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1. Introduction

Let Ω be a bounded domain in R
n, n � 3. Then the classical Hardy inequality says

that ∫
Ω

|u|p
|x|p dx �

(
p

n − p

)p ∫
Ω

|∇u|p,

which is valid for all u ∈ W 1,p
0 (Ω), and the constant (p/(n − p))p is the optimal

one. This inequality arises in the analysis of partial differential equations (PDEs)
involving the Laplace operator ∆ =

∑n
i=1 ∂2

xi
. So it is natural to seek the validity
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of a similar inequality for general second-order operators on R
n of the form

L =
∑

|α|�2

aα(x)∂α
x .

In [2], Adimurthi and Sekar investigated the same problem using the fundamental
solutions, and obtained optimal estimates. The techniques developed therein can
be applied in a variety of contexts. In particular, Adimurthi and Sekar obtained,
among other things, optimal results for the Laplace–Beltrami operator on certain
manifolds and for the sub-Laplacian on the Heisenberg group.

The aim of this paper is to prove the optimal Hardy–Sobolev inequality for the
twisted Laplacian on C

n given by

L =
n∑

j=1

[(
i∂xj +

yj

2

)2

+
(

i∂yj − xj

2

)2]
, (1.1)

which when n = 1 represents the magnetic Laplacian for a single particle in the
plane R

2 ≈ C for the magnetic vector potential A(z) = 1
2 (−y, x), z = x + iy, which

corresponds to a constant magnetic field perpendicular to the plane. Similarly,
for n > 1, the twisted Laplacian represents the magnetic Laplacian for a system of
particles in the plane under the influence of a constant magnetic field perpendicular
to the plane.

Setting Xj = ∂xj − 1
2 iyj and Yj = ∂yj + 1

2 ixj ,1 we write

L = −
n∑

j=1

(X2
j + Y 2

j ). (1.2)

The twisted Laplacian can be stated explicitly as L = −∆ + 1
4 (|x|2 + |y|2) + iN ,

where iN is the angular momentum operator given by

N =
n∑

j=1

(yj∂xj − xj∂yj ). (1.3)

Note that, for n > 1, iN represents the total angular momentum for a system
of n non-interacting particles in the plane. Let ∇L denote the gradient operator
associated with L:

∇Lu = (X1u, . . . , Xnu, Y1u, . . . , Ynu).

Associated with the twisted Laplacian, there is an interesting convolution struc-
ture, on functions on C

n: the so-called twisted convolution. Given two functions f
and g on C

n, their twisted convolution is defined by

f × g(z) =
∫

Cn

f(z − w)g(w) exp{ 1
2 i Im(z · w̄)} dw

=
∫

Cn

f(w)g(z − w) exp{− 1
2 i Im(z · w̄)} dw (1.4)

1 In [13], Ratnakumar and Sohani considered the first-order Sobolev spaces defined using Xj and
Yj , in the study of global well-posedness, where the notation L̄j and M̄j was used for compatibility
with notation in [12]. For notational convenience here we use Xj and Yj .
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whenever the integral converges. Unlike the usual convolution on R
n, the twisted

convolution has many interesting properties. For instance, if f and g are in L2(Cn),
then f × g ∈ L2(Cn), which is not the case with the usual convolution (see [14]).
Also it is easy to verify that

S(f × g) = f × Sg (1.5)

for S = Xj and Yj , j = 1, 2, . . . , n, as defined above.
As in the case of the Laplacian on R

n, the solutions to the initial-value problem
for the basic linear PDEs (for example, the heat, wave and Schrödinger equations)
associated with the twisted Laplacian can be expressed as a twisted convolution.

The magnetic Laplacian naturally arises in the study of a system of particles in
the presence of a magnetic field. There has recently been considerable interest in
the study of the magnetic Laplacian. We refer the reader to the classic paper by
Avron et al . [3], which discusses the magnetic Laplacian for a constant magnetic
field, to a (relatively) new paper by Yajima [16] on the Schrödinger equation for the
magnetic Laplacian and to [11–13], which treat the local and global well-posedness
of the Schrödinger equation for the twisted Laplacian.

The Hardy–Sobolev-type inequality has been investigated for the magnetic Lapla-
cian by many researchers (see, for example, [4, 5, 8]), as it plays an important role
for Lieb–Thirring bounds and hence for the problem of the stability of matter. We
refer the reader to the interesting paper by Lieb [10].

Most of the results that we have come across deal with magnetic fields decaying
at infinity, such as magnetic fields in L2(Rn) [4], or Aharanov–Bohm-type magnetic
potential [5] (for which the magnetic field is zero in R

n \ {0}). These inequalities
are also non-optimal (except in [5]). As far as we are aware, there is no literature
on the Hardy–Sobolev-type inequality for the magnetic Laplacian corresponding to
a constant magnetic field.

Here we prove the optimal Hardy–Sobolev inequality for the twisted Laplacian,
which represents a magnetic Laplacian corresponding to a constant magnetic field.
Moreover, in contrast to the usual case, our result is also valid for the plane R

2 ≈ C
1,

i.e. n = 1, and the optimal weight arises naturally in logarithmic terms, owing to
the view that the weight should be expressible in terms of the fundamental solution
for the twisted Laplacian.

Laptev and Weidl [8] show that, for certain magnetic fields of Aharanov–Bohm
type in the plane, the logarithmic term in the Hardy–Sobolev inequality can be
dispensed with. Our result in the case n = 1 is in contrast to their result, where
the logarithmic term is natural and cannot be avoided, in view of optimality.

The main result in this paper is the following identity, from which we deduce the
Hardy–Sobolev inequality for the twisted Laplacian.

Theorem 1.1. Let E be the fundamental solution to the twisted Laplacian on C
n.

Then the identity∫
Cn

|∇Lu|2 + Im
∫

Cn

ūNu = 1
4

∫
Cn

(
|∇LE|2

E2 +
|z|2
4

)
|u|2 +

∫
Cn

E|∇v|2 (1.6)

is valid for all u ∈ C∞
c (Cn), the space of compactly supported smooth functions on

C
n, where v = E−1/2u.
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Note that if u is a real-valued function, then Im(ūNu) = 0. Also, the last integral
on the right-hand side of the above identity is non-negative. Thus, (1.6) leads to
the following Hardy–Sobolev-type inequality with weight

w(z) =
(

|∇LE|2
E2 +

|z|2
4

)
.

Corollary 1.2. Let w be as above and N as in (1.3). Then the inequality

1
4

∫
Cn

|u|2w(z) dz �
∫

Cn

|∇Lu|2 dz

is valid for all real-valued functions u in W 1,2
L (Cn). The weight w(z) is optimal

and never achieved. In particular, the constant 1
4 is the best for the above weight

w, and never achieved.

