◦ ψ .
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5.2. Number of periodic points. We prove Proposition 1.4 about the number of periodic
points. We use the construction of the proof of Theorem 1. To prove the lower bound (1.1),
it is enough to prove it for T+, as T+ is a finite extension of T . We assume by contradiction
that the number of points fixed under T n

+ is such that for any integer p ≥ 1, there is a
sequence nk→∞ of multiples of p such that

lim
nk→∞

NT+(nk)

enk htop(T )
= 0. (5.1)

In the following we denote (M+, T+, P+, R+) by (M, T, P, R).
The starting point is the following estimate for 6(G). Consider a maximum measure. It

is carried on one irreducible component. For simplicity, we replace G by that irreducible
component. By Gurevič [17], the existence of a maximum measure for6(G) implies that G
is positive recurrent with parameter R = e−htop(T ). By Vere-Jones [34], this implies that
the number NG(n) of loops of length n based at a given vertex satisfies, for some positive
integer p,

lim
n→∞, p|n

NG(n)e
−htop(T )n = p. (5.2)

Each n-periodic sequence A in the symbolic dynamics 6 is associated to a closed,
convex set ⋂

j≥0

T j
+[A− j · · · A j ]

invariant under T n
+. This set contains at least one point fixed by T n

+ which we denote
by π(A). It remains to show that π does not identify too many points.

Consider π from the set 6(n) of n-periodic sequences to the set M+(n) of n-periodic
T+-orbits. Our assumption (5.1) implies that, for some sequence mn→∞ (where p|n) this
map is at least mn-to-one on a subset 6′(n) of 6(n) with cardinality at least enhtop(T )/3.
We use the following observation.

LEMMA 5.5. Let A1, . . . , Am
∈6 be such that π(A1)= · · · = π(Am)=: x. If the finite

words Ai
0 · · · Ai

n−1, i = 1, . . . , m, are pairwise distinct, then either:
(1) T k x is a vertex of P+ for some 0≤ k < n; or
(2) there exist r ≥ (m − 1)/2 distinct integers 0≤ n1 < · · ·< nr < n such that for all

(k, l) with 1≤ k < ` < n, T nk x lies on the interior of an edge of P+; moreover, if vk

is the direction of the open edge containing T nk x, then the image by T n`−nk of vk is
transverse to v`.

Proof. Let Ai
0 · · · Ai

n−1, i = 1, . . . , m be finite words as in the above statement. We show
that the failure of (1) implies (2).

Each word Ai
0 · · · Ai

n−1 defines an element of Pn
+ containing x in its closure so

mult(x, Pn
+)≥ m. We assume that (1) fails. Observe that:

(i) mult(x, Pk+1
+ )=mult(x, Pk

+) if T k x is in the interior of an element of P+ or if, for
all A ∈ Pk

+,

Pk
+T k
+(A ∩ B(x, ε))⊂ B for some B ∈ P+ and ε > 0;

(ii) mult(x, Pk+1
+ )≤mult(x, Pk

+)+ 2.
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Observation (ii) uses that T+ is a piecewise affine surface homeomorphism so the preimage
of an edge may locally divide into at most two subsets of at most two of the elements of Pk

+

touching x . This implies that mult(x, Pn
+)≤ 1+ 2#{0≤ k < n | T k

+x is on an edge of P+}.
The lemma follows. 2

Proof of Proposition 1.4. Only const · n points of T+ can satisfy assertion (1) in the above
lemma. As hmult(T+, P+)= 0, their preimages in 6′(n) are in subexponential number.
The remainder of 6′(n) corresponds to points x whose orbit stays off the vertices of P+
and which admit distinct sequences Ai

∈6′(n), i = 1, . . . , mn with π(Ai )= x .
Given such an x , fix 0< n1 < · · ·< nr < n as in point (2) of the lemma. Pick j such

that 0≤ n j+1 − n j ≤ 2n/(mn − 1). Thus, T
n j
+ x is a vertex of Pn j+1−n j+1. The number

of such vertices, for given n j , is bounded by const · #P2n/(mn−1)
+ . Taking into account the

choice of n j , the number of such xs is bounded by e(2/mn)(htop(T )+ε)n for all large n. Thus,
for large multiples n of p,

#6(n)≤ 3#6′(n)≤ 3e(2/mn)(htop(T )+ε)n + 3eεn .

