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The sequence of prime numbers p for which a variety over Q has no p-adic point
plays a fundamental role in arithmetic geometry. This sequence is deterministic,
however, we prove that if we choose a typical variety from a family then the
sequence has random behaviour. We furthermore prove that this behaviour is
modelled by a random walk in Brownian motion. This has several consequences, one
of them being the description of the finer properties of the distribution of the primes
in this sequence via the Feynman–Kac formula.
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1. Introduction

1.1. Primes p for which typical smooth varieties have no p-adic point

The first step in checking whether a homogeneous Diophantine equation defined
over the rational numbers has a non-trivial rational solution is to check whether
it has non-trivial solutions in the p-adic completions of the rational numbers for
primes p of bad reduction. It may be the case that the least prime p for which
there is no p-adic solution is large compared to the coefficients of the equation.
Therefore, a straightforward computational attempt to prove the non-existence of
a Q-point via p-adic checks that does not take into consideration the probable size
of these primes p would fail if the running time is limited compared to the size of
the coefficients of the equation. There are two basic questions one can ask for the
(finite) sequence of primes p for which a typical smooth variety has no p-adic point:

Question 1.1. Does this deterministic sequence behave in a random way as the
variety varies in a family?

Question 1.2. If the behaviour can be modelled by that of a random, i.e. uniformly
distributed sequence, what is the corresponding discrepancy?

Naturally, these questions cannot be answered for any arbitrary variety over Q,
therefore, we restrict ourselves to statements that hold for ‘almost all’ members in
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general infinite collections of varieties. Our collections of varieties take the following
shape. Let V be a proper, smooth irreducible algebraic projective variety over Q

equipped with a dominant morphism f : V → Pn with geometrically integral generic
fibre. One can view V as a collection of infinitely many varieties, each variety being
given by the fibre f−1(x) above a point x ∈ Pn(Q). This setting includes several
situations of central importance to arithmetic geometry, see, for example, [4,6,7]
and [15]. A natural question in this context is to study the density of fibres with a
Q-rational point. Serre [25] investigated this when every fibre of f is a conic and, in
an important recent work, Loughran and Smeets [21, theorem 1.1] proved that 0%
of the fibres of f have a Q-rational point, as long as the fibre over some codimension
one point of Pn is irreducible, but not geometrically integral. Both investigations
proceeded by examining p-adic solubility for all primes p.

Associated to f is a non-negative number Δ(f) that depends on the geometry of
the singular fibres of f . It was introduced by Loughran and Smeets [21, § 1] and it
will frequently resurface throughout our work.

Definition 1.1 Loughran and Smeets. Let f : V → X be a dominant proper
morphism of smooth irreducible varieties over a field k. For each (scheme-
theoretic) point x ∈ X with perfect residue field κ(x), the absolute Galois
group Gal(κ(x)/κ(x)) of the residue field acts on the irreducible components of
f−1(x)

κ(x)
:= f−1(x) ×κ(x) κ(x) of multiplicity 1. We choose some finite group Γx

through which this action factors. Then we define

δx(f) =
�

{
γ ∈ Γx :

γ fixes an irreducible component
of f−1(x)

κ(x)
of multiplicity 1

}
�Γx

and

Δ(f) =
∑

D∈X(1)

(1 − δD(f)),

where X(1) denotes the set of codimension 1 points of X.

For x ∈ Pn(Q) we define the function

ωf (x) := �
{
primesp : f−1(x)(Qp) = ∅} . (1.1)

Although we might have ωf (x) = +∞ for certain x ∈ Pn(Q), note that the Lang–
Weil estimates [20] and Hensel’s lemma guarantee that ωf (x) < +∞ when f−1(x)
is geometrically integral. Let H denote the usual Weil height on Pn(Q). The case
r = 1 of theorems 1.3 and 1.12 in the work of Loughran and Sofos [22] implies that

lim sup
B→+∞

1
�{x ∈ Pn(Q) : H(x) � B, f−1(x) smooth}

∑
x∈Pn(Q),H(x)�B
f−1(x) smooth

ωf (x)

is bounded if and only if Δ(f) = 0. Put in simple terms, the condition Δ(f) = 0 is
equivalent to the generic variety f−1(x) having too few primes p for which there is
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no p-adic point. One example with Δ(f) = 0 is given by

V :
4∑
i=0

xiy
2
i = 0 ⊂ P4 × P4

and f : V → P4 defined by f(x, y) = x. Here, for all x ∈ Pn(Q) with f−1(x) smooth
we have ωf (x) = 0, see [26, § 4.2.2, theorem 6(iv)]. To avoid such examples we shall
study the statistics of the set of primes in (1.1) only when Δ(f) �= 0.

To state our results it will be convenient to use the following notation: for all
B � 1 we introduce the set

ΩB := {x ∈ Pn(Q) : H(x) � B}

and let PB be the uniform probability measure on ΩB , that is for any set S ⊆ Pn(Q)
we let

PB [S] :=
�{x ∈ ΩB : x ∈ S}

�ΩB
.

Definition 1.2 The j-th smallest obstructing prime. For x ∈ Pn(Q) and j ∈ Z ∩
[0, ωf (x)] we define p0(x) := −∞ and for j � 1 we define pj(x) to be the j-th
smallest prime p such that f−1(x) has no p-adic point. If j > ωf (x) we define
pj(x) := +∞.

1.2. Distribution of the least obstructing prime

Before continuing with our discussion on the distribution of every element in the
sequence {pj(x)}j�1 we provide a result concerning the typical size of p1(x).

Theorem 1.3. Assume that V is a smooth projective variety over Q equipped with
a dominant morphism f : V → Pn with geometrically integral generic fibre and
Δ(f) �= 0. Let ξ : R>0 → R>0 be any function that satisfies limB→+∞ ξ(B) = +∞
and which is bounded above by some polynomial. Then

�{x ∈ ΩB : p1(x) > ξ(B)}
�ΩB



(

log log ξ(B)
log ξ(B)

)Δ(f)

. (1.2)

In particular,

lim
B→+∞

PB [{x ∈ Pn(Q) : p1(x) � ξ(H(x))}] = 1.

Hence, the value of p1(x) is typically small, for example, p1(x) � log log logH(x)
holds for almost all fibres f−1(x). The proof of theorem 1.3 is given in § 3.2.

1.3. Equidistribution of obstructing primes via moments

Let us now move to question 1.1. By the case r = 1 of [22, theorem 1.3] we see
that for x ∈ Pn(Q) with H(x) � B and f−1(x) smooth the usual size of ωf (x) is
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Δ(f) log logB. Furthermore, by lemma 3.1 we have pj(x) � BD0+1 for all j and for
some positive D0 that only depends on f . Thus the points

log log p1(x) < log log p2(x) < . . . < log log pωf (x)(x) (1.3)

are approximately Δ(f) log logB in cardinality and they all lie in an interval
whose shape is approximated by the interval [0, log logB]. Therefore, if the finite
sequence (1.3) was equidistributed then the subset S of all x ∈ Pn(Q) for which

log log pj(x) =
j

Δ(f)
(1 + o(1)) for all 1 � j � ωf (x) (1.4)

would satisfy limB→+∞ PB [S] = 1. Our first result confirms this kind of equidistri-
bution as long as j is not taken too small. Furthermore, it shows that the error in
the approximation (1.4) follows a normal distribution.

Theorem 1.4. Assume that V is a smooth projective variety over Q equipped with
a dominant morphism f : V → Pn with geometrically integral generic fibre and
Δ(f) �= 0. Let j : R�1 → N be any function with

lim
B→+∞

j(B) = +∞ and lim
B→+∞

j(B) − Δ(f) log logB√
Δ(f) log logB

= −∞.

Then for any r ∈ R we have

lim
B→∞

PB

[{
x ∈ Pn(Q) : log log pj(B)(x) � j(B)

Δ(f)
+ r

j(B)1/2

Δ(f)

}]
=

1√
2π

∫ r

−∞
e−t

2/2 dt.

An analogous result for the number of distinct prime divisors of a random integer
was established by Galambos [12, theorem 2]. The proof of theorem 1.4 is given in
§ 3.5.

One of the simplest criteria for the randomness of a sequence is equidistribu-
tion, thus theorem 1.4 answers question 1.1 in an affirmative manner. We shall see
in remark 3.14 that the second growth assumption placed on j is necessary for
theorem 1.4 to hold. Theorem 1.4 gives an approximation to the size of pj(x) for
a single value of j, therefore, it is natural to ask whether the main term in the
approximation holds for several primes pj(x) simultaneously. This is indeed true as
our next result shows.

Theorem 1.5. Let V and f be as in theorem 1.4. Let ε > 0,M > 0 be arbitrary
and let ξ : [1,∞) → [1,∞) be any function such that limB→+∞ ξ(B) = +∞. Then

PB

[{
x ∈ ΩB : ξ(B) < j � ωf (x) ⇒

∣∣∣∣∣ log log pj(x) − j

Δ(f)

∣∣∣∣∣ � j1/2+ε

}]
− 1


f,ε,M
1

ξ(B)M
,

where the implied constant depends at most on f, ε and M.
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The proof of theorem 1.5 is given in § 3.6 and it generalizes an analogous result
given by Hall and Tenenbaum [14, theorem 10] regarding the number of distinct
prime divisors ω(m) of a random integer m. One of the main steps in the proof of
theorem 1.5 is the verification of theorem 3.10, where moments of arbitrary order of

ωf (x, T ) := �
{
primes p � T : f−1(x)(Qp) = ∅}, (x ∈ Pn(Q), T � 1), (1.5)

are estimated asymptotically and uniformly in the parameter T . The arguments
behind [14, theorem 10] rely on [14, theorem 010], whose proof makes use of the
fact that for every y > 0 the function yω(m) is multiplicative. The function ωf (x)
does not have this property, which is why we have to resort to finding the moments
of ωf (x, T ).

Recall that by [22, theorem 1.2] we have

PB

[{
x ∈ Pn(Q) : ωf (x) � Δ(f)

2
log logB

}]
= 1.

Therefore taking, for example, ξ(B) := log log logB in theorem 1.5 shows that the
typical size of the j-th smallest prime p for which the variety f−1(x) has no p-adic
point is doubly exponential in j for all large j, i.e.

pj(x) ≈ exp
(

exp
(

j

Δ(f)

))
.

In particular, we conclude that the expected size of the obstructing large primes is
independent of the variety.

Notation. All implied constants in the Landau/Vinogradov notation O(·),
,
depend at most on the fibration f , except where specified by the use of a sub-
script. The counting function of the distinct prime factors is denoted by ω(m) :=
�{p prime : p | m} and the standard Möbius function on the integers will be denoted
by μ.

2. The connection with Brownian motion

One of the main results in the work of Loughran and Sofos [22, theorem 1.2] is that
when Δ(f) �= 0 then for almost all x ∈ Pn(Q) we have

ωf (x) = Δ(f) log logH(x) + Zx

√
Δ(f) log logH(x),

where the function Zx is distributed like a Gaussian random variable with mean 0
and variance 1, i.e.

Zx ∼ N (0, 1).

One way to think of this result is as a Central Limit Theorem for a specific sequence
of independently distributed random events; the probability space is to be thought
as the set of all fibres f−1(x), the sequence is indexed by the primes p and the
random event is the non-existence of p-adic points. Knowing the distribution of
ωf does not provide sufficient control over the distribution of the pj(x), which,
as we already saw, corresponds to knowing the distribution of ωf (x, T ) for all
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1 � T � H(x). Indeed, it can be shown by the second part of lemma 3.2 that
ωf (x) = ωf (x,H(x)) +O(1), with an implied constant that only depends on f .
Thus, ωf (x) essentially coincides with ωf (x, T ) when T has size H(x).

The analogy with the Central Limit Theorem above is useful due to the following
fact: assume we have a sequence of independent, identically distributed random
variables Xi, i � 1, each with mean 0 and variance 1. The Central Limit Theorem
states that the random variable

Y (n) :=
1√
n

∑
1�j�n

Xj

is distributed like N (0, 1) as n→ +∞. For every 0 � T � 1 one may also consider
the averages

Y (n, T ) :=
1√
n

∑
1�j�Tn

Xj .

As with ωf (x, T ), we have Y (n, T ) = Y (n) when T = 1. By the Central Limit
Theorem we can see that, for fixed T and as n→ +∞, Y (n, T ) is distributed like
the normal distribution with mean 0 and variance T as n→ +∞. However, the
random variables Y (n, T ) have a richer structure than Y (n), namely, Donsker’s
theorem [9] asserts that Y (n, T ) is distributed like a random walk in Brownian
motion. Brownian motion is a subject that has been widely studied throughout the
last 100 years and, in particular, there are many results regarding the distribution
of these random walks.

Thus, if we showed an analogue of Donsker’s theorem for ωf (x, T ), this would
enable us to use the theory of Brownian motion to directly obtain distribution
theorems for the sequence of primes pj(x), j � 1. This is the main plan for the rest
of this paper.

2.1. Paths associated to varieties

LetB � 1 and x ∈ Pn(Q) withH(x) � B. It turns out that the appropriate object
that allows us to describe the location of the primes counted by ωf (x) in (1.1) is
ωf (x, exp(logtB)) for t ∈ [0, 1]. Note that as t grows from 0 to 1, this function grows
gradually from being almost 0 to becoming almost ωf (x). Taking T = exp(logtB)
in theorem 3.10 shows that for fixed t and for B → +∞ the average of this function
is approximated by

Δ(f) log log(exp(logtB)) = tΔ(f) log logB.

This suggests the following normalization of ωf (x, exp(logtB)).

Definition 2.1. Assume that V is a smooth projective variety over Q equipped
with a dominant morphism f : V → Pn with geometrically integral generic fibre
and Δ(f) �= 0. For each x ∈ Pn(Q) and B ∈ R�3 we define the function XB(·, x) :
[0, 1] → R as follows,

t �→ XB(t, x) :=
ωf (x, exp(logtB)) − tΔ(f) log logB

(Δ(f) log logB)1/2
.
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Remark 2.2. We will later show that for most x ∈ Pn(Q) and when B → +∞, the
function XB(·, x) behaves like the function

t �→ ZB(t, x) :=
1

(Δ(f) log logB)1/2
∑

p�exp(logt B)

{
1 − σp, if f−1(x)(Qp) = ∅,
−σp, otherwise,

(2.1)
where σp is given by

σp :=
�
{
x ∈ Pn(Fp) : f−1(x) is non − split

}
�Pn(Fp)

. (2.2)

Here, a scheme over a field k is called split if it contains a geometrically integral
open subscheme and is called non-split otherwise. The term was introduced by
Skorobogatov [27, Definition 0.1]. The weight σp is Δ(f)/p on average over p,
namely, it is shown by Loughran and Smeets [21, theorem 1.2] that

Δ(f) = lim
B→+∞

∑
p�B σp∑
p�B

1
p

. (2.3)

For fixed B � 3 and x ∈ Pn(Q) we shall show that when (2.1) is thought as a
function of t, it defines a right-continuous step function in the plane. This step
function essentially behaves like a discontinuous random walk that moves upwards
at primes p for which the fibre f−1(x) has no p-adic point and moves downwards
at primes p for which the fibre has a p-adic point.

Let us now recall the definition of Brownian motion from [2, § 37]. First, a stochas-
tic process is collection of random variables (on a probability space (Ω,F , P ))
indexed by a parameter regarded as representing time. A Brownian motion or
Wiener process is a stochastic process {Bτ : τ � 0}, on some probability space
(Ω,F , P ), with the following properties:

• The process starts at 0 almost surely:

P [B0 = 0] = 1.

• The increments are independent: If 0 � τ0 � τ1 � . . . � τk, then for all intervals
Hi ⊂ R,

P [Bτi −Bτi−1 ∈ Hi, i � k] =
∏
i�k

P [Bτi −Bτi−1 ∈ Hi].

• For 0 � σ < τ the increment Bτ −Bσ is normally distributed with mean 0 and
variance τ − σ, i.e. for every interval H ⊂ R,

P [Bτ −Bσ ∈ H] =
1√

2π(τ − σ)

∫
H

e−x
2/2(τ−σ) dx.

• For each ω ∈ Ω, Bτ (ω) is continuous in τ and B0(ω) = 0.
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Wiener showed that such a process exists, see [2, theorem 37.1]. One can thus think
of Ω as the space of continuous functions in [0,∞) and F as the σ-algebra generated
by the open sets under the uniform topology in Ω.

Let D be the space of all real-valued right-continuous functions on [0, 1] that
have left-hand limits, see [3, p. 121], and consider the Skorohod topology on
D, see [3, p. 123]. For any A ⊂ D we let ∂A := A ∩ (D \A). We denote by D
the Borel σ-algebra generated by the open subsets of D. As explained in [3,
p.146], one can make (D,D) into a probability space by extending the classical
Wiener measure from the space of continuous functions equipped with the uni-
form topology to the space D. This measure will be denoted by W throughout this
paper.

Note that for every x ∈ Pn(Q) the function XB(·, x) is in D.

Theorem 2.3. Assume that V is a smooth projective variety over Q equipped with
a dominant morphism f : V → Pn with geometrically integral generic fibre and
Δ(f) �= 0. Let S be any set in D with W [∂S] = 0. Then

lim
B→+∞

PB [{x ∈ Pn(Q) : XB(·, x) ∈ S}] = W [S].

This is proved in § 4.5. A similar result for strongly additive functions defined on
the integers was established by Billingsley [1, § 4] and Philipp [24, theorem 2].
However, in our situation the relevant level of distribution is zero, while this is not
true for the analogous problem over the integers, see remark 3.8. This necessitates
the use of a truncated version of XB [see (4.16)], which results in more technical
arguments.

Wiener’s measure gives a model for Brownian motion, hence, by remark 2.2,
theorem 2.3 has the following interpretation: one has infinitely many random walks
XB(·, x) in [0, 1] × R, each walk corresponding to every fibre f−1(x). The walk is
traced out according to the existence of p-adic points on the variety f−1(x). Random
walks and Brownian motion have been studied intensely in physics and probability
theory, because they provide an effective way to predict the walk traced out by
a particle in Brownian motion according to collision with molecules. As such, the
underlying mathematical theory needed has been particularly enriched throughout
the last century, see, for example, the book of Karatzas and Shreve [19]. In the
next section we shall use parts of this theory to provide results that go beyond
theorems 1.4 and 1.5.

2.2. Extreme values

We provide the first consequence of theorem 2.3. As one ranges over different
values of T the function ωf (x, T ) takes into account the finer distribution of the
primes p for which f−1(x) has no p-adic point. It is therefore important to know
the maximal value of ωf (x, T ). This is answered by drawing upon results on the
maximum value distribution of walks in Brownian motion.
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Theorem 2.4. Let V and f be as in theorem 1.4. For every r ∈ R>0 we have

lim
B→+∞

PB

⎡⎣⎧⎨⎩x ∈ Pn(Q) : max
p prime
p�B

{
ωf (x, T ) − Δ(f) log log p
(Δ(f) log logH(x))1/2

}
� r

⎫⎬⎭
⎤⎦

=
2√
2π

∫ +∞

r

e−t
2/2 dt. (2.4)

This will turn out to be a direct consequence of the reflection principle in Brownian
motion. Taking p = pj(x) in theorem 2.4 leads to the following conclusion. Both
theorem 2.4 and the next corollary are proved in § 5.1.

Corollary 2.5. Let V and f be as in theorem 1.4. For every r ∈ R>0 we have

lim inf
B→+∞

PB

[{
x ∈ Pn(Q) : 1 � j � ωf (x) ⇒ log log pj(x) � j

Δ(f)

−r
(

log logH(x)
Δ(f)

)1/2
}]

� 1 − 2√
2π

∫ +∞

r

e−t
2/2 dt.

Furthermore, for every function ξ(B) : R�1 → R�1 with limB→+∞ ξ(B) = +∞ we
have

lim
B→∞

PB

[{
x ∈ Pn(Q) : 1 � j � ωf (x) ⇒ log log pj(x)

� j

Δ(f)
− ξ(H(x)) (log logH(x))1/2

}]
= 1.

In contrast to theorem 1.5 this result gives merely lower bounds for pj(x), however,
it does apply to the whole range of j, in particular to those that are left uncovered
by theorem 1.5.

2.3. Largest deviation

Our next result provides asymptotic estimates for the density with which ωf (x, T )
deviates from its expected value. Its analogue in Brownian motion regards random
walks in the presence of absorbing barriers, see [17].

Let us define the function τ∞ : R \ {0} → R via

τ∞(r) :=
4
π

+∞∑
m=0

(−1)m

2m+ 1
exp

{
− (2m+ 1)2π2

8r2

}
. (2.5)

Theorem 2.6. Let V and f be as in theorem 1.4. For every r ∈ R>0 we have

lim
B→+∞

PB

⎡⎣⎧⎨⎩x ∈ Pn(Q) : max
p prime
p�B

∣∣∣∣∣ωf (x, p) − Δ(f) log log p
(Δ(f) log logH(x))1/2

∣∣∣∣∣ � r

⎫⎬⎭
⎤⎦ = 1 − τ∞(r).

(2.6)
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Theorem 2.6 and the next corollary are proved in § 5.2.

Corollary 2.7. Let V and f be as in theorem 1.4. For every r ∈ R>0 the quantity

lim inf
B→∞

PB

[{
x ∈ Pn(Q) : 1 � j � ωf (x) ⇒

∣∣∣∣∣ log log pj(x) − j

Δ(f)

∣∣∣∣∣
� r

(
log logH(x)

Δ(f)

)1/2
}]

is at least as large as τ∞(r). Furthermore, the probability

PB

[{
x ∈ Pn(Q) : 1 � j � ωf (x) ⇒

∣∣∣∣∣ log log pj(x) − j

Δ(f)

∣∣∣∣∣ � r
√

log logH(x)

}]

equals 1 +Of
(
(1 + |r|)−2/3

)
, with an implied constant that depends at most on f.

It is useful to compare the second limit statement in corollary 2.7 with theorem 1.5.
Choosing any function ξ(B) with ξ(B) = o((log logB)1/2) in theorem 1.5 will give
a precise approximation for log log pj(x) in a range for j that is wider than the
range in which the second limit statement in corollary 2.7 gives a precise approxi-
mation. However, the advantage of corollary 2.7 is that it gives a better error term
in the estimate for PB and, furthermore, it provides a better approximation to
log log pj(x) than theorem 1.5 when

(log logB)1/2 
 j � ωf (x) = Δ(f)(log logB)(1 + o(1)).

2.4. L2-norm deviations

In statistical mechanics, the mean squared displacement (MSD) is a ‘measure’ of
the deviation of the position of a particle with respect to a reference position over
time. One of the fundamental results of the theory of Brownian motion is that the
MSD of a free particle during a time interval t is proportional to t. It was studied
via diffusion equations by Einstein and Langevin, see [5].

Let us now examine an analogous situation for p-adic solubility. Define for
y, q ∈ R,

θ1(y, q) := 2
∞∑
m=0

(−1)mq(2m+1)2/4 sin((2m+ 1)y),

let θ2(y, q) := ∂
∂y θ1(y, q) and for r � 0 set

τ2(r) :=
4

π3/2

∫
0�u�r/2

∫
0�t�π/2

θ2(t/2, e−1/4u)
dt

(cos t)1/2
du
u3/2

.
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Theorem 2.8. Let V and f be as in theorem 1.4. For every r ∈ R>0 we have

lim
B→+∞

PB

⎡⎣⎧⎨⎩x ∈ Pn(Q) :
1

(Δ(f) log logB)2
∑
p�B

σp

(
ωf (x, p) −

∑
q�p

σq

)2

< r

⎫⎬⎭
⎤⎦

= τ2(r). (2.7)

This is proved in § 5.4.

2.5. Concentration of obstructing primes

Let us now turn our attention to question 1.2. The results so far show that the
elements in the sequence (1.3) are equidistributed, however, it may be that the set
of primes p satisfying f−1(x)(Qp) = ∅ is not fully equidistributed. This could be, for
example, due to a possible clustering of some of its elements. To study the sparsity
(or lack thereof) of such clusters we shall look into the following set: for x ∈ Pn(Q)
we define

Cf (x) :=

⎧⎨⎩p prime : ωf (x, p) >
∑
q�p

σq

⎫⎬⎭ .

By lemma 3.4 and the case r = 1 of theorem 3.10 the expected value of ωf (x, p) is

Δ(f) log log p ≈
∑
q�p

σq,

therefore, p is in Cf (x) exactly when there are ‘many’ primes � with f−1(x)(Q	) = ∅
that are concentrated below p. Let us note that for all x ∈ Pn(Q) outside a Zariski
closed subset of Pn(x) this set is finite. This is because if f−1(x) is smooth then by
lemma 3.1 we have ωf (x) 
f

logH(x)
log logH(x) and therefore lemma 3.4 gives

p ∈ Cf (x) ⇒ log log p

∑
q�p

σp < ωf (x, p) � ωf (x) 
f
logH(x)

log logH(x)
. (2.8)

We wish to study the distribution of �Cf (x). It turns out that it is more conve-
nient to do so for a version of �Cf (x) where the primes are weighted appropriately.
Recall (2.2) and let

Ĉf (x) :=
∑

p∈Cf (x)

σp.

For x ∈ Pn(Q) with f−1(x) smooth we can use (2.3) to get

Ĉf (x) �
∑

p�max{q: q∈Cf (x)}
σp 
 log log max{q : q ∈ Cf (x)},

hence, by (2.8) one has

Ĉf (x) 
f
logH(x)

log logH(x)
. (2.9)

We shall see that this bound is best possible in § 5.6.
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Let us now turn our attention to the average order of magnitude of Ĉf (x). If Cf (x)
consisted of all primes p � H(x) then by (2.3) the order of magnitude of Ĉf (x)
would be log logH(x). The next result shows that there is, in fact, a distribution
law for the corresponding ratio.

Theorem 2.9. Let V and f be as in theorem 1.4. For every α < β ∈ [0, 1] we have

lim
B→+∞

PB

[{
x ∈ Pn(Q) :

Ĉf (x)
Δ(f) log logH(x)

∈ (α, β]

}]
=

1
π

∫ β

α

du√
u(1 − u)

.

(2.10)

This can be viewed as a p-adic solubility analogue of Lévy’s arcsine law that con-
cerns the time that a random walk in Brownian motion spends above 0, see [23,
§ 5.4]. One consequence of theorem 2.9 is that, since the area computed by∫ 1

0
(u(1 − u))−1/2 du is concentrated in the regions around u = 0 and u = 1, for

most fibres f−1(x) the set of primes p without a p-adic point will be either very
regularly or very irregularly spaced. Theorem 2.9 is proved in § 5.5.

2.6. The Feynman–Kac formula

The Feynman–Kac formula plays a major role in linking stochastic processes and
partial differential equations, see the book of Karatzas and Schrieve [19, § 4.4] and
the book of Mörters and Peres [23, § 7.4]. For its applications to other sciences see
the book by Del Moral [8].

We shall use the formula to establish a link between p-adic solubility and differ-
ential equations. Our result will roughly say that in situations more general than
those in theorems 2.4, 2.6, 2.8 and 2.9 the analogous distributions (such as those
in the right side of (2.4),(2.6), (2.7) and (2.10)) are derived from equations similar
to Schrödinger’s equation in quantum mechanics. The following definition can be
found in the work of Kac [18].

Definition 2.10. Let K : R → R�0 be a non-negative bounded function. For
s, u ∈ R with s > 0 and u > 0 we say that a solution Ψs,u of the differential equation

1
2

d2Ψs,u

dx2
= (s+ uK (x))Ψs,u(x) (2.11)

is fundamental if it satisfies the conditions

• lim|x|→∞ Ψs,u(x) = 0,

• supx�=0 |Ψ′
s,u(x)| <∞,

• Ψ′
s,u(+0) − Ψ′

s,u(−0) = −2.

Equation (2.11) is related to the heat equation, see, for example, § 7.4 in the book
of Mörters and Peres [23]. The solution Ψs,u(x) corresponds to the temperature at
the place x for a heat flow with cooling at rate −uK (x).
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Influenced by the work of Feynman [11], Kac [18] proved that a fundamental
solution exists, is unique, and, furthermore, that for every s > 0 and u > 0 it fulfils∫ +∞

0

e−stE0

(
exp

{
−u

∫ t

0

K (Bτ ) dτ
})

dt =
∫ +∞

−∞
Ψs,u(x) dx, (2.12)

where E0 is taken over all Brownian motion paths {Bτ : τ � 0} satisfying B0 = 0
almost surely and with respect to the Wiener measure W . Kac then used this to
calculate the distribution function

W

[∫ t

0

K (Bτ ) dτ � z

]
, (t > 0, z > 0),

for various choices of K . Thus, (2.12) employs differential equations in order to
allow the use of appropriately general ‘test functions’ K that measure the evolution
through time of the distance from the average position (i.e., τ = 0) of a Brownian
motion path.

Recall the meaning of V, f and Δ(f) in § 1.1 and the definitions of ωf (x, T )
and σp in (1.5) and (2.2) respectively. We shall use theorem 2.3 and (2.12) to
study the fluctuation of ωf (x, p) as the prime p varies. For this, we define for every
non-negative bounded function K : R → R�0 and every B ∈ R�3 and t ∈ [0, 1] the
function K̃B(·, t) : Pn(Q) → R given by

K̃B(x, t) :=
1

Δ(f) log logB

∑
p�exp(logt B)

σpK

(
ωf (x, p) −

∑
q�p σq√

Δ(f) log logB

)
. (2.13)

The choices K (x) := x2 and K (x) := 1[0,∞)(x) are relevant to theorems 2.8 and 2.9
respectively. Our next result allows general non-negative bounded ‘test functions’
K , thus it provides a general method for dealing with question 1.2.

Theorem 2.11. Assume that V is a smooth projective variety over Q equipped
with a dominant morphism f : V → Pn with geometrically integral generic fibre and
Δ(f) �= 0. Let K : R → R�0 be a non-negative bounded function. Then for every
u > 0 and t ∈ [0, 1] the following limit exists,

K̂ (u, t) := lim
B→+∞

1
�ΩB

∑
x∈ΩB

exp
(
−uK̃B(x, t)

)
and for every u > 0 and s > 0 it satisfies∫ +∞

0

e−stK̂ (u, t) dt =
∫ +∞

−∞
Ψs,u(x) dx, (2.14)

where Ψs,u is the fundamental solution of (2.11).

It is noteworthy that, for a fixed ‘test function’ K , the left side of (2.14) is
completely determined by the number-theoretic data associated to the fibration
f : V → Pn, however, its right side is determined exclusively through differential
equations. We are not aware of previous connections between the Feynman–Kac
formula and arithmetic geometry. The proof of theorem 2.11 can be found in § 5.7.
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3. Equidistribution

3.1. Auxiliary results from number theory

We begin by recalling some standard statements about the function ωf (x) defined
in (1.1). Firstly, we give a bound for ωf (x) and a bound on the largest prime taken
into account by ωf (x).

Lemma 3.1 lemma 3.1, [22]. There exists D0 = D0(f) such that if x ∈ Pn(Q) and
f−1(x) is smooth then

ωf (x) 
 logH(x)
log logH(x)

and max{p : f−1(x)(Qp) = ∅} 
 H(x)D0 .

Secondly, we find an integer polynomial g such that primes taken into account
by ωf (x) must divide g(x).

Lemma 3.2 lemma 3.2, [22]. Let g ∈ Z[x0, . . . , xn] be a square-free form such that
f is smooth away from the divisor g(x) = 0 ⊂ PnQ. Then there exists A = A(f) > 0
such that for all primes p > A the following hold.

(1) The restriction of f to PnFp is smooth away from the divisor g(x) = 0 ⊂ PnFp .

(2) If x ∈ Pn(Q) and f−1(x)(Qp) = ∅ then p | g(x).

Recall the definition of σp in (2.2). Although it is not immediately obvious, σp
is essentially the likelihood with which the prime p is taken into account by ωf (x)
for a randomly chosen element x ∈ ΩB . For this reason we need pointwise bounds
and average-value results for σp. This is the subject of the next two lemmas.

Lemma 3.3 lemma 3.3, [22]. For all primes p we have

σp 
 1
p
,

with an implied constant that depends at most on f.

Lemma 3.4 proposition 3.6 [22]. There exists a constant β = β(f) such that for all
B � 3 we have ∑

p�B
σp = Δ(f)(log logB) + βf +O((logB)−1).

Lemma 3.5. There exists A′ > 0 such that if p > A′ then σp � 1/2. Furthermore,
there exists γ0 = γ0(f,A′) ∈ R>0 such that

∏
A′<p<T

(1 − σp)−1 = γ0(log T )Δ(f)

(
1 +O

(
1

log T

))
.
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Proof. By lemma 3.3 we have σp � 1/2 for all sufficiently large p. To deal with the
product in the present lemma we use a Taylor expansion to obtain

log
∏

A′<p<T

(1 − σp)−1 =
∑

A′<p<T

σp +
∞∑
k=2

1
k

∑
A′<p<T

σkp .

By lemma 3.3 we can now write for all p > A′,

σkp � σ2
p2

−k+2 
 p−22−k,

with an implied constant that is independent of p and k. This gives

∞∑
k=2

1
k

∑
A′<p<T

σkp −
∞∑
k=2

1
k

∑
A′<p

σkp 

∑
k�2
p>T

1
k2k

1
p2



∑
k�2

m∈N,m>T

1
k2k

1
m2



∑
k�2

1
k2k

1
T


 1
T
.

We can now invoke lemma 3.4 to obtain

log
∏

A′<p<T

(1 − σp)−1 = Δ(f) log log T + βf +O(1/ log T )

−
∑
p�A′

σp +
∞∑
k=2

1
k

∑
p>A′

σkp +O(1/T ).

Letting γ0 := eλ, where

λ := βf −
∑
p�A′

σp +
∞∑
k=2

1
k

∑
p>A′

σkp ,

concludes the proof. �

Let us now give the main number-theoretic input for the succeeding sections. It
was verified in the proof of [22, proposition 3.9]. It essentially states that if we fix
a finite set of primes then we can count the density of fibres that have no p-adic
point at each of the primes p in the set. More importantly, we can do so with an
error term that depends explicitly on the primes.

For a square-free integer Q define

AQ := �
{
x ∈ ΩB : f−1(x) smooth, p | Q⇒ f−1(x)(Qp) = ∅

}
. (3.1)

Lemma 3.6. Assume that V is a smooth projective variety over Q equipped with
a dominant morphism f : V → Pn with geometrically integral generic fibre and
Δ(f) �= 0. Fix any polynomial g as in lemma 3.2. Then there exist constants A, d > 1
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that depend at most on f and g such that for each square-free integer Q with the
property p | Q⇒ p > A and each B � 1 we have∣∣∣∣∣∣AQ − A1

∏
p|Q

σp

∣∣∣∣∣∣ 
 dω(Q)

(
Bn+1

Qmin{p : p | Q} +Q2n+1B +QBn(log 2B)�1/n�
)
,

where the implied constant depends at most on f and g.

Lemma 3.7. Fix a positive integer r, let C , ε1 be any constants with

C >
3r
2

and 0 < ε1 � min
{ n− 1/2

2r(n+ 1)
,

1
4r

}
and define the functions t0, t1 : R�3 → R through

t0(B) := (log logB)C and t1(B) = Bε1 .

In the situation of lemma 3.6 we have∑
Q∈N,ω(Q)�r

p|Q⇒p∈(t0(B),t1(B)]

μ(Q)2
∣∣∣AQ − A1

∏
p|Q

σp

∣∣∣ 
C ,ε1,r B
n+1(log logB)r−1−C ,

where the implied constant depends at most on f, g,C , ε1 and r.

Remark 3.8. Lemma 3.6 may be viewed as a ‘level of distribution’ result in sieve
theory. The main term A1

∏
p|Q σp essentially behaves like

Bn+1

Q

for most Q, while the error term contains the expression

Bn+1

Qmin{p : p | Q} .

Therefore, to get a power saving we need to assume that Q grows at least polyno-
mially in terms of B. In sieve theory language this is phrased by saying that the
exponent of the level of distribution is 0. As is surely familiar to sieve experts, such
a bad level of distribution does not allow straightforward applications.

Let us now recall the Fundamental lemma of sieve theory, as given in [16,
lemma 6.3].

Lemma 3.9. Let κ > 0 and y > 1. There exist two sets of real numbers Λ+ =
(λ+
Q)Q∈N and Λ− = (λ−Q)Q∈N depending only on κ and y with the following
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properties:

λ±1 = 1, (3.2)

|λ±Q| � 1 if 1 < Q < y, (3.3)

λ±Q = 0 if Q � y, (3.4)

and for any integer n > 1, ∑
Q|n

λ−Q � 0 �
∑
Q|n

λ+
Q. (3.5)

Moreover, for any multiplicative function g(d) with 0 � g(p) < 1 that satisfies

∏
t1�p<t2

(1 − g(p))−1 �
(

log t2
log t1

)κ(
1 +

K

log t1

)
(3.6)

for all 2 � t1 < t2 � y and some constant K that is independent of t1, t2 and y, we
have ∑

Q|P (z)

λ±Qg(Q) =

(
1 +O

(
e−s

(
1 +

K

log z

)10
))∏

p<z

(1 − g(p)), (3.7)

where P (z) denotes the product of all primes p < z and s = log y/ log z, the implied
constant depending only on κ.

3.2. Proof of theorem 1.3

The strategy of the proof is to find an integer sequence such that the prob-
lem of counting x ∈ ΩB for which every prime p � ξ(B) satisfies f−1(x)(Qp) �= ∅
is essentially the same as the one of counting elements in the sequence that are
coprime to every prime p � ξ(B). Afterwards, sieving by the primes p � ξ(B) will
be performed via the application of lemma 3.9. Owing to the level-of-distribution
problems explained in remark 3.8 it is necessary to introduce the parameter z0 in
what follows.

For the proof of theorem 1.3 we can clearly assume that ξ(B) � B1/20. Let us
now take

z0 := (log ξ(B))Δ(f)+d, z := ξ(B), y := B1/10,

where d is as in lemma 3.6. We take κ to be

κ := Δ(f).

Letting

g(d) :=
∏
p|d
p>z0

σp,
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we can use lemma 3.5 to verify (3.6) in our setting. There are three cases, according
to whether z0 is in (0, t1), [t1, t2) or [t2,+∞). In the first case we have

∏
t1�p<t2

(1 − g(p))−1 =
∏

t1�p<t2
(1 − σp)−1

and (3.6) follows directly from lemma 3.5. If z0 ∈ [t1, t2) then

∏
t1�p<t2

(1 − g(p))−1 =
∏

z0�p<t2
(1 − σp)−1,

which, by lemma 3.5 equals

(
log t2
log z0

)Δ(f) (
1 +O

(
1

log z0

))
�
(

log t2
log t1

)Δ(f)(
1 +O

(
1

log t1

))
.

In the remaining case, z0 ∈ [t2,+∞), we have

∏
t1�p<t2

(1 − g(p))−1 = 1,

which is clearly bounded by the right side of (3.6).
Let us now make a choice for the constant D0 in lemma 3.1 and fix it for the rest

of the proof of theorem 1.3. For x ∈ Pn(Q) we define the integer

Fx :=
∏

p�BD0+1

f−1(x)(Qp)=∅

p.

This allows us to obtain

�{x ∈ ΩB : p1(x) � ξ(B), f−1(x) smooth}
� �{x ∈ ΩB : gcd(Fx,

∏
z0<p<z

p) = 1, f−1(x) smooth}

=
∑
x∈ΩB

f−1(x) smooth

∑
Q∈N

Q|∏z0<p<z
p

Q|Fx

μ(Q) �
∑
x∈ΩB

f−1(x) smooth

∑
Q∈N

Q|∏z0<p<z
p

Q|Fx

λ+
Q

=
∑
Q∈N

Q|∏z0<p<z
p

λ+
QAQ,
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where AQ was defined in (3.1) and we used the fact that μ(1) = 1 = λ+
1 and (3.5).

Using lemma 3.6 this becomes

∑
Q∈N

Q|∏z0<p<z
p

λ+
Q

⎛⎝A1

∏
p|Q

σp

+O

(
dω(Q)Bn+1

Qmin{p : p | Q} + dω(Q)(Q2n+1B +QBn(logB)�1/n�)
)⎞⎠ .

Owing to Aq 
 Bn+1 and the fact that every Q in the last sum is square-free, we
see that the first error term is


 Bn+1

z0

∑
Q|∏z0<p<z

p

dω(Q)

Q
� Bn+1

z0

∏
z0<p<z

(
1 +

d

p

)


 Bn+1

z0

(
log z
log z0

)d
=

Bn+1

(log ξ(B))(Δ(f)+d)

(
log ξ(B)

(Δ(f) + d) log log ξ(B)

)d

 Bn+1

(log ξ(B))Δ(f)
.

Using the bound dω(Q) 
ε Q
ε, valid for all ε > 0, as well as that λ+

Q is supported
on [1, y], the second error term is


ε y
ε+2n+1B

∑
Q<y

1 � yε+2n+2B = B[(ε+2n+2)/10]+1 � Bn+1/2.

The third error term is


ε y
1+εBn(logB)�1/n�

∑
Q�y

1 
 y2+εBn+ε � Bn+1/2.

Recalling that we have assumed ξ(B) � B1/20 shows Bn+1(log ξ(B))−Δ(f) �
Bn+1/2, hence the estimate

�{x ∈ ΩB : p1(x) � ξ(B), f−1(x) singular} 
 Bn

shows that

�{x ∈ ΩB : p1(x) � ξ(B), f−1(x) smooth} 
 Bn+1Υ +
Bn+1

(log ξ(B))Δ(f)
,

where

Υ :=
∑
Q∈N

Q|∏z0<p<z
p

λ+
Qg(Q) =

∑
Q∈N

Q|∏p<z p

λ+
Qg(Q).
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By (3.7) and lemma 3.5 we see that

Υ 

∏
p<z

(1 − g(p)) =
∏

z0<p<z

(1 − σp) 

(

log z0
log z

)Δ(f)



(

(Δ(f) + d) log log ξ(B)
log ξ(B)

)Δ(f)

,

therefore

�{x ∈ ΩB : p1(x) � ξ(B), f−1(x) smooth} 
 Bn+1

(
log log ξ(B)

log ξ(B)

)Δ(f)

,

which concludes the proof. �

3.3. Equidistribution without probabilistic input

The main object of study in this section are moments involving the function
ωf (x, T ) that is introduced in (1.5). For fibrations f as in § 1.1, any B, T � 3 and
for r ∈ Z�0, the r-th moment is defined by

Mr(f,B, T ) :=
∑
x∈ΩB

f−1(x) smooth

(
ωf (x, T ) − Δ(f) log log T√

Δ(f) log log T

)r
.

Theorem 3.10. Let V and f be as in theorem 1.4. Let c be a fixed positive constant,
assume that B � 91/c and let T ∈ R ∩ [9, Bc]. Then for every positive integer r we
have

Mr(f,B, T )
�ΩB

= μr +Of,c,r

(
Bn+1 log log log log T

(log log T )1/2

)
,

where μr is the r-th moment of the standard normal distribution and the implied
constant depends at most on f, c and r but is independent of B and T.

The restriction T � Bc is addressed in remark 3.11. Theorem 3.10 is proved in § 3.4.
We will then use it to verify theorem 1.4 in § 3.5 and theorem 1.5 in § 3.6.

3.4. Proof of theorem 3.10

For a prime p we define the function θp : Pn(Q) → {0, 1} via

θp(x) :=

{
1, if f−1(x)(Qp) = ∅,
0, otherwise.

(3.8)

Let

εr := min
{ n

4r(n+ 1)
,

1
4r

}
. (3.9)

First we consider the case where

c � εr. (3.10)
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Letting T0 := (log log T )3+3r and ω0
f (x, T ) :=

∑
T0<p�T θp(x) allows us to define

s(T ) via

s(T )2 :=
∑

T0<p�T
σp(1 − σp)

It is relatively straightforward to modify the proof of [22, proposition 3.9] to show
that

∑
x∈ΩB

f−1(x) smooth

⎛⎝ω0
f (x, T ) −

∑
p∈(T0,T ]

σp

⎞⎠r

(3.11)

equals {
cnB

n+1μrs(T )r +Or
(
Bn+1(log log T )r/2−1

)
, if 2 | r,

Or
(
Bn+1(log log T )r−1/2

)
, otherwise.

To do so, one uses [22, lemma 3.8], with A , h(Q) and y having the same meaning as
in the proof of [22, proposition 3.9], the only change being the replacement of the
set P in the proof of [22, proposition 3.9] by {p ∈ (T0, T ] : p prime}. Arguments
that are completely identical to those found in the proof of [22, proposition 3.9]
now lead to

E (A , h, r) 
r B
n+1 (log log T )r−1

T0
+ (T r(2n+1)B + T rBn(logB)�1/n�)T r,

where E (A , h, r) is given in [22, lemma 3.8]. The bound T � Bc and (3.9)–(3.10)
show that the two last terms in the right side contribute 
 Bn+1−
 for some
positive real � = �(n, r). The first term is 
 Bn+1(log log T )−2r−4 due to the
choice of T0. To conclude the stated estimate for (3.11) one follows verbatim the
rest of the argument in the proof of [22, proposition 3.9].

It follows from lemma 3.4 and the definition of T0 that

∑
T0<p�T

σp = Δ(f) log log T +Or(log log log log T ),

thus, writing s(T )r = (Δ(f) log log T +Or(log log log log T ))r/2 we see that

s(T )r = (Δ(f) log log T )r/2 +Or

(
(log log T )(r/2)−1 log log log log T

)
.

By lemma 3.2 there exists a homogeneous square-free polynomial g ∈ Z[x0, . . . , xn]
such that if x ∈ Pn(Q) and f−1(x)(Qp) = ∅ then p | g(x). Thus, for x ∈ Pn(Q) with
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g(x) �= 0,

ω0
f (x, T ) = ωf (x, T ) +O

( ∑
p|g(x)
p�T0

1
)
.

This shows that

ωf (x, T ) − Δ(f) log log T =
(
ω0
f (x, T ) −

∑
T0<p�T

σp

)
+Or

(
log log log log T +

∑
p|g(x)
p�T0

1
)
. (3.12)

It is easy to modify the proof of [22, lemma 3.10] in order to show that for every
B, z > 1, y ∈ (3, B1/2(r+1)], m ∈ Z�0 and a primitive homogeneous polynomial G ∈
Z[x0, . . . , xn] one has

∑
x∈ΩB
G(x) �=0

(
z +

∑
p|G(x)
p�y

1
)m


F,m Bn+1(z + log log y)m

with an implied constant that is independent of y and z. Using this with (3.12)
one can prove with arguments identical to the concluding arguments in the proof
of [22, theorem 1.3] that

Mr(f,B, T ) =
∑
x∈ΩB

f−1(x) smooth

(
ω0
f (x, T ) −∑

T0<p�T σp√
Δ(f) log log T

)r

+Or

(
Bn+1 log log log log T

(log log T )1/2

)
. (3.13)

We have therefore shown that if (3.10) holds then for all T � Bc one has

Mr(f,B, T )
�ΩB

= μr +Or

(
Bn+1 log log log log T

(log log T )1/2

)
. (3.14)

It remains to prove this estimate for all T � Bc in the remaining case c > εr.
If T � Bεr then it directly follows from (3.14). In the remaining cases we have
Bεr < T � Bc. Then if g(x) �= 0 we obtain

ωf (x, T ) = ωf (x,Bεr )r +Oc,r(1)

because
∑
Bεr<p�T θp(x) 
c,r (log T )/(log(Bεr )), that can be shown as in the proof

of [22, theorem 1.3]. It is clear that we have log log T = (log logBεr ) +Oc,r(1).
Noting that the set {x ∈ ΩB : g(x) = 0} has cardinality 
 Bn and that if f−1(x)
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is smooth then ωf (x) 
 logH(x) due to lemma 3.1, we obtain that

∑
x∈ΩB

f−1(x) smooth

(
ωf (x, T ) − Δ(f) log log T√

Δ(f) log log T

)r

equals ∑
x∈ΩB

f−1(x) smooth

(
ωf (x,Bεr ) − Δ(f) log logBεr√

Δ(f) log logBεr

)r

up to an error term that is


 Bn(logB)r +
∑

0�k�r−1

∑
x∈ΩB

f−1(x) smooth

(
r

k

) ∣∣∣∣∣∣
(
ωf (x,Bεr ) − Δ(f) log logBεr√

Δ(f) log logBεr

)k∣∣∣∣∣∣ .
Using (3.13) for T = Bεr concludes the proof of theorem 3.10. �

Remark 3.11. Note that some growth restriction on T is necessary in order for
theorem 3.10 to hold. If, for example, it holds with T � BlogB , then, log log T �
2 log logB, hence the average of ωf (x, T ) would be at least 2Δ(f) log logB. Accord-
ing to lemma 3.1 there exist positive constants C,D0 that depend only on f such
that if H(x) � B and f−1(x) is smooth then ωf (x) = ωf (x,C0B

D0). We also know
that the average value of ωf (x) is Δ(f) log logB, thus one would get a contradiction
because Δ(f) �= 0.

Corollary 3.12. Let V and f be as in theorem 1.4. Let c be a fixed positive
constant, assume that B � 31/c and let T : R�3 → R�3 be any function with

lim
B→+∞

T (B) = +∞ andT (B) � Bc forallB � 1.

Then for any interval J ⊂ R we have

lim
B→∞

PB

[{
x ∈ Pn(Q) :

ωf (x, T (B)) − Δ(f) log log T (B)√
Δ(f) log log T (B)

∈ J

}]

=
1√
2π

∫
J

e−t
2/2 dt.

Proof. The proof uses the moment estimates provided by theorem 3.10 and is based
on the fact that the standard normal distribution is characterized by its moments.
It is identical to the proof of [22, theorem 1.2] that is given in [22, § 3.5] and is
thus not repeated here. �

Remark 3.13. Let D0 be any constant as in lemma 3.1. The special choice T (B) =
B1+D0 of corollary 3.12 is equivalent to [22, theorem 1.2].
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3.5. Proof of theorem 1.4

We consider r ∈ R to be fixed throughout this proof. Defining K : R�3 → R via

K(B) := exp

(
exp

(
j(B) + r

√
j(B)

Δ(f)

))

makes clear that

j(B) = Δ(f) log logK(B) − r
√
j(B) (3.15)

and √
j(B) =

−r +
√
r2 + 4Δ(f) log logK(B)

2
.

This provides us with
√
j(B) =

√
Δ(f) log logK(B) +Or(1), which, when

combined with (3.15), shows that

j(B) = Δ(f) log logK(B) − r
√

Δ(f) log logK(B) +Or(1). (3.16)

By the assumptions of theorem 1.4 regarding j(B) one can see that for all suf-
ficiently large B the inequality j(B) � Δ(f) log logB − |r|√Δ(f) log logB holds.
This shows that

j(B) + r
√
j(B)

Δ(f)
� log logB,

thus, K(B) � B. This allows us to use corollary 3.12 with T (B) := K(B) to obtain

lim
B→∞

PB

[{
x ∈ Pn(Q) :

ωf (x,K(B)) − Δ(f) log logK(B)√
Δ(f) log logK(B)

< −r
}]

=
1√
2π

∫ −r

−∞
e−t

2/2 dt. (3.17)

For any B, u ∈ R�3 and � ∈ N it is clear that p	(x) > u is equivalent to ωf (x, u) < �.
Using this with u = K(B) and � = j(B) gives

PB

[{
x ∈ Pn(Q) : log log pj(B)(x) >

j(B)
Δ(f)

+ r

√
j(B)

Δ(f)

}]
= PB [{x ∈ Pn(Q) : ωf (x,K(B)) < j(B)}] ,

which, when (3.16) is invoked, gives

PB [{x ∈ Pn(Q) : ωf (x,K(B)) < Δ(f) log logK(B)

−r
√

Δ(f) log logK(B) +Or(1)
}]

.
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Alluding to (3.17) shows that

lim
B→+∞

PB

[{
x ∈ Pn(Q) : log log pj(B)(x) >

j(B)
Δ(f)

+ r

√
j(B)

Δ(f)

}]

=
1√
2π

∫ −r

−∞
e−t

2/2 dt

= 1 − 1√
2π

∫ r

−∞
e−t

2/2 dt,

which is clearly sufficient for theorem 1.4. �

Remark 3.14. Let us note that the assumption

lim
B→+∞

j(B) − Δ(f) log logB√
Δ(f) log logB

= −∞ (3.18)

of theorem 1.4 is unpleasant because it does not allow its application when j(B) is
close to its maximal value ωf (x), which, by [22, theorem 1.2] can be as large as

Δ(f) log logB + t
√

Δ(f) log logB,

where t is any fixed positive constant. The assumption is, however, necessary.
Indeed, if theorem 1.4 holds without the assumption (3.18) then we are allowed
to take

j0(B) = Δ(f) log logB.

Let us see how this leads to a contradiction. Indeed, with this choice of j0(B) we
deduce that by theorem 1.4 with r =

√
Δ(f) that

lim
B→∞

PB

[{
x ∈ Pn(Q) : log log pj0(B)(x) >

j0(B)
Δ(f)

+

√
j0(B)
Δ(f)

}]

=
1√
2π

∫ ∞
√

Δ(f)

e−t
2/2 dt.

The value of the integral is strictly positive, hence there are arbitrarily large B �
3 with the following property: there exists x = x(B) ∈ ΩB with f−1(x) smooth
and a prime p = p(x) with f−1(x)(Qp) = ∅ and log log p > log logB +

√
log logB.

However, by lemma 3.1 any such p must satisfy log log p � O(1) + log logH(x) �
O(1) + log logB, therefore giving a contradiction.

3.6. Proof of theorem 1.5

We shall use the approach in the proof of [14, theorem 10], where a similar result
is proved for the number of prime divisors of an integer in place of ωf . The approach
must be altered somewhat because it is difficult to prove for ωf a statement that
is analogous to the exponential decay bound in [14, theorem 010] which is used in
the proof of [14, theorem 10], the reason being that for any A, T > 0 the function

https://doi.org/10.1017/prm.2020.34 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.34


The size of the primes obstructing 677

A�{p�T :p|m} is a multiplicative function of the integer m, while this is not true for
Aωf (x,T ). To prove theorem 1.5 it is clearly sufficient to restrict to the cases with

ξ(B) � (log logB)1/2, 0 < ε < 1/2

and we shall assume that both inequalities hold during the rest of the proof. By
lemma 3.1 there exist C,D0 > 0 that only depend on f such that if x ∈ Pn(Q)
is such that H(x) � B and f−1(x) has no p-adic point then p � CBD0 . Fixing
any ψ > 1 +D0 with the property CBD0 � Bψ for all B � 2 and letting χ(B) :=
2ξ(B)/Δ(f) we shall define the set

A =
{
x ∈ Pn(Q) : t ∈ R ∩ (

eeχ(B)
, Bψ

] ⇒ |ωf (x, t) − Δ(f) log log t|

� 1
2
(Δ(f) log log t)1/2+ε/2

}
.

This set is well-defined because eeχ(B)
< Bψ is implied by our assumption ξ(B) �

(log logB)1/2 for all large enough B. Let us now prove that

PB [A ] = 1 +O

(
1

ξ(B)M

)
. (3.19)

Note that for this it suffices to show

PB

[{
x ∈ Pn(Q) : x ∈ A , f−1(x) smooth

}]
= 1 +Oε,M

(
1

ξ(B)M

)
.

For k ∈ N we let tk := eek and we find the largest k0 = k0(B) and the smallest
k1 = k1(B) with

(
eeχ(B)

, Bψ
] ⊆ k1⋃

k=k0

(tk, tk+1].

Thus we deduce that if H(x) � B is such that x /∈ A then there exists k ∈ [k0, k1)
and t ∈ R having the properties t ∈ (tk, tk+1] and |ωf (x, t) − Δ(f) log log t| �
1
2 (Δ(f) log log t)1/2+ε/2. The last inequality implies that either

ωf (x, tk+1) � ωf (x, t) � Δ(f) log log t− 1
2
(Δ(f) log log t)1/2+ε/2

� Δ(f)k − 1
2
(Δ(f)(k + 1))1/2+ε/2

� Δ(f)(k + 1) − (Δ(f)(k + 1))1/2+ε

or

ωf (x, tk) � ωf (x, t) � Δ(f) log log t+
1
2
(Δ(f) log log t)1/2+ε/2

� Δ(f)(k + 1) +
1
2
(Δ(f)(k + 1))1/2+ε/2

� Δ(f)k + (Δ(f)k)1/2+ε.
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Letting � denote k + 1 or k respectively, we have shown that the cardinality of
x /∈ A with f−1(x) smooth is at most∑

	∈N
k0�	�1+k1

�{x ∈ ΩB : f−1(x) smooth, |ωf (x, t	) − Δ(f)�| > (Δ(f)�)1/2+ε}.

Note that the inequalities t1+k0 > eeχ(B)
and tk1 � Bψ imply that k0 > −1 + χ(B)

and t1+k1 = tek1 � Beψ. Therefore the sum above is at most

∑
	∈N

−1+χ(B)<	�1+(logψ)+(log logB)

�{x ∈ ΩB : f−1(x) smooth, |ωf (x, t	) − Δ(f)�|

> (Δ(f)�)1/2+ε}.

Letting m = m(ε) be the least integer with 2mε � M + 1 and using Chebychev’s
inequality we see that the sum is at most

∑
	∈N

−1+χ(B)<	�1+(logψ)+(log logB)

1
(Δ(f)�)2mε

∑
x∈ΩB

f−1(x) smooth

(
ωf (x, t	) − Δ(f)�√

Δ(f)�

)2m

.

Let us now apply theorem 3.10 with r = 2m, c = eψ and T = t	 � Beψ = Bc. We
obtain that the expression above is


m,ψ

∑
	>−1+χ(B)

�ΩB
�2Mε

,

which is O(ξ(B)−M �ΩB) because 2Mε � M + 1. This concludes the proof of (3.19).
As a last step in our proof we shall deduce theorem 1.5 from (3.19). Setting

t = pj(x) in (3.19) shows that for all x ∈ ΩB , except at most 
 Bn+1/ψ(B)M , one
has

eeχ(B)
< pj(x) � Bψ ⇒ |j − Δ(f) log log pj(x)| � 1

2
(Δ(f) log log pj(x))1/2+ε/2.

Recalling that ε < 1/2 the last inequality implies that Δ(f) log log pj(x) � 2j.
Therefore the inequality eeχ(B)

< pj(x) implies that

2ξ(B)
Δ(f)

= χ(B) < log log pj(x) � 2j
Δ(f)

,

hence ξ(B) � j. Finally, by the definition of ψ we have that the inequality pj(x) �
Bψ is equivalent to pj(x) � ωf (x). Owing to Δ(f) log log pj(x) � 2j one can see
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that for all sufficiently large B and all j � ξ(B) one has

1
2
(Δ(f) log log pj(x))1/2+ε/2 � 1

2
(2j)1/2+ε/2 � Δ(f)j1/2+ε.

This shows that for all x ∈ Pn(Q) with H(x) � B, except at most 
 Bn+1/ψ(B)M ,
one has

ξ(B) < j � ωf (x) ⇒
∣∣∣ log log pj(x) − j

Δ(f)

∣∣∣ < j1/2+ε/2,

thereby finishing the proof of theorem 1.5. �

4. Modelling by Brownian motion

The main result in this section is theorem 2.3, which proves that certain paths
related to the sequence (1.3) are distributed according to Brownian motion. To
prove theorem 2.3 we begin by proving theorem 4.2 in § 4.1. It is a generalization of
the work of Granville and Soundararajan [13] that allows us to estimate correlations
that are more involved than the moments in theorem 3.10. We use theorem 4.2 to
verify proposition 4.8 in § 4.3 and proposition 4.12 in § 4.4. These two propositions
are then combined in § 4.5 to prove theorem 2.3.

4.1. An extension of work by Granville and Soundararajan

Assume that we are given a finite set A and that for each a ∈ A we have a
sequence of real numbers {cn(a)}n∈N with the property that

∑∞
n=1 cn(a) converges

absolutely for every a ∈ A . A central object of study in analytic number theory
are the moments ∑

a∈A

(∑
n∈J

cn(a)
)k
, k ∈ N, (4.1)

where J ⊂ R is an interval. In this paper we shall need the following generalization.

Definition 4.1 Interval correlation. Let A and {cn(a)}a∈A be as above and
assume that J1, . . . , Jm ⊂ R are m pairwise disjoint intervals. For k ∈ Nm the k-th
interval correlation of the sequence {cn(a) : n ∈ N, a ∈ A } is defined as∑

a∈A

( ∑
n∈J1

cn(a)
)k1 · · ·( ∑

n∈Jm
cn(a)

)km
. (4.2)

These moments record how the values of cn(a) for n in an interval affect the
values of cn(a) for n in a different interval.

The work of Granville and Soundararajan [13, proposition 3] provides accurate
estimates for the moments in (4.1) when the sequence {cn(a) : n ∈ N, a ∈ A } has
a specific number-theoretic structure and our aim in this section is to use their
method to provide estimates for the interval correlations in (4.2).

Assume that P is a finite set of primes and that A := {a1, . . . , ay} is a multiset
of y natural numbers. For Q ∈ N let AQ := �{m � y : Q | am} and let h be a real-
valued, non-negative multiplicative function such that for square-free Q we have
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0 � h(Q) � Q. Whenever a square-free positive integer Q satisfies p | Q⇒ p ∈ P
we define

W (Q) := �AQ − h(Q)
Q

y

and for any Pi ⊂ P for 1 � i � m and k ∈ Nm we let

EP1,...,Pm
(A , h,k) :=

∑
Q∈Nm

∀i:ω(Qi)�ki
∀i:p|Qi⇒p∈Pi

∣∣W (Q1 · · ·Qm)
∣∣ m∏
i=1

μ(Qi)2. (4.3)

Note that, setting Q := Q1 · · ·Qm provides us with

EP1,...,Pm
(A , h,k) �

∑
Q∈N

ω(Q)�k1+···+km
p|Q⇒p∈P

μ(Q)2
∣∣W (Q)

∣∣. (4.4)

Furthermore, for any r ∈ N we let Cr := Γ(r + 1)/(2r/2Γ(1 + r/2)), where Γ is the
Euler gamma function. For any R ⊂ P we define

μR :=
∑
p∈R

h(p)
p
, σR :=

⎛⎝∑
p∈R

h(p)
p

(
1 − h(p)

p

)⎞⎠1/2

(4.5)

and for a ∈ A we define ωR(a) := �{p ∈ R : p | a}.

Theorem 4.2. Assume that P1, . . . ,Pm are disjoint subsets of P. Then for any
k ∈ Nm with ki � σ

2/3
Pi

for all 1 � i � m we have

∑
a∈A

m∏
i=1

(ωPi
(a) − μPi

)ki = y

m∏
i=1

(
Ckiσ

ki
Pi

(
1 +O

( k3
i

σ2
Pi

)))
+O

(
EP1,...,Pm

(A , h,k)∏m
i=1(1 + μPi

)−1

)
(4.6)

if ki is even for every 1 � i � m, and

∑
a∈A

m∏
i=1

(ωPi
(a) − μPi

)ki 
 y

(
m∏
i=1

Ckiσ
ki
Pi

)( ∏
1�i�m
ki odd

k
3/2
i

σPi

)
+

EP1,...,Pm
(A , h,k)∏m

i=1(1 + μPi
)−1

(4.7)

if there exists 1 � i � m such that ki is odd. The implied constants depend at most
on m.
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Proof. As in the proof of [13, proposition 3] we can write

∑
a∈A

m∏
i=1

(
ωPi

(a) − μPi

)ki =
∑

∀i:p1,i,··· ,pki,i∈Pi

∑
a∈A

m∏
i=1

fri(a), (4.8)

where ri :=
∏

1�j�ki pj,i and

fr(a) :=
∏
p|r

{
1 − h(p)

p , if p | a,
−h(p)

p , otherwise.

Since Pj ∩ Pj′ = ∅ whenever j �= j′, we have gcd(rj , rj′) = 1 for j �= j′. This allows
us to write

∏m
i=1 fri(a) = fr1···rm(a). Let rad(t) be the radical of a natural number t,

i.e. the largest square-free integer dividing t. We can then employ the estimate [13,
equation (13)] to obtain

∑
a∈A

m∏
i=1

fri(a) = yG(r1 · · · rm) +
∑

t|rad(r1···rm)

W (r1 · · · rm)E(r1 · · · rm, t), (4.9)

where the quantities G,E are introduced in [13, equations (14)–(15)] through

G(r) :=
∏
p|r

(
h(p)
p

(
1 − h(p)

p

)νp(r)
+
(−h(p)

p

)νp(r)(
1 − h(p)

p

))

and for r, t ∈ N with t | rad(r),

E(r, t) :=
∏
p|r
p|t

((
1 − h(p)

p

)νp(r) − (−h(p)
p

)νp(r)) ∏
p|r

p|rad(r)/t

(−h(p)
p

)νp(r)
.

The function G is multiplicative, therefore using that the ri are coprime in pairs
it is evident that the contribution of the first term in the right-hand side in (4.9)
towards (4.8) is

m∏
i=1

( ∑
p1,i,...,pki,i∈Pi

G(p1,i · · · pki,i)
)
.

As shown in [13, p. 22], one has the following estimate whenever k � σ
2/3
Pi

,

∑
p1,...,pk∈Pi

G(p1 · · · pk) =

{
Ckσ

k
Pi

(1 +O(k3σ−2
Pi

)), if 2 | k,
O(Ckσk−1

Pi
k3/2), otherwise,

which concludes the analysis of the main term in theorem 4.2.
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It remains to study the contribution of the sum over t in (4.9) towards (4.8) and
for this we first use the coprimality of ri to rewrite it as∑

t∈Nm

∀i:ti|rad(ri)

W (r1 · · · rm)E(r1 · · · rm, t1 · · · tm).

We then use the obvious estimate |E(r, t)| �
∏
p�t h(p)/p to see that the said

contribution is∑
�∈Nm

∀i:1�	i�ki

∑
t∈Nm

∀i:ti=q1,i···q�i,i
q1,i<q2,i<···<q�i,i∈Pi

|W (t1 · · · tm)|
∑

∀i:p1,i,··· ,pki,i∈Pi

∀i:ti|p1,i···pki,i

∏
1�j�ki
pj,i�ti

h(pj)
pj

.

The proof is then concluded by alluding to the estimate

∑
p1,··· ,pk∈Pi

t|p1···pk

∏
1�j�k
pj �t

h(pj)
pj


 μkPi

that is proved in [13, p.23]. �

4.2. Auxiliary facts from probability theory

In this section we recall some necessary notions from probability theory.
Firstly, we need the following notion from [3, p. 20]. Let X,Y be two metric

spaces and denote the corresponding σ-algebras by X and Y . Assume that we are
given a function h : X → Y such that if A ∈ Y then {x ∈ X : h(x) ∈ A} ∈ X . If
ν is a probability measure on (X,X ) then we can define a probability measure on
(Y,Y ) (that is denoted by νh−1) as follows: for any A ∈ Y we let

(νh−1)[A] := ν(x ∈ X : h(x) ∈ A). (4.10)

We will later need the following result from [3, theorem 29.4].

Lemma 4.3 Crámer–Wold. For random vectors

Xm = (Xm,1, . . . , Xm,k) and Ym = (Ym,1, . . . , Ym,k),

a necessary and sufficient condition for the convergence in distribution of Xm to Y
is that

k∑
i=1

aiXm,i

converges in distribution to
∑k
i=1 aiYi for each a ∈ Rk.

https://doi.org/10.1017/prm.2020.34 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.34


The size of the primes obstructing 683

Let t ∈ [0, 1]k. Recalling the meaning of (D,D) in § 2.1 allows us to consider the
function πt : D → Rk that is defined through

π(t1,...,tk)(y) := (y(t1), . . . , y(tk)).

According to [3, p. 138], if P is a probability measure on (D,D) then the set

TP := {0, 1} ∩ {
t ∈ (0, 1) : P[x ∈ D : x(t) �= lim

s→t
s<t

x(s)] = 0
}

has complement in [0, 1] that is countable. Next, we shall need the definition in [3,
equation (12.27)]. Namely, for a function u : [0, 1] → R and any δ > 0 we define

w′′(δ, u) := sup
t1,t,t2∈[0,1]
t1�t�t2
t2−t1�δ

min
{|u(t) − u(t1)|, |u(t2) − u(t)|}.

The following result can be found in [3, theorem 13.3].

Lemma 4.4. Suppose that P and (Pm)m∈N are probability measures on (D,D). If

Pmπ
−1
t converges in probability to Pπ−1

t whenever t ∈ T kP , (4.11)

for every ε > 0 we have lim
δ→0

P
[
u ∈ D : |u(1) − u(1 − δ)| � ε

]
= 0 (4.12)

and for each ε, η > 0 there exists δ ∈ (0, 1),m0 ∈ N such that for all m � m0 we
have

Pm
[
u ∈ D : w′′(δ, u) � ε

]
� η, (4.13)

then Pm converges in probability to P.

Recall that D is a metric space whose metric is given by

d(X,Y ) := inf
λ∈Λ

max
{

sup{|λ(t) − t| : t ∈ [0, 1]}, sup{|X(t) − Y (λ(t))| : t ∈ [0, 1]}
}

(4.14)
wheneverX,Y ∈ D and where Λ denotes the set of all strictly increasing, continuous
maps λ : [0, 1] → [0, 1], see, for example [3, equation (12.13)].

To verify (4.13) in a specific situation we shall later need the following two results.

Lemma 4.5 theorem 11.3, [1]. Let P be any probability measure on (D,D). Assume
that 0 = s0 < s1 · · · < sk = 1 and si − si−1 � δ, i = 1, · · · , k, then

P [u ∈ D : w′′(u, δ) > ε]

�
k−2∑
i=0

P

⎡⎢⎣u ∈ D : ε < sup
t1,t,t2∈[0,1]3

si�t1�t�t2�si+2

min {|u(t) − u(t1)|, |u(t2) − u(t)|}

⎤⎥⎦ .

https://doi.org/10.1017/prm.2020.34 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.34


684 E. Sofos

The second result corresponds to the case with α = 1 = β of [3, theorem 10.1]. Let
ξ1, . . . , ξN be random variables on a probability space (Ω1, P1) and define

mijk := min

⎧⎨⎩
∣∣∣∣∣

j∑
h=i+1

ξh

∣∣∣∣∣ ,
∣∣∣∣∣∣

k∑
h=j+1

ξh

∣∣∣∣∣∣
⎫⎬⎭ , 0 � i � j � k � N.

Lemma 4.6. Suppose that u1, . . . , uN are non-negative numbers with

P1 [mijk � λ] � 1
λ4

⎛⎝ ∑
i<l�k

ul

⎞⎠2

, 0 � i � j � k � N,

for λ > 0. Then, for λ > 0,

P1 [mijk � λ] 
 1
λ4

⎛⎝ ∑
0<l�N

ul

⎞⎠2

,

where the implied constant is absolute.

4.3. Pointwise convergence

Define ψ : R�3 → R through

ψ(B) := (log logB)−
1
4 . (4.15)

For x ∈ Pn(Q) and B ∈ R�3 we bring into play the function YB(·, x) : [0, 1] → R

given by

t �→ YB(t, x) :=
1

(Δ(f) log logB)1/2
∑

p�exp(logt B)

logB<p�Bψ(B)

{
1 − σp, if f−1(x)(Qp) = ∅,
−σp, otherwise.

(4.16)
This is a truncated version of the function in (2.1). The truncation is introduced
for technical reasons.

For r ∈ Z�0 we denote the r-th moment of the standard normal distribution by

Mr :=

{
1

2r/2
r!

(r/2)! , r even,

0, r odd.
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Lemma 4.7. Let V and f be as in theorem 1.4. For every B � 3, m ∈ N, k ∈ Zm�0,
a ∈ Rm and t ∈ [0, 1]m with 0 � t1 < . . . < tm � 1 we consider the sum

∑
x∈ΩB

f−1(x) smooth

m∏
i=1

( ∑
logB<p�Bψ(B)

exp(logti B)<p�exp(logti+1 B)

{
1 − σp, if f−1(x)(Qp) = ∅,
−σp, otherwise

)ki
,

where by convention we set 00 := 1. Letting r := k1 + · · · + km, the sum equals

�ΩB

(
m∏
i=1

Mki(ti+1 − ti)ki/2
)

(Δ(f) log logB)r/2 +Oa,k,t,m

(
�ΩB(log logB)r−1/2

)
.

Proof. We shall assume that t1 = 0 and tm = 1, an obvious modification of our
arguments makes available the proof when (t1, tm) �= (0, 1). Let us define the
multiset

A :=
{
ax :=

∏
p prime

f−1(x)(Qp)=∅

p : x ∈ ΩB , f−1(x) smooth
}
,

the sets of primes

P :=
{
p prime : logB < p � Bψ(B)

}
,

Pi :=
{
p ∈ P : exp(logti B) < p � exp(logti+1 B)

}
, (1 � i � m)

and introduce the multiplicative function h : N → R as h(Q) := Q
∏
p|Q σp. In the

terminology of § 4.1 the sum in lemma 4.7 takes the shape

∑
a∈A

m∏
i=1

(ωPi
(a) − μPi

)ki .

Recalling (4.5) and using lemma 3.4 we see that

μPi
=

⎧⎪⎨⎪⎩
t2Δ(f) log logB +Oa,t(log log logB), if i = 1,
(ti+1 − ti)Δ(f) log logB +Oa,t(1), if 1 < i < m− 1,
(1 − tm−1)Δ(f) log logB +Oa,t(log log logB), if i = m− 1,

which can be written as

μPi
= (ti+1 − ti)Δ(f) log logB +Oa,t(log log logB), (1 � i � m− 1).

By (4.5) and lemma 3.3 we have σ2
Pi

= μPi
+O(1), hence

σPi
= ((ti+1 − ti)Δ(f) log logB)1/2 +Oa,t(log log logB), (1 � i � m− 1).

https://doi.org/10.1017/prm.2020.34 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.34


686 E. Sofos

This allows us to deduce that the product in the right side of (4.6) equals

�
{
x ∈ ΩB : f−1(x) smooth

} m∏
i=1

(
Mkiσ

ki
Pi

(
1 +Oa,k,t

( 1
log logB

)))

=
�
{
x ∈ ΩB : f−1(x) smooth

}
(Δ(f) log logB)−r/2

(
m∏
i=1

Mki(ti+1 − ti)ki/2
)

×
(

1 +Oa,k,t

( log log logB
log logB

))
.

Similarly, the product in the right side of (4.7) is 
a,k,t B
n+1(log logB)r−1/2.

Using the estimate �{x ∈ ΩB : f−1(x)smooth} = �ΩB +O(B−1) we can put both
formulas in the succinct form

�ΩB

(
m∏
i=1

Mki(ti+1 − ti)ki/2
)

(Δ(f) log logB)r/2 +Oa,k,t

(
�ΩB(log logB)r−1/2

)
.

Therefore, theorem 4.2 shows that the sum in our lemma equals

�ΩB =

(
m∏
i=1

Mki(ti+1 − ti)ki/2
)

(Δ(f) log logB)r/2

+Oa,k,t

(
�ΩB(log logB)r−1/2 + (log logB)mEP1,...,Pm

(A , h,k)
)
. (4.17)

It remains to bound the quantity E above. By (4.4) it is at most∑
Q∈N,ω(Q)�r
p|Q⇒p∈P

μ(Q)2
∣∣W (Q)

∣∣.
Now define the functions t0(B) := (log logB)C and t1(B) = Bε1 , where C := 2r +
m and ε1 := (8r(n+ 1))−1. We certainly have t0(B) < logB < Bψ(B) < t1(B) for
all sufficiently large B, thus the last sum over Q is at most∑

Q∈N,ω(Q)�r
p|Q⇒p∈(t0(B),t1(B)]

μ(Q)2
∣∣W (Q)

∣∣.
This quantity occurs also in the proof of [22, proposition 3.9], where it is shown to
be


r,C ,ε1 B
n+1(log logB)r−1−C .

This yields immediately (log logB)mEP1,...,Pm
(A , h,k) 
a,k,t �ΩB(log logB)r−1/2,

which, in light of (4.17), is sufficient for our proof. �
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Proposition 4.8. Let V and f be as in theorem 1.4. Let t ∈ [0, 1]m with

0 � t1 < . . . < tm � 1

and assume that S1, . . . , Sm are Lebesgue-measurable subsets of R. Then

lim
B→+∞

PB

[{
x ∈ ΩB : 1 � i � m⇒ YB(ti, x) ∈ Si

}]
=

∏
1�i�m
ti �=0

∫
Si

exp(−θ2/2ti)
(2πti)1/2

dθ.

Proof. We assume that t1 > 0 but the proof can be easily modified when t1 = 0.
Let us now assume that Z0, Z1, . . . , Zm are random variables on a probability space
(Ω, P ) such that they are independent in pairs, that for every 1 � i � m the random
variable Zi follows the normal distribution with mean 0 and variance ti and that
Z0 assumes the value 0 with probability 1. Therefore, for any Si as in the statement
of the proposition we have

P [Z ∈ S1 × · · · × Sm] =
∏

1�i�m

∫
Si

exp(−θ2/2ti)
(2πti)1/2

dθ.

By lemma 4.3 it is sufficient to show that for every a ∈ Rm the random variable
m∑
i=1

aiYB(ti, x)

defined on (ΩB ,PB) converges in distribution to
∑

1�i�m aiZi as B → +∞. Let

Ω∗
B := {x ∈ ΩB : f−1(x) smooth}

and denote the indicator function of a set S by 1S . The estimate PB [ΩB \ Ω∗
B ] 


B−1 shows that it suffices to show that

1Ω∗
B
(x)

m∑
i=1

aiYB(ti, x)

defined on (ΩB ,PB) converges in distribution to
∑

1�i�m aiZi. We will do so by
using the method of moments (see [2, theorem 30.2]), thus, proposition 4.8 would
follow from verifying

1
�ΩB

lim
B→+∞

∑
x∈Ω∗

B

(
m∑
i=1

aiYB(ti, x)

)r
=
∫

R

θrP

(
m∑
i=1

aiZi � θ

)
dθ, (r ∈ Z�0).

(4.18)
We begin by simplifying the right side of (4.18). Whenever 1 � i � m− 1 we define
bi := ai + ai+1 + · · · + ak so that for every 1 � i � m− 1 we can write ai = bi+1 −
bi. Thus

m∑
i=1

aiZi = b1Z0 +
m∑
i=1

bi(Zi − Zi−1),

from which we deduce that
∑m
i=1 aiZi is a random variable that follows the nor-

mal distribution with mean 0 and variance
∑

1�i�m b
2
i (ti − ti−1). This immediately
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yields

∫
R

θrP

(
m∑
i=1

aiZi � θ

)
dθ = Mr

(
m∑
i=1

b2i (ti+1 − ti)

)r/2
. (4.19)

We continue with the treatment of the left side of (4.18). Let P denote the set of
all primes in the interval (logB,Bψ(B)] and set

P1 := P ∩ (1, exp(logt1 B)],Pi := P ∩ (exp(logti−1 B), exp(logti B)], (2 � i � m).

We see that

m∑
i=1

aiYB(ti, x) =
1

(Δ(f) log logB)1/2

m∑
i=1

bi
∑
p∈Pi

{
1 − σp, if f−1(x)(Qp) = ∅,
−σp, otherwise.

Thus the multinomial theorem yields

∑
x∈ΩB

f−1(x) smooth

(
m∑
i=1

aiYB(ti, x)

)r

=
∑

k∈Zm−1
�0

k1+···+km=r

r!
k1! · · · km!

bk11 · · · bkmm
(Δ(f) log logB)r/2

×
∑
x∈ΩB

f−1(x) smooth

m∏
i=1

⎛⎝ ∑
p∈Pi

{
1 − σp, if f−1(x)(Qp) = ∅,
−σp, otherwise

⎞⎠ki

,

where by convention we set 00 := 1. Invoking lemma 4.7 shows that this is

�ΩB

⎛⎜⎜⎝ ∑
k∈Zm�0

k1+···+km=r

r!bk11 · · · bkmm
k1! · · · km!

m∏
i=1

Mki(ti+1 − ti)ki/2

⎞⎟⎟⎠+Oa,t,m,r

(
�ΩB

(log logB)1/2

)
.

Recalling that Mki vanishes if ki is odd shows that the sum over k zero if r is odd.
If r is even we let r = 2s and ki = 2ui to write the sum over k as

∑
u∈Zm�0

u1+···+um=s

(2s)!b2u1
1 · · · b2umm

(2u1)! · · · (2um)!

m∏
i=1

(2ui)!
ui!2ui

(ti+1 − ti)ui = Mr

(
m∑
i=1

b2i (ti+1 − ti)

)r/2
.

Using this with (4.19) verifies (4.18), which completes our proof. �
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4.4. Tightness

Our aim in this section is to prove proposition 4.12, which is one of the main
ingredients in the proof of theorem 2.3.

Recall the definition of θp in (3.8).

Lemma 4.9. Let V and f be as in theorem 1.4. Then for all y ∈ R3
�1 with y1 �

y2 � y3 the following bound holds with an implied constant depending at most on f,

∑
x∈ΩB

f−1(x) smooth

2∏
i=1

⎛⎜⎜⎝ ∑
yi<p�yi+1

logB<p�Bψ(B)

(θp(x) − σp)

⎞⎟⎟⎠
2


 Bn+1

⎛⎜⎜⎝1 +
∑

y1<p�y3
logB<p�Bψ(B)

1
p

⎞⎟⎟⎠
2

.

Proof. We will make use of theorem 4.2 with m = 2 = k1 = k2,

P := {p prime : logB < p � Bψ(B)},Pi := {p ∈ P : yi < p � yi+1}, (i = 1, 2),

and with A , h(p) being as in the proof of lemma 4.7. According to (4.5) we have

σ2
Pi

� μPi
=

∑
yi<p�yi+1

logB<p�Bψ(B)

σp, (i = 1, 2).

Therefore, σ2
Pi

(1 +O(σ−2
Pi

)) 
 1 + μPi
with an absolute implied constant. Inject-

ing this into (4.6) we obtain that the sum over x in our lemma is


 (1 + μP1)(1 + μP2)
(
Bn+1 + EP1,P2(A , h, (2, 2))

)
.

We can bound the quantity E above as in the proof of lemma 4.7. This gives

|EP1,P2(A , h, (2, 2))| �
∑

Q∈N,ω(Q)�4 p|Q⇒p∈((log logB)C ,Bε1 ]

μ(Q)2
∣∣W (Q)

∣∣

r,C ,ε1 B

n+1(log logB)3−C ,

so that, taking C = 3 we get

∑
x∈ΩB

f−1(x) smooth

2∏
i=1

⎛⎜⎜⎝ ∑
yi<p�yi+1

logB<p�Bψ(B)

(θp(x) − σp)

⎞⎟⎟⎠
2


 Bn+1(1 + μP1)(1 + μP2).

Using lemma 3.3 shows that

μPi
=

∑
p∈(yi,yi+1]

logB<p�Bψ(B)

σp 

∑

p∈(yi,yi+1]

1
p
,
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where the implied constant depends only on f . Thus,

∑
x∈ΩB

f−1(x) smooth

2∏
i=1

⎛⎜⎜⎝ ∑
yi<p�yi+1

logB<p�Bψ(B)

(θp(x) − σp)

⎞⎟⎟⎠
2


 Bn+1
2∏
i=1

⎛⎝1 +
∑

yi<p�yi+1

1
p

⎞⎠ .

Using the inequality (1 + ε1)(1 + ε2) � (1 + ε1 + ε2)2, valid whenever both εi are
non-negative, concludes the proof. �

Define for y1, y2, y3 ∈ [0, 1] with y1 � y2 � y3, B � 3 and x ∈ Pn(Q) the function

Ψy(x,B) := min

⎧⎪⎪⎨⎪⎪⎩
∣∣∣∣∣∣∣∣

∑
yi<p�yi+1

logB<p�Bψ(B)

(θp(x) − σp)
(Δ(f) log logB)1/2

∣∣∣∣∣∣∣∣ : i = 1, 2

⎫⎪⎪⎬⎪⎪⎭ .

Lemma 4.10. Let V and f be as in theorem 1.4. Then for all λ > 0 and y ∈ R3
�1

with y1 � y2 � y3 the following holds with an implied constant depending at most
on f,

PB [{x ∈ Pn(Q) : Ψy(x,B) � λ}] 
 1
(log logB)2λ4

⎛⎜⎜⎝1 +
∑

y1<p�y3
logB<p�Bψ(B)

1
p

⎞⎟⎟⎠
2

.

Proof. The bound PB [{x ∈ ΩB : f−1(x) singular}] 
 B−1 shows that

PB [{x ∈ Pn(Q) :Ψy(x,B)�λ}] − PB [{x ∈ Pn(Q) : f−1(x) smooth,Ψy(x,B) � λ}]


 1
B
. (4.20)

Note that if Ψy(x,B) � λ then

λ2 �
2∏
i=1

∣∣∣∣∣∣∣∣
∑

yi<p�yi+1

logB<p�Bψ(B)

(θp(x) − σp)
(Δ(f) log logB)1/2

∣∣∣∣∣∣∣∣ .
Thus, the entity PB [.] on the right side of (4.20) is bounded by the following
quantity due to Chebychev’s inequality,

1
λ4�ΩB

∑
x∈ΩB

f−1(x) smooth

2∏
i=1

⎛⎜⎜⎝ ∑
yi<p�yi+1

logB<p�Bψ(B)

(θp(x) − σp)
(Δ(f) log logB)1/2

⎞⎟⎟⎠
2

.

Alluding to lemma 4.9 concludes the proof. �
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Recall (4.16) and for λ > 0, B � 3 and s, s′ ∈ [0, 1] with s � s′ define Γλ,B(s, s′)
as

PB

⎡⎢⎣
⎧⎪⎨⎪⎩x ∈ Pn(Q) : λ < sup

t1,t,t2∈[0,1]
s�t1�t�t2�s′

min
{
|YB(t, x) − YB(t1, x)|,

|YB(t2, x) − YB(t, x)|
}⎫⎪⎬⎪⎭

⎤⎥⎦ .
Lemma 4.11. Let V and f be as in theorem 1.4. For all λ > 0 and any s, s′ ∈ [0, 1]
with s < s′ there exists B0 that depends at most on f and s′ − s such that if B � B0

then

Γλ,B(s, s′) 
 (s′ − s)2

λ4

with an implied constant that depends at most on f.

Proof. Order all primes in {p : elogs B < p � elogs
′
B , logB < p � Bψ(B)} as p1 <

. . . < pN , with the convention that N = 0 if the set is empty. For every 1 � i � N
we define the random variable ξi on the probability space (ΩB ,PB) through

ξi(x) :=
(θpi(x) − σpi)

(Δ(f) log logB)1/2
, x ∈ ΩB .

For any i, j, k with 0 � i � j � k � N , any B � 3 and x ∈ ΩB let us bring into play

mijk(x) := min

{
|∑j

h=i+1(θph(x) − σph)|
(Δ(f) log logB)1/2

,
|∑k

h=j+1(θph(x) − σph)|
(Δ(f) log logB)1/2

}
.

In particular, one has

Γλ,B(s, s′) = PB

[{
x ∈ Pn(Q) : λ < max

0�i�j�k�N
mijk(x)

}]
.

Note that lemma 4.10 allows us to apply lemma 4.6 with P1 = PB and ul = 1/pl.
Thus

PB

[{
x ∈ Pn(Q) : λ � max

0�i�j�k�N
mijk(x)

}]


 1
(log logB)2λ4

⎛⎜⎜⎜⎜⎝
∑

logB<p�Bψ(B)

elog
s B<p�elog

s′ B

1
p

⎞⎟⎟⎟⎟⎠
2

.

Ignoring the condition logB < p � Bψ(B) we see that Mertens’ theorem on the
asymptotics of

∑
p�t 1/p implies in particular that the sum over p is at most 2(s′ −

s) log logB for B large enough, which completes the proof. �
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Proposition 4.12. Let V and f be as in theorem 1.4. There exists K > 0 that
depends at most on f such that for every λ > 0 and 0 < δ < 1 there exists B0 =
B0(f, δ, λ) > 0 with

B � B0 ⇒ PB

[{
x ∈ Pn(Q) : w′′(δ, YB(·, x)) � λ

}]
� Kδ

λ4
.

Proof. Let k = k(δ) be the largest positive integer satisfying δk < 1. Define h :
ΩB → D through h(x) := YB(·, x) and in the terminology of (4.10) define P2 :=
PBh

−1. We use lemma 4.5 with P = P2 and

si :=

{
iδ, if i = 0, 1, . . . , k − 1,
1, if i = k.

We obtain that

PB

[{
x ∈ Pn(Q) : w′′(δ, YB(·, x)) � λ

}]
�
k−2∑
i=0

Γε,B(si, si+2).

Using lemma 4.11 we obtain B0 that depends at most on δ such that if B � B0

then the sum over i is at most K ′λ−4
∑k−2
i=0 (si+2 − si)2. For every i �= k − 2 we have

si+2 − si = 2δ−1. Note that by the definition of k we have (k + 1)δ � 1, therefore
sk−2 = (k + 1)δ − 3δ � 1 − 3δ. We obtain sk − sk−2 � 3δ. This gives

k−2∑
i=0

(si+2 − si)2 � (k − 2)δ2 + 9δ2 � 9kδ2 < 9δ,

which concludes the proof. �

4.5. Proof of theorem 2.3

We modify the argument behind the analogous statement for completely addi-
tive functions defined on the integers, see the work of Billingsley [1, theorem 4.1].
Technical difficulties arise owing to the comments in remark 3.8. While our level of
distribution is 0, the level of distribution in Billingsley’s proof is at a sharp contrast,
namely, it attains its maximum value, 1. To see this, note that the related estimate
in his proof is

�{m ∈ N ∩ [1, n] : m ≡ 0 (mod Q)} =
n

Q
+O(1)

and clearly the error term is dominated by the main as long as Q � n1−ε, where
ε > 0 is arbitrary.

We begin by estimating the approximation of XB(·, x) by YB(·, x). Recall the
definition of the Skorohod metric in (4.14) and the function YB(·, x) in (4.16).

Lemma 4.13. Let V and f be as in theorem 1.4. For every ε > 0 we have

PB

[{
x ∈ Pn(Q) : d(XB(·, x), YB(·, x)) � ε

}]

ε (log logB)−1/4.
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Proof. Let m(B, t) := min{exp(logtB), Bψ(B)} and

M1(B, t) :=
∑

p�logB

{
1, if f−1(x)(Qp) = ∅,
0, otherwise,

M2(B, t, x) :=
∑

m(B,t)<p�exp(logt B)

{
1, if f−1(x)(Qp) = ∅,
0, otherwise,

M3(B, t) := −tΔ(f) log logB +
∑

logB<p�m(B,t)

σp,

where empty sums are set equal to zero. A moment’s thought allows one to see that

(XB(t, x) − YB(t, x)) (Δ(f) log logB)1/2 = M1(B, t) +M2(B, t, x) +M3(B, t).
(4.21)

According to lemma 3.2, if g(x) �= 0 then

|M1(B, t)| �
∑

p|g(x),p�logB

1. (4.22)

Similarly, if g(x) �= 0 and H(x) � B then lemma 3.2 ensures that

|M2(B, t, x)| �
∑

m(B,t)<p�exp(logt B)
p|g(x)

1.

If m(B, t) = exp(logtB) then this sum is empty and if m(B, t) = Bψ(B) then

|M2(B, t, x)| �
∑

p>Bψ(B)

p|g(x)

1 
 log |g(x)|
log(Bψ(B))


 log(Bdeg(g))
log(Bψ(B))


 (log logB)1/4 (4.23)

because a non-zero integer m can have at most log |m|/ logM prime divisors in the
range p > M . To bound M3(B, t) when m(B, t) = exp(logtB) we invoke lemma 3.4
to obtain

|M3(B, t)| �
∣∣∣− tΔ(f) log logB +

∑
p�exp(logt B)

σp

∣∣∣+ ∣∣∣ ∑
p�logB

σp

∣∣∣ 
 1 + log log logB.

In the remaining case m(B, t) = Bψ(B) we note that � Bψ(B) � exp(logtB) � B
implies

− logψ(B) + log logB � t log logB � log logB

and therefore t log logB = log logB +O(log log logB) with an absolute implied
constant. Thus, lemma 3.4 shows that M3(B, t) equals

− log logB +O(log log logB) +
∑

logB<p�Bψ(B)

σp 
 log log logB.
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This shows that for all x ∈ ΩB with g(x) �= 0 one has

|M3(B, t)| 
 log log logB. (4.24)

Injecting (4.22), (4.23) and (4.24) into (4.21) shows that if H(x) � B and g(x) �= 0
then∣∣XB(t, x) − YB(t, x)

∣∣ 
 (log logB)−1/2
(
(log logB)1/4 +

∑
p|g(x),p�logB

1
)
, (4.25)

where the implied constant is independent of t and B. We may now take λ(t) := t
in (4.14) to see that d(X,Y ) � sup{|X(t) − Y (t)| : t ∈ [0, 1]}, therefore

d(XB(·, x), YB(·, x)) 
 (log logB)−1/2
(
(log logB)1/4 +

∑
p|g(x),p�logB

1
)
. (4.26)

Note that since g is not identically zero we have PB [{x ∈ Pn(Q) : g(x) = 0}] 

B−1. This shows that the quantity PB in the statement of our lemma equals

O(B−1) + PB [{x ∈ Pn(Q) : g(x) �= 0, d(XB(·, x), YB(·, x)) � ε}]
and by Markov’s inequality this is


 B−1 +
1

εBn+1

∑
x∈ΩB
g(x) �=0

d(XB(·, x), YB(·, x)).

Using (4.26) and [22, lemma 3.10] for z(B) = (log logB)1/4, y(B) := logB yields
the bound


ε B
−1 + (log logB)−1/2

(
(log logB)1/4 + log log logB

)
,

which concludes our proof. �

By [3, theorem 3.1] and lemma 4.13 we see that theorem 2.3 holds as long as
we prove it with YB in place of XB . We shall do so by using lemma 4.4 with P
being the Wiener measure W and PB := PBY

−1
B . The latter measure is defined on

(D,D) via (4.10) with

(X,X ) = (ΩB , {A : A ⊂ ΩB}), Y := (D,D), ν := PB

and h : (ΩB ,PB) → (D,D) being given by x �→ YB(·, x). In particular, for every
B � 1 and every δ, ε > 0 we can write

PB
[{
u ∈ D : w′′(δ, u) � ε

}]
= PB

[{
x ∈ Pn(Q) : w′′(δ, YB(·, x) � ε

}]
. (4.27)

Now fix any t ∈ [0, 1]m. To rephrase (4.12) we use (4.10) with

(X,X ) := (D,D), (Y,Y ) := (R,B(R)), ν := PB

and h : D → Rm defined by u �→ πt(u). Here, B(R) is the standard Borel σ-algebra
in the real line. This shows that PBπ−1

t is a measure on (Rm,B(Rm)) and, in
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particular, if S1 × · · · × Sm ∈ B(R)m then

PBπ
−1
t [S1 × · · · × Sm] = PB [{u ∈ D : 1 � i � m⇒ u(ti) ∈ Si}],

which, as explained above, equals PB [{x ∈ Pn(Q) : 1 � i � m⇒ YB(ti, x) ∈ Si}].
A similar construction with ν replaced by W shows that

Pπ−1
t [S1 × · · · × Sm] = W [{u ∈ D : 1 � i � m⇒ u(ti) ∈ Si}].

Recall that part of the definition of the Wiener measure is that this equals∏
1�i�m
ti �=0

∫
Si

exp(−θ2/2ti)
(2πti)1/2

dθ.

This can be seen by taking (s, t) = (0, ti) in [2, equation (37.4)]. Therefore, in our
setting, (4.11) is equivalent to proposition 4.8.

Let us now see why (4.12) is automatically satisfied when P is the Wiener
measure. Alluding to [3, equation (8.4)] we have for ε, δ > 0 that

W [{u ∈ D : |u(1) − u(1 − δ)| � ε}] =
1√
2πδ

∫
R\(−ε,ε)

exp(−θ2/(2δ)) dθ

=
1√
2π

∫
R\(−ε/√δ,ε/√δ)

exp(−θ′2/2) dθ′.

For fixed ε and for δ → 0 the last expression is the tail of a convergent integral,
thus it converges to zero.

To complete the proof of theorem 2.3 via lemma 4.4 it remains to verify (4.13).
Owing to (4.27) we see that (4.13) can be reformulated equivalently as follows: for
each ε, η > 0 there exists δ ∈ (0, 1), B0 ∈ N such that for all B � B0 we have

PB

[{
x ∈ Pn(Q) : w′′(δ, YB(·, x)) � ε

}]
� η.

The fact that this holds is verified in proposition 4.12. This completes the proof of
theorem 2.3. �

5. Consequences of the Brownian model

In this section we give some number theoretic consequences of the fact that p-adic
solubility can be modelled by Brownian motion.

5.1. Proof of theorem 2.4 and corollary 2.5

Define

S := {u ∈ D : r � max
0�t�1

u(t)}.

Owing to the reflection principle this set has Wiener measure given by

W [S] =
2√
2π

∫ +∞

r

e−t
2/2 dt,

see [23, theorem 2.21]. An application of theorem 2.3 concludes the proof. �
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5.2. Proof of theorem 2.6 and corollary 2.7

The set

S := {u ∈ D : r � max
0�t�1

|u(t)|}

has Wiener measure W [S] = 1 − τ∞(r) owing to Donsker’s theorem and [10,
II,p. 292]. An application of theorem 2.3 concludes the proof of theorem 2.6.
To prove corollary 2.7 we only have to show that τ∞(r) = 1 +O(|r|−2/3). For
M := 1 + |r|2/3 we see that the series in (2.5) is alternating, thus its tail is bounded
by

∑
m>M

(−1)m

2m+ 1
exp

{
− (2m+ 1)2π2

8r2

}

 1

2M + 1
exp

{
− (2M + 1)2π2

8r2

}

 1

M
.

By the Taylor expansion exp(y) = 1 +O(y), valid when |y| 
 1, we get

∑
0�m�M

(−1)m

2m+ 1
exp

{
− (2m+ 1)2π2

8r2

}
=

∑
0�m�M

(−1)m

2m+ 1
+O

(
M2

r2

)
,

owing to
∑
m�M m
M2. The last sum over m can be completed by introducing

an error term of size 
 1/M , thus giving

∑
0�m�M

(−1)m

2m+ 1
exp

{
− (2m+ 1)2π2

8r2

}
=
π

4
+O

(
1
M

+
M2

r2

)
.

This completes the proof. �

5.3. A variant of the path XB

For a prime p � 3 define p− to be the greatest prime strictly smaller than p
and let 2− := 1. Recall the definition of θp(x) in (3.8). Before proceeding to the
proof of the rest of our results it is necessary to approximate the path XB(·, x) in
definition 2.1 by the following variant: for each x ∈ Pn(Q) and B ∈ R�3 we define
the function ZB(·, x) : [0, 1] → R as follows,

t �→ ZB(t, x) :=
1

(Δ(f) log logB)1/2
∑ ∗

p�B(θp(x) − σp),

where the sum
∑ ∗ is taken over all primes p satisfying∑

q�p−
σq � Δ(f)t log logB.

Therefore, labelling all primes in ascending order as q1 = 2, q2 = 3, . . ., and letting

Ti(B, x) :=

⎧⎨⎩t :
∑

q prime �qi
σq < Δ(f)t log logB �

∑
q prime �qi+1

σq

⎫⎬⎭ ,
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we infer

meas (Ti(B, x)) =
σqi+1

Δ(f) log logB
(5.1)

and

t ∈ Ti(B, x) ⇒ ZB(t, x) =
ωf (x, qi+1) −

∑
q�qi+1

σq

(Δ(f) log logB)1/2
. (5.2)

Recall the definition of ψ(B) in (4.15).

Lemma 5.1. For x ∈ Pn(Q) and B ∈ R�3 we define Z ′
B(·, x) : [0, 1] → R given by

t �→ Z ′
B(t, x) :=

1
(Δ(f) log logB)1/2

∑ ∗
logB<p�Bψ(B)(θp(x) − σp),

where the sum
∑ ∗ is taken over all primes p satisfying∑

q�p−
σq � Δ(f)t log logB.

Then for every ε > 0 we have

PB

[{
x ∈ Pn(Q) : d(ZB(·, x), Z ′

B(·, x)) � ε
}]


ε (log logB)−1/4.

Proof. Ignoring the condition in
∑ ∗ gives

|ZB(t, x) − Z ′
B(t, x)|(Δ(f) log logB)1/2 �

∑
p�logB

(θp(x) + σp)

+
∑

Bψ(B)<p�B
(θp(x) + σp).

By lemma 3.4 the σp terms contribute


 log log logB + log
logB

logBψ(B)

 log log logB.

As in the proof of lemma 4.13, if g(x) �= 0 and H(x) � B then the remaining terms
are



∑
p|g(x)

Bψ(B)<p�B

1 +
∑
p|g(x)
p�logB

1 
 log |g(x)|
logBψ(B)

+
∑
p|g(x)
p�logB

1 
 1
ψ(B)

+
∑
p|g(x)
p�logB

1,

hence by (4.15) we obtain

|ZB(t, x) − Z ′
B(t, x)| 
 (log logB)−1/2

(
(log logB)1/4 +

∑
p|g(x),p�logB

1
)
.

The right side coincides with that in (4.25), and the rest of the proof can now be
completed as in the proof of lemma 4.13. �
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Recall the definition of YB(·, x) in (4.15).

Lemma 5.2. For every ε > 0 we have

PB

[{
x ∈ Pn(Q) : d(YB(·, x), Z ′

B(·, x)) � ε
}]


ε (log logB)−1/2.

Proof. Let S1 := {p � exp ((logB)t)} and

S2 :=

⎧⎨⎩p � B :
∑
q�p−

σp � Δ(f)t log log p

⎫⎬⎭ .

We infer that

|YB(t, x) − Z ′
B(t, x)|(Δ(f) log logB)1/2 �

∑
p∈S2\S1

logB<p�Bψ(B)

(θp + σp)

+
∑

p∈S1\S2

logB<p�Bψ(B)

(θp + σp).

We will deal with the sum over p ∈ S2 \ S1 since the other sum can be treated
similarly. For a prime p not in S1 we have∑

q�p−
σq � Δ(f)t log logB,

hence by σp � 1 we have ∑
q�p

σq � 1 + Δ(f)t log logB.

By lemma 3.4 there exists a constant C1 = C1(f) such that

(Δ(f) log log p) − C1 � 1 + Δ(f)t log logB,

hence log log p � C2 + t log logB for some C2 = C2(f). Let us now define z1 and z2
through

log log z1 = t log logB and log log z2 = C2 + t log logB

and observe that if p ∈ S2 \ S1 then z1 < p � z2. By lemma 3.3 we have∑
p∈S2\S1

logB<p�Bψ(B)

σp 

∑

z1<p�z2

1
p

= o(1) + (log log z2) − (log log z1) 
 1, (5.3)

with an implied constant depending at most on f . We furthermore have∑
p∈S2\S1

logB<p�Bψ(B)

θp(x) �
∑

z2<p�z1
logB<p�Bψ(B)

θp(x),
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hence ∑
x∈ΩB

f−1(x) smooth

∑
p∈S2\S1

logB<p�Bψ(B)

θp(x) �
∑

z2<p�z1
logB<p�Bψ(B)

Ap,

where Ap is as in (3.1). Using lemma 3.6 and the bound A1 
 Bn+1 shows that
this is



∑

z2<p�z1
logB<p�Bψ(B)

(
Bn+1σp +

Bn+1

p logB
+ p2n+1B + pBn(logB)�1/n�

)
.

Invoking (5.3) the first term is 
 Bn+1. The second term is


 Bn+1

logB

∑
p�B

1
p

 Bn+1.

The third term is


 B
∑

p�Bψ(B)

p2n+1 
ε B
1+ε,

valid for all ε > 0. The fourth term can be bounded by


 Bn(logB)�1/n�
∑

p�Bψ(B)

p
ε B
n+ε.

We have thus shown that∑
x∈ΩB

f−1(x) smooth

∑
p∈S2\S1

logB<p�Bψ(B)

(θp + σp) 
 Bn+1,

from which we can obtain∑
x∈ΩB

f−1(x) smooth

|YB(t, x) − Z ′
B(t, x)| 
 Bn+1(log logB)−1/2.

An application of Markov’s inequality as in the last stage of the proof of lemma 4.13
concludes the proof. �

Remark 5.3. The statement of theorem 2.3 remains valid whenXB(·, x) is replaced
by any of the functions YB(·, x), Z ′

B(·, x) or ZB(·, x). This can be seen by bringing
together lemmas 4.13, 5.1 and 5.2.
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5.4. Proof of theorem 2.8

Letting

S :=
{
u ∈ D : r >

∫ 1

0

u(t)2 dt
}

and combining Donsker’s theorem with the result of Erdős and Kac [10, III] we
obtain

W [S] = τ2(r).

By remark 5.3 we can use theorem 2.3 with XB(·, x) replaced by ZB(·, x). This
yields

lim
B→+∞

PB [{x ∈ Pn(Q) : ZB(·, x) ∈ S}] = τ2(r).

To complete the proof it remains to analyse the condition ZB(·, x) ∈ S. Labelling
all primes in ascending order as q1 = 2, q2 = 3, . . ., we see that the condition is
equivalent to

z >

∫ 1

0

ZB(·, x)2 =
∑

qi+1�B

(
ωf (x, qi+1) −

∑
q�qi+1

σq

(Δ(f) log logB)1/2

)2

meas (Ti(B, x))

=
1

(Δ(f) log logB)2
∑

3�p�B
σp

(
ωf (x, p) −

∑
q�p

σq

)2

,

by (5.1) and (5.2). This concludes the proof because the contribution of the prime
p = 2 in the last sum is O((log logB)−2) = o(1). �

5.5. Proof of theorem 2.9

Let us now proceed to the proof of theorem 2.9. For 0 � α � β � 1 define

S := {u ∈ D : α < meas(0 � t � 1 : u(t) > 0) � β}.

By [23, theorem 5.28] we have

W [S] =
1
π

∫ β

α

dθ√
θ(1 − θ)

,

thus, by theorem 2.3 and remark 5.3 we obtain

lim
B→+∞

PB [{x ∈ Pn(Q) : ZB(·, x) ∈ S}] =
1
π

∫ β

α

dθ√
θ(1 − θ)

.

We have ZB(·, x) ∈ S if and only if

α < meas (0 � t � 1 : ZB(·, x) > 0) � β.
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Labelling all primes in ascending order as q1 = 2, q2 = 3, . . ., and alluding to (5.1)
and (5.2) we obtain

meas (0 � t � 1 : ZB(·, x) > 0) =
∑
i�1

ωf (x,qi+1)>
∑
q�qi+1

σq

meas (Ti(B, x))

=
∑
i�1

qi+1∈Cf (x)

σqi+1

Δ(f) log logB

=
Ĉf (x) − cσ2

Δ(f) log logB
,

where the term c equals 1 if ωf (x, 2) > σ2 and is 0 otherwise. If B1/2 < H(x) � B
then −1 + log logB � log logH(x) � log logB, hence for 100% of all x ∈ Pn(Q) one
has

Ĉf (x) − cσ2

Δ(f) log logB
=

Ĉf (x)
Δ(f) log logH(x)

+O

(
1

log logB

)
.

This concludes the proof of theorem 2.9. �

5.6. Lower bounds for Ĉf

Let us provide an example which shows that (2.9) is best possible. Let V be
the conic bundle x2

0 + x2
1 = stx2

2 and define f : V → P1 through f(x0, x1, x2, s, t) :=
(s, t). It is easy to see that Δ(f) = 1 and that

σp =

{
2
p+1 , if p ≡ 3 (mod 4) ,
0, if p ≡ 1 (mod 4) .

Label all primes q ≡ 3 (mod 4) in ascending order by q1 < q2 < . . . and for each
N ∈ N define

xN :=

[
1 :

N∏
i=1

qi

]
∈ P1(Q).

One can use Hilbert symbols (see [26, Ch.III, theorem 1]) to show that{
p prime : f−1(xN )(Qp) = ∅} =

{
qi : 1 � i � N

}
.

Next, note that for any prime p � qN we have

ωf (xN , p) = �{q ≡ 3 (mod 4) : q � p} ∼ p

2 log p
, as p→ +∞,

due to the prime number theorem for arithmetic progressions. Clearly this is greater
than the quantity

∑
q�p 1/q for all sufficiently large p, therefore Cf (x) contains all
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primes p in the range 1 
 p � qN , with an absolute implied constant. Letting p′ be
the largest prime with log log p′ < N we obtain that whenever p ∈ (qN , p′] then

ωf (xN , p) = ωf (xN ) = N > log log p′ � log log p′,

therefore Cf (xN ) contains all primes p in the range (qN , p′]. We obtain that

Ĉf (xN ) �
∑

1�p�p′
p≡3(mod 4)

2
p+ 1

� log log(p′ + 1) � N.

The prime number theorem for arithmetic progressions shows that

logH(xN ) =
∑
p�qN

p≡3(mod 4)

log p ∼ qN
2

∼ N logN, as N → +∞,

therefore

Ĉf (xN ) � N � logH(xN )
log logH(xN )

for all sufficiently large N ∈ N.

5.7. Proof of theorem 2.11

By theorem 2.3 and remark 5.3 the random function ZB(·, x) converges in dis-
tribution to the standard Wiener process. Fix t and u as in the statement of
theorem 2.11. Letting h : D → R be given by

h(u) := exp
(
−u

∫ t

0

K (u(τ)) dτ
)
,

we obtain

lim
B→+∞

Ex∈ΩB [h (ZB(·, x))] = E0

[
exp

{
−u

∫ t

0

K (Bτ ) dτ
}]

, (5.4)

where E0 is taken over all Brownian motion paths {Bτ : τ � 0} satisfying B0 = 0
almost surely and with respect to the Wiener measure W . We have

Ex∈ΩB [h (ZB(·, x))] =
1
�ΩB

∑
x∈ΩB

exp
(
−u

∫ t

0

K (ZB(τ, x)) dτ
)

(5.5)

and it thus remains to analyse the last integral. Labelling all primes in ascending
order as q1 = 2, q2 = 3, . . . and using (5.2) gives us∫ t

0

K (ZB(τ, x)) dτ =
∑
i�1

K

(
ωf (x, qi+1) −

∑
q�qi+1

σq

(Δ(f) log logB)1/2

)
meas (Ti(B, x) ∩ [0, t]) .

(5.6)
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Note that if

j(= j(t, x,B)) := max

⎧⎨⎩i � 1 :
∑
q�qj

σq � Δ(f)t log logB

⎫⎬⎭ ,

then the sum in (5.6) includes all terms with i � j − 1 and does not include any
term with i � j + 1. Hence by (5.1) the sum equals

1
Δ(f) log logB

∑
p�qj

σpK

(
ωf (x, p) −

∑
q�p σq

(Δ(f) log logB)1/2

)
+O

(
1

log logB

)
,

where we have set p = qi+1 and the error term is due to the term with i = j and
the fact that K is bounded and non-negative. Furthermore, the implied constant
depends at most on f . The definition of j implies that∑

p�qj
σp � Δ(f)t log logB <

∑
p�qj+1

σp

and therefore by lemma 3.4 there exist non-negative constants c0, c1 such that

−c0 + t log logB < log log qj � c1 + t log logB.

Using the fact that K is bounded shows that the difference

∑
p�qj

σpK

(
ωf (x, p) −

∑
q�p σq

(Δ(f) log logB)1/2

)
−

∑
p�exp(logt B)

σpK

(
ωf (x, p) −

∑
q�p σq

(Δ(f) log logB)1/2

)

has modulus



∑

{σp : log log p ∈ (−c0 + t log logB, c1 + t log logB]} 
 1,

with an implied constant. depending at most on f . Recalling (2.13) gives∫ t

0

K (ZB(τ, x)) dτ = K̃B(x, t) +O

(
1

log logB

)
, (5.7)

with an implied constant depending at most on f . Combining (5.4), (5.5), (5.7) and
(2.12) concludes the proof. �
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10 P. Erdős and M. Kac. On certain limit theorems of the theory of probability. Bull. Am.
Math. Soc. 52 (1946), 292–302.

11 R. P. Feynman. Space-time approach to non-relativistic quantum mechanics. Rev. Mod.
Phys. 20 (1948), 367–387.

12 J. Galambos. The sequences of prime divisors of integers. Acta Arith. 31 (1976), 213–218.

13 A. Granville and K. Soundararajan. Sieving and the Erdős-Kac theorem. Equidistribution
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