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ASYMPTOTIC PROPERTIES OF
SELF-NORMALIZED LINEAR

PROCESSES WITH LONG MEMORY
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In this paper we study the convergence to fractional Brownian motion for long mem-
ory time series having independent innovations with infinite second moment. For
the sake of applications we derive the self-normalized version of this theorem. The
study is motivated by models arising in economic applications where often the linear
processes have long memory, and the innovations have heavy tails.

1. INTRODUCTION AND NOTATION

In this paper we study the asymptotic properties of a causal linear process

Xk = ∑
i≥0

aiεk−i (1)

when the independent and identically distributed (i.i.d.) innovations {ε, εn ; n ∈Z}
have infinite variance and {ai ; i ≥ 0} is a sequence of real constants such that
Xk is well defined. More precisely, everywhere in the paper, we assume that the
innovations are centered and in the domain of attraction of a normal law. This
means that the variables are i.i.d.,

Eε = 0 (2)

and

l(x) = Eε2 I (|ε| ≤ x) is a slowly varying function at ∞. (3)
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We say that h(t), defined for t ≥ 0, is slowly varying if it is positive and
measurable on [A,∞), for some A > 0, and if for any λ > 0, we have limx→∞
h(λx)/h(x) = 1 (Seneta, 1976, Def. 1.1).

We define

Sn =
n

∑
i=1

Xi .

The central limit theorem (CLT) for Sn with i.i.d. innovations and infinite variance
when ∑i≥0 |ai | < ∞ was studied by many authors. We mention among others
Knight (1991), Mikosch, Gadrich, Kliipelberg, and Adler (1995), and Wu (2003).
For this case the CLT was obtained under a normalization that is regularly varying
with exponent 1

2 .
The purpose of this paper is to investigate the CLT in its functional form for the

case when

an = n−α L(n), where 1
2 < α < 1, n ≥ 1 (4)

and L(n) is a slowly varying function at ∞ in the strong sense (i.e., there is a
slowly varying function h(t) such that L(n) = h(n)). Notice that, by the definition
of slowly varying function, the coefficients an are positive for n sufficiently large.
We shall obtain convergence in distribution under a normalization that is regularly
varying with exponent 3

2 −α which is strictly larger than 1
2 . This is the reason why

the time series we consider has long memory.
To give an example of a linear process of this type we mention the fractionally

integrated processes because they play an important role in financial time series
modeling and they are widely studied. Such processes are defined for 0 < d < 1

2
by

Xk = (1− B)−dεk = ∑
i≥0

aiεk−i with ai = �(i +d)

�(d)�(i +1)
, (5)

where B is the backward shift operator, Bεk = εk−1. For this example, by
the well-known fact that for any real x, limn→∞ �(n + x)/nx�(n) = 1, we
have limn→∞ an/nd−1 = 1/�(d).

The CLT in its functional form was intensively studied for the case of i.i.d. in-
novations with finite second moment. We refer to Davydov (1970), Taqqu (1975),
Phillips and Solo (1992), Wang, Lin, and Gulati (2003), Wu and Min (2005), and
Dedecker, Merlevède, and Peligrad (2011), among others. Invariance principles
(or functional CLTs) play an important role in econometrics and statistics. For
example, to obtain asymptotic distributions of unit root test statistics, researchers
have applied invariance principles of various forms; see Phillips (1987) and Wu
(2006).

We shall derive here the CLT and its functional form, i.e., convergence to frac-
tional Brownian motion, for the case when the innovations are in the domain of
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attraction of the normal distribution and the constants satisfy (4). The normalizer
in this theorem depends on the slowly varying function l(x) that is in general
unknown. To make our results easily applicable we also study the CLT in its self-
normalized form.

The self-normalized CLT for sums of i.i.d. random variables was treated in the
paper by Giné, Götze, and Mason (1997). The case of self-normalized sums in
the domain of attraction of other stable laws was considered by Chistyakov and
Götze (2004). A systematic treatment of self-normalized limit theory under the
independence assumption is given by de la Peña, Lai, and Shao (2009). The self-
normalized version of the CLT for this case was treated in Csörgő, Szyszkowicz,
and Wang (2003). Kulik (2006) studied the self-normalized functional CLT
when ∑i≥0 |ai | < ∞. We shall consider the long memory case when coefficients
satisfy (4).

Our paper is organized as follows. Section 2 contains the definitions and the
results; an application to unit root testing is discussed in Section 3; the proofs
are given in Section 4. For convenience, in the Appendix we give some auxiliary
results, and we also mention some known facts needed for the proofs.

In this paper we shall use the following notation: a double indexed sequence
with indexes n and i will be denoted by ani when no confusion is possible, and
sometimes by an,i . We use the notation an ∼ bn instead of an/bn → 1. For posi-
tive sequences, the notation an 	 bn replaces Vinogradov symbol O , and it means
that an/bn is bounded; an = o(bn) stays for an/bn → 0. The term [x] denotes the

integer part of x , the notation ⇒ is used for weak convergence, and
P→ denotes

convergence in probability. By var(X) we denote the variance of the random vari-
able X and by cov(X,Y ) the covariance of X and Y . The weak convergence to
a constant means convergence in probability. We denote by D[0,1] the space of
all functions on [0,1] that have left-hand limits and are continuous from the right,
and N (0,1) denotes a standard normal random variable.

2. RESULTS

To introduce our results we define a normalizing sequence in the following way.
Recall (3) and (4). Let b = inf{x ≥ 1 : l(x) > 0}, define

ηj = inf

{
s : s ≥ b +1,

l(s)

s2 ≤ 1

j

}
, j = 1,2, . . . , (6)

and set

B2
n := cαlnn3−2α L2(n) with ln = l(ηn), (7)

where

cα =
{∫ ∞

0
[x1−α −max(x −1,0)1−α]2dx

}/
(1−α)2. (8)
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THEOREM 2.1. Define {Xn ; n ≥ 1} by (1) and the random element Wn(t) =
S[nt]/Bn on the space D[0,1]. Assume conditions (2)–(4) are satisfied. Then,
Wn(t) converges weakly on the space D[0,1] endowed with Skorokhod topology
to the fractional Brownian motion WH with Hurst index H = 3

2 −α. In particu-
lar, for t = 1, we have that Sn/Bn converges in distribution to a standard normal
variable.

Remark 2.1. In a recent paper (Peligrad and Sang, 2011) we treat the CLT for
the situation when B2

n is not necessarily regularly varying. However, for that situ-
ation the convergence to the fractional Brownian motion might fail. As a matter of
fact, in the context of Theorem 2.1 a necessary condition for the convergence to
the fractional Brownian motion WH with Hurst index H = β is the representation
B2

n = n2βh(x) for a function h(x) that is slowly varying at infinity (see Lamperti,
1962).

To successfully apply this theorem we have to know ln that depends on the
distribution of ε. This can be avoided by constructing a self-normalizer. Denote
∑∞

i=0 a2
i = A2. Our result is as follows.

THEOREM 2.2. Under the same conditions as in Theorem 2.1 we have

1

nln

n

∑
i=1

X2
i

P→ A2 (9)

and therefore

S[nt]

nan

√
∑n

i=1 X2
i

⇒
√

cα

A
WH (t).

In particular

Sn

nan

√
∑n

i=1 X2
i

⇒ N
(

0,
cα

A2

)
.

3. APPLICATION TO UNIT ROOT TESTING

Invariance principles play an important role in characterizing the limit distribution
of various statistics arising from the inference in economic time series.

Let us consider a stochastic process generated according to

Yn = ρYn−1 + Xn for n ≥ 1,

where Y0 = 0, (Xn)n≥1 is a stationary sequence, and ρ is a constant. Denote the
ordinary least squares estimator of ρ by

ρ̂n =
n

∑
k=1

YkYk−1

/ n

∑
k=1

Y 2
k−1.

https://doi.org/10.1017/S026646661100065X Published online by Cambridge University Press

https://doi.org/10.1017/S026646661100065X


552 MAGDA PELIGRAD AND HAILIN SANG

To test ρ = 1 against ρ < 1, a key step is to derive the limit distribution of the
well-known Dickey–Fuller test statistic (Dickey and Fuller, 1979, 1981):

ρ̂n −1 =
n

∑
k=1

Yk−1(Yk −Yk−1)
/ n

∑
k=1

Y 2
k−1.

As shown by Phillips (1987), under the null hypothesis ρ = 1, the asymptotic
properties of the Dickey–Fuller test statistic rely heavily on the invariance prin-
ciples. This problem was widely studied under various assumptions on the se-
quence Xn . Among them Sowell (1990) and Wu (2006) considered the unit root
testing problem for long memory processes. By combining our Theorems 2.1
and 2.2 with arguments similar to Phillips (1987), we can formulate the fol-
lowing result obtained for variables that do not necessarily have finite second
moment.

PROPOSITION 3.1. Assume that (Xn)n≥1 is as in Theorem 2.1. Then the
following results hold:

(i)
∑n

k=1 Y 2
k−1

n3a2
n ∑n

i=1 X2
i

⇒ cα

A2

∫ 1

0
W 2

H (t)dt,

(i i)
∑n

k=1 Yk−1(Yk −Yk−1)

n2a2
n ∑n

i=1 X2
i

⇒ cαW 2
H (1)

2A2 ,

(i i i) n(ρ̂n −1) ⇒ W 2
H (1)/2∫ 1

0 W 2
H (t)dt

.

The proof of this proposition requires us only to make obvious changes in
the proofs of (A1) and (A2) on page 296 in Phillips (1987), and it is left to the
reader.

4. PROOFS

4.1. Proof of Theorem 2.1

To prove the CLT in its functional form, i.e., the weak convergence of S[nt]/Bn

on the space D[0,1] to the fractional Brownian motion WH with Hurst index
H = 3

2 −α, we shall first reduce the problem to truncated random variables. For
the truncated process we establish tightness on D[0,1] and the convergence of
finite-dimensional distributions.

Without loss of generality, in the rest of the paper, we assume for convenience
a0 = 0 in definition (1).

We shall divide the proof into several steps.
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Step 1. Existence. To show that X1 is well defined we use stationarity and
Lemma A.2 from the Appendix. First of all we have

∞
∑
i=1

P(|aiε1−i | > 1) =
∞
∑
i=1

P(|ε| > |ai |−1) =
∞
∑
i=1

a2
i o(l(|ai |−1)).

Then, by taking into account that (2) implies Eε I (|ε| ≤ |ai |−1) = −Eε I
(|ε| > |ai |−1),

∞
∑
i=1

|Eaiε1−i I (|aiε1−i | ≤ 1)| ≤
∞
∑
i=1

|ai |E|ε|I (|ε| > |ai |−1) =
∞
∑
i=1

a2
i o(l(|ai |−1))

and

∞
∑
i=1

Ea2
i ε2

1−i I (|aiε1−i | ≤ 1) =
∞
∑
i=1

a2
i Eε2 I (|ε| ≤ |ai |−1) =

∞
∑
i=1

a2
i l(|ai |−1).

Notice that

∞
∑
i=1

a2
i l(|ai |−1) =

∞
∑
i=1

i−2α L2(i)l(i2α L−2(i)) < ∞,

because 1
2 < α < 1 and L2(i)l(i2α L−2(i)) is a slowly varying function at ∞. The

existence in the almost sure sense follows by combining these arguments with the
three series theorem.

Step 2. Truncation. For the case when Eε2 = ∞, which is relevant to our paper,
the truncation is necessary. The challenge is to find a suitable level of truncation.
For any integer 1 ≤ k ≤ n define

X ′
nk =

∞
∑
i=1

aiεk−i I (|εk−i | ≤ ηn−k+i ) and S′
n =

n

∑
k=1

X ′
nk . (10)

This definition has the advantage that S′
n can be expressed as a simple sum of a

linear process of an array of independent variables. For every m ≥ 1 we denote

bm = a1 +·· ·+am, (11)

and then we introduce the coefficients

bnj = bj = a1 +·· ·+aj for j < n, (12)

bnj = bj −bj−n = aj−n+1 +·· ·+aj for j ≥ n.
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With this notation and recalling definition (6), by changing the order of summa-
tion,

S′
n = ∑

i≥1
bniεn−i I (|εn−i | ≤ ηi ). (13)

We shall reduce next the study of limiting distribution of Sn/Bn to the sequence
S′

n/Bn . It is enough to show that

1

Bn
E|Sn − S′

n| → 0. (14)

To see this we use the fact that by Lemma A.2 stated in the Appendix

E|ε|I (|ε| > ηi ) = o(η−1
i li ).

We also know that

η2
n ∼ nln (15)

(see, e.g., relation (13) in Csörgő et al., 2003). Then, by the triangle inequality and
relation (A.4) of Lemma A.4 from the Appendix applied with p = 1, we obtain

E|Sn − S′
n| ≤ ∑

i≥1
|bni |E|ε|I (|ε| > ηi ) = ∑

i≥1
|bni |o(η−1

i li ) (16)

= ∑
i≥1

|bni |o(i−1/2l1/2
i ) = o(n3/2−αl1/2

n L(n)) = o(Bn),

and so (14) is established.

Step 3. Central limit theorem. To make the proof more transparent we shall
present first the CLT for Sn/Bn . By step 2 it is enough to find the limiting distri-
bution of S′

n/Bn . We start by noticing that by (16) and the fact that the variables
are centered we have

|ES′
n| = |E(Sn − S′

n)| = o(Bn). (17)

One of the consequences of this observation is that S′
n/Bn has the same limiting

distribution as (S′
n −ES′

n)/Bn . Furthermore,

var

(
S′

n

Bn

)
= 1

B2
n

∑
i≥1

b2
ni li − 1

B2
n
(ES′

n)2 → 1

by relation (A.3) in Lemma A.4 and (17).
Moreover, by Lemma A.4(i) for kn = n4/(2α−1)

var

(
∑

i≥kn

bniεn−i I (|εn−i | ≤ ηi )

)
	 ∑

i≥kn

n2(i −n)−2α L2(i)li (18)

= o(1) as n → ∞.
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Then, by Theorem 4.1 in Billingsley (1968), for proving the CLT it is enough to
verify Lyapunov’s condition for B−1

n (S̄′
n −ES̄′

n) where

S̄′
n =

kn

∑
i=1

bniεn−i I (|εn−i | ≤ ηi ).

Clearly, by (18), var(S̄′
n/Bn) → 1. In the estimate that follows we use Lemma

A.2(iv) along with (15), followed by relation (A.4) of Lemma A.4 applied with
p = 3 and the fact that Bn → ∞ to get

kn

∑
j=1

|bnj |3E|ε′ −Eε′|3 ≤ 8
kn

∑
j=1

|bnj |3E|ε|3 I (|ε| ≤ ηj ) (19)

=
kn

∑
j=1

|bnj |3ηj o(lj ) ≤
∞
∑
j=1

|bnj |3 j1/2o
(
l3/2
j

)
= o(n3(3/2−α)l3/2

n L3(n)) = o(B3
n ).

By Lyapunov’s CLT and the preceding considerations, Sn/Bn converges to
N (0,1) in distribution.

Step 4. Preliminary considerations for the convergence to fractional Brownian
motion. For n ≥ 1 fixed we implement the same level of truncation as before and
construct {X ′

nj ; 1 ≤ j ≤ n} by definition (10). Then we introduce the processes

W ′
n(t) = 1

Bn

[nt]

∑
j=1

X ′
nj and W ′′

n (t) = Wn(t)− W ′
n(t).

We shall show first that W ′′
n (t) is negligible for the weak convergence on D[0,1]

and then, in the next steps, that W ′
n(t) is weakly convergent to the fractional

Brownian motion.
To explain this step, it is convenient to express the process in an expanded form.

By using notation (11)

W ′′
n (t) = 1

Bn

[nt]−1

∑
i=0

b[nt]−iεi I (|εi | > ηn−i )

+ 1

Bn
∑
i≥1

(b[nt]+i − bi )ε−i I (|ε−i | > ηn+i ).

We notice that by the triangle inequality,

E

(
sup

0≤t≤1
|W ′′

n (t)|
)

≤ 1

Bn
E

(
sup

0≤t≤1

∣∣∣∣ [nt]−1

∑
i=0

b[nt]−iεi I (|εi | > ηn−i )

∣∣∣∣
)

+ 1

Bn
E

(
sup

0≤t≤1

∣∣∣∣∑
i≥1

(b[nt]+i −bi )ε−i I (|ε−i | > ηn+i )

∣∣∣∣
)

.

https://doi.org/10.1017/S026646661100065X Published online by Cambridge University Press

https://doi.org/10.1017/S026646661100065X


556 MAGDA PELIGRAD AND HAILIN SANG

Then, by monotonicity and using the notation (12)

E

(
sup

0≤t≤1
|W ′′

n (t)|
)

≤ 1

Bn

n−1

∑
i=0

|bn−i |E|ε|I (|ε| > ηn−i ) (20)

+ 1

Bn
∑
i≥1

|bn+i −bi |E|ε|I (|ε| > ηn+i )

= 1

Bn
∑
i≥1

|bni |E|ε|I (|ε| > ηi ),

which is exactly the quantity shown to converge to 0 in (16). By Theorem 4.1 in
Billingsley (1968), it is enough to study the limiting behavior of W ′

n(t).

Step 5. Tightness. As before, we reduce the problem to studying the same prob-
lem for W ′

n(t)−EW ′
n(t). This is easy to see because by the fact the variables are

centered and by (20) we clearly obtain

sup
0≤t≤1

|EW ′
n(t)| = sup

0≤t≤1
|EW ′′

n (t)| ≤ E
(

sup
0≤t≤1

|W ′′
n (t)|
)

→ 0. (21)

To show that W ′
n(t) − EW ′

n(t) is tight in D[0,1] we shall verify the conditions
from Lemma A.5 in the Appendix for the triangular array B−1

n (X ′
nk − E X ′

nk),
1 ≤ k ≤ n. This will be achieved in the following two lemmas.

By the properties of slowly varying functions (see Seneta, 1976; Lemma A.1
in the Appendix) we construct first an integer N0 and positive constants Ki such
that for all m > N0 we have simultaneously

max
1≤ j≤m

b2
j ≤ K1m2−2α L2(m), (22)

l2m ≤ K2lm, (23)

sup
k>2m

(bk −bk−m)2

k−2α L2(k)
≤ K3m2, (24)

∑
j≥m

j−2α L2( j)lj ≤ K4m1−2α L2(m)lm, (25)

and

∑
j≥m

j−2α L2( j) ≤ K4m1−2α L2(m). (26)

This is possible by Lemmas A.4 and A.1.

LEMMA 4.1. There are a constant K and an integer N0 such that for any two
integers p and q with 1 ≤ p < q ≤ n with q − p ≥ N0 and any n ≥ N0

1

B2
n

var

( q

∑
i=p+1

X ′
ni

)
≤ K

(
q

n
− p

n

)2−α

. (27)
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Proof. We shall use N0 that was constructed earlier. We start from the decom-
position

q

∑
i=p+1

X ′
ni =

q−1

∑
i=p

bq−iεi I (|εi | ≤ ηn−i )+
p−1

∑
i=2p−q

(bq−i −bp−i )εi I (|εi | ≤ ηn−i )

+ ∑
i≥q−2p+1

(bq+i −bp+i )ε−i I (|ε−i | ≤ ηn+i ) = I + II + III.

We shall estimate the variance of each term separately.
Using the fact that ln is increasing and (23) we obtain

var(I ) ≤
q−1

∑
i=p

b2
q−i ln−i =

q−p

∑
j=1

b2
j ln−q+ j ≤ ln(q − p) max

1≤ j≤q−p
b2

j

≤ K1(q − p)3−2α L2(q − p)ln .

Then, by taking into account that ln is increasing and (22) and (23) we have

var(II) ≤
p−1

∑
i=2p−q

(bq−i −bp−i )
2ln−i ≤ l2n2(q − p) max

1≤ j≤2(q−p)
b2

i

≤ K1 K2(q − p)3−2α L2(q − p)ln .

To estimate the variance of the last term, we use first (24) to obtain

var(III) = ∑
i≥q−2p+1

(bi+q −bi+p)
2ln+i ≤ ∑

j≥2(q−p)+1
(bj −bj−(q−p))

2ln+ j−q

≤ K3(q − p)2 ∑
j≥2(q−p)+1

j−2α L2( j)ln+ j−q .

Now, by the monotonicity of ln , because ln+ j−q ≤ l2n for j ≤ n and ln+ j−q ≤ l2 j

for j > n by (23), (25), and (26)

∑
j≥2(q−p)+1

j−2α L2( j)ln+ j−q ≤ K2 K5(q − p)−2α+1L2(q − p)ln

+K2 K4(q − p)−2α+1L2(q − p)lq−p.

So, for K6 = K2 K3(K4 + K5)

var(III) ≤ K6(q − p)3−2α L2(q − p)ln .

Overall we have so far for a certain constant K7 that does not depend on p or q,

var

( q

∑
i=p+1

X ′
ni

)
≤ K7(q − p)3−2α L2(q − p)ln . (28)
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By simple algebra, because 1 ≤ p < q ≤ n we derive

var

( q

∑
i=p+1

X ′
ni

)
≤ K7(q − p)2−αlnn1−α L2(n) max

1≤k≤n

k1−α

n1−α

L2(k)

L2(n)
.

Finally, by Lemma A.1(v),

var

( q

∑
i=p+1

X ′
ni

)
≤ K8

(
q

n
− p

n

)2−α

lnn3−2α L2(n).

Therefore, (27) is established by taking into account (7). �

LEMMA 4.2. Condition (A.12) is satisfied, namely:

lim
n→∞ P

(
max

1≤k≤n
|X ′

nk −EX ′
nk | ≥ εBn

)
= 0.

Proof. We start from

P
(

max
1<k≤n

|X ′
nk −EX ′

nk | ≥ εBn

)
≤ 1

ε4 B4
n

n

∑
k=1

E|X ′
nk −EX ′

nk |4.

We now use Rosenthal inequality (de la Peña and Giné, 1999, Thm.1.5.13), which
can be easily extended to an infinite sum of independent random variables, by
truncating the sum and passing to the limit. So, there is a constant C, such that

E|X ′
nk −EX ′

nk |4 ≤ C
∞
∑
i=1

a4
i Eε4 I (|ε| ≤ ηn−k+i )+C

( ∞
∑
i=1

a2
i ln−k+i

)2

= Ik + I Ik .

By Lemma A.2(iv) and (15) it follows that

a4
i Eε4 I (|ε| ≤ ηn−k+i ) 	 a4

i (η2
n−k+i )ln−k+i

	 i−4α L4(i)(n − k + i)l2
n−k+i .

So

n

∑
k=1

Ik ≤
∞
∑
i=1

i−4α L4(i)
n+i

∑
k=i

kl2
k 	 n2l2

n .

Then, by simple computations involving the partition of sum in two parts, one up
to 2n and the rest, and then using the properties of regular functions and the fact
that 2α > 1 we obtain

n

∑
k=1

I Ik ≤ n

( ∞
∑
i=1

i−2α L2(i)ln+i

)2

≤ nl2
n .
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Finally by (7) we notice that

n2l2
n

B4
n

→ 0. �

Step 6. Convergence of finite-dimensional distributions. Let 0 ≤ t1 < t2 < · · · <
tm ≤ 1. We shall show next that the vector (W ′

n(tj ); 1 ≤ j ≤ m) converges in dis-
tribution to the finite-dimensional distributions of a fractional Brownian motion
with Hurst index 3

2 − 2α, i.e., of a Gaussian process with covariance structure
1
2 (t3−2α + s3−2α − (t − s)3−2α) for s < t .

By the Cramér–Wold device and taking into account (21) we have to study
the limiting distribution of ∑m

j=2 λj (W ′
n(tj )− EW ′

n(tj−1)), which we express as a
weighted sum of independent random variables. By elementary computations in-
volving similar arguments used in the proof of step 3, and taking into account (16)
and (19), we notice that Lyapunov’s condition is satisfied, and then the limiting
distribution is normal with the covariance structure that will be specified next. We
compute now the covariance of W ′

n(s) and W ′
n(t) for s ≤ t . By simple algebra

cov(W ′
n(t),W ′

n(s)) = 1

2
(var(W ′

n(t))+var(W ′
n(s))−var(W ′

n(t)− W ′
n(s))).

We analyze now the variance of W ′
n(t). For each t fixed, 0 ≤ t ≤ 1

var(W ′
n(t)) = 1

B2
n

[nt]−1

∑
i=0

b2
[nt]−i (Eε2

0 I (|ε0| ≤ ηn−i )−E2ε0 I (|ε0| ≤ ηn−i ))

+ 1

B2
n

∑
i≥1

(b[nt]+i −bi )
2(Eε2

0 I (|ε0| ≤ ηn+i )

−E2ε0 I (|ε0| ≤ ηn+i )).

Taking into account Eε0 I (|ε0| ≤ ηn−i ) = −Eε0 I (|ε0| > ηn−i ), by Lemmas A.2
and A.4, after some computations, we obtain

var(W ′
n(t)) ∼ 1

B2
n

[nt]−1

∑
i=0

b2
[nt]−i ln−i + 1

B2
n

∑
i≥1

(b[nt]+i −bi )
2ln+i .

With a similar proof as of relation (A.2) of Lemma A.4, for every 0 ≤ t ≤ 1

var(W ′
n(t)) → t3−2α

and for every 0 ≤ s < t ≤ 1

var(W ′
n(t)− W ′

n(s)) → (t − s)3−2α. (29)

Then

cov(W ′
n(t),W ′

n(s)) → 1

2

(
t3−2α + s3−2α − (t − s)3−2α

)
,

which is the desired covariance structure. �
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4.2. Proof of Theorem 2.2

We notice that it is enough to prove only the convergence in (9). Then (4), (7),
and (9) imply

B2
n ∼ cαn2a2

n

( n

∑
j=1

X2
j

)/
A2,

which we combine with Theorem 2.1, via Slutsky’s theorem, to obtain the self-
normalized part of the theorem. The proof of (9) will be decomposed in several
steps.

Step 1. Truncation. Denote D2
n = A2nln . Recall the definition (10) and set

X ′′
nj = X j − X ′

nj . To prove (9) it is enough to establish

Fn =
n

∑
j=1

(X ′′
nj )

2
/

D2
n

P→ 0 (30)

and

Gn =
n

∑
j=1

(X ′
nj )

2
/

D2
n

P→ 1. (31)

To see this we square the decomposition X j = X ′
nj + X ′′

nj ; then we sum with j
from 1 to n and notice that by the Hölder inequality

Fn −2(Gn Fn)1/2 ≤ 1

D2
n

n

∑
j=1

X2
j − Gn ≤ Fn +2(Gn Fn)1/2.

Step 2. Proof of (30). We start from

n

∑
k=1

(X ′′
nk)

2 =
n

∑
k=1

∞
∑
i=1

a2
i ε2

k−i I (|εk−i | > ηn−k+i )

+2
n

∑
k=1

∑
i< j

ai ajεk−i I (|εk−i | > ηn−k+i )εk− j I (|εk− j | > ηn−k+ j )

= I + I I

(here and in what follows ∑i< j denotes double summation). By independence,
monotonicity, and Lemma A.2(iii), we easily deduce that

E|I I | ≤ 2
n

∑
k=1

∑
i< j

|ai aj |E|εk−i I (|εk−i | > ηn−k+i )εk− j I (|εk− j | > ηn−k+ j )|

≤ 2n ∑
i< j

|ai aj |E|ε|I (|ε| > ηi )E|ε|I (|ε| > ηj )

= 2n ∑
i< j

|ai aj |o(η−1
i li )o(η−1

j lj ).
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Then, by (15), clearly

E|I I | ≤ n

(
∑
i≥1

|ai |i−1/2o
(

l1/2
i

))2

.

Because ∑i≥1 |ai |i−1/2 < ∞, and ln is increasing, it is easy to see that

E|I I | = o(nln) = o
(

D2
n

)
.

To estimate the contribution of the term I, by changing the order of summation
we express this term in the following way:

I =
n

∑
j=1

( j

∑
i=1

a2
i

)
ε2

n− j I (|εn− j | > ηj )+
∞
∑

j=n+1

( j

∑
i= j−n+1

a2
i

)
ε2

n− j I (|εn− j | > ηj ).

We implement now the notation

A2
nj = A2

j =
j

∑
i=1

a2
i when j ≤ n and A2

nj =
j

∑
i= j−n+1

a2
i when j > n, (32)

and then we express I as

I =
∞
∑
j=1

A2
njε

2
n− j I (|εn− j | > ηi ).

Clearly A2
nj are uniformly bounded by a constant. In addition, by relation (A.5),

for j > 2n, these coefficients have the following order of magnitude:

A2
nj 	 n2( j −n)−2α−1 max

j−n≤k≤ j
L2(k) ≤ n2( j −n)−2α−1 max

j/2≤k≤ j
L2(k) (33)

	 n2( j −n)−2α−1 min
j/2≤k≤ j

L2(k) ≤ n2( j −n)−2α−1L2( j).

Now, we use first Khinchin’s inequality (see de la Peña and Giné, 1999, Lem.
1.4.13) followed by the triangle inequality and Lemma A.2, and relation (15) to
obtain

E
√

I 	 E

∣∣∣∣ ∞
∑
j=1

Anjεn− j I (|εn− j | > ηj )

∣∣∣∣ =
∞
∑
j=1

Anj o
(
η−1

j lj

)

=
∞
∑
j=1

Anj j−1/2o
(

l1/2
j

)
.

We notice that by (33), Lemma A.1(iv), and the fact that α > 1
2 ,

E
√

I = o
(√

nln
)

+n
∞
∑
j≥n

j−α− 1
2 L2( j +n) j−

1
2 o
(

l1/2
j

)

= o
(√

nln
)

+ O
(

n−α L2(n)l1/2
j

)
= o
(√

nln
)
.
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As a consequence,
√

I/nln converges in L1 to 0, and so I/D2
n is convergent to

0 in probability. By gathering all these facts we deduce that (30), holds and the
proof is reduced to show that (31) holds. �

Step 3. Proof of (31). We express the sum of squares as

n

∑
k=1

(X ′
k)

2 =
n

∑
k=1

∞
∑
i=1

a2
i ε2

k−i I (|εk−i | ≤ ηn−k+i )

+2
n

∑
k=1

∑
1≤i< j

ai ajεk−i I (|εk−i | ≤ ηn−k+i )εk− j I (|εk− j | ≤ ηn−k+ j ).

We shall show that

1

D2
n

n

∑
k=1

∞
∑
i=1

a2
i ε2

k−i I (|εk−i | ≤ ηn−k+i )
P→ 1 (34)

and

1

D2
n

n

∑
k=1

∑
1≤i< j

ai ajεk−i I (|εk−i | ≤ ηn−k+i )εk− j I (|εk− j | ≤ ηn−k+ j )
P→ 0. (35)

We establish first (34).
By using the notation (32), we have

n

∑
k=1

∞
∑
i=1

a2
i ε2

k−i I (|εk−i | ≤ ηn−k+i ) =
∞
∑
i=1

A2
niε

2
n−i I (|εn−i | ≤ ηi ).

By independence, Lemma A.2(iv), and relations (33) and (15), and taking into
account that α > 1

2 , we get

Var

( ∞
∑
i=1

A2
niε

2
n−i I (|εn−i | ≤ ηi )

)
≤

∞
∑
i=1

A4
ni Eε41(|ε| ≤ ηi )

=
2n

∑
i=1

η2
i o(li )+ ∑

i≥2n

(i −n)−4α−2L4(i)n4η2
i o(li )

= o(n2l2
n) = o(D4

n).

So (34) is reduced to showing that

1

D2
n

∞
∑
i=1

A2
ni E(ε2 I (|ε| ≤ ηi ) = 1

D2
n

∞
∑
i=1

A2
ni li → 1 as n → ∞.

We divide the sum into three parts, one from 1 to n, one from n +1 to 2n, and the
rest of the series. We easily see that by (33),

∞
∑

j=2n+1
A2

nj lj 	
∞
∑

j=2n+1
( j −n)−2α−1n2L2( j)lj = o(D2

n).
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Then,
2n

∑
j=n+1

A2
nj lj 	

2n

∑
j=n+1

( j −n)1−2αlj max
1≤i≤n

L(i)

	
( n

∑
k=1

k1−2αln+k

)
max

1≤i≤n
L(i) = o(D2

n).

Now, by the proof of relation (A.6) in the Appendix with the only difference that
we replace ai by a2

i and so b2
n by A2

j we obtain

n

∑
j=1

A2
j lj ∼ ln

n

∑
j=1

A2
j . (36)

Finally, by (36), the definition of D2
n , and the Toeplitz lemma, (A.8) in the

Appendix, it follows that

lim
n→∞

1

D2
n

n

∑
j=1

A2
j lj = lim

n→∞
ln ∑n

j=1 A2
j

lnn A2 = lim
n→∞

A2
n

A2 = 1.

This completes the proof of (34).
We move now to prove (35). Let N be a fixed positive integer. For each

1 ≤ k ≤ n we divide the sum into two parts:

N

∑
j=1

j−1

∑
i=1

ai ajεk−i I (|εk−i | ≤ ηn−k+i )εk− j I (|εk− j | ≤ ηn−k+ j )

+ ∑
j>N

j−1

∑
i=1

ai ajεk−i I (|εk−i | ≤ ηn−k+i )εk− j I (|εk− j | ≤ ηn−k+ j )

= Ik + I Ik .

We estimate the variance of the sum of each term separately.
For estimating var(∑n

k=1 I Ik) we apply the Hölder inequality:

var

( n

∑
k=1

I Ik

)
≤ n

n

∑
k=1

var

(
∑

j>N

j−1

∑
i=1

ai ajεk−i I (|εk−i | ≤ ηn−k+i )εk− j

×I (|εk− j | ≤ ηn−k+ j )

)
.

By independence, a term corresponding to the combination of indexes (k − i1,k −
j1,k − i2,k − j2) with i1 < j1 has a nonnull contribution if and only if i1 = i2 and
j1 = j2, leading to

var

( n

∑
k=1

I Ik

)
≤ n2 ∑

j>N

j−1

∑
i=1

a2
i a2

j ln+i ln+ j = (n2l2
n)oN (1),

where we used first the monotonicity of ln and in the last part we used the fact
that (by monotonicity, the definition of slowly varying functions, and our notation)
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li ≤ l2n 	 ln for i ≤ 2n and li+n ≤ l 3i
2

	 li for i > 2n along with the convergence

of the series ∑i a2
i li .

To treat the other term we start from

var

( n

∑
k=1

Ik

)
= var

( N

∑
j=1

j−1

∑
i=1

ai aj

n

∑
k=1

εk−i I (|εk−i | ≤ ηn−k+i )εk− j

× I (|εk− j | ≤ ηn−k+ j )

)
,

and then, because we compute the variance of at most N 2 sums and because the
coefficients ai are bounded, clearly,

var

( n

∑
k=1

Ik

)
	 N 4 max

1≤i< j≤N
var

( n

∑
k=1

εk−i I (|εk−i |

≤ ηn−k+i )εk− j I (|εk− j | ≤ ηn−k+ j )

)
.

We notice now that

var

( n

∑
k=1

εk−i I (|εk−i | ≤ ηn−k+i )εk− j I (|εk− j | ≤ ηn−k+ j )

)

≤
n

∑
k=1

Eε2
k−i I (|εk−i | ≤ ηn−k+i )Eε2

k− j I (|εk− j | ≤ ηn−k+ j ),

because by independence and the fact that i 
= j all the other terms are equal to 0.
The result is

var

( n

∑
k=1

Ik

)
	 N 4

n

∑
k=1

ln,n−k+i ln,n−k+ j 	 N 4(nl2
n).

Overall

1

D4
n

var

( n

∑
k=1

∑
1≤i< j

εk−i I (|εk−i | ≤ ηn−k+i )εk− j I (|εk− j | ≤ ηn−k+ j )

)

≤ 2

D4
n

var

( n

∑
k=1

Ik

)
+ 2

D4
n

var

( n

∑
k=1

I Ik

)
= oN (1)+ O

(
N 4 1

n

)
.

We conclude that (35) holds by letting first n → ∞ followed by N → ∞. �
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APPENDIX

We formulate in the first lemma several properties of the slowly varying function. Their
proofs can be found in Seneta (1976).

LEMMA A.1. A slowly varying function l(x) defined on [A,∞) has the following prop-
erties:

(i) There exists B ≥ A such that for all x ≥ B, l(x) is representable in the form
l(x) = g(x)exp(

∫ x
B a(y)/y dy), where g(x) → c0 > 0 and a(x) → 0 as x → ∞.

In addition a(x) is continuous.
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(ii) For B < c < C < ∞, limx→∞ l(t x)/l(x) = 1 uniformly in c ≤ t ≤ C.

(iii) For any θ > −1,
∫ x

B yθ l(y)dy ∼ xθ+1l(x)/θ +1 as x → ∞.

(iv) For any θ < −1,
∫∞

x yθ l(y)dy ∼ xθ+1l(x)/−θ −1 as x → ∞.

(v) For any η > 0, supt≥x (tηl(t)) ∼ xηl(x) as x → ∞. Moreover supt≥x (tηl(t)) =
xη l̄(x) where l̄(x) is slowly varying and l̄(x) ∼ l(x).

The following lemma contains some equivalent formulation for variables in the domains
of attraction of normal law (3). It is Lemma 1 in Csörgő et al. (2003); see also Feller (1966).

LEMMA A.2. The following statements are equivalent.

(i) l(x) = EX2 I (|X | ≤ x) is a slowly varying function at ∞;

(ii) P(|X | > x) = o(x−2l(x));

(iii) E|X |I (|X | > x) = o(x−1l(x));

(iv) E|X |α I (|X | ≤ x) = o(xα−2l(x)) for α > 2.

To clarify the behavior of the sequence of normalizer B2
n defined by (7) we state the

following lemma that follows from relations (3.33) and (3.44) in Kuelbs (1985).

LEMMA A.3. Assume (3) and define ηn by (6). Then, ln = l(ηn) is a slowly varying
function at ∞.

The next lemma is useful to study the variance of partial sums for truncated random
variables.

LEMMA A.4. Under the conditions of Theorem 2.1 and with the notation (8) and (12)
we have these results.

(i) The coefficients have the following order of magnitude: There are constants C1 and
C2 such that for all n ≥ 1,

|bni | ≤ C1i1−α |L(i)| for i ≤ 2n and |bni |
≤ C2n(i −n)−α |L(i)| for i > 2n (A.1)

∞
∑
i=1

b2
ni ∼cαn3−2α L2(n). (A.2)

(ii) The asymptotic equivalence for the variance is

∑
i≥1

b2
ni li ∼ ln ∑

i≥1
b2

ni ∼B2
n , (A.3)

where B2
n is defined by (7).

(iii) For any p ≥ 1 and any function h(x) slowly varying at ∞,

∑
i≥1

|bni |pi−1+p/2|h(i)| 	 h(n)n p(3/2−α)L p(n). (A.4)

Proof. The fact that |bni | ≤ C1i1−α |L(i)| for i ≤ 2n follows easily by the properties of
slowly varying functions listed in Lemma A.1.
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For i > 2n, by the properties of strong slowly varying functions, for n sufficiently large,

(i −n)−α L(i −n)+·· ·+ i−α L(i) ≤ [(i −n)−α +·· ·+ i−α] max
i−n≤ j≤i

L( j).

Then,

max
i−n≤ j≤i

L( j) ≤ max
i/2≤ j≤i

L( j) 	 L(i)

because

maxm≤ j≤2m L( j)

minm≤ j<2m L( j)
→ 1. (A.5)

The asymptotic equivalence in (A.2) is well known. See, e.g., Theorem 2 in Wu and Min
(2005).

We turn now to show (A.3). Let M be a positive integer. We divide the sum into three
parts, one from 1 to n, one from n + 1 to nM, and the third one with all the other terms.
The idea of the proof is that for n and M large, the sum from 1 to nM dominates the sum
of the rest of the terms.

We treat each of these three sums separately.
By using the definition of bni = a1 +·· ·+ai = bi for 1 ≤ i ≤ n by analogy with Lemma

A.1(iii) we show that

n

∑
i=1

b2
i li ∼ ln

n

∑
i=1

b2
i . (A.6)

To see this, by the first part of Lemma A.1 we have ln = gnhn where hn = exp
(∫ n

B
a(y)

y dy
)
,

gn → c > 0, a(x) → 0 as x → ∞, and a(x) is continuous. It is easy to show that

hn −hn−1 = o(hn/n) as n → ∞ (A.7)

and also, by part (iii) of the same lemma, we get ∑n−1
i=1 b2

i 	 nb2
n .

Next, we just have to use the well-known Toeplitz lemma:

lim
n→∞

cn

dn
= lim

n→∞
cn − cn−1

dn −dn−1
, (A.8)

provided dn → ∞ and the limit on the right-hand side exists. Then it follows that

lim
n→∞

∑n
i=1 b2

i li

ln ∑n
i=1 b2

i

= lim
n→∞

∑n
i=1 b2

i li

chn ∑n
i=1 b2

i

= lim
n→∞

b2
nhn

hn ∑n
i=1 b2

i −hn−1 ∑n−1
i=1 b2

i

.

We shall show that the limit on the right-hand side is equal to 1. We start by writing

hn

n

∑
i=1

b2
i −hn−1

n−1

∑
i=1

b2
i = (hn −hn−1)

n−1

∑
i=1

b2
i +b2

nhn .
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Then, by (A.7),

lim
n→∞

b2
nhn

hn ∑n
i=1 b2

i −hn−1 ∑n−1
i=1 b2

i

= lim
n→∞

b2
nhn

o(hn/n)∑n
i=1 b2

i +b2
nhn

= 1,

and (A.6) follows.
To treat the second sum, notice that ln is increasing and then

nM

∑
i=n+1

b2
ni li ∼ ln

nM

∑
i=n+1

b2
ni (A.9)

because

ln
nM

∑
i=n+1

b2
ni ≤

nM

∑
i=n+1

b2
ni li ≤ lnM

nM

∑
i=n+1

b2
ni ,

and ln is a function slowly varying at ∞.
We treat now the last sum. By (A.2) and Lemma A.1,

∞
∑

i=nM+1
b2

ni li 	 n2
∞
∑

i=nM+1
(i −n)−2α L2(i)li 	 n2[n(M −1)]1−2α L2[nM]lnM .

We obtain

∞
∑

i=nM+1
b2

ni li 	 B2
n M1−2α as n → ∞. (A.10)

We combine now the estimates in (A.6) and (A.9). For δ > 0 fixed and n sufficiently large

(1− δ)ln
nM

∑
i≥1

b2
ni ≤

nM

∑
i≥1

b2
ni li ≤ (1+ δ)ln

nM

∑
i≥1

b2
ni .

Therefore,

(1− δ)ln

( ∞
∑
i≥1

b2
ni − ∑

i>nM
b2

ni

)
≤

∞
∑
i≥1

b2
ni li ≤ (1+ δ)ln

nM

∑
i≥1

b2
ni + ∑

i>nM
b2

ni li . (A.11)

Then, by (A.10), for a positive constant C1 we have

lim sup
n→∞

1

B2
n

∑
i>nM

b2
ni li ≤ C1

M2α−1 .

We also know that for a certain positive constant C2,

lim sup
n→∞

1

B2
n

∑
i>nM

b2
ni ≤ C2

M2α−1 .

The result follows by dividing (A.11) by B2
n and taking first limsup and also liminf when

n → ∞ followed by M → ∞, and finally we let δ → 0.
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The proof of (A.4) is similar, and it is sufficient to divide the sum into only two parts,
one from 1 to 2n and the rest. More exactly, by using (A.1),

2n

∑
i=1

|bni |pi−1+p/2|h(i)| 	
2n

∑
i=1

i p(1−α)|L(i)|pi−1+p/2|h(i)| 	 h(n)n p(3/2−α)L p(n)

and

∑
i≥2n

|bni |pi−1+p/2|h(i)| 	 n p ∑
i≥2n

i−1+(1/2−α)p|L(i)|p|h(i)| 	 h(n)n p(3/2−α)L p(n).

The proof is complete. �
The next lemma is a variant of Theorem 12.3 in Billingsley (1968).

LEMMA A.5. Assume that (Xnk)1≤k≤n is a triangular array of centered random vari-
ables with finite second moment. For 0 ≤ m ≤ n let Sm = ∑m

j=1 Xnj and for 0 ≤ t ≤ 1,

Wn(t) = S[nt]. Assume that for every ε > 0

P( max
1≤i≤n

|Xni | > ε) → 0 (A.12)

and there are a positive constant K and an integer N0 such that for any 1 ≤ p < q ≤ n
with q − p > N0 we have

E(Snq − Snp)2 ≤ K

(
q

n
− p

n

)γ

(A.13)

for some γ > 1. Then Wn(t) is tight in D[0,1], endowed with Skorokhod topology.

Proof. We shall base our proof on a blocking argument. We divide the variables into

blocks of size N0. Let k = [n/N0]. For 1 ≤ j ≤ k denote Ynj = ∑ j N0
i=( j−1)N0+1 Xni and

Yn,k+1 = ∑n
i=k N0+1 Xni . Define Vn(t) = ∑[kt]

j=1 Ynk .
Then we notice that it is enough to show that Vn(t) is tight in D[0,1] because by the

fact that [nt]− [kt] ≤ 2N0 and by (A.12)

P(sup
t

|Wn(t)− Vn(t)| > ε) ≤ P( max
1≤i≤n

|Xni | > ε/2N0) → 0.

By Theorem 8.3 in Billingsley (1968) formulated for random elements of D (see
Billingsley, 1968, p. 137) we have to show that for every 0 ≤ t ≤ 1 and ε > 0 fixed,

lim
δ↘0

lim sup
n→∞

1

δ
P

(
max

[kt]≤ j≤[k(t+δ)]
|

j

∑
i=[kt]

Yni | ≥ ε

)
= 0.

By Theorem 12.2 in Billingsley (1968), because γ > 1, there is a constant K such that

P( max
[kt]≤ j≤[k(t+δ)]

|
j

∑
i=[kt]

Yni | ≥ ε) ≤ K

ε2

([
k(t + δ)N0

n

]
−
[

kt N0

n

])γ

,

and the result follows by multiplying with 1/δ and passing to the limit with n → ∞ and
then with δ → 0. �
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