As mn→∞, this contradicts the Vere-Jones estimate (5.2), proving the lower bound (1.1)
and Proposition 1.4. 2

5.3. Entropy away from the singularities. Proposition 1.5 is a corollary of the proof of
Theorem 1 using the following result.

PROPOSITION 5.6. (Gurevič [17]) Let G be a countable, oriented graph. Let G0 ⊂ G1

⊂ · · · be a non-decreasing sequence of finite subgraphs exhausting G: any vertex and any
arrow of G belong to Gn with n large enough.

Then limn→∞ htop(Gn)= htop(G).

Proof of Proposition 1.5 In the proof of Theorem 1, one has shown that there is a
countable oriented graph G such that the corresponding countable state Markov shift whose
maximum measures have entropy htop(T ).

Let Gn be the finite subgraph defined by keeping only the vertices and arrows of G
which are on a loop of length at most n and based at one of the finitely many symbols
representing an element of the Markov array. The sequence Gn exhausts G. The above
proposition therefore ensures that, for any ε > 0, there is some G N with topological entropy
at least htop(T )− ε.

The projection of this subshift is a compact invariant subset K of M which contains
only points with infinitely many visits to the controlled set κ(R) in the future and in the
past. If K met the singularity lines of T , there would be such a point x with the additional
property that T x ∈ ∂W u(T x) or T−1x ∈W s(T−1x). However, this would prevent any
future or past visit to κ(R), a contradiction.

Finally, the above construction makes the isomorphism with6(Gn) obvious (it is indeed
one-to-one as K does not meet the boundary of P), but the latter is a subshift of finite type
as Gn is finite. 2
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A. Appendix. Bounds on metric entropy
We recall (see, e.g., [1]) some standard notation and facts about entropy and a few
consequences: (X, B, µ) is a probability space; Hµ(P) := −

∑
A∈Pµ(A) log µ(A)

denotes the mean entropy of a partition (we leave implicit all measurability assumptions).
For Y ⊂ X , (µ|Y )(·) := (µ(Y ))−1µ(· ∩ Y ) (zero if µ(Y )= 0). For a sub-σ -algebra A of
B, the conditional entropy is

Hµ(P|A) :=
∫

X
−

∑
A∈P

1A log E(1A|A) dµ,

where E(·|A) is the conditional expectation with respect to µ.
First, if P is a partition, Y ⊂ X and A is a sub-σ -algebra of A, then

Hµ(P ∨ {Y, X \ X}|A)
≤ Hµ({Y, X \ X}|A)+ µ(Y )Hµ|Y (P|A)+ µ(X \ Y )Hµ|(X\Y )(P|A). (A.1)

Second, the entropy of a measure can be computed as the average of the entropies given
the past. More precisely, we have the following statement.

LEMMA A.1. Let µ be an invariant probability measure for some bimeasurable bijection
T : X→ X. Let P be a finite, measurable partition. Then

h(T, µ, P)=
∫

X
−

∑
A∈P

1A log E(1A|P
−) µ(dx) (A.2)

where with P− is the past partition generated by T n P, n ≥ 1.
In particular, if N (n, x, P)= #{Pn−1

0 (y) | y ∈ X and P−1
−∞(y)= P−1

−∞(x)} where
Pb

a (x) := (An)a≤n≤b with T n x ∈ An , then

h(T, µ, P)≤
∫

X

1
n

log N (n, x, P) µ(dx). (A.3)

Proof. For (A.2), see, e.g., [30, Ex. 4(b), p. 243] for entropy as an average of conditional
information.

Observe that

E(1A log E(1A|P
−)|P−)(x)= E(1A|P

−)(x) log E(1A|P
−)(x).

Hence, the integrand in (A.2) can be replaced by the above right-hand side. Equation (A.3)
now follows from the standard bound:

−

∑
A∈P N

E(1A|P
−)(x) log E(1A|P

−)(x)≤ log #{A ∈ P N
| A ∩W u(x) 6= ∅}. 2

In combination with Rudolph’s backward Vitali lemma [31, Theorem 3.9, p. 33], this
yields the following convenient estimate.
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PROPOSITION A.2. Let µ be an ergodic, σ -invariant probability measure on AZ with
finite alphabet A. Assume that there exist a measurable family of subsets W (A−, `)⊂ P`

(for A− ∈AZ− , `≥ 1) with cardinality bounded by CeH` and a subset 60 ⊂AZ of
positive measure such that, for all A ∈60, there are sequences of integers ai = ai (A),
bi = bi (A), i ≥ 1 (depending measurably on A) satisfying
(1) limi→∞ bi − ai =∞;
(2) supi inf{|k| | k ∈ [[ai , bi ]]}<∞;
(3) Aai Aai+1 · · · Abi−1 ∈W (· · · Aai−2 Aai−1, bi − ai ).

Then
h(σ, µ)≤ H.

Condition (2) above means that the intervals [[ai , bi ]] do not escape to infinity: they all
intersect some [−R, R] for some R large.

Proof. To apply Rudolph’s backward Vitali lemma, we need

ai (A)≤ 0≤ bi (A) (A.4)

for all large enough i , for all A ∈60. By passing to subsequences, depending on A, we can
assume the existence of the (possibly infinite) limits limi→∞ ai (A), limi→∞ bi (A) for all
A ∈60. Assume, for instance, that limi ai (A)=−∞ and limi→∞ bi (A) < 0 for almost
every A ∈60, the other cases being similar or trivial. By assumption, infi bi (A) >−∞ for
all A ∈60. Restricting 60 we can assume that this infimum is some fixed number b ∈ Z.
Replacing 60 by σmin(b,0)60 ensures that (A.4) holds.

The Rudolph lemma implies that for any ε > 0, for µ-almost every A, for all large
enough integers n, one can find a disjoint cover of a fraction at least 1− ε of [[0, n[[
by at most εn intervals [[ai , bi ]] such that Aai · · · Abi ∈W (· · · Aai−2 Aai−1, bi − ai )

Applying (A.3) with

N (A, n)≤

(
n

2εn

)
eHn
× #Aεn .

gives that h(σ, µ)≤ H + 3ε log ε + ε log #A. We conclude by letting ε→ 0+. 2

B. Appendix. Tower lifts
We study towers from a point of view closely related to that of Zweimuller [36]. Let T
be an ergodic invertible transformation of a probability space (X, µ) and let B be a
measurable subset of X . A return time is a function τ : B→ N̄∗ := {1, 2, . . . ,∞} which
is measurable and such that T τ(x)(x) ∈ B for all x ∈ B with τ(x) <∞ (but τ is not
necessarily the first return time).

We are interested in lifting T -invariant measures to the following invertible tower:

X̂ := {(x, ω) ∈ X × {0, 1}Z | ωn = 1 H⇒ T n x ∈ B and

τ(T n x)=min{k ≥ 1 | ωn+k = 1}} \ X̂∗ (B.1)

with T̂ (x, ω)= (T x, σ (x)) and X̂∗ is the set of (x, ω) with only finitely many ones either
in the future or in the past of ω.
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Observe that

(x, ω), (x, ω′) ∈ X̂ and ωn = ω
′
n = 1 for some n H⇒ for all k ≥ n, ωk = ω

′

k . (B.2)

Here (X̂ , T̂ ) is an extension of a subset of (X, T ) through π̂ : X̂→ X defined by
π̂(x, ω)= x .

Remark B.1. The jump transformation T τ : {x ∈ B | τ(x) <∞}→ B is defined by
T τ (x) := T τ(x)(x). It is closely related to T̂ . Indeed, T τ is isomorphic to the first return
map of T̂ on [1] := {(x, ω) ∈ X̂ | ω0 = 1} so any T̂ -invariant probability measure gives by
restriction and normalization a T τ -invariant probability measure (see [36]).

Such lifting requires that τ be ‘not too large’ (see [36] where the classical integrability
condition is studied). Our condition is in terms of the following ‘iterates’ of τ :
the functions τm : B→ N̄∗, m ≥ 1, are defined, as before, by τ1 := τ and τm+1(x)
:= τ(T τm (x)(x)) if τm(x) <∞, τm+1(x) :=∞ otherwise.

Definition B.2. We say that x ∈ X has an improper orbit if

n(x) := {n ∈ N | T−n x ∈ B and ∀m ≥ 1, τm(T
−n x) <∞} is finite. (B.3)

We say that x ∈ X has t-gaps for some 0< t <∞ if x has an improper orbit or if there
exist two integer sequences (nk)k∈N and (mk)k∈N, mk > 0 for all k ≥ 0, such that

for all k ≥ 0, τmk (T
nk x)≥max(t · mk, k) and

sup
k≥1

min{|i | | i ∈ [nk, nk + τmk (T
nk x)]}<∞.

A measure has eventually bounded gaps, if for some t <∞, the set of points in X with
t-gaps has zero measure.

Note that τ(T n x)=∞, for a single n, implies that x has t-gaps for any t <∞.

PROPOSITION B.3. Let T : X→ X be a self-map with a return time τ : B→ N∗. Then:
• every T -invariant ergodic probability measure µ with eventually bounded gaps can

be lifted to a T̂ -invariant ergodic probability measure on X̂;
• any T̂ -invariant, ergodic probability measure µ̂ is a finite extension of the T -

invariant measure π̂(µ̂).

Proof of Proposition B.3. We first prove the existence of a lift for µ like above. We follow
the strategy of [36] and [24] (which was inspired by constructions of Hofbauer) and define
the following non-invertible tower to obtain a convenient topology:

X̃ := {(x, k, τ ) ∈ X × N× N | ∃y ∈ B τ(y)= τ, k < τ and x = T k y},

T̃ (x, k, τ ) := (T (x), k + 1, τ ) if k + 1< `, (T (x), 0, τ (T (x))) otherwise.

For any integer K , we write X̃ K := {(x, k, τ ) ∈ X̃ | k = K }, X̃≤K :=
⋃

k≤K X̃k and

define π̃(x, k, τ )= x . Observe that π̃ ◦ T̃ = T ◦ π̃ and that (X̂ , T̂ ) is a natural
extension of (X̃ , T̃ ) through (x, ω) 7→ (x, k, `) with k ≥ 0 minimal such that ω−k = 1 and
`= τ(T−k x). Hence, it is enough to lift µ to X̃ .
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Fix t <∞ such that the set of points of X with t-gaps has zero µ-measure. Let µ̃0 be
the probability measure defined by

µ̃0({(x, 0, τ (x)) | x ∈ A})= µ(A) for all Borel sets A

(sets disjoint from those above have zero µ̃0-measure). We have π̃(µ̃0)= µ but, except in
trivial cases, T̃∗µ̃0 6= µ̃0 so we consider

µ̃n :=
1
n

n−1∑
k=0

T̃ kµ̃0

and try to take some accumulation point µ̃. We identify µ̃n with its density with respect
to µ̃∞, the σ -finite measure defined by

µ̃∞({(x, k, τ (T−k x)) | x ∈ A and k < τ(T−k x)})= µ(A ∩ {τ > k})

for all Borel sets A ⊂ B and all k ≥ 0. As π̃(µ̃n)= µ, we must have

dµ̃n

dµ̃∞
≤ 1.

Using the Banach–Alaoglu theorem, i.e. the weak star compactness of the unit ball of
L∞(µ̃∞) as the dual of L1(µ̃∞), we obtain an accumulation point of the µ̃n , i.e. a
measure µ̃ on X̃ with dµ̃/dµ̃∞ ≤ 1 such that, for some subsequence nk→∞,

for all f ∈ L1(µ̃∞), lim
k→∞

∫
f dµ̃nk =

∫
f dµ̃. (B.4)

Observe that µ̃ is T̃ -invariant: indeed, (B.4) together with the T -invariance of µ implies
that dµ̃ ◦ T̃−1/dµ̃≤ 1 whereas µ̃ ◦ T̃−1(X̃)= µ̃(X̃) so the previous inequality must be an
equality µ̃-almost everywhere.

This invariance and the ergodicity of µ implies that π̃ µ̃= αµ for some 0≤ α ≤ 1. It
remains to prove that µ̃ 6= 0 so that it can be renormalized into the announced lift of µ.
Assume by contradiction that µ̃= 0. Hence, for any L <∞,∫

1X̃≤L
dµ̃nk =

∫
1
nk

#{0≤ k < nk | T̃
k(x, 0, τ (x)) ∈ X̃≤L} dµ→ 0.

So, possibly for a further subsequence,

1
nk

#{0≤ k < nk | T̃
k(x, 0, τ (x)) ∈ X̃≤L} → 0 µ-almost everywhere. (B.5)

Now,
#{0≤ k < n | T̃ k(x, 0, τ (x)) ∈ X̃0}< εn H⇒ τεn(x)≥ n.

Hence, (B.5) implies that x (in fact, any of its preimages in the natural extension) has
t-gaps for all t > 0, contradicting the assumption on µ.

We now show that any T̂ -invariant, ergodic probability measure µ̂ is a finite extension
of µ := π̂(µ̂). By definition of X̂ , µ̂([1]) > 0 where [1] = {(x, ω) ∈ X̂ : ω0 = 1}. Assume
that there is some positive measure subset S ⊂ X̂ , and some number K of measurable
functions:

ω1, . . . , ωK
: S→ {0, 1}Z
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FIGURE 6. Geometry of: (a) a continuous piecewise affine map with hmult(T, P) > htop(T )= 0; (b) a
discontinuous piecewise affine map with no maximum measure.

such that, for all x ∈ S, (x, ωi (x)) ∈ X̂ , ωi (x) 6= ω j (x) for i 6= j and, for all j = 1, . . . , K :

lim
n→∞

1
n

#{0≤ k < n | ω j
−k(x)= 1} = µ̂([1]).

If K · µ̂([1]) > 1, then, for almost every x ∈ S, there exist two distinct indices j ,

j ′ ∈ {1, . . . , K } and arbitrarily large integers nk→∞ such that ω j
−nk

(x)= ω j ′
−nk

(x).

However, this implies ω j (x)= ω j ′(x) by (B.2). The contradiction proves K ≤ µ̂([1])−1 <

∞: µ̂ is a finite extension of µ. 2

C. Appendix. Examples
C.1. Positive multiplicity entropy

Example 1. (Buzzi [6]) There exists a continuous, piecewise affine surface map (M, T, P)
with hmult(T, P) > 0 and htop(T )= 0.

Consider some triangle ABO in R2 with non-empty interior and let M, A′, B ′ be the
middle points of [AB], [AO], [BO] (see Figure 6(a)). Let T be affine in each of the
triangles τ0 := AM O and τ1 := B M O with T (O)= O , T (A)= T (B)= A′, T (M)= B ′

so that T : ABO→ ABO is conjugate to (θ, r) 7→ (1− 2|θ |, r/2) on (−1, 1)× (0, 1).
Take P = {τ0, τ1} as the admissible partition.

We have hmult(T, P)= log 2 (because all words on {τ0, τ1} appear in the symbolic
dynamics and the corresponding cylinders contain O in their closure). On the other hand,
the only invariant probability measure is the Dirac supported by O , hence htop(T )= 0 as
claimed.

Example 2. (Kruglikov and Rypdal [25]) There exists a piecewise affine homeomorphism
(M, T, P) with dim M = 3 and hmult(T, P)= htop(T ) > 0.

Let ([0, 1]2, T2, P2) be a piecewise affine homeomorphism with non-zero topological

entropy. Consider the pyramid M := [̂0, 1]2 where Â denotes the convex subset of R3
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generated by O := (0, 0, 0) and A × {1}. Define T : M→ M as the piecewise affine map
with partition P := { Â \ {O} | A ∈ P2} such that T (O)= O , T (x, y, 1)= (T2(x, y), 1)
for each vertex (x, y) of P2. Observe that htop(T )= htop(T2) and that T has an
obvious measure of maximal entropy carried by the invariant set [0, 1]2 × {1}. Finally,
considering T n around (0, 0, 0) it is easy to see that hmult(T, P)= htop(T2)= htop(T ).

Example 3. There exists a piecewise affine homeomorphism (M, S, P) with dim M = 3,
hmult(S, P) > 0 and htop(S)= 0.

