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Reynolds-number effects and anisotropy
in transverse-jet mixing
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(Received 23 May 2005 and in revised form 8 January 2006)

Experiments are described which measured concentration fields in liquid-phase strong
transverse jets over the Reynolds-number range 1.0 × 103 � Rej � 20 × 103. Laser-
induced-fluorescence measurements were made of the jet-fluid-concentration fields at
a jet-to-freestream velocity ratio of Vr =10. The concentration-field data for far-field
(x/dj =50) slices of the jet show that turbulent mixing in the transverse jet is Reynolds-
number dependent over the range investigated, with a scalar-field PDF that evolves
with Reynolds number. A growing peak in the PDF, indicating enhanced spatial
homogenization of the jet-fluid concentration field, is found with increasing Reynolds
number. Comparisons between transverse jets and jets discharging into quiescent
reservoirs show that the transverse jet is an efficient mixer in that it entrains more
fluid than the ordinary jet, yet is able to effectively mix and homogenize the additional
entrained fluid. Analysis of the structure of the scalar field using distributions of scalar
increments shows evidence for well-mixed plateaux separated by sharp cliffs in the
jet-fluid concentration field, as previously shown in other flows. Furthermore, the
scalar field is found to be anisotropic, even at small length scales. Evidence for local
anisotropy is seen in the scalar power spectra, scalar microscales, and PDFs of scalar
increments in different directions. The scalar-field anisotropy is shown to be correlated
to the vortex-induced large-scale strain field of the transverse jet. These experiments
add to the existing evidence that the large and small scales of high-Schmidt-number
turbulent mixing flows can be linked, with attendant consequences for the universality
of small scales of the scalar field for Reynolds numbers up to at least Re= 20 × 104.

1. Introduction
The turbulent jet discharging into a crossflow, or transverse jet, is a turbulent free-

shear flow of both environmental and technological significance. A common-place
occurrence of the transverse jet is the plume emitted from a smokestack on a windy
day. Plumes generated by volcanoes, thunderstorms, or forest fires can also rise to
heights in the atmosphere where significant crossflow exists. Other transverse jets arise
in diverse situations including effluent discharge into rivers, steering jets for missiles
and ships, VTOL/STOL aircraft aerodynamics, and blade-and-endwall cooling in gas
turbines. The transverse jet has also been proposed as a means for fuel injection in
high-speed air-breathing propulsion, i.e. SCRAMJETS (Gruber et al. 1999). Buoyancy
can be important to different degrees in the various applications of transverse jets;
however, this study restricts its attention to momentum-driven jets in crossflow.

A large body of work has focused on the velocity fields and vortex dynamics of the
turbulent jet in crossflow (Gordier 1959; Keffer & Baines 1963; McMahon, Hester &
Palfery 1971; Chassaing et al. 1974; Fearn & Weston 1974; Moussa, Trischka &
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Eskinazl 1977; Andreoupoulos & Rodi 1984; Karagozian 1986; Kelso & Smits 1995;
Kelso, Lim & Perry 1996; Cortelezzi & Karagozian 2001; extensive literature reviews
are given by Margason 1993 and Morton & Ibbetson 1996). In comparison, less
attention has been paid to scalar transport and mixing, despite the fact that, as noted
by Niederhaus, Champangne & Jacobs (1997), ‘the majority of applications require
knowledge of the transport of either heat or mass.’ A number of early studies focused
on classical measures of jet mixing such as scalar trajectories, centreline concentration
decay, and mean scalar fields (e.g. Patrick 1967; Kamotani & Greber 1972).
Broadwell & Breidenthal (1984) made an important contribution by modelling the
transverse jet as an axial vortex pair that arises as a global consequence of the
transverse lift force imparted by the jet to the crossflow. The analysis of Broadwell &
Breidenthal provided analytical models for the rate at which mean concentration
decays on the centreline. Broadwell & Breidenthal also performed experiments
measuring ‘flame length’ in liquid-phase transverse jets, and reported the flame length
to be independent of Reynolds number above a circulation-based Reynolds number
of Γ/ν � 300.

Smith & Mungal (1998) reported on experiments on the mixing and structure
of gas-phase transverse jets. They identified different regions of the transverse jet
for which different scalings held: the vortex interaction region, the near field, and
the far field. Based on decay rates of mean concentration on the jet centreline,
they found the location of a branch point separating the near and far fields to
be insensitive to Reynolds number over the range 8.4 × 103 � Rej � 33 × 103, where
Reynolds number is based on jet-exit velocity and nozzle diameter. Hasselbrink &
Mungal (2001) used similarity analysis to find scaling laws for the mean centreline
concentration decay in the near and far fields. Reasonable agreement was found
with the data of Smith & Mungal (1998). Su & Mungal (2004) have have reported
on simultaneous measurements of velocity and scalar fields in transverse jets. Other
studies of turbulent mixing in transverse jets with additional complexity have been
reported, e.g. for jets with swirl (Niederhaus et al. 1997), sonic jets injected into
a supersonic crossflow (VanLerberghe et al. 2000), and fully modulated jets (Johari,
Pacheco-Tougas & Hermanson 1999).

Relatively little attention appears to have been paid to the evolution of mixing
with Reynolds number in transverse jets. Smith & Mungal (1998) found that the
mean concentration decay rate on the jet centreline was approximately constant over
a Reynolds-number range of 8.4 × 103 � Rej � 33 × 103. However, no comparison
was made of probability distribution functions (PDFs) of the scalar field for
different Reynolds numbers. As discussed in § 3, mean quantities such as the mean
concentration decay rate are measures of entrainment, rather than measures of mixing.
Moreover, experience with liquid-phase axisymmetric turbulent jets discharging into
a quiescent reservoir shows that the details of scalar fields mixed by turbulence can
depend on Reynolds number. For example, scalar-field distributions and root-mean-
squared (r.m.s.) scalar fluctuations vary with jet Reynolds number over a range of
at least 3.0 × 103 � Rej � 24 × 103 (Miller & Dimotakis 1991; Catrakis & Dimotakis
1996). This paper addresses the issue of Reynolds-number dependence of scalar mixing
by examining the probability distribution of jet fluid in strong liquid-phase transverse
jets at a fixed far-downstream location (§ 3). In addition, high-Schmidt-number mixing
is compared between transverse jets and ordinary jets to investigate possible differences
in mixing for fully developed (but finite-Reynolds-number) turbulent flows.

A detailed examination of the structure of the mixed-fluid concentration fields is also
made with scalar increments (also known as scalar differences). The distribution of
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Figure 1. Experimental facility and imaging configuration for streamwise views of a
transverse jet.

scalar increments, f (�rC), defined as the probability distribution of the instantaneous
concentration difference between two spatially separated points in the scalar field,

f (�rC) ≡ f (C(x + r, t) − C(x, t)) , (1)

describes the probability of finding a concentration C + �C at a distance r away
from a point of concentration C. The scalar increment statistics, which are connected
to intermittency and the structure of the scalar field, are examined in § 4 to explore
the internal structure of the jet-fluid concentration field.

The experiments reported here also examine other aspects of the internal structure
of the scalar field in liquid-phase transverse jets. In particular, the issue of local
anisotropy is addressed with two-dimensional power spectra, scalar microscales and
scalar increments in two directions. An attempt is made to quantify the observed small-
scale anisotropy and identify its cause. Based on an observed correlation between the
small-scale anisotropy and the mean strain field, it is suggested that the large-scale
vortex dynamics of the transverse jet are responsible for the local scalar anisotropy
in the far field (§ 5).

2. Experiments and visualization
Experiments on high-Schmidt-number turbulent mixing in the transverse jet were

conducted in the GALCIT free-surface water tunnel (FSWT), a closed-circuit facility
having a 50.8 cm wide × 76.2 cm deep (20 in. × 30 in.) test section. The FSWT was
operated as a water tunnel with square cross-section for these experiments by fitting
a surface plate at the free-surface; for all experiments, the water level in the test
section was maintained at a depth of 50.8 cm (20 in). A neutrally buoyant jet of
water was injected downward into the crossflow from the top of the surface plate
(figure 1). Flow was initiated by pressurizing an inverted liquid-filled plenum with
air; the jet flowed out of a nozzle block that was fitted flush to the surface plate. The
jet nozzle was convex contoured to suppress formation of Görtler vortices and had
an area-contraction ratio of 43. The nozzle was 31.8 mm (1.25 in) long and had an
internal exit diameter of 7.62 mm (0.300 in). Once filled, the plenum was allowed to
settle for at least 30 min before each run to allow flow disturbances to die down.
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Figure 2. Imaging configuration for perpendicular cross-sections of transverse jet at
x/dj = 50.

Experiments were conducted at fixed jet-to-free-stream velocity ratio Vr ≡ Uj/U∞ =
10 for several Reynolds numbers. Selected experiments were performed at a higher
velocity ratio, Vr = 32, for visualization purposes, but all quantitative data discussed
in this paper came from jets at Vr = 10. Particular attention was paid to the transverse
jet at Vr = 10 because that velocity ratio was identified as a critical ratio for ‘strong’
jets, in the sense that wall (pressure) effects on the jet trajectory can be neglected
in favour of entrainment effects for Vr � 10. Hasselbrink & Mungal (2001) show
that the similarity analysis of Broadwell & Breidenthal (1984), which predicts the
well-known power-law trajectory for transverse jets, implicitly assumes that Vr � 10.
In addition, the Vr =10 jet is of interest because that velocity ratio has been identified
as a critical ratio for the appearance of jet fluid in the wake; higher velocity-ratio
jets were observed to have jet fluid in the wake, while lower velocity ratio jets did
not (Smith & Mungal 1998). Velocity ratios between 10 and 20, depending on the
assumed stoichiometry, have also been reported to result in minimum flame lengths
(Broadwell & Breidenthal 1984; Smith & Mungal 1998).

For all but some limited visualizations, the velocity ratio was thus maintained
constant at Vr =10 while the jet Reynolds number was varied in the range
1.0 × 103 � Rej ≡ Ujdj/ν � 20 × 103 by suitably adjusting the jet and free-stream
velocities. Streamwise slices of the jet were taken at Rej = 1.0, 2.0, 5.0 and 10 × 103,
whereas transverse slices were taken at x/dj = 50 for Rej =1.0, 2.0, 5.0, 10 and
20 × 103. The crossflow boundary layer (the boundary layer on the surface plate)
was laminar and thin, calculated to be between 0.067dj and 0.30dj at the jet exit,
depending on Reynolds number. Table 1 summarizes the experimental conditions for
the primary case of interest, the transverse slices at x/dj = 50.