Remark 1.3. The above corollary is also valid if u ∈ W 1,2
L (Cn) is purely imaginary

or a complex-valued poly-radial, i.e. of the form u(|z1|, . . . , |zn|), as Im(ūNu) = 0
in these cases as well.

In § 5 we also prove a weighted version of the Hardy–Sobolev inequality, valid
in a one-parameter family of weighted Sobolev spaces associated with the twisted
Laplacian.

Remark 1.4. The possibility of an easy derivation of the Hardy–Sobolev inequality
for the twisted Laplacian, from the Hardy–Sobolev inequality for the Heisenberg
group [2], was pointed out to us by the referee. Though it is true that a Hardy–
Sobolev-type inequality can be deduced from the Heisenberg group case, it does
not seem to be the case that the optimal inequality could be obtained that way
(see § 6). Our approach is more direct, using the spectral theory of the twisted
Laplacian, and yields the optimal result. We also follow the same philosophy as
in [2], by presenting the weight in terms of the fundamental solution for the twisted
Laplacian.

The plan of the paper is as follows. In the next section, we discuss the spectral
theory of the twisted Laplacian L and the Sobolev space associated with it. In
§ 3, we derive a formula for the fundamental solution for the twisted Laplacian,
and prove the corresponding Hardy–Sobolev inequality. Section 4 is devoted to the
optimality question, which requires the study of the precise asymptotic properties
of the fundamental solution and its gradient. Section 5 concerns the Hardy–Sobolev
inequality in the weighted Sobolev spaces, and § 6 deals with the connection with
the Heisenberg Laplacian.

2. Spectral theory of the twisted Laplacian

Here we give a brief description of the spectral theory of L. For the materials
discussed in this section we recommend the excellent books by Folland [7] and
Thangavelu [14,15] and the references therein.

The eigenfunctions of the twisted Laplacian L are called special Hermite func-
tions, as they form a subclass of Hermite functions on C

n ≈ R
2n: ‘special’ because
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they also span L2(Cn) (see [14]). The special Hermite functions are defined in terms
of the Fourier–Wigner transform. The Fourier–Wigner transform of a pair of func-
tions f, g ∈ L2(Rn) is a function on L2(Cn) defined by

V (f, g)(z) = (2π)−n/2
∫

Rn

eix·ξf(ξ + 1
2y)g(ξ − 1

2y) dξ,

where z = x+iy ∈ C
n. For any two multi-indices µ, ν, the special Hermite functions

Φµν are given by
Φµν(z) = V (hµ, hν)(z),

where hµ and hν are Hermite functions on R
n. Recall that, for each non-negative

integer k, the one-dimensional Hermite functions hk are defined by

hk(x) =
(−1)k√
2kk!

√
π

(
dk

dxk
e−x2

)
exp{ 1

2x2}.

Now for each multi-index ν = (ν1, . . . , νn), the n-dimensional Hermite functions are
defined by the tensor product:

hν(x) =
n∏

i=1

hνi(xi), x = (x1, . . . , xn).

A direct computation using the relations(
− d

dx
+ x

)
hk(x) = (2k + 2)1/2hk+1(x),(

d
dx

+ x

)
hk(x) = (2k)1/2hk−1(x)

satisfied by the Hermite functions hk shows that LΦµν = (2|ν|+n)Φµν . Hence, Φµν

are eigenfunctions of L with eigenvalue 2|ν| + n, and they also form a complete
orthonormal system in L2(Cn). Thus, every f ∈ L2(Cn) has the expansion

f =
∑
µ,ν

〈f, Φµν〉Φµν (2.1)

in terms of the eigenfunctions of L. The above expansion may be written as

f =
∞∑

k=0

Pkf, (2.2)

where

Pkf =
∑

µ,|ν|=k

〈f, Φµν〉Φµν

is the spectral projection corresponding to the eigenvalue 2k + n. Now, for any
f ∈ L2(Cn) such that Lf ∈ L2(Cn), by the self-adjointness of L we have Pk(Lf) =
(2k + n)Pkf . It follows that, for f ∈ L2(Cn) with Lf ∈ L2(Cn),

Lf =
∞∑

k=0

(2k + n)Pkf. (2.3)
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Note that the eigenspace corresponding to the eigenvalue 2k + n is infinite dimen-
sional, as the eigenvalue depends only on the second index, ν. However, we can get
a more compact representation for the above expansion. In fact, each Pkf has the
compact representation as a twisted convolution:

Pkf(z) = (2π)−n(f × ϕk)(z)

with the Laguerre functions ϕk(z) = Ln−1
k ( 1

2 |z|2) exp{− 1
4 |z|2} (see [9, 14]). Hence,

(2.2) becomes

f = (2π)−n
∑

k

f × ϕk. (2.4)

Note that ϕk is a Schwartz class function on C
n, and so is the twisted translation

τzϕk(w) = ϕk(z − w) exp{− 1
2 i Im z · w̄}. Hence, T × ϕk(z) = T (τzϕ) makes sense

for any tempered distribution T on C
n. Since 〈f × ϕk, ψ〉 = (f × ϕk × ψ)(0) =

〈f, ϕk × ψ〉, it is easy to see that (2.4) is also valid for any tempered distribution
f , with convergence in the sense of tempered distribution.

Now we introduce the first-order Sobolev space W 1,2
L (Cn) associated with the

twisted Laplacian, which is the same as the Sobolev space considered in [13] for
p = 2, m = 1.

Definition 2.1. W 1,2
L (Cn) = {f ∈ L2(Cn) : Xjf, Yjf ∈ L2(Cn), 1 � j � n}, where

Xj , Yj are as in (1.2). W 1,2
L (Cn) is a Hilbert space with respect to the inner product

〈u, v〉L =
n∑

j=1

(〈Xju, Xjv〉 + 〈Yju, Yjv〉).

3. The fundamental solution for the twisted Laplacian

In this section, we construct the fundamental solution for the twisted Laplacian L.
As in the case of the usual Laplacian on R

n, the Green function for the twisted
Laplacian is also obtained from the fundamental solution, by twisted translation:
if LE = δ0, then

K(z, w) = τz(E(−w)) = E(z − w) exp{− 1
2 i Im(z.w̄)}

is the Green function. In other words, the solution to the equation Lu = f is given
by the twisted convolution

u(z) = f × E(z) =
∫

Cn

f(w)E(z − w) exp{− 1
2 i Im(z.w̄)} dw.

This follows from the fact that L(f ×E) = f ×LE, as can be verified easily in view
of (1.5) and (1.2).

We construct the fundamental solution by simple heuristic reasoning based on
the series expansions (2.3) and (2.4): if a tempered distribution E satisfies LE = δ0,
then E = L−1δ0. Since δ0 is a tempered distribution, we have the series expansion

δ0 = (2π)−n
∞∑

k=0

δ0 × ϕk.
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Then E must be given by the tempered distribution (2π)−n
∑

k L−1(δ0 × ϕk). By
a formal computation

L−1(δ0 × ϕk) = δ0 × L−1ϕk =
1

2k + n
δ0 × ϕk.

This prompts us to define

E(z) = En(z) = (2π)−n
∑

k

1
2k + n

ϕk(z), z ∈ C
n. (3.1)

Now we show that the function En defined above is indeed a fundamental solution
to L. By the self-adjointness of L, for any ψ ∈ S(Cn), we have (ϕk,Lψ) = (2k +
n)(ϕk, ψ). Hence,

(LEn, ψ) = (En,Lψ) = (2π)−n
∑

k

1
2k + n

(ϕk,Lψ) = (2π)−n
∑

k

(ϕk, ψ).

But (ϕk, ψ) = ψ×ϕk(0) and
∑

k ψ × ϕk(0) = ψ(0) as the special Hermite expansion
(2.4) converges uniformly for Schwartz class functions. It follows that (LEn, ψ) =
ψ(0), i.e. LEn = δ0 as a tempered distribution, and hence verifies that En given by
(3.1) is the fundamental solution for the twisted Laplacian on C

n. Now we prove a
compact representation for En.

Theorem 3.1. The fundamental solution for the twisted Laplacian on C
n is given

by

En(z) = (4π)−n

∫ ∞

0
[s(s + 2)]n/2−1 exp{− 1

4 (1 + s)|z|2} ds.

Proof. We have already verified that En given by (3.1) is the fundamental solution
for L. The key idea in obtaining a compact representation is the following generating
function identity for the Laguerre functions ϕk (see [14]):∑

k

rkϕk(z) = (1 − r)−n exp
{

−1
4

1 + r

1 − r
|z|2

}
. (3.2)

Writing
1

2k + n
=

∫ ∞

0
e−(2k+n)t dt

in (3.1) and using (3.2) we see that

En = (2π)−n

∫ ∞

0
e−nt

∞∑
0

(e−2t)kϕk dt

= (2π)−n

∫ ∞

0
[2 sinh t]−n exp{− 1

4 (coth t)|z|2} dt.

Using the change of variable v = coth t and then s = v − 1, the above could be
simplified further to an expression of the form

En(z) = (4π)−n

∫ ∞

0
[s(s + 2)]n/2−1 exp{− 1

4 (1 + s)|z|2} ds. (3.3)

Hence, the theorem is proved.
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Remark 3.2. Since En is a radial function, setting En(z) = Gn(r) with r = 1
2 |z|2,

we see that the function Gn satisfies the recursion relation

16π2Gn+2 = G′′
n − Gn (3.4)

for n ∈ N. Since

G2(r) = (4π)−2 e−r

r
,

using the above recursion relation, we can show that when n is even En is of the
form

Pn

(
4

|z|2

)
exp

{
−|z|2

4

}
,

where Pn is a polynomial of degree n − 1 given by

Pn(x) = (4π)−n

n/2−1∑
j=0

( 1
2n − 1)!(n − 2 − j)!

( 1
2n − 1 − j)!j!

2jxn−1−j .

Similarly, since G1 is the special function given by

G1(r) = (4π)−1
∫ ∞

0
[s(s + 2)]−1/2e−(1+s)r ds,

En for odd n could be given explicitly in terms of G1 and its derivatives using the
above recursion formula.

Equation (3.3) shows that En has a singularity at z = 0 and En ∈ C∞(Cn \ 0)
with exponential decay near infinity. In fact, we compute the precise asymptotic
behaviour of En in proposition 4.3. Interestingly, En has the same behaviour as the
Euclidean Laplacian near the singularity z = 0. There is a distinction between the
cases n = 1 and n � 2, as expected.

The identity in the next proposition is at the heart of the main theorem. For
notational convenience we use E instead of En, except when the dependence on
dimension needs to be highlighted.

Proposition 3.3. Let E be the fundamental solution to the twisted Laplacian on
C

n. Then the identity∫
Cn

|∇Lu|2 + 1
2

∫
Cn

(u1Nu2 − u2Nu1)

= 1
4

∫
Cn

|∇LE|2
E2 |u|2 +

∫
Cn

E
∑

j

[∣∣∣∣ ∂v

∂xj

− i
yjv

4

∣∣∣∣
2

+
∣∣∣∣ ∂v

∂yj

+ i
xjv

4

∣∣∣∣
2]

. (3.5)

is valid for all u ∈ C∞
c (Cn), the space of compactly supported smooth functions on

C
n, where v = E−1/2u.

Proof. We essentially follow the idea in [2] using the fundamental solution. Let E be
the fundamental solution for the twisted Laplacian given by (3.3). For u ∈ C∞

c (Cn),
let v be the function defined by

u = E1/2v. (3.6)
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Then v ∈ C∞
c (Cn). To express the derivatives in terms of Xj and Yj given in (1.2),

the following observation will be useful:

∂

∂xj

[exp{− 1
2 ix · y}f(x, y)] = exp{− 1

2 ix · y}Xjf(x, y),

∂

∂yj

[exp{ 1
2 ix · y}f(x, y)] = exp{ 1

2 ix · y}Yjf(x, y), j = 1, 2, . . . , n.

Thus, rewriting (3.6) as

exp{− 1
2 ix · y}u = [exp{− 1

2 ix · y}E]1/2 exp{− 1
4 ix · y}v

and differentiating with respect to xj , we get

exp{− 1
2 ix · y}Xju = exp{− 1

2 ix · y}
[

1
2E−1/2vXjE + E1/2

(
∂v

∂xj

− i
yjv

4

)]
. (3.7)

Taking the square of the absolute value on both sides and replacing v by E−1/2u
gives

|Xju|2 =
1
4

|XjE|2
E2 |u|2 + E

∣∣∣∣ ∂v

∂xj

− i
yjv

4

∣∣∣∣
2

+ Re
(

XjE

[
v

∂v̄

∂xj

+ i
yj

4
|v|2

])
. (3.8)

Since

v
∂v̄

∂xj

=
1
2

∂|v|2
∂xj

+ i Im
(

v
∂v̄

∂xj

)
,

by writing
∂|v|2
∂xj

= Xj(|v|2) − 1
2 iyj |v|2,

we see that

v
∂v̄

∂xj

+ 1
4 iyj |v|2 = 1

2Xj(|v|2) + i Im
(

v
∂v̄

∂xj

)
.

Thus,

Re
(

XjE

[
v

∂v̄

∂xj

+ i
yj |v|2

4

])
= 1

2 Re[XjEXj(|v|2)] − Im
[
XjE Im

(
v

∂v̄

∂xj

)]
.

Using this in (3.8) and integrating, we see that

∫
Cn

|Xju|2 =
∫

Cn

1
4

|XjE|2
E2 |u|2 +

∫
Cn

E

∣∣∣∣ ∂v

∂xj

− i
yjv

4

∣∣∣∣
2

+ 1
2 Re

∫
Cn

XjEXj |v|2 − Im
∫

Cn

[
XjE Im

(
v

∂v̄

∂xj

)]
. (3.9)
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Again, on rewriting (3.6) as exp{ 1
2 ix · y}u = [exp{ 1

2 ix · y}E]1/2 exp{ 1
4 ix · y}v and

differentiating with respect to yj , a similar procedure will lead to the identity

∫
Cn

|Yju|2 =
∫

Cn

1
4

|YjE|2
E2 |u|2 +

∫
Cn

E

∣∣∣∣ ∂v

∂yj

+ i
xjv

4

∣∣∣∣
2

+ 1
2 Re

∫
Cn

YjEYj |v|2 − Im
∫

Cn

[
YjE Im

(
v

∂v̄

∂yj

)]
. (3.10)

Since Xj and Yj are skew-adjoint operators, we have

∫
Cn

XjEXj |v|2 +
∫

Cn

YjEYj |v|2 = −
∫

Cn

|v|2(X2
j + Y 2

j )E,

and hence

n∑
j=1

( ∫
Cn

XjEXj |v|2 +
∫

Cn

YjEYj |v|2
)

=
∫

Cn

LE |v|2 = |v(0)|2,

as LE = δ0. Now, since v is a Schwartz class function and E has a singularity at
the origin, (3.6) shows that v(0) = 0.

Thus, summing over j = 1, 2, . . . , n, (3.9) and (3.10) give

∫
Cn

|∇Lu|2 = 1
4

∫
Cn

|∇LE|2
E2 |u|2

+
∫

Cn

E
∑

j

[∣∣∣∣ ∂v

∂xj

− i
yjv

4

∣∣∣∣
2

+
∣∣∣∣ ∂v

∂yj

+ i
xjv

4

∣∣∣∣
2]

− Im
∫

Cn

∑
j

[
XjE Im

(
v

∂v̄

∂xj

)
+ YjE Im

(
v

∂v̄

∂yj

)]
. (3.11)

Now, writing v = v1 + iv2, and using the fact that v = E−1/2u, we see that

Im(v∂xj v̄) = v2∂xj v1 − v1∂xj v2

= E−1(u2∂xj u1 − u1∂xj u2). (3.12)

Similarly,

Im(v∂yj v̄) = v2∂yj v1 − v1∂yj v2

= E−1(u2∂yj u1 − u1∂yj u2). (3.13)

Since Im XjE = − 1
2yjE and Im YjE = 1

2xjE, it follows that

Im
∑

j

[
XjE Im

(
v

∂v̄

∂xj

)
+ YjE Im

(
v

∂v̄

∂yj

)]
= − 1

2 (u2Nu1 − u1Nu2), (3.14)
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with N given by (1.3). Thus, (3.11) reads as∫
Cn

|∇Lu|2 + 1
2

∫
Cn

(u1Nu2 − u2Nu1)

= 1
4

∫
Cn

|∇LE|2
E2 |u|2 +

∫
Cn

E
∑

j

[∣∣∣∣ ∂v

∂xj

− i
yjv

4

∣∣∣∣
2

+
∣∣∣∣ ∂v

∂yj

+ i
xjv

4

∣∣∣∣
2]

. (3.15)

This completes the proof of proposition 3.3.

We now deduce the proof of theorem 1.1 from the identity (3.15).

Proof of theorem 1.1. We first express the last integral in (3.15) in terms of u.
Setting v = v1 + iv2, a straightforward computation shows that

∑
j

[∣∣∣∣ ∂v

∂xj

− i
yjv

4

∣∣∣∣
2

+
∣∣∣∣ ∂v

∂yj

+ i
xjv

4

∣∣∣∣
2]

= |∇v|2 + 1
16 |z|2|v|2 + 1

2 (v2Nv1 − v1Nv2).

(3.16)

Note that the operator N given by (1.3) is a derivation, and Nψ = 0 if ψ is a
poly-radial function, i.e. a function of |z1|, . . . , |zn|. Thus, since v = E−1/2u, and E
is radial, it follows that Nvi = E−1/2Nui, i = 1, 2. Hence,

(v2Nv1 − v1Nv2) = E−1(u2Nu1 − u1Nu2). (3.17)

Since Im (ūNu) = u1Nu2−u2Nu1, and in view of the above two identities, (3.15)
may be rewritten as∫

Cn

|∇Lu|2 + Im
∫

Cn

ūNu = 1
4

∫
Cn

(
|∇LE|2

E2 +
|z|2
4

)
|u|2 +

∫
Cn

E|∇v|2,

which is (1.6), thus proving theorem 1.1.

Proof of corollary 1.2. Note that Im(ūNu) = 0 if u is a real-valued or purely imag-
inary function. Also if u is complex valued and poly-radial on C

n, then Nu = 0.
Hence, in these cases, the second term on the left-hand side is zero. Thus, since
the last term on right-hand side is non-negative, the proof follows from the above
identity.

In the next section, we discuss the optimality and show that the weight we
obtained is also optimal.

4. The optimality of the results

In this section, following [1], we show that the weight

w(z) =
(

|∇LE|2
E2 +

|z|2
4

)

appearing in corollary 1.2 is the best possible and never achieved. In particular, the
constant 1

4 for the above weight w is the optimal one and never achieved. We start
with the following.
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12 Adimurthi, P. K. Ratnakumar and V. K. Sohani

Definition 4.1. We say that the weight w in the corollary 1.2 is optimal if a weight
w̃ satisfies the inequalities

1
4

∫
Cn

w(z)|u|2 dz � 1
4

∫
Cn

w̃(z)|u|2 dz �
∫

Cn

|∇Lu(z)|2 dz (4.1)

for all u ∈ W 1,2
L . Then w = w̃.

Definition 4.2. We say that the weight w in the corollary 1.2 is achieved if the
equality holds for some non-zero function u with∫

Cn

|∇Lu|2 dz < ∞.

Now we prove the following asymptotic estimates for En and ∇En, a crucial
ingredient for the proof of optimality. We write f(z) ≈ g(z) to indicate that
C1f(z) � g(z) � C2f(z) for some positive constants C1 and C2.

Proposition 4.3. Let En(z) be as in (3.3). Then En satisfies the following:

En(z) ≈ [|z|−n + |z|−2n+2] exp{− 1
4 |z|2} for n � 2, (4.2)

E1(z) ≈
[(

1
|z|

)
χ|z|�1/2 + log

(
1
|z|

)
χ|z|�1/2

]
exp{− 1

4 |z|2} (4.3)

for z ∈ Cn, n � 1.

Proof. Setting α = 1
4 |z|2 with a change of variable s → αs in (3.3) shows that

En(z) = (4π)−nα−n+1e−α

∫ ∞

0
[s(s + 2α)]n/2−1e−s ds. (4.4)

First, we consider the case when n � 2. Since (s + 2α)n/2−1 ≈ sn/2−1 + αn/2−1

in this case, we see that

|En(z)| ≈ α−n+1e−α

∫ ∞

0
(sn−2 + sn/2−1αn/2−1)e−s ds

≈ α−n+1e−α(1 + αn/2−1)

≈ (|z|−2n+2 + |z|−n) exp{− 1
4 |z|2},

which proves (4.2).
The case n = 1 is more delicate. We need to consider the case of small and large

α separately. For small α, namely 0 < α < 1
16 (which corresponds to |z| < 1

2 ), we
split the integral into three parts and estimate each of them.

(i) For 0 < s � α, we have s + 2α ≈ α and e−s ≈ 1 as 0 � α < 1
16 . Hence,∫ α

0
[s(s + 2α)]−1/2e−s ds ≈ α−1/2

∫ α

0
s−1/2 ds ≈ 1. (4.5)

(ii) For α < s < 1, we have s + 2α ≈ s and e−s ≈ 1 as s ∈ (0, 1). Hence,∫ 1

α

[s(s + 2α)]−1/2e−s ds ≈
∫ 1

α

s−1 ds ≈ log
(

1
α

)
≈ log

(
1
|z|

)
. (4.6)
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(iii) Also for s � 1, s + 2α ≈ s as 0 � α < 1
16 , which leads to∫ ∞

1
[s(s + 2α)]−1/2e−s ds ≈

∫ ∞

1
s−1e−s ds ≈ 1. (4.7)

From (4.5)–(4.7), we see that

E1(z) ≈ 1 + log
(

1
|z|

)
≈ log

(
1
|z|

)
for |z| � 1

2
. (4.8)

For α � 1
16 , we split the integral in (4.4) into two parts:

E1(z) =
1
4π

e−α

∫ α

0
[s(s + 2α)]−1/2e−s ds + e−α

∫ ∞

α

[s(s + 2α)]−1/2e−s ds

≈ e−αα−1/2
∫ α

0
s−1/2e−s ds + e−α

∫ ∞

α

s−1e−s ds, (4.9)

where we used the facts that s+2α ≈ α for s ∈ (0, α) and s+2α ≈ s for s ∈ (α,∞).
Since α � 1

16 , the second integral is at most

α−1/2
∫ ∞

α

s−1/2e−s ds.

Hence, from (4.9) we see that

E1(z) � e−αα−1/2
( ∫ α

0
s−1/2e−s ds +

∫ ∞

α

s−1/2e−s ds

)
� e−αα−1/2

as ∫ ∞

0
s−1/2e−s ds < ∞.

From (4.9), we also see that

E1(z) � e−αα−1/2
∫ α

0
s−1/2e−s ds � e−αα−1/2

∫ 1/16

0
s−1/2e−s ds.

The above two inequalities shows that E1(z) ≈ e−αα−1/2 for α � 1
16 , i.e.

E1(z) ≈ |z|−1 exp{− 1
4 |z|2} for |z| � 1

2 . (4.10)

Equation (4.8), together with (4.10), gives (4.3).

We also need the following gradient estimate for En to prove the optimality of
our result. Interestingly, the asymptotic behaviour of the gradient is uniform in all
dimensions.

Proposition 4.4. Let En(z) be as in (3.3). Then gradient of En has the following
asymptotic behaviour:

|∇En(z)| ≈ (|z|−n+1 + |z|−2n+1) exp{− 1
4 |z|2} for all n � 1. (4.11)
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Proof. Differentiating (3.3) and setting α = 1
4 |z|2, with a simple change of variable

as before, yields

|∇En(z)| ≈ |z| exp{− 1
4 |z|2}α−n

∫ ∞

0
sn/2−1[(s + 2α)n/2−1(s + α)]e−s ds. (4.12)

Since s + 2α ≈ s + α and (s + α)n/2 ≈ sn/2 + αn/2, we have

α−n

∫ ∞

0
sn/2−1[(s + 2α)n/2−1(s + α)]e−s ds

≈ α−n

∫ ∞

0
(sn−1 + sn/2−1αn/2)e−s ds

≈ α−n + α−n/2

≈ (|z|−2n + |z|−n).

Thus, (4.11) follows from (4.12).

The above two propositions yield the following.

Corollary 4.5. Let En(z) be as in (3.3). Then ∇En/En has the following behav-
iour: ∣∣∣∣∇En(z)

En(z)

∣∣∣∣ ≈ |z| + |z|−1 for n � 2,

∣∣∣∣∇E1(z)
E1(z)

∣∣∣∣ ≈ 1
|z| log(1/|z|)χ|z|�1/2 + |z|χ|z|�1/2.

Now we proceed to show that the weight w in corollary 1.2 is optimal. For this
we first produce a sequence {uε} of smooth functions with compact support, such
that

lim
ε→0

∫
Cn

E|∇vε|2 = 0,

where vε = E−1/2uε.
For this we choose a smooth function φ on R+ = (0,∞) such that

φ(x) =

{
0 if x � 1,

1 if x � 2,
0 � φ′(x) � M,

for some constant M . For example, φ may be chosen as

φ(x) = C

∫ x

1
exp

{
− 1

x − 1

}
exp

{
− 1

2 − x

}
dx,

on the interval [1, 2], for an appropriate constant C for which φ(2) = 1. Note that
suppφ ⊂ [1,∞) and suppφ′ ⊂ [1, 2].

Now choose δ = δ(ε) such that δ(ε) → 0, εδ → 0 and log(1/ε)εδ → 0 as ε → 0.
For example,

δ =
2 log(log(1/ε))

log(1/ε)
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is one such function. For ε > 0, define

ψε(x) = xδφ

(
x

ε

)
φ

(
1
εx

)
. (4.13)

Clearly, ψε ∈ C∞
c (R+), with suppψε ⊂ [ε, 1/ε]. Also, since ψε ≡ xδ on [2ε, 1/2ε]

and since δ → 0 as ε → 0, we have ψε(x) → 1 as ε → 0 for x ∈ R+.

Proposition 4.6. Let ψε be as above and define vε(z) = ψε(|z|). Then vε ∈
C∞

c (Cn), and

lim
ε→0

∫
Cn

E|∇vε(z)|2 dz = 0.

Proof. Note that vε ∈ C∞
c (Cn) since ψε ∈ C∞

c (Cn).

|∇vε(z)| � δ|z|δ−1φ

(
|z|
ε

)
φ

(
1

ε|z|

)

+
|z|δ
ε

φ′
(

|z|
ε

)
φ

(
1

ε|z|

)
+

|z|δ
ε|z|2 φ

(
|z|
ε

)
φ′

(
1

ε|z|

)
.

Since φ and φ′ are uniformly bounded, using the support properties of φ and φ′ we
see that∫

Cn

E|∇vε(z)|2 dz � δ2
∫

ε<|z|<1/ε

E(z)|z|2δ−2 dz + ε−2
∫

ε<|z|<2ε

E(z)|z|2δ dz

+ ε−2
∫

1/2ε<|z|<1/ε

E(z)|z|2δ−4 dz. (4.14)

We show, using the asymptotic properties of En given by proposition 4.3, that each
of the terms on right-hand side of the above inequality tends to zero as ε → 0.

First, we consider the case n � 2. In this case∫
ε<|z|<1/ε

E(z)|z|2δ−2 dz �
∫

ε<|z|<1/ε

(|z|−n + |z|2−2n) exp{− 1
4 |z|2}|z|2δ−2 dz

�
∫ 1/ε

ε

(r−n + r2−2n)r2δ−2r2n−1 exp{− 1
4r2} dr

�
∫ ∞

0
(r(n/2)+δ−2 + rδ−1)e−r dr

� Γ ( 1
2n + δ − 1) + Γ (δ),

where we used a change of variable in the third inequality. Since δ2Γ (δ) → 0 as
δ → 0, it follows that the first term on right-hand side of (4.14) tends to zero as
ε → 0.

Similarly, using the asymptotic behaviour of En near zero, we see that∫
|z|<2ε

E(z)|z|2δ dz �
∫

ε<|z|<2ε

|z|2−2n+2δ dz �
∫ 2ε

ε

r1+2δ dr � ε2δ+2.

Hence, the second term on the right-hand side of (4.14) also goes to zero as ε → 0.
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Again, using the behaviour of En near infinity, we see that∫
1/2ε<|z|<1/ε

E(z)|z|2δ−4 �
∫

1/2ε<|z|<1/ε

|z|−n+2δ−4 exp{− 1
4 |z|2} dz

�
∫ 1/ε

1/2ε

rn+2δ−5 exp{− 1
4r2} dr

� exp
{

− 1
16ε2

} ∫ 1/ε

1/2ε

rn+2δ−5 dr

� exp
{

− 1
16ε2

}
ε−n−2δ+4,

which shows that the third term on the right-hand side of (4.14) also goes to zero
as ε → 0. Hence, this proves the proposition for n � 2.

Now we consider the case n = 1. By proposition 4.3 E1 ≈ log(1/|z|) near the
origin and E1 ≈ exp{− 1

4 |z|2}/|z| away from the origin. Thus, we split the first
integral on the right-hand side of (4.14) as∫

|z|>1/2
E(z)|z|2δ−2 dz +

∫
ε<|z|<1/2

E(z)|z|2δ−2 dz

and consider each term separately. Since E1 ≈ exp{− 1
4 |z|2}/|z| away from the

origin, as in the higher-dimensional case, we have

δ2
∫

|z|>1/2
E(z)|z|2δ−2 dz � δ2

∫
|z|>1/2

E(z)|z|2δ−2 dz

� δ2
∫

|z|>1/2
exp{− 1

4 |z|2}|z|−1|z|2δ−2 dz

� δ2
∫ ∞

1/2
exp{− 1

4r2}r−1r2δ−2r dr

� δ2
∫ ∞

1/2
exp{− 1

4r2}r2δ−2 dr → 0 as ε → 0.

Since E1 ≈ log(1/|z|) near the origin, we see that

δ2
∫

ε<|z|<1/2
E(z)|z|2δ−2 dz � δ2

∫
ε<|z|<1/2

log
(

1
|z|

)
|z|2δ−2 dz

� δ2
∫ 1/2

ε

log
(

1
r

)
r2δ−2r dr

� δ2
∫ 1

ε

log
(

1
r

)
r2δ−1 dr

� δ2
∫ ∞

log(1/ε)
se−2δs ds

�
∫ ∞

log(1/εδ)
se−2s ds.
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Since se−2s is integrable on (0,∞) and εδ → 0 as ε → 0, it follows that the above
integral converges to zero as ε tends to zero. Hence, the first term on right-hand
side of (4.14) tends to zero as ε → 0.

Similarly, ∫
ε<|z|<2ε

E(z)
|z|2δ

ε2 dz � ε−2
∫

ε<|z|<2ε

log
(

1
|z|

)
|z|2δ dz

� ε−2
∫ 2ε

ε

log
(

1
r

)
r1+2δ dr

� ε−2 log
(

1
ε

) ∫ 2ε

ε

r1+2δ dr

� log
(

1
ε

)
ε2δ.

Since εδ → 0 and log(1/ε)ε2δ → 0, the above integral converges to zero as ε → 0,
and hence settles the case of the second term. The third term is similar to the
higher-dimensional case:

ε−2
∫

1/2ε<|z|<1/ε

E(z)|z|2δ−4 → 0 as ε → 0.

Hence, this also proves the case n = 1.

The next proposition shows that the weight w in corollary 1.2 is optimal.

Proposition 4.7. The weight w in corollary 1.2 cannot be improved. In particular,
the constant 1

4 in corollary 1.2 is the best.

Proof. Let w̃ be a weight satisfying the inequalities in definition 4.1. Then we first
observe that w � w̃ almost everywhere (a.e.). In fact, since C∞

c ⊂ W 1,2
L , the

inequalities in definition 4.1 imply that both w and w̃ are locally integrable. Also,
since ∫

Cn

(w̃ − w)|u|2 dz � 0

for all u ∈ C∞
c (Cn), it follows, using the regularity of the Lebesgue measure and

the smooth version of Urysohn’s lemma, that w̃ − w � 0 a.e. Note that the same
conclusion holds if the above inequality holds for all poly-radial u ∈ C∞

c (Cn).
Now we show w̃ − w � 0 using proposition 4.6. Let vε be as in proposition 4.6

and set uε = E1/2vε. Note that limε→0 uε(z) = E1/2(z) as limε→0 vε(z) = 1.
Hence, by Fatou’s lemma and (4.1), we see that

1
4

∫
Cn

(w̃ − w)E(z) dz � lim inf
ε→0

1
4

∫
Cn

(w̃ − w)|uε|2 dz

� lim sup
ε→0

∫
Cn

[|∇Luε|2 − 1
4w|uε|2] dz

= lim sup
ε→0

∫
Cn

E|∇vε|2 dz
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by the identity in theorem 1.1, and the fact that the uε are poly-radial. By propo-
sition 4.6 the above limit is zero, and hence

1
4

∫
Cn

(w̃ − w)E(z) dz � 0.

Since E is non-negative, this gives w̃ − w � 0, and hence the proof.

The fact that the weight w in corollary 1.2 is never achieved follows from the
next result.

Proposition 4.8. The equality in corollary 1.2 holds if and only if u = 0.

Proof. Suppose that there exists some function u ∈ W 1,2
L (Cn) for which the equality

in corollary 1.2 holds. Since C∞
c (Cn) is dense in W 1,2

L (Cn), we can choose a sequence
ũε of C∞

c functions such that ũε → u in W 1,2
L (Cn), i.e. ∇L(ũε −u) → 0 in L2. Note

that uε is real valued, purely imaginary or poly-radial, depending on u. Hence, by
corollary 1.2 and remark 1.3, we have

lim
ε→0

1
4

∫
Cn

w(z)|ũε − u|2 dz � lim
ε→0

∫
Cn

|∇L(ũε − u)|2 dz = 0.

Since |z|2 � w(z), the above inequality shows that |z|ũε(z) → |z|u(z) in L2(Cn) as
ε → 0. Thus, in view of the inequality |∇u(z)| � |∇Lu(z)| + |z| |u(z)|, we also see
that ∇ũε(z) → ∇u(z) in L2(Cn) as ε → 0.

We can also assume that ũε → u and ∇ũε → ∇u a.e., by taking a subsequence
if necessary. Then ṽε → v and ∇ṽε → ∇v a.e. on C

n, where ṽε = E−1/2ũε and
v = E−1/2u. Also, in view of theorem 1.1 and the equality for u in corollary 1.2,∫

Cn

E(z)|∇ṽε(z)|2 dz → 0

as ε → 0.
In view of Fatou’s lemma, we see that

0 �
∫

Cn

E(z)|∇v(z)|2 dz � lim
ε→0

∫
Cn

E(z)|∇ṽε(z)|2 dz = 0.

Therefore, ∇v(z) = 0, and v(z) is constant for almost every z ∈ C
n. By corollary 4.5

E1/2 /∈ W 1,2
L (Cn) and u = E1/2v, which forces u = 0. This completes the proof.

5. The Hardy–Sobolev inequality in the weighted Sobolev space

In this section, we show that our method also gives the Hardy–Sobolev inequality
that is valid in a one-parameter family of weighted Sobolev spaces associated with
the twisted Laplacian. For α > 0, let L2,α(Cn) denote the weighted L2 space on
C

n with weight E1−2α(z), where E is the fundamental solution for L given by
theorem 3.1, and let S ′ denote the space of tempered distributions on C

n. We
define the weighted Sobolev space WL,α by

WL,α(Cn) = {f ∈ S ′ : Xjf, Yjf ∈ L2,α(Cn), j = 1, 2, . . . , n}.
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For a given u ∈ C∞
c (Cn) and α > 0, we introduce the function v = vα = E−αu,

as in (3.6). A simple calculation shows that

E1−2α|Xju|2 = α2|u|2 |XjE|2
E2 E1−2α + E

∣∣∣∣∂xj
v + i

α − 1
2

yjv

∣∣∣∣
2

+ α Re(XjEXj(|v|2)) − 1
4α(2α − 1)y2

j E|v|2 + αyj Im(v∂xj
v̄)E,

(5.1)

E1−2α|Yju|2 = α2|u|2 |YjE|2
E2 E1−2α + E

∣∣∣∣∂yj
v − i

α − 1
2

xjv

∣∣∣∣
2

+ α Re(YjEYj(|v|2)) − 1
4α(2α − 1)x2

jE|v|2 − αxj Im(v∂yj v̄)E.

(5.2)

Adding the above two identities, integrating and summing over j yields∫
Cn

|∇Lu|2E1−2α dz

= α2
∫

Cn

|u|2|∇LE|2E−1−2α dz

+
∫

Cn

E

n∑
j=1

{∣∣∣∣∂xj
v + i

α − 1
2

yjv

∣∣∣∣
2

+
∣∣∣∣∂yj

v − i
α − 1

2
xjv

∣∣∣∣
2}

dz

+ α

n∑
j=1

∫
Cn

Re{XjEXj |v|2 + YjEYj |v|2} dz

− α(2α − 1)
4

∫
Cn

|z|2|u|2E1−2α dz

+ α

n∑
j=1

∫
Cn

E(z)[yj Im(v∂xj
v̄) − xj Im(v∂yj

v̄)] dz. (5.3)

Writing v = v1 + iv2, we see that Im(v∂xj v̄) = v2∂xj v1 − v1∂xj v2. Now, setting
vj = E−αuj , this leads to the identities

Im(v∂xj v̄) = E−2α(u2∂xj u1 − u1∂xj
u2),

Im(v∂yj
v̄) = E−2α(u2∂yj

u1 − u1∂yj
u2).

It follows that the integrand in the last term on right-hand side of (5.3) is

E
n∑

j=1

[yj Im(v∂xj v̄) − xj Im(v∂yj
v̄)] = E1−2α(u2Nu1 − u1Nu2). (5.4)

The integrand in the second term on the right-hand side is same as

E{|∇v|2 + 1
4 (α − 1)2|z|2|v|2 + (1 − α)E−2α(u2Nu1 − u1Nu2)}, (5.5)

and the third term on the right-hand side is∫
Cn

LE|v|2 = |v(0)|2 = 0,

as LE = δ0.
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Thus, (5.3) leads to the identity∫
Cn

|∇Lu|2E1−2α dz =
∫

Cn

[
α2 |∇E|2

E2 + (1 − α)
|z|2
4

]
|u|2E1−2α dz

+
∫

Cn

E|∇v|2 dz +
∫

Cn

E1−2α(u2Nu1 − u1Nu2) dz,

(5.6)

where we have used the fact that |∇LE|2 = |∇E|2 + 1
4 |z|2.

Setting

ωα(z) = α2 |∇E|2
E2 + (1 − α) 1

4 |z|2,

the identity (5.6) leads to a family of Hardy–Sobolev-type inequalities valid in the
weighted Sobolev spaces WL,α(Cn).

Theorem 5.1. Let ωα be as above and let N be as in (1.3). Then the inequality∫
Cn

|u|2ωα(z)E1−2α dz �
∫

Cn

|∇Lu|2E1−2α dz (5.7)

is valid for functions u in the weighted Sobolev space WL,α(Cn), 0 � α � 1, that is,
real-valued, purely imaginary or complex-valued poly-radial functions. Moreover, for
each of the weighted Sobolev space WL,α(Cn), the weight ωα is optimal and never
achieved.

Note that, from (5.4), it is clear that (u2Nu1 − u1Nu2) = 0 if u is real or purely
imaginary, and Nu = 0 when u is poly-radial. Also the weight ωα is non-negative
for 0 � α � 1. The fact that the weight is optimal and never achieved follows by
arguments similar to those in the proof of corollary 1.2.

6. Connection with the Heisenberg Laplacian

The twisted Laplacian L is closely connected to the Heisenberg Laplacian

LH = −
n∑

j=1

(X̃2
j + Ỹ 2

j ),

defined in terms of the generators of the Heisenberg Lie algebra:

X̃j = ∂xj
+ 1

2yj∂t, Ỹj = ∂yj − 1
2xj∂t, j = 1, . . . , n.

More explicitly, we have −LH = ∆z + 1
4 |z|2∂2

t + N∂t, with N is as in (1.3).
Taking functions of the form u(x, y, t) = f(x, y)e−it on the Heisenberg group Hn

identified with R
n × R

n × R, we get

X̃ju(x, t) = e−itXjf(x, y) and Ỹju(x, t) = e−itYjf(x, y). (6.1)

This leads to the identity LHu(x, y, t) = e−itLf(x, y) for u as above.
In view of these relations, it is possible to obtain a Hardy–Sobolev inequality for

the twisted Laplacian C
n from the Hardy–Sobolev inequality for the sub-Laplacian
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LH on the Heisenberg group Hn, but not the optimal one: for u ∈ C∞
c (Cn) and

η ∈ C∞
c (R), the function

vR(x, y, t) = η

(
t

R

)
u(x, y)e−it ∈ C∞

c (Hn)

for each R > 0. Now, the Hardy–Sobolev inequality on the Heisenberg group [2]
gives the inequality

n2
∫

Hn

|vR|2 |z|2
|z|4 + t2

dz dt �
∫

Hn

|∇H(vR)|2 dz dt. (6.2)

Since

∇HvR(z, t) = η

(
t

R

)
e−it∇Lu(x, y) + ( 1

2y, − 1
2x)u(x, y)

1
R

η′
(

t

R

)
e−it,

using the convenient notation v(z, t) = v(x, y, t) we see that

|∇HvR(z, t)|2 = |∇Lu(z)|2
∣∣∣∣η

(
t

R

)∣∣∣∣
2

+ |z|2|u(z)|2 1
4R2

∣∣∣∣η′
(

t

R

)∣∣∣∣
2

− 1
R

η

(
t

R

)
η′

(
t

R

)
Re

(
ū(z)

n∑
j=1

[xjYju(z) − yjXju(z)]
)

.

Now, since ∫
R

η(t)η′(t) dt = 0,

(6.2) reads as follows:∫
Cn×R

∣∣∣∣u(z)η
(

t

R

)∣∣∣∣
2

n2|z|2
|z|4 + t2

dz dt

�
∫

Cn×R

|∇Lu(z)|2
∣∣∣∣η

(
t

R

)∣∣∣∣
2

dz dt +
∫

Cn×R

|z|2|u(z)|2 1
4R2

∣∣∣∣η′
(

t

R

)∣∣∣∣
2

dz dt.

(6.3)

By a change of variable in t, and choosing η with
∫

R
|η(t)|2 dt = 1, (6.3) leads to

an inequality of the form∫
Cn

|u(z)|2ωR(z) dz �
∫

Cn

|∇Lu(z)|2 dz (6.4)

with weight ωR given by

ωR(z) = ωη,R(z) = |z|2
∫

R

[
n2|η(t)|2

|z|4 + R2t2
− |η′(t)|2

4R2

]
dt.

Now we show that we can make the weight ωR non-negative by a suitable choice
of R. First, observe that

lim
R→0

ωR(z) = −∞ and lim
R→∞

ωR(z) = 0.
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It is easy to see that R → ωR(z) has a positive maximum on (0,∞). For this we
set ϕ(R) = ωR1/2(z), and the critical point is given by

0 = ϕ′(R) =
|z|2
4R2

(
C −

∫
R

4n2t2|η(t)|2
[(|z|4/R) + t2]2

dt

)
,

where

C =
∫

R

|η′(t)|2 dt.

Note that the critical point is unique, since the expression inside the bracket is a
monotone function of R, and hence gives the maximum, which is positive. Thus,
for each z, there exists an R = R(η, z) for which ωR(z) = ωR(η,z)(z) � 0 and (6.4)
yields a Hardy–Sobolev-type inequality.

However, the Hardy–Sobolev inequality obtained in this way has a weight that
depends on the particular choice of η, and hence it is unclear whether one can
obtain the optimal Hardy–Sobolev inequality in this way.

The correspondence (6.1) also leads to a deduction of the fundamental solution
for L from the fundamental solution EH for the sub-Laplacian LH. In fact, taking
the partial Fourier transform in the t-variable in the relation LHEH(z, t) = δ(z, t) =
δ(z)δ(t) leads to the identity

(−∆ + 1
4λ2|z|2 + iλN)Eλ

H(z) = δ(z), (6.5)

where Eλ
H denotes the partial Fourier transform in the t-variable, evaluated at λ,

of the tempered distribution EH(z, t), which was determined explicitly by Folland
in [6]. Note that

EH(z, t) =
cn

(|z|4 + 16t2)n/2

for the vector field that we consider, with the same constant cn as in [6]. Taking
λ = 1, this gives the following alternative representation of the fundamental solution
to L:

E(z) = E1
H(z) =

∫
R

EH(z, t)e−it dt = cn

∫
R

e−it

(|z|4 + 16t2)n/2 dt. (6.6)
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