Define S from the previous example T by S(x, y, z) := T (x, y, z)/2 on the pyramid M
so that 0 is a sink. To make S onto, add a symmetric pyramid M− whose summit is a
source.

C.2. No maximal entropy measure

Example 4. There exists a piecewise affine surface (M, T, P) discontinuous map T such
that there is no maximum measure. More precisely, there exists a sequence of invariant
probability measures µn with

lim
n→∞

h(T, µn)= htop(T ) > 0

but µn converges weakly to an invariant Dirac measure.

Remark. The above formulation excludes trivial examples like T : [0, 1] → [0, 1] with
T (x)= 1/4+ x/2 for x > 1/2 and T (x)= x + 1/2 for x ≤ 1/2 which has no invariant
probability measure.

Let T be a piecewise affine map defined on the triangle XY O with O = (0, 0),
X = (−2, 2) and Y = (2, 2). Let A = (−1, 1), B = (1, 1) and M = (0, 1), and A′ = A/2,
B ′ = B/2 and M ′ = M/2 (see Figure 6(b)). We require that:
(1) T |XY B A is the identity;
(2) T : AM O→ A′B ′O is affine with A 7→ A′, M 7→ B ′, O 7→ O;
(3) T : M BO→ Y X O is affine with M 7→ Y , B 7→ X , O 7→ O .
It is easy to see that htop(T )= log 2. We claim that supµ h(T, µ)= log 2. Clearly the
supremum is bounded by htop( f ). Conversely, for any h < log 2, one can find an invariant
measure on the full shift (σ, {0, 1}N) such that µ([1K

])= 0 for some K = K (h) <∞
with h(σ, µ) > h. It is then easy to construct an isomorphic T -invariant measure (with
support included in y ≤ y0 for any given 0< y0 < 1), proving that supµ h(T, µ)≥ log 2.
The equality follows from htop(T )= log 2. The same observations allow the construction
of the sequence µn with the claimed properties.

On the other hand, assume that µ is an invariant and ergodic probability measure
with h(T, µ)= 2. Here µ must be supported on y < 1. Hence, the map π that sends
a point of R2 to the ray from the origin that contains it maps (T, µ) to ( f, π∗µ) where
f : θ 7→ 1− 2|θ | on [−1, 1]. The fibers of π are contained in line segments originating
from O on which T is linear, hence they have zero entropy and π is entropy-preserving [3].
This implies that π∗µ is the (1/2, 1/2)-Bernoulli measure. Using, say, the central limit
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theorem, we obtain that, for µ-almost (x, y) ∈ ABO , there exists a positive integer n such
that

#{0≤ k < n | f k(π(x, y)) < 1/2}<
n

2
−
|log y|

2 log 2

so that T m(x, y) ∈ XY B A for some m ≤ n, contradicting the invariance of the measure:
there is no maximum measure.

Example 5. There exists a continuous, piecewise quadratic surface map T such that for
any invariant probability measure µ:

h(T, µ) < sup
ν

h(T, ν).

On the rectangle [1, 2] × [−1, 1], consider T (x, y) := (x, Tx (y)) with

Tx (y)=


x(2− x)

2
− x |y| if |y|< 2− x,

−
x(2− x)

2
otherwise.

For each 1≤ x < 2, [−1, 1] is mapped into the Tx -forward invariant segment
[−x(2− x)/2, x(2− x)/2] on which Tx has constant slope x . Hence, htop(Tx )= log x
for x 6= 2. Clearly, T (2, y)= (2, 0) so htop(T2)= 0.

C.3. Infinitely many maximal entropy measures

Example 6. There is a piecewise affine continuous map (respectively homeomorphism)
of [0, 1]2 (respectively [0, 1]3) with uncountably many ergodic invariant probability
measures with non-zero, maximal entropy.

Indeed, such examples are trivially obtained from piecewise affine maps on [0, 1] or
homeomorphisms on [0, 1]2 with non-zero topological entropy by taking a direct product
with the identity on the unit interval. It is the low dimension (one for maps, two for
homeomorphisms) that prevents the existence of such indifferent factors and ensures the
finite number of maximum measures under the simple condition of non-zero topological
entropy.
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