2.1. Imaging technique

Digital imaging of laser-induced fluorescence (LIF) was used to measure mixed-fluid
concentration fields (Walker 1987) in the transverse jet (figure 2). The jet plenum
was filled with a dilute mixture of rhodamine-6G chloride and water, in molar
concentrations of 1.4 × 10−6

m (streamwise views) and 1.4 × 10−5
m (transverse views).
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Figure 3. Variation of fluorescence intensity with dye concentration, over the indicated
range of laser intensities. I0 = 1011 Wm−2.

Upon excitation at λL = 532 nm with a frequency-doubled Q-switched Nd:YAG laser
(Continuum YG661), the dyed jet fluid fluoresced at λF =555 nm while the undyed
tunnel fluid remained dark (e.g. Pringsheim 1949). The laser provided 250 mJ pulse−1

(in the green) with a pulse duration of approximately 6 ns. An optical low-pass filter
(Kodak no. 21) was used to isolate the fluorescence emission from the laser wavelength
spectrally. Experiments were performed in a darkened laboratory to further minimize
noise from ambient light.

The suitability of rhodamine-6G dye and a high-powered pulsed Nd:YAG laser
for quantitative measurement of the scalar field was verified in separate experiments
(Shan, Lang & Dimotakis 2004). To summarize, the fluorescence intensities, IF , of
various rhodamine-6G solutions were measured in a cuvette for concentrations and
laser intensities similar to those of the jet-imaging experiment. The fluorescence of
aqueous solutions of rhodamine-6G (at similar concentrations to those occurring in
the present experiments) was found to be approaching saturation owing to the high
instantaneous power of the pulsed laser. Although the fluorescence was not linear
with illumination intensity, the fluorescence was nonetheless linearly proportional
to concentration (figure 3). This enabled quantitative measurement of the jet-fluid
concentration field, using the procedure described below.

Because of the linearity of fluorescence with concentration, the imaged intensity
of fluorescence, IF (x1, x2, t), of a time-varying concentration field, c(x1, x2, t), can be
written as,

IF (x1, x2, t) = g [IL(x1, x2), S(x1, x2)] c(x1, x2, t) + Iback(x1, x2) , (2a)

where g(IL, S) is an undetermined function of the local laser intensity, IL(x1, x2) and
the pixel-by-pixel sensitivity, S(x1, x2), of the imaging system. Iback is the cumulative
background level due to dark noise, offsets, etc. in the CCD camera. The imaged
intensity for a reference, uniform-concentration field would be,

IF,ref(x1, x2) = g [IL(x1, x2), S(x1, x2)] cref + Iback(x1, x2), (2b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

12
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006001224


52 J. W. Shan and P. E. Dimotakis

where cref is a known concentration. The laser-illumination fields for the jet image,
(2a), and the reference image, (2b), are the same, or nearly so, because the laser
attenuation due to absorption is negligible.† In this case then, the mixed-fluid
concentration field, referenced to the known concentration, may be computed by
subtracting the background-illumination images and normalizing by the uniform-
concentration images (cf. (2a) and (2b)), i.e.

c(x1, x2, t)

cref

=
IF (x1, x2, t) − 〈Iback(x1, x2)〉

〈IF, ref(x1, x2)〉 − 〈Iback(x1, x2)〉
. (3a)

This result relies on linearity with respect to concentration, as demonstrated in figure 3,
but is independent of the precise functional form of g(I, S). Thus, the ability to make
quantitative measurements of scalar concentration using pulsed-laser LIF depends
only on weak absorption and the linearity of fluorescence with concentration, which
were both verified for the present experiments.

Fluorescence images of the mixed-fluid concentration field were recorded in both
streamwise (figure 1) and perpendicular (figure 2) cross-sectional views of the tran-
sverse jet. For both cases, a laser sheet was formed in order to illuminate a thin slice of
the jet-fluid concentration field. A negative-focal-length cylindrical lens expanded the
beam into a laser sheet, while a long-focal-length cylindrical lens focused the sheet to
a thin waist centred in the field of view. The sheet was 0.19 mm thick at its waist, and
had a Rayleigh range of 20 cm. Images of streamwise cross-sections of the jet were
recorded on the centreline for a square field of view of dimensions 40 cm (16 in or
53 dj ) on a side. Images of transverse cross-sections were recorded for a field of view
of 24 cm (9.3 in or 31 dj ) on a side, at a downstream location of x/dj =50. The pixel
(in-plane) resolution in transverse images was 0.23 mm, which is comparable to the
laser-sheet thickness of 0.19 mm. The pixel resolution in the streamwise images was
0.40 mm. Additional discussion of the resolution of the experiment is given in § 2.3.

As shown in figures 4–7, the coordinate system is taken to have its origin at the jet
exit, with y in the direction of jet injection (downward), x in the crossflow direction,
and z in the spanwise direction.

A digital camera was custom-designed and constructed to record the images of
the mixed-fluid concentration field. The camera used a low-noise high-dynamic-range
CCD image detector developed by NASA’s Jet Propulsion Laboratory for the Cassini
spacecraft. This ‘Cassini’ imaging system was capable of true 12-bit dynamic range
at (1024 × 1024)-pixel resolution at a framing rate of 10 Hz. Sequences of 508
images were recorded for perpendicular cross-sections of the jet, and 254 images for
streamwise cross-sections.

Background images, Iback(x1, x2), were recorded shortly before each run, with the
laser firing and an optical low-pass filter on the camera lens, but without starting the
fluorescent-dye-seeded jet. Then, after the jet was run, reference images, IF, ref(x1, x2),
of a uniform concentration field were recorded by immersing a transparent acrylic
container filled with well-mixed dye of known concentration, cref, in the test section.
Using these background and reference images, the effects of CCD sensitivity variation,
illumination non-uniformity, and optical transfer function were removed using (3). The
imaged jet-fluid concentration was referenced to the jet-plenum dye concentration, c0,

† The low concentrations used in the jet experiment, and near-saturation of fluorescence, caused
absorption to be a small fraction of the initial laser intensity, IL,0 (Shan et al. 2004). It was verified in
fluorescence measurements of a uniform-concentration field that laser attenuation due to absorption
was small for the mean-concentration-pathlength of the jet images.
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(a)
y

x

(b)

Figure 4. Mixed-fluid concentration in a streamwise cross-section of the transverse jet at
Rej = 1.0 × 103. The intensity of the image shown has scaled by x1/2 to compensate for
downstream decay. (a) Vr � 10. (b) Vr � 32.

by scaling by cref/c0, which is known a priori. This ultimately yields the mixed-fluid-
concentration values, normalized to the plenum concentration, so that

0 � C(x1, x2, t) ≡ c(x1, x2, t)

c0

=
c(x1, x2, t)

cref

cref

c0

� 1. (3b)

In this way, the scalar-field measurements were normalized so that C = 1 corresponds
to unmixed jet fluid (at the jet exit) and C = 0 corresponds to pure crossflow
(free-stream) fluid.
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(a)
y

x

(b)

Figure 5. As for figure 4, but Rej = 10 × 104.

For streamwise slices of the jet, any possible shot-to-shot variations in the power
of the pulsed laser were measured and normalized by monitoring the fluorescence-
intensity fluctuations at the jet exit. This was made possible by the fact that the jet
exit remained visible in the streamwise images, and that the jet-exit concentration
never varied. For transverse slices of the jet, the jet exit was no longer visible
and an alternative reference cell was required. In that case, a fibre-optic probe was
used to deliver a fraction of the laser output to a test tube containing a small
sample of fluorescent dye. An image of the test-tube fluorescence was recorded on
an unused corner of the CCD array and used to detect and normalize any shot-to-
shot power fluctuations of the laser. In other LIF experiments, which typically use
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(a)

(b)

y
z

Figure 6. Mixed-fluid concentration in a perpendicular cross-section of the jet at
Rej = 1.0 × 103. (a) Vr � 10 and x/dj = 50. (b) Vr � 32.

continuous-wave lasers, previous investigators have used reference cells in a similar
fashion to account for temporal variations, attenuation and other non-idealities in
the optical system (e.g. Koochesfahani & Dimotakis 1986; Dahm & Dimotakis 1990).
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(a)

(b)

y
z

Figure 7. As figure 6, but Rej = 10 × 103.

Figures 4 and 5 show examples of streamwise cross-sectional images at Reynolds
numbers of 1.0 × 103 and 10 × 103, respectively. (For display purposes only, the images
shown in figures 4 and 5 have been scaled to compensate for the downstream decay
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in concentration and image intensity. The images intensity was adjusted by a factor
proportional to the square root of the downstream distance (i.e. x1/2) starting just
upstream of the jet exit. This scaling, of course, was not applied to the data used
for quantitative analysis.) The upper images are for a jet-to-crossflow velocity ratio
of 10, and the lower images for a velocity ratio of 32. In the low-Reynolds-number
case, the jet core remained laminar for several dj after exiting the nozzle; however, at
the higher Reynolds number, the jet’s potential core transitioned and mixed within
approximately one dj . From the images, it can also been seen that the transverse jet’s
scalar field has very small-scale structure at its upper half (the ‘wake’ region); the
jet is noticeably smoother on the bottom. Also clearly visible on the jet centreline
at Vr = 32, and still present but less noticeable at Vr = 10, are the filaments (‘hairs’
or ‘fingers’) of jet fluid extending upward from the jet body toward the injection
wall. These thin filaments have a preferred orientation in the vertical direction, and
contribute to the local anisotropy of the scalar field, as will be discussed in § 5.

Figures 6 and 7 show examples of transverse cross-sections of the jet at Rej = 103

and Rej = 10 × 103, respectively. A kidney-shaped structure is seen which is associated
with a counter-rotating vortex pair. From a time sequence of images, the jet position
and the size of the scalar ‘lobes’ can be seen to vary over time. As was the case with
the streamwise view of the jet, thin vertical filaments can be seen in the wake region;
these filaments extend from the middle of the counter-rotating vortex pair up toward
the injection wall. These fine-scale features in the wake region are more apparent in
the transverse slices than in the streamwise slices because, in the cross-sectional views,
they are captured even if they do not fall precisely on the jet centreline.

The appearance of jet fluid in the wake, which is seen from the data for Vr � 10,
has been previously reported by Lozano et al. (1993) and Smith & Mungal (1998) to
occur at velocity ratios between 10 and 15. Fric and Roshko (1994) concluded, based
on the absence of jet fluid in the wake for high velocity ratios, that the boundary
layer on the plate (i.e., the crossflow boundary layer), and not the jet boundary
layer (originating within the jet nozzle), was the source of vorticity for the organized
vortices that they observed in the wake region of the transverse jet. The fact that jet
fluid is observed in the wake for Vr � 10 implies that Fric & Roshko’s reasoning does
not apply for high-velocity-ratio jets; their conclusion may still be correct, however.
Smith & Mungal (1998) have proposed that wake vortices, when stretched, could
have strong axial flows that would pull fluid from the jet into the wake region. This
explanation would reconcile the observation that the jet fluid appears in the wake with
Fric & Roshko’s proposal that the wake vortices arise from the crossflow boundary
layer. However, the observed presence of jet fluid in the wake means that it cannot
be completely ruled out based on existing arguments that the vorticity in the wake
region arises from a source other than the crossflow boundary layer.

2.2. Local Reynolds number and circulation

Unlike the axisymmetric jet discharging in a quiescent reservoir, the local Reynolds
number of the jet in crossflow changes with increasing downstream distance. It is
shown in the following that the local Reynolds number, ReΓ , based on the circulation
of a counter-rotatating vortex pair, decays in power-law fashion with downstream
distance.

Following the analysis of Broadwell & Breidenthal (1984), a jet is considered which
discharges perpendicularly at velocity Uj into a crossflow of velocity U∞. The jet
becomes a point source of momentum in the limit in which the jet momentum flux,
ṁjUj = ρj π(dj/2)2U 2

j , is held constant as jet diameter, dj , decreases, and the discharge
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velocity, Uj , increases. This point source of normal momentum, i.e. a ‘lift’ force of
vanishing drag, generates a counter-rotating vortex pair that is analogous to the
tip-vortices behind a finite-span wing generating lift. Broadwell & Breidenthal argue
that viscosity has no global role but only serves to dissipate energy at the small scales;
thus, the only global length scale possible from dimensional analysis is:

l =

(
ṁjUj

ρ∞U 2
∞

)1/2

, (4)

For the case of equal density fluids, as is the case in the present experiments, the
global length scale reduces to l = (π/4)1/2djVr .

The circulation, Γ , of one vortex of the vortex pair is related to the vortex-core
separation distance, R, and the vortices’ vertical velocity, dy/dt:

dy

dt
=

c1Γ

R
. (5)

Also, the fluid impulse per unit length, P , of the vortex is:

P = c2 ρ∞Γ R . (6)

The values of the constants c1 and c2 in (5) and (6) depend on the spatial distribution
of vorticity; for example, c1 = π/4 and c2 = 2 for ideal line vortices. It should be noted
that (5) and (6) assume that the jet takes the form of a single counter-rotating vortex
pair. (If the circulation is divided between more than two vortices, each vortex could
have different induced velocities, dy/dt , and differing trajectories. The basic case, in
which a single vortex pair is found, is considered for this discussion.) A similarity
form is assumed in which the flow is independent of the global length scale l in the far
field, so that R is proportional to y. Then, (5) and (6) may be combined to eliminate
Γ , and the result integrated, assuming R ∝ y, to find the trajectory:

y = c3

(
P

ρ∞

)1/3

t1/3 . (7)

With the far-field transformation x = U∞t , and noting that P = ṁjUj/U∞, the
trajectory of the transverse jet is,

y

l
= c3

(x

l

)1/3

, (8)

as found by Broadwell & Breidenthal (1984).
It can be seen from the preceding equations that the circulation of each vortex in

the transverse-jet decreases with downstream distance, x, as:

Γ

U∞l
= c4

(x

l

)−1/3

. (9)

Equation (9) can be expected to hold in the far field of high-velocity ratio transverse
jets, in particular, for x > l, where l ≡ Vrdj . An alternative definition of the far field
has been proposed by Smith & Mungal (1998) based upon centreline concentration
decay measurements. By their measure, the far field begins for s/dj > 0.3V 2

r , where s

is the arclength along the jet trajectory. Regardless of which definition is used, the
measurements of jet cross-sections at x/dj = 50 that are described in the following
sections are in the far field.

It should also be noted that the decreasing circulation of the vortex pair
(equation (9)) is not a consequence of viscous decay of vorticity because the analysis
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Rej Vr Θ/dj ReΓ Reλ λν/λp λD/λp

1.0 × 103 10 0.30 0.58 × 103 32 281 5.3
2.0 × 103 10 0.21 1.2 × 103 45 167 3.2
5.0 × 103 10 0.13 2.9 × 103 71 84 1.6
10 × 103 10 0.094 5.8 × 103 100 50 0.94
20 × 103 10 0.067 12 × 103 141 30 0.56

Table 1. Experimental conditions and imaging resolution of the LIF measurements at
x/dj = 50. λp is the in-plane pixel resolution for the transverse slices. The momentum thickness,
Θ , is computed at jet exit. The circulation-based (ReΓ ) and Taylor (Reλ) Reynolds numbers
are computed at x/dj = 50.

assumes inviscid flow. Hasselbrink & Mungal (2001) argue that the decrease in
circulation is a result of the circulation integral being taken across a decreasing
number of vortex lines as one moves downstream. Because the vorticity is not
contained in a single vortex tube, circulation measured in transverse planes need
not be conserved, even in the inviscid limit. (The actual circulation that would be
measured in an experiment would be even less owing to the viscous decay of two
opposite-signed vortices in proximity to one another.)

Based upon the circulation, a local Reynolds number for the transverse jet at any
far-field downstream location x > l can be defined,

ReΓ (x) ≡ Γ

ν
= c4

U∞l

ν

(x

l

)−1/3

. (10)

The local Reynolds number, ReΓ (x), is related to the jet-exit Reynolds number, Rej ,
as

ReΓ (x) = c5

Ujdj

ν

(x

l

)−1/3

= c Rej

(
x/dj

Vr

)−1/3

, (11a)

where c5 and c are constants. The value of the constant, c, can be estimated by
noting that the local Reynolds number, ReΓ (x), should approach (or at least be of
the same order of magnitude as) the jet-exit Reynolds number, Rej , as one moves
closer to the jet exit (i.e. c is of order one so that ReΓ (x)/Rej is of order one as
x/l → 1). It is reasonable then to define c = 1, with the resulting expression for the
local, circulation-based Reynolds number as:

ReΓ (x) =

(
x/dj

Vr

)−1/3

Rej . (11b)

Thus, at downstream location x/dj =50, the jet-exit Reynolds number, Rej , is related
to the local (outer-scale) Reynolds number by a factor of 0.6 for Vr = 10. Both
Reynolds numbers are summarized in table 1 for the experimental conditions of this
paper.

Finally, the Taylor Reynolds number, based upon the root-mean-squared fluctuation
of one component of velocity and the Taylor microscale, λT , can be estimated as

Reλ ≡ urmsλT

ν
� Re1/2,

for high Reynolds number (e.g. Frisch 1995). For the present experiment, the highest
Taylor Reynolds number attained is Reλ � 141 (table 1). The scalar-species equivalent
of the Péclet number for this flow, ReλSc, is estimated to reach a maximum of 3.9 × 105.
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The proceeding discussion, which found the local Reynolds number for the
transverse jet, has consequences for the dissipation scales of the current experiment.
The smallest scales of the transverse jet, and the imaging resolution, are discussed in
the following section.

2.3. Dissipation scales and resolution

The resolution requirement for scalar concentration measurement is set by the scalar
diffusion scale, λD, which is itself a multiple of the viscous scale, λν ,

λD � Sc−1/2λν. (12)

The Schmidt number, Sc, is the ratio of kinematic viscosity to scalar species diffusivity.
For high molecular-weight dyes in liquid-phase flows, the Schmidt number is much
larger than unity and the finest features in the scalar field can be significantly smaller
than those in the velocity or vorticity fields. (The Schmidt number for rhodamine-6G
in water is Sc � 2800 (e.g. Xu & Yeung 1997).)

To estimate the viscous scale, it is possible to take the scale at which turbulence
spectra deviate at high wavenumbers from −5/3 power-law behaviour. Based upon
data from a variety of flows (wakes, grid turbulence, boundary layers, jets, etc.) across
a wide range of Reynolds numbers (23 � Reλ � 3180), Dimotakis (2000) has estimated
the viscous scale to be 50 times larger than the Kolmogorov scale, λK , i.e.

λν � 50λK. (13)

The Kolmogorov scale, λK , is in turn defined as

λK ≡
(

ν3

ε

)1/4

. (14a)

When no measured values for the dissipation rate are available, an alternative
approximation to the Kolmogorov scale can be used:

λK

δ(x)
� c6Re(x)−3/4. (14b)

The constant, c6 is of order unity, based upon the energy-dissipation measurements
of Freihe, Van Atta & Gibson (1971) in turbulent jets (Dimotakis 2000).

For the transverse jet, the jet width is a sensible outer scale, and the Reynolds
number can be taken to be the local circulation-based Reynolds number ReΓ . Based
on the jet width and the circulation-based Reynolds number, the scalar diffusion
scales for the conditions of the present experiments can be computed; these estimates
of the required spatial resolution to fully resolve the flow are shown in table 1. In
the table, the scalar diffusion scale is compared to the measurement resolution, λp ,
which is determined by either the pixel resolution of the images, or the thickness
of the laser sheet, whichever is greater. For the transverse cross-sectional images of
the jet, the pixel image resolution was 0.23 mm and the laser-sheet thickness was
0.19 mm. Thus, comparing the image resolution to the estimated scalar-diffusion
scale, the LIF measurements of concentration are seen to be resolved for transverse
slices at x/dj = 50 for Reynolds numbers up to 10 × 103, and not fully resolved for
Rej = 20 × 103.

The consequences of inadequate spatial resolution when making measurements
of passive scalar fields were discussed by Breidenthal (1981) and Koochesfahani &
Dimotakis (1986). Koochesfahani & Dimotakis found for liquid-phase mixing layers
that inadequate resolution mimicked the qualitative effect of enhanced molecular
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diffusion. However, a ten-fold degradation of measurement resolution did not change
the mean concentration and only increased the probability of finding mixed fluid by
approximately 10 % on the centreline of the mixing layer. Thus, while the marginal
spatial resolution for the Rej = 20 × 103 transverse jet may artificially sharpen the
peak of the probability distribution, it is unlikely to change the measured distribution
of jet fluid significantly. Moreover, the Reynolds-number effects seen in the flow (§ 3)
begin at Reynolds numbers which are well resolved, and thus are unlikely to result
from degrading resolution.

2.4. Space–time visualization

The global structure of the jet can be visualized by stacking a contiguous time-resolved
sequence of images of the jet. The transverse jet is particularly amenable to such space–
time visualizations because Taylor’s hypothesis holds reasonably well in the far-field
of this flow and can be used to transform between time and space coordinates. For
the transverse jet, the streamwise velocity deficit (the velocity of the wake relative
to the free-stream velocity), decays rapidly with downstream distance, so that the
streamwise velocity is approximately the free-stream velocity at a far-downstream
location, i.e. Ux � U∞ for the far field (e.g. Mungal & Lozano 1996; Yuan & Street
1998). In this case, the space–time visualizations provide a reasonable approximation
to the instantaneous three-dimensional jet. It should be noted, however, that the
growth of the jet with downstream distance is not captured by the space–time data.
In a sense, however, alternative information is recorded; the space–time data sets,
while not instantaneous spatial data, are nonetheless a three-dimensional slice of the
four-dimensional space–time domain of the unsteady turbulent jet. The space–time
images that are presented here are similar in spirit to the visualizations of Mungal &
Lozano (1996) of burning plumes in crossflow. Their visualizations, taken from video
films of burning Kuwaiti oil wells, are qualitative images of burning plumes, rather
than the quantitative LIF slices of density-matched jets considered in the present
work. Mungal & Lozano find, based on assembled side views (i.e. streamwise views)
of the jet, that the downstream side (the wake side) of the jet displays considerably
more complexity than the upstream side of the jet. Yoda, Hesselink & Mungal (1992)
have provided similar volume renderings of a turbulent jet without crossflow.

Visualizations of level-sets of jet-fluid concentration, i.e. C(x, t) = Ciso, are of
particular interest because the area of the level sets affects the overall rate of reaction
that would occur if the two fluids contained chemically reacting species. In figures 8
and 9, sequences of instantaneous images are assembled into three-dimensional space–
time visualizations of the scalar jet at two Reynolds numbers, Rej =1.0 × 103 and
Rej = 2.0 × 103. Taylor’s hypothesis is used to transform time into an approximate
streamwise distance. The C � 0.006 isosurface is highlighted for both cases by selecting
only a small concentration range centred at that concentration to be opaque and
reflecting.

From the space–time visualizations, the scalar structure of the transverse jet at
both Reynolds numbers can again be seen to be dominated by a pair of kidney-
shaped, counter-rotating vortices. A deep cleft separates the two main lobes of the
counter-rotating vortices, and fine-scale filaments extend up from the cleft into the
wake, as was also seen in the individual images (figure 6). The wake side of the jet
has more complex smaller-scale features than the upstream side, as previously seen
by Mungal & Lozano (1996). Comparing the two Reynolds numbers, a small tertiary
vortex is seen at Rej =1.0 × 103 which is not seen at Rej = 2.0 × 103. Rotation of
the tertiary vortex is evident in the spiral wrapping of thin scalar filaments. For the
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t

Figure 8. Space–time visualization of isosurface of C � 0.06 for transverse jet at
Rej = 1.0 × 103, Vr = 10, and x/dj = 50.

t

Figure 9. Space–time visualization of isosurface of C � 0.06 for a Rej = 2.0 × 103, Vr = 10,
transverse jet.

lower-Reynolds-number jet, the main lobes of the scalar field are not equal in size
because of the jet fluid entrained in the tertiary vortex. Only two main lobes, approxi-
mately equal in size, are seen in the higher-Reynolds-number case, Rej = 2.0 × 103.
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These limited visualizations are qualitatively consistent with the experiments of
Kuzo (1995), which found a transition between asymmetric and symmetric counter-
rotating vortices in the transverse jet above a critical Reynolds number. Using particle
image velocimetry to measure velocity and vorticity fields, Kuzo reported the existence
of tertiary, and even quaternary vortices, at low Reynolds numbers. At Vr = 10, the
initially asymmetric jets appeared to transition to a symmetric flow state as the
Reynolds number was increased above a critical value of Rej � 6.0 × 103. Of course,
the scalar-field measurements of the present study are not directly comparable to
measurements of vorticity and velocity fields. However, the present data do indicate
asymmetric structure and decreasing asymmetry with increasing Reynolds number
in the flow-regime investigated. The general asymmetry of the transverse jet at
downstream locations has been noted in experimental studies by Kamotani & Greber
(1972) and Smith & Mungal (1998), among others. Smith and Mungal (1998) review
the evidence for asymmetry in the transverse jet and conclude that it is quite common
in experiments, although symmetry is often assumed in computational investigations.

3. Reynolds-number effects and flow dependence
By some measures, the behaviour of turbulent jets in crossflow appears to be

insensitive to Reynolds number. Gross structural features, such as the jet size and
trajectory, are insensitive to Reynolds number within the range that was investigated.
Figure 10 shows two different ‘sizes’ of the jet cross-section at x/dj = 50. The size,
δh, is defined as the horizontal extent of the jet for which the mean concentration is
greater than a given percentage (either 3 % or 5 %) of the peak concentration. As seen
in the figure, the horizontal size is approximately independent of Reynolds number
over the range 1.0 × 103 � Rej � 20 × 103. Despite the different growth rates of the
transverse jet and jet discharging in a quiescent reservoir, their sizes are comparable
at x/dj = 50, where δh � 23 (cf.Dahm & Dimotakis 1990). A further discussion of the
relative entrainment rates of transverse jets and ordinary jets will be postponed until
§ 3.2.

Reynolds number also appears to have little effect on jet trajectories. Mean jet
trajectories, defined as the locus of points of maximum mean-concentration on the
jet centreline, are shown in figure 11 for the same velocity ratio at two different
Reynolds numbers, Rej = 1.0 × 103 and 10 × 103. The trajectories essentially overlap,
and both exhibit a power-law dependence of penetration depth on downstream
distance. (For the higher-Reynolds-number jet, the trajectory dips slightly around
x/dj ≈ 101.25 = 18 before continuing on at the same slope. The slight dip in jet
trajectory is associated with a near-plateau that occurs in the mean concentration field
at that location (see figure 11); a similar dip occurs at the same downstream location
in the trajectory reported by Smith & Mungal (1998, their figure 7) for the Vr =
10 jet.) Early experiments by Pratte & Baines (1967) found power-law trajectories
with an exponent of 0.28, and, as discussed in § 2, subsequent modelling work by
Broadwell & Breidenthal (1984) predicted a power-law trajectory with an exponent
of 1/3. For comparison, lines of slope 0.28 and 1/3 are shown in figure 11. The
trajectory of the present data is closer to that of Broadwell & Breidenthal. It should
be noted that the scalar trajectories are generally shallower than trajectories based
on the maximum velocity or mean nozzle streamlines (e.g. Kamotani & Greber 1972;
Yuan, Street & Ferziger 1999). Differences between scalar and velocity trajectories
are also discussed by Su et al. (2000) and Hasselbrink & Mungal (2001).
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(a)

(b)
40

30

20
δh

dj

10

2.5 3.0
log10 Rej

3.5 4.0 4.5
0

Figure 10. ‘Size’ of the Vr = 10 transverse jet in cross-section, defined as the average
horizontal extent, δh, of mean scalar field at x/dj = 50. (a) Ensemble-averaged scalar field

for Rej = 20 × 103. Lines show horizontal extent of 3 % of maximum mean-concentration. (b)
Size versus Reynolds number. �, 3 % of maximum mean-concentration. �, 5 % of maximum
mean-concentration.

The decay of mean-concentration on the jet centreline is also insensitive to Reynolds
number, over the range of values investigated. Figure 12 shows the centreline mean-
concentration decay for Rej = 1.0 × 103 and Rej = 10 × 103. The lower-Reynolds-
number jet has a longer potential core and initially decays more slowly with
penetration depth (cf. figures 4 and 5). However, by about x/dj � 6, the decay of the
low-Reynolds-number jet has caught up to that of the higher-Reynolds-number case.
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(a)

(b)

1.4

1.2

1.0

0.8

0.5 1.0

log10(x/dj)

lo
g 1

0(
y/

d j
)

1.5 2.00

Figure 11. Mean concentration field and jet-centreline trajectory for Vr = 10. (a)
Ensemble-averaged concentration field for Rej = 10 × 103. (b) Penetration depth versus

downstream distance. Circles show Rej =1.0 × 103 and crosses show Rej = 10 × 103. The lower

comparison line is based on experiments of Pratte & Baines (1967) and shows y/dj ∝ (x/dj )
0.28.

The upper comparison line is based on predictions of Broadwell & Breidenthal (1984) and
shows y/dj ∝ (x/dj )

1/3.

Figure 13 depicts the concentration decay with downstream distance normalized in
two ways, x/dj and x/Vrdj . Apart from a difference due to potential-core lengths, the
decay rates of the jet at the two Reynolds numbers are nearly indistinguishable.

As an aside, it should be noted that Smith & Mungal (1998) reported a ‘branch
point’ in the centreline concentration decay, representing, in their words, ‘a transition
in the flow field from enhanced mixing to reduced mixing compared to the free
jet.’ They identified the transition point as occurring around s/V 2

r dj � 0.3, or,
approximately, x/Vrdj � 1.6 (Smith & Mungal 1998, their figure 24). That location
is marked in figure 13 with an arrow. For the Rej = 10 × 103 case shown, a very
slight change in the slope of the centreline concentration decay can be seen. While
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0.5

0

–0.5

–1.0

–1.5
–1 0

log10(y/dj)

lo
g 1

0�
C

�

1 2

Figure 12. Decay of maximum mean-concentration with penetration depth at Vr = 10. Small
circles show Rej = 1.0 × 103, and small crosses show Rej = 10 × 103.

–2.0

0

–1

–2
–1.0 –0.5 0.5

log10 (x/dj)

log10(x/Vr dj)

0 1.0 1.5 2.0

1
–1.5 –1.0 0.5 0 0.5 1.0

lo
g 1

0
C

Figure 13. Decay of maximum mean-concentration with downstream distance at Vr = 10.
Rej =1.0 × 103 is shown with circles, Rej = 10 × 103 with crosses. The top axis shows
downstream distance normalized by Vrdj , while the bottom axis shows downstream distance
normalized by dj . The arrow marks the location of a slight change in the slope of the decay
reported by Smith & Mungal (1998) at log(x/Vrdj ) � 0.15.

not conclusive, the present data are consistent with Smith & Mungal’s (1988) findings
of a slight change in slope of the mean-concentration decay rate on the centreline of
the transverse jet.
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However, it should be noted that mean quantities, such as mean-concentration
decay rate or mean jet width, are not actual measures of mixing, but rather measures
of entrainment. In particular, 〈C〉 is a measure of the ratio of jet fluid to total (jet fluid
plus entrained crossflow fluid) mass flux. By definition, the mean concentration is the
same for any probability distribution function having the same first moment. Thus,
the mean cannot distinguish between perfectly homogenized fluids (one Dirac delta
function), completely unmixed fluids (two Dirac delta functions), or intermediate states
with the same first moment. To assess mixing, and its Reynolds-number dependence,
measures other than mean quantities must be examined.

3.1. Distribution of jet fluid

A description of mixing involves knowledge of the probability density function of
the conserved passive scalar, in this case, the jet-fluid concentration. The distribution,
f (C; Rej ), of mixed-fluid concentration is normalized so that its definite integral is
the probability that C lies between the limits of integration:

Pr{C1 � C <C2} =

∫ C2

C1

f (c) dc = F (C1) − F (C2). (15)

It should be noted that the distributions discussed in this paper are based on the
probability of occurrence of a particular concentration C in an instantaneous two-
dimensional image, rather than on the frequency of occurrence at a fixed point in
space. Thus, they are spatial rather than temporal probability distributions. The spatial
PDF is computed as the normalized magnitude of the differential area associated with
various concentration values. In two dimensions, the PDF is (Kuznetsov & Sabel’nikov
1990; Dimotakis & Catrakis 1996),

f (C) =
1

Atot

∣∣∣∣dA(C)

dC

∣∣∣∣ , (16a)

where A(C) is the area associated with a specified value of the scalar concentration,
and Atot is the total area (domain) of the measured scalar field. Generalized to
d-dimensions, the PDF would be computed as,

fn(C) =
1

Vd,tot

∣∣∣∣dVd(C)

dC

∣∣∣∣, (16b)

where Vd(C) is the d-dimensional volume associated with C, and Vd,tot is the total, d-
dimensional volume (domain) of the scalar field. Experimentally measured probability-
density functions depend in general on the dimensionality of the measurement, as well
as on the form of the scalar field (see the Appendix). Thus, the PDFs described in
the following discussion are more precisely the distribution of jet-fluid concentration
in two-dimensional slices of the four-dimensional scalar field C(x, y, z, t).

In contrast with structural measures such as the jet size and trajectory, or mean
measures such as the decay of centreline concentration, the data indicate that the
distribution of mixed fluid in the far field of a high-Schmidt-number strong transverse
jet varies strongly with Reynolds number. The PDF of jet-fluid concentration
at a fixed far-field location does not reach an asymptotic state, up to at least
Rej = 20 × 103. Figure 14 shows scalar PDFs for five different Reynolds numbers,
Rej = 1.0, 2.0, 5.0, 10 and 20 × 103. The measurement location was fixed at x/dj =50
and the velocity ratio was maintained at Vr = 10 in all cases. At the lowest Reynolds
number, the PDF is qualitatively similar to the probability distribution of a two-
dimensional diffusive concentration field (derived in the Appendix). The distribution is
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10
f(

C
)

5

Rej = 20 × 103

10 × 103

5 × 103

2 × 103

1 × 103

0.05 0.10 0.15
C

0.20 0.250

15

Figure 14. Distribution of jet-fluid-concentration for varying Reynolds number at Vr = 10.
Measurements made at x/dj = 50 for Rej = 1.0, 2.0, 5.0, 10 and 20 × 103. Increasingly peaked
PDFs with increasing Reynolds number.

broad, decreases monotonically, and peaks at very low jet-fluid concentration (C ≈ 0).
As the Reynolds number is increased, the distribution of mixed fluid no longer
decreases monotonically but develops a peak, i.e. there develops a most-probable
concentration in the scalar field. The peak occurs by Rej = 5.0 × 103. The preferred-
concentration peak grows in height with increasing Reynolds-number up to the highest
Reynolds numbers investigated, Rej = 20 × 103. The scalar field is increasingly stirred
and becomes more spatially homogeneous with increasing Reynolds number.

The image data themselves show additional evidence for a shift from a
relatively unmixed to a well-mixed nearly homogeneous distribution with increasing
Reynolds number. Figure 15 shows scalar fields for concentrations straddling the
peak of the mixed-fluid PDF at high Reynolds numbers. Jet-fluid concentrations
between C =0.025 and C = 0.045 are highlighted in the image at two Reynolds
numbers, Rej = 1.0 × 103 and Rej =10 × 103. For the lower-Reynolds-number case,
the concentration range, 0.035 � C � 0.045, is confined to a thin region on the
boundary of the jet. Everywhere else, the scalar field is relatively unmixed, with
high concentration regions near the core of the jet and pure free-stream fluid outside.
For the higher Reynolds-number jet, the specified concentration range is found
throughout much of the body of the jet. The jet fluid is much more homogenously
mixed owing to the turbulent stirring. Thus, the measured growth of PDF peaks with
increasing Reynolds number is a direct consequence of the enhanced homogenization
of the concentration field. It should also be noted that the PDF for each Reynolds
number contains 5.3 × 108 individual measurements of the scalar field (508 frames at
(1024 × 1024)-pixel resolution). For the length of the recording, approximately four
large-scale structure passages are captured at the lowest Reynolds number, and over
75 at the highest.

The most-probable concentration (i.e. the location of the PDF peak) and the width
of PDF both vary with Reynolds number over the range 1.0 × 103 � Rej � 20 × 103.
Figure 16 shows the concentrations associated with the peaks of the jet-fluid
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(a)

(b)

Figure 15. Concentrations in the range 0.025 � C � 0.045 for (a) Rej = 1.0 × 103 and

(b) Rej = 10 × 103 at Vr = 10. Compare with figures 6 and 7.

distribution. The most-probable concentration shifts to lower values with increasing
Reynolds number, but the incremental change diminishes at the higher Reynolds
numbers. Another concentration of interest is the mean mixed-fluid concentration,
Cmixed, defined as the mean of all concentrations greater than a chosen value
representing a cutoff between mixed and unmixed fluid. In this case, the cutoff
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0.06

0.04

0.02

C

0
2.5 3.0 3.5

log10Re
4.0 4.5

Figure 16. Peak, mixed-fluid, and mean concentrations versus Reynolds number for Vr = 10.
�, mean concentration, C̄; +, mean mixed-fluid concentration, Cmixed, for C > 0.01; �, peak
concentration, Cpeak, defined as point of zero slope (for Rej = 5.0, 10 and 20 × 103), or as point

of maximum negative curvature (for Rej = 2.0 × 103).
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Figure 17. Normalized r.m.s. fluctuations of the scalar field versus Reynolds
number for Vr =10.

concentration, C = 0.01, was chosen to coincide with a local minimum that occurs
in the PDF. The mean mixed-fluid concentration also asymptotes at the highest
Reynolds numbers. Finally, the width of the PDF also declines and asymptotes with
increasing Reynolds number. As seen in figure 17, the normalized standard deviation
decreases rapidly before levelling off around Rej = 10 × 104. The asymptotic levelling
off of measures such as standard deviation and most-probable concentration for the
transverse jet is consistent with a mixing transition that has been documented in other
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Figure 18. Jet-fluid concentration PDFs for jets discharging in a quiescent reservoir. Lines of
increasing solidity denoting increasing Rej = 4.5, 9 and 18 × 103 (Catrakis & Dimotakis 1996,
adapted from their figure 8).

flows to occur at comparable outer-scale Reynolds numbers of order 104 (Dimotakis
2000).

It can be shown from control-volume analysis that the mean concentration in a
transverse cross-section of the jet should remain constant for any Reynolds number,
provided the velocity ratio is unchanged. The mean concentration, C̄, depends linearly
on velocity ratio,

C̄ =

∫ ∞

−∞
C f (C) dC � C0 Vr

Aj

A
. (17)

In the above expression, Aj is the area of the nozzle exit, and A is the area of a
transverse plane whose boundary completely encloses the cross-section of the jet.
When jet-plenum concentration, C0, and velocity ratio, Vr , are fixed, as they are in
the case of the present experiments, the mean concentration should be independent
of the Reynolds number. This provides a test for the quantitative accuracy of the
concentration measurements, and further verifies that the plenum concentrations and
jet velocity ratios were well controlled for the test series. As shown in figure 16,
the invariance of the mean concentration, C̄, was verified for the present set of
experiments.

3.2. Entrainment and stirring compared with jets in quiescent reservoirs

Differences in turbulent mixing can be seen between transverse jets and jets
discharging into a quiescent reservoir. For comparison to the transverse-jet data
(figure 14), figure 18 shows measured distributions of jet-fluid concentration for
varying Reynolds number in the far-field (x/dj = 275) of liquid-phase, quiescent-
reservoir jets. These jet measurements were made by Catrakis & Dimotakis (1996)
for a similar Reynolds-number range to the current transverse-jet experiments. At
the lowest Reynolds number, Rej = 4.5 × 103, the jet-fluid-concentration PDF of
the quiescent-reservoir-jet displays a well-defined peak much like the PDF of the
transverse jet at similar Reynolds numbers. However, as the Reynolds number
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increases, the height of the peak measured from the local minimum decreases, i.e.
the relative height of the peak decreases. For jets without crossflow, the trend with
increasing Reynolds number seems to be towards a smooth monotonic-decreasing
distribution. We anticipate that the peak will disappear altogether with further
increases in Reynolds number for the quiescent-reservoir jet. In contrast, for the
transverse jet, the relative height of the distribution peak increases with Reynolds
number. The trend in the transverse jet appears to be toward a strongly peaked
distribution, as the scalar field is increasingly homogenized. The current data suggest
that, for Reynolds numbers up to Rej = 20 × 103, the trends in turbulent mixing with
Reynolds number may be be different between transverse (Vr = 10) and quiescent-
reservoir jets. Additional comparisons at different downstream locations and velocity
ratios would be required to confirm this hypothesis.

It is necessary to consider possible differences in entrainment between ordinary
and transverse jets, because entrainment is a key step in what has been described
as the three-stage process of turbulent mixing (e.g. Eckart 1948; Dimotakis 1986):
entrainment; stirring; and molecular diffusion. (Entrainment is the engulfment of
irrotational flow into the turbulent-flow region, stirring is the kinematic motion
responsible for creating interfacial area between mixing species, and molecular mixing
is due to diffusion.) The rate of entrainment of unmixed fluid, relative to the rate at
which stirring and molecular diffusion act to homogenize the previously entrained
fluid, helps to determine the distribution of the scalar field. This idea is illustrated in
figure 19. The jet is modelled in a Lagrangian sense as a balloon being filled from a
tap in similar fashion to the model developed for shear layers by Dimotakis & Hall
(1987). The balloon is initially filled with a fixed volume V0 of C = 1 fluid while the
tap pours in C = 0 fluid at varying volume flow rate V̇ = e(t). For mixing jets, the
original fluid in the balloon represents a parcel of plenum fluid that is injected into
the crossflow, while the fluid that is poured in represents the fluid that is entrained
into the jet in a convective frame moving with the jet fluid. The contents of the
balloon are a Lagrangian parcel combining jet fluid and entrained crossflow fluid
which cannot detrain, since entrainment and mixing can only proceed one way. Thus,
the size of balloon (and the jet it represents) grows monotonically with time and
downstream distance in an average sense. In the complete absence of stirring and
molecular diffusion, the PDF of the contents of the balloon would be the sum of
two delta functions, i.e. f (C) = (1 − Cmean)δ(C) + Cmeanδ(C − 1) (Dimotakis & Miller
1990). However, if stirring and diffusion act to mix the fluid, then intermediate, mixed
concentrations would be generated within the balloon. In that case, the PDF would
tend toward a delta function, f (C) = δ(C − Cmean), centred at the mean concentration,
if stirring and molecular mixing rates are fast compared to the entrainment rate.

The mean concentration, Cmean, is determined by the ratio of jet fluid to entrained
fluid, regardless of mixing rate, and is given by

Cmean =
V0

V0 +

∫ ∞

0

e(t) dt

=
1

1 + E/V0

, (18)

where V0 is the original volume of C = 1 fluid, e(t) is the entrainment rate, and E/V0

is the volume ratio of entrained to original fluid for that Lagrangian parcel of fluid.
The total mass flux of fluid through a plane perpendicular to the jet axis is

ṁ=

∫
Ajet

ρu · dA, (19)
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C = 0 

C = 1 

C = 1 

Stirrer

f (C)

f (C)

0 1
C

0 1
C

(a)

(b)

V = e (t) 

V = e (t) 

.

.

C =  0 

Figure 19. The jet-mixing process represented as a balloon being filled from a tap. The
balloon represents a Lagrangian control-volume for a parcel of fluid initially comprised of
pure jet fluid that entrains reservoir/crossflow fluid and mixes with it (a) Limited mixing
absent stirring. (b) Mixing with enhanced stirring.

while the mass flux of dye is

ṁdye =

∫
Ajet

Cρu · dA, (20)

where dA has unit normal parallel to the jet axis. The mass flux of dye is conserved,
and must be equal to the initial flux at the nozzle, i.e. ṁdye = ṁ0, since C = 1 at the
nozzle. In the far field of the jet, where u � U∞ x̂, the ratio of mass fluxes is,

ṁdye

ṁ
�

∫
Ajet

C dA∫
Ajet

dA

=

∫
Ajet

C dA

Ajet

. (21)

This ratio of dye flux to total flux is simply the mean flux, Cmean, which can be
measured from the image data. Thus, the entrainment of transverse jets can be
deduced from measurements of concentration and compared to expressions proposed
by previous investigators.
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It should be noted that the mean concentration, Cmean, discussed above is the
average concentration of a Lagrangian parcel of jet fluid mixed with entrained fluid.
It differs subtly from the C̄ that was previously defined in (17) as the measured
mean concentration over a field of view containing a cross-section of the jet as
well as surrounding tunnel fluid. Because the field-of-view of the measurement
contains additional (un-entrained) surrounding fluid in addition to the mixed jet
fluid, Cmean � C̄. (The equality would hold only if concentration is measured for
an area containing only the jet fluid and entrained tunnel fluid, i.e. excluding the
surrounding tunnel fluid.) On the other hand, the mean concentration, Cmean, is less
than the mixed-fluid concentration, Cmixed, which was previously defined as the average
over the measurement plane of all concentrations greater than C = 0.01 (figure 16).
The mean concentration is thus constrained to be,

C̄ � Cmean <Cmixed, (22)

Based on measurements at x/dj = 50 for the transverse jet, Cmixed = 0.03 and C̄ = 0.01
(see figure 16). Using (18) and the measured Cmixed and C̄ for the Vr = 10 jet, the ratio
of entrained fluid to jet fluid at x/dj = 50 is found to be within the limits:

32 <
E

V0

� 99. (23)

For comparison, Hasselbrink & Mungal (2001) and Hanm, Orozco & Mungal
(2000) estimated the entrainment rate of transverse jets by considering the momentum
exchange between crossflow and jet fluid necessary to turn the jet to an experimentally
determined trajectory. They proposed an expression for total mass flux through a
section perpendicular to the jet axis in the transverse jet as:

ṁ

ṁ0

= 1 +
Vr

AB

(
x

Vrdj

)1−B

, (24)

where A � 2.1 and B � 0.29 are experimentally determined constants. This expression
is valid in the far field, for s/V 2

r dj � 0.3 by the definition of Smith & Mungal (1998),
where s is the arclength from the jet exit. Substituting (24) into (21) then yields:

Cmean � 1

1 +
Vr

AB

(
x

Vrdj

)1−B
. (25)

This predicts a mean concentration Cmean(x/dj = 50) � 0.02 and entrained-to-crossflow
fluid ratio E/V0 � 51 for the Vr = 10 jet, which is consistent with the range of values
inferred from the concentration measurements (equations (22) and (23)).

For a turbulent, axisymmetric jet in a quiescent reservoir, the total mass flow rate
was found by Ricou & Spalding (1960) to be:

ṁ

ṁ0

= 1 + 0.32
s

dj

. (26)

This is plotted in figure 20 along with the normalized mass flux versus arclength, s,
from the jet exit for the Vr = 10 transverse jet. In the figure, the lines transition from
dashed to solid lines at the beginning of the far field for transverse and regular jets,
as defined by Smith & Mungal (1998) and Dahm & Dimotakis (1990), respectively.
At the downstream location of the present experiments, x/dj = 50 (equivalent to
s/dj = 67), the Vr = 10 transverse jet has 2.3 times the total mass-flow rate of an
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Figure 20. Normalized total mass flux, ṁ/ṁ0, versus arclength from jet exit. Upper line:
transverse jet for Vr =10. Lower line: jet in quiescent reservoir.

ordinary jet of the same initial mass-flow rate. If extrapolated further, the two lines
will eventually cross in the extreme far field, as ṁ/ṁ0 ∝ (s/dj )

1−B , where B � 0.29 for
the transverse jet, while ṁ/ṁ0 ∝ s/dj for the ordinary jet. However, for the Vr =10
transverse jet, the estimated cross-over in mass flux occurs at s/dj � 2800. Thus,
for most practical purposes, the high-velocity-ratio transverse jet has entrained more
fluid than a jet of the same initial mass flux discharging in a quiescent reservoir.

As discussed in the previous section, the growing peaks in the PDF of jet-
fluid concentration indicate that the scalar field of the transverse jet is increasingly
homogenized with increasing Reynolds numbers. This implies that stirring, relative
to entrainment rate, is enhanced at higher Reynolds numbers. Yet, in comparison to
the jet discharging in a quiescent reservoir, the Vr = 10 transverse jet has a greater
entrainment rate and total mass flux at x/dj = 50. The spatial homogenization of
the scalar field in the far field occurs in spite of the transverse jet’s relatively high
entrainment rate. The high-velocity ratio, turbulent transverse jet is an efficient mixer
in the sense that it rapidly entrains unmixed free-stream fluid, and homogenizes the
jet-fluid-concentration field.

4. Scalar increment statistics
While the statistics of concentration fields in transverse jets can be described

with scalar PDFs (§ 3), the structure of the scalar field can be assessed in terms of
the distribution of spatial differences, f (�rC). As introduced in (1), the probability
distribution of scalar differences, also known as scalar increments, gives the probability
of finding a concentration C + �C at a vector distance r away from a point of
concentration C. The statistics of scalar differences are connected to the structure
functions for a turbulent scalar field and have implications for the Kolmogorov-
Oboukhov–Corrsin (KOC) theory of turbulent mixing of passive scalars (Oboukhov
1949; Corrsin 1951; an overview of passive-scalar turbulence is given by Shraiman &
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(a) (b)

Figure 21. Scalar-difference field for Rej = 1.0 × 103, Vr = 10 jet. (a) Horizontal shift of

0.3 × 10−2δh. (b) Horizontal shift of 2.1 × 10−2δh. �rC = 0 is shown as grey, and negative
and positive values are shown as black and white, respectively.

Siggia 2000). In this paper, the distribution of scalar differences is investigated
primarily for the evidence they provide for intermittency and anisotropy in the scalar
field.

Scalar increments are typically studied with point measurements of the scalar
field, for example, with temperature probes (Antonia et al. 1984; Ould-Rouis et al.
1995; Mydlarski & Warhaft 1998). However, two-dimensional image data of the
type collected in the present experiments allow novel whole-field measurement of
scalar increments of the concentration field (figure 21). Normalized and calibrated
images measuring scalar concentration fields are spatially displaced by a vector
distance r and subtracted from themselves. For instance, figure 21 shows two-
dimensional scalar-difference fields for small and large horizontal displacements,
r/δh = 0.3 × 10−2 ẑ and r/δh = 2.1 × 10−2 ẑ, respectively. The probability distribution
of scalar increments is then computed as the normalized histogram of the scalar-
difference field. To prevent the PDF from being dominated by differences between the
completely unmixed crossflow fluid and the jet, the distribution of scalar differences is
conditioned on both measurement ‘points’ being within the instantaneous body of the
jet. This is accomplished by making the distribution conditional on the intersection
between shifted and unshifted jet body, defined from the image data by a minimum
scalar threshold. The procedure is conceptually equivalent to requiring that the two
measurement ‘probes’ lie within the jet body. (The condition is necessary because
of the inhomogeneity and spatial confinement of the image data. Without it, the
distribution of scalar difference would be dominated at large separation distances by
differences between points within the jet and points outside of the jet. In that case,
the distribution of scalar increments for a spatially confined scalar field would simply
tend toward the concentration PDF, f (C) and its reflection, f (−C) for large r .)

4.1. Intermittency and the distribution of scalar increments

Distributions of conditional scalar increments at two Reynolds numbers, Rej = 2.0 ×
103 and Rej = 20 × 103, are shown in figure 22. The distributions were computed
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Figure 22. Scalar-increment PDFs at Vr = 10 for two different Reynolds numbers and varying
horizontal separation distances, r . Innermost, triangular PDFs are for smallest separation
distances and outermost, broad-shouldered PDFs are for largest separations. (a) Rej = 2.0 × 103

and separation distances r/δh = 0.2, 0.4, 1.7, 7.0, and 14 × 10−2 ẑ. (b) Rej = 20 × 103 and

separation distances r/δh = 0.3, 0.5, 2.0, 8.1 and 16 × 10−2 ẑ.

for varying horizontal separation distances in the range 0.2 × 10−2 � |r|/δh � 14 ×
10−2, where δh was previously defined (§ 3) to be the horizontal size of the jet
based on mean concentration. As seen from the figure, the PDF becomes narrower
with increasing Reynolds number at all separation distances, i.e. the probability
for large differences in the scalar field decreases with increasing Reynolds number.
Large differences in mixed-fluid concentration between two spatially separated points
become rarer as the jet fluid is increasingly homogenized at high Reynolds numbers.
This increased spatial homogenization of the scalar field was also seen in the growing
preferred-concentration peaks in the PDF of jet-fluid concentration (figure 14), and
the decreasing variance of the scalar field (figure 17).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

12
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006001224


78 J. W. Shan and P. E. Dimotakis

(a)

1

0

lo
g 1

0 
 f

(∆
rC

 /�
(∆

rC
)2

�
1/

2 )
lo

g 1
0 

 f
(∆

rC
 /�

(∆
rC

)2
�

1/
2 )

∆rC / �(∆rC)2�1/2

–1

–2

–3

–4

1

0

–1

–2

–3

–4

–8 –6 –4 –2 0 2 4 6 8

–8 –6 –4 –2 0 2 4 6 8

(b)

Figure 23. Standard-deviation-normalized PDFs of scalar increments at Vr = 10 for two
Reynolds numbers and varying horizontal separation distances, r . Gaussian (dashed) and
exponential (dotted) distributions shown for comparison. Exponential-tailed triangular PDFs
are for smallest separation distances and Gaussian-shouldered innermost PDFs are for largest
separations. (a) Rej = 2.0 × 103 and separation distances r/δh = 0.2, 0.4, 1.7, 7.0 and 14 ×
10−2 ẑ. (b) Rej = 20 × 103 and separation distances r/δh = 0.3, 0.5, 2.0, 8.1 and 16 × 10−2 ẑ.

As the separation distance changes for a given Reynolds number, the shape of
the scalar increment PDF evolves from a broad-shouldered distribution to a long-
tailed distribution. Figure 23 shows scalar increment PDFs normalized by their own
standard deviation. The distributions are plotted for varying horizontal separation
distances, r . A growing ‘spike’ is seen at �rC � 0 as the separation distance
decreases. At the largest distances, the PDF has narrow tails and shoulders which
are Gaussian in shape. For smaller separation distances, the PDF is long-tailed
and has an exponential or stretched-exponential form. For comparison, exponential
and Gaussian distributions are plotted in the figure. The observed exponential or
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stretched-exponential behaviour of the distributions is consistent with previous results
for scalar temperature increments in Rayleigh–Bénard convection (Ching 1991), grid
turbulence (Mydlarski & Warhaft 1998), boundary layers (Ould-Rouis et al. 1995),
and plane jets (Antonia et al. 1984). Using novel whole-field measurements of scalar
increments, the present experiments extend the list of turbulent flows for which
long-tailed distributions of scalar increments are found to liquid-phase transverse
jets. (In making comparisons, it should be noted that the Schmidt number of the
present experiment is two orders of magnitude higher than the Prandtl number of
the previous temperature measurements.)

The long tails and peak at the origin of the scalar-increment distribution are
believed to arise from plateau-cliff structures in the scalar field. Such structures,
consisting of integral-scale-sized ‘plateaux’ of nearly homogeneously mixed fluid
separated by intense gradient sheets, or ‘cliffs’, have been documented in a variety
of turbulent mixing flows (discussed below), and are also seen in the scalar field of
the transverse jet. Figure 24 shows the jet-fluid concentration in a transect of the
transverse jet at Rej = 10 × 103. In this transect, the concentration is arranged in
three bands (plateaux), separated by large jumps (cliffs) in concentration. Relatively
small fluctuations in concentration occur within the bands. Such an intermittent
scalar field can produce a spiked long-tailed distribution of scalar increment in the
following manner. Plateaux of nearly constant scalar concentration in the transverse
jet contribute to the large small-concentration-difference peak at the origin of the
distribution of �rC, while cliffs separating the concentration plateaux produce large
fluctuations which contribute to the long tails of the scalar-increment distribution.
The spiked long-tailed distribution of scalar increments is thus evidence that the
scalar field is intermittent and contains plateaux and cliffs which persist for Reynolds
number up to Rej � 20 × 103.

Large-scale plateaux of well-mixed fluid, separated by cliffs of sharp concentration
gradients, appear to be characteristic of a wide variety of turbulent mixing flows.
Such scalar plateaux and cliffs in physical space (or, equivalently, ramp-cliffs for time-
series measurements) have previously been observed in experiments on mixing in
turbulent shear flows such as wakes (Gibson, Friehe & McConnell 1977), boundary
layers (Mestayer et al. 1976; Gibson et al. 1977), and jets (Uberoi & Singh 1975;
Sreenivasan, Antonia & Britz 1979; Antonia et al. 1986; Dahm & Dimotakis 1990;
Yoda et al. 1992). Such ramp–cliff structures have also been found in grid turbulence
with a superimposed mean-temperature profile (Budweig, Tavoularis & Corrsin 1985;
Thoroddsen & Van Atta 1992; Tong & Warhaft 1994), despite the absence of
mean shear, entrainment and large-scale anisotropy of the velocity field. Numerical
simulations in two- (Holzer & Siggia 1994) and three- (Pumir 1994) dimensions
show the same basic structure of the scalar field in physical space: relatively well-
mixed regions separated by cliffs where the scalar gradient is very large. As noted
by Warhaft (2000), it is remarkable that ramp–cliff structures are observed in the
two-dimensional simulations of Holzer & Siggia, which assumed a Gaussian random
velocity field rather than a velocity field that is a solution of the Navier–Stokes
equations. Experiments (Antonia et al. 1986) and simulations (Pumir 1994) indicate
that cliffs tend to develop where the flow is hyperbolic (at a diverging separatrix),
while elliptic regions are better mixed. Based on experiments in heated grid turbulence,
Tong & Warhaft (1994) concluded that the cliffs persist and become even sharper
and more intense with increasing Reynolds number up to at least Reλ =130. In
doing so, the cliff–plateau structures contribute deeper and deeper into the tails of
the scalar-derivative PDF with increasing Reynolds number. (The scalar-increment
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Figure 24. Concentration in a transect of the jet at Rej =10 × 103 and Vr =10.
(a) Location of transect. (b) Concentration versus position.

PDF would approach the scalar-derivative PDF in the limit of r → 0.) The basic
plateau–cliff or ramp–cliff structure of the scalar field has also been associated with
small-scale anisotropy, an issue that is discussed in the following sections.

4.2. Anisotropy and scalar increments in differing directions

The measured distributions of scalar increments suggest that the large scales (plateaux)
of the scalar field are separated by small scales (cliffs). In a sense, this is a coupling of
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the large and small scales, which introduces the possibility that the scalar field may
be anisotropic even at small length scales (e.g. reviews by Sreenivasan & Antonia
1997; Shraiman & Siggia 2000; Warhaft 2000). There has long been evidence of
a lack of scalar isotropy in turbulent mixing flows at both inertial and dissipation
scales. A persistent (even at high Reynolds numbers) non-zero skewness of the
scalar derivative has been reported in shear flows (Mestayer et al. 1976; Gibson
et al. 1977; Sreenivasan et al. 1979) as well as isotropic grid turbulence with a linear
temperature profile (Tavoularis & Corrsin 1981; Budwig et al. 1985; Tong & Warhaft
1994). The skewness of the scalar derivative is a consequence of the ramp–cliff
structures in the scalar field, which can be preferentially aligned in a turbulent flow.
In shear flows, the converging–diverging separatrices that form the cliffs are inclined
along the principal-strain direction on average (Antonia et al. 1986). In flows without
mean shear, the separatrices are randomly aligned; however, those that happen to
be aligned with the mean scalar gradient will tend to create ramp–cliff structures
(Holzer & Siggia 1994; Warhaft 2000). In either case, the cliffs in the scalar field
are preferentially oriented and sharp, thus resulting in scalar anisotropy at both
large and small scales. In addition to the reported non-zero skewness of the scalar
field, experiments have investigated the morphology of turbulent scalar fields with
three-point correlations, 〈C(xA)C(xB)C(xC)〉, where the net result depends on the
distribution of cliff orientations and the geometry of the triangle formed by the three
measurement points. Experiments on heated grid turbulence found scalar anisotropy
using such measures at both the dissipation and inertial scales of the scalar field
(Mydlarski & Warhaft 1998). In similar spirit to the three-point correlations of the
scalar field, the probability distribution of differences between two points in the scalar
field can be measured for separations in different directions to investigate possible
anisotropy and structure at different length scales in the scalar field.

Figure 25 shows distributions of scalar increments for separations in two orthogonal
directions at Rej =2 × 103. At the larger separation distance (1.7 × 10−2δh), the
PDFs are nearly identical for horizontal and vertical separations of the same
distance. However, at a smaller separation distance (0.2 × 10−2δh), the distributions
are markedly different. The PDF is narrower for vertical increments than horizontal
increments, indicating the scalar field has less variation in the vertical than in the
horizontal direction. Increments in different directions for Rej = 20 × 103 also show
anisotropy of the scalar field (figure 26). Thus, the difference in the distributions of
scalar increments for separations in two directions suggests that the scalar field has
small length-scale, vertically aligned (y-axis) structure for the Reynolds-number range
investigated.

More insight into the spatial localization and possible sources of the small-scale
anisotropy of the scalar field can be gained by directly visualizing the scalar difference
field �C for small separations in two directions. Figure 27 compares scalar-difference
fields for small horizontal and vertical displacements of 0.2 × 10−2δh. The same linear
intensity scaling is used to display concentration values in both images. Higher
contrast in the images indicates larger differences in concentration, which contribute
to the tails of f (�rC). Visual examination of the scalar-increment fields reveals that
large scalar differences (high contrast, nearly white or black features in the images)
are more prominent and common for horizontal separations than vertical separations
of the same distance. This difference in contrast is visual evidence of anisotropy,
indicating that there is a preferred vertical orientation for the small scales of the
scalar field. The small-scale scalar anisotropy appears strongest near the centreline of
the jet (between the counter-rotating cores), where wispy ‘fingers’ extend up into the
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Figure 25. PDFs of scalar increments at Vr = 10 for the same horizontal and vertical
separations. Rej = 2.0 × 103 and x/dj = 50. (a) Outer PDF is for horizontal separations of

r/δh = 2.2 × 10−3 ẑ, and inner PDF is for vertical separations of r/δh = 2.2 × 10−3 ŷ. (b) r/δh =
17 × 10−3 ẑ and 17 × 10−3 ŷ.

wake. In the following section, additional evidence is presented for local anisotropy
of the scalar field of the transverse jet, and a possible mechanism for the anisotropy
is presented.

5. Anisotropy of scalar field
The anisotropy of the scalar field that was seen in the distribution of scalar

increments can also be seen in measures such as one- and two-dimensional power
spectra. One-dimensional power spectra can be computed from image data of the
concentration field by taking transects of the scalar field. The spectra are computed
for each row or column of the image and then ensemble-averaged over the entire
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Figure 26. As figure 25, but for Rej = 20 × 103. (a) Outer PDF is for horizontal separations

of r/δh = 2.5 × 10−3 ẑ, and inner PDF is for vertical separations of r/δh = 2.5 × 10−3 ŷ pixels.
(b) r/δh = 20 × 10−3 ẑ and 20 × 10−3 ŷ.

image and averaged again over the sequence of 508 images. Hann-windowing is used
to prevent aliasing. The scalar power spectra are normalized by the scalar variance
and non-dimensionalized by the mean width of the jet, δh, i.e.

ŜC ≡ SC(kδh)

δh 〈C ′2〉 , (27a)

where the variance is,

〈C ′2〉 =
2

δh

∫ ∞

0

SC(kδh) d(kδh). (27b)

The wavenumber k is non-dimensionalized by the mean width of the jet as kδh.
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(a) (b)

Figure 27. Scalar difference field, �rC, for increments in different directions at Rej = 10 × 103

and Vr = 10. (a) Horizontal increment of r/δh = 0.2 × 10−2 ẑ. (b) Vertical shift of the same
magnitude.

As seen in figure 28, the one-dimensional spectra for vertical and horizontal
transects at Rej = 1.0 × 103 are essentially identical at low wavenumbers, but deviate
beginning at moderate wavenumbers of kδh � 40. A deviation between the spectra
for horizontal and vertical transects is also seen at moderate wavenumbers for
Rej = 10 × 103. The spectra show that less energy is contained in the higher
wavenumbers of the vertical transects than the horizontal ones, implying that scalar
gradients are larger horizontally than vertically. This is consistent with the observation
based on the distributions of scalar increments that the scalar field of the transverse
jet has vertically aligned structure at small length scales (§ 4.2). In the case of the
transverse jet, the deviation between vertical and horizontal power spectra begins in
the inertial range. The Kolmogorov wavenumber,

kKδh ≡ δh

λK

� Re3/4
Γ , (28)

is estimated to be kKδh � 118 for Rej =1.0 × 103 and kKδh � 665 for Rej =10 × 103,
while the deviations in the spectra begin begin near kδh = 40 and kδh = 16 for the
two Reynolds numbers, respectively. In other experiments, for instance, heated grid-
turbulence measurements, scalar anisotropy has been seen to begin in the inertial
range and continuing into the dissipation range (e.g. Warhaft 2000).

Small-scale anisotropy of the scalar field can also be seen in two-dimensional
power spectra of the transverse-jet concentration field. Such power spectra can
be calculated from two-dimensional Hann-windowed concentration fields. Two-
dimensional spectra are computed for each instantaneous image, and ensemble-
averaged over 508 realizations at each Reynolds number. The two-dimensional spectra
are shown as contour plots of constant scalar power in figure 29. In contrast to the
circular contours of the power spectra of an axisymmetric scalar field such as the
round jet discharging in a quiescent reservoir (see Catrakis & Dimotakis 1996), the
transverse-jet spectra are anisotropic. In fact, the contours are increasingly elliptical
with increasing wavenumbers. The horizontal elongation of the contours once again
suggest that scalar gradients are steeper in the horizontal direction than in the vertical
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Figure 28. Power spectra of one-dimensional transects of the scalar field at x/dj = 50 for
Vr = 10 jet. Solid line is for horizontal transects, and dashed line for vertical transects.
Wavenumber, k, normalized by the scalar width of the jet, δh. (a) Rej = 1.0 × 103. (b) Rej =

10 × 103.

direction. For both Rej = 1.0 × 103 and Rej = 10 × 103 jets, the small length scales
(higher wavenumbers) differ more, i.e. are more anisotropic, than the large length
scales. Further evidence for small-scale anisotropy, and for its spatial localization, are
discussed in the following section.

5.1. Scalar microscale in differing directions

The scalar microscale, computed for gradients in different directions, is another
measure of the over-all anisotropy of the scalar field. It can also be computed for
specific regions of the jet to determine whether or not the anisotropy is localized
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Figure 29. Two-dimensional power spectra of the scalar field at x/dj =50 for Vr = 10 jet.
Wavenumber, k, normalized by width of the jet, δh. Contour plot in log10 increments of 1.
(a) Rej = 1.0 × 103. (b) Rej = 10 × 103.

to specific regions, and help identify possible sources of the observed small-scale
anisotropy. A microscale for fluctuations of a scalar field can be defined analogously
to the Taylor microscale for velocity fields. For an isotropic scalar field, the scalar
microscale, λC , is defined as (Tennekes & Lumley 1972):

λ2
C ≡ 〈C ′2〉

〈(∂C ′/∂x)2〉 . (29a)

For anisotropic scalar fields, a generalized scalar microscale which can vary with
direction may be defined as,

λ2
C,i ≡ 〈C ′2〉

〈(∂C ′/∂xi)2〉 , (29b)

where i denotes the direction in which the gradient and microscale is computed (Cook
& Dimotakis 2001).

Scalar microscales in two orthogonal directions are computed for measured
concentration fields in the transverse jet. The microscales are computed for horizontal
and vertical gradients for each concentration field, and then ensemble averaged over
508 images. Figure 30 shows the computed scalar microscales in two directions
for Rej = 1, 2, 5, 10, and 20 × 103. For the Reynolds-number range of the present
experiment, the vertical microscales are consistently larger than the horizontal
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Figure 30. Scalar microscale as a function of jet Reynolds number for Vr = 10. (a) Scalar
microscale with Reynolds number. �, vertical and �, horizontal microscale. (b) Ratio of
horizontal to vertical microscales (logarithmic coordinates).

microscales. Ratios of horizontal to vertical microscales are plotted in figure 30
for varying Reynolds number. The degree of anisotropy increases with Reynolds
number until Rej � 10 × 103, and then appears to decrease with further increases in
Reynolds number. The evidence is thus that the vertical length scales are larger than
the horizontal length scales, which is entirely consistent with the indications of the
power spectra and the directional PDFs of scalar increments. Similar anisotropy in
the scalar microscales, persisting as the flow developed, was found in direct numerical
simulations of three-dimensional Rayleigh–Taylor flow (Cook & Dimotakis 2001).
In the Rayleigh–Taylor flow, the transverse scales (in the direction of gravity) were
found to be larger than the horizontal scales. Moreover, the vertical length scales
of the scalar field, unlike the horizontal scales, did not collapse with mixing-zone
height for different initial conditions in that flow. The Rayleigh–Taylor flow is driven
by a directed body force, and the dynamics responsible for generation of vertical
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Figure 31. Scalar microscales in various regions of the Vr = 10 jet at Rej = 20 × 103,
superimposed on the mean concentration field. Microscales are computed in each section
and ensemble averaged over 508 images. Crosses have dimensions 4λC,z × 4λC,y .

scales, even in the interior of the mixing zone, are coupled to the outer scales. In
the Rayleigh-Taylor flow the indications are that the small length scales of the scalar
field are anisotropic, at least in part, because they are coupled to anisotropic outer
scales.

To localize the small-scale anisotropy and perhaps identify a coupling to outer
scales which could explain it, the scalar microscale can be computed in specific
regions of the jet. The instantaneous scalar field is subdivided into 16 smaller regions,
so that the scalar microscales in two orthogonal directions can be computed for
each section of each image. The instantaneous local microscales for each region are
then ensemble averaged over 508 images. Figure 31 shows the scalar microscales
computed for various subsections of the jet, superimposed on an image of the mean
concentration field. A cross in each region represents the computed horizontal and
vertical microscales within that region. The horizontal and vertical dimensions of
each cross are four times the vertical and horizontal scalar microscales computed at
each location, i.e. each cross has height and width 4λC,z × 4λC,y . As seen in figure 31,
differences between the vertical and horizontal microscales are greatest in the upper-
central portion of the jet, in the wake region between the vortex centres. This location
is where thin, vertical filaments, or ‘fingers’, of jet-fluid were seen in the wake of the
transverse jet, as discussed in § 2. In the following section, a possible explanation
is presented for the observed small-scale anisotropy in the wake region of the
transverse jet.
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Wall(a) (b) (c)
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Figure 32. The vertical strain rate ∂v/∂y that would be induced by inviscid flow of
counter-rotating line vortices close to a wall. The no-through-flow condition at the wall is
satisfied using image vortices. (a) Location and sense of rotation of the line vortices. (b) Vertical
strain-rate field ∂v/∂y. (c) Boundaries of extensional and compressive vertical strain.

5.2. Origins of anisotropy

The location of the greatest difference between horizontal and vertical microscales
suggests that the observed scalar anisotropy may be connected to the large-scale
dynamics of the transverse jet. The dynamics of the far field of the transverse jet
have been modelled as a counter-rotating vortex pair (Broadwell & Breidenthal 1984).
Hasselbrink & Mungal (2001) suggest that a more realistic picture of the vorticity
field is an ensemble of stretched vortex rings, inclined at an angle of tan−1(1/Vr ) to
the crossflow direction. For high-velocity-ratio jets, the angle of inclination is slight
(5.7◦ for Vr =10), and Hasselbrink & Mungal’s model of the vorticity field approaches
that of a pair of line vortices nearly parallel to the wall.

Thus, as a lowest-order approximation, the large-scale dynamics of the transverse
jet are represented as two infinite line vortices close to a wall. Assuming inviscid
flow, the vertical strain rate ∂v/∂y in the far field of the transverse jet can be
computed. Figure 32 shows the vertical strain field produced by such an arrangement
of vortices. In figure 32(b), the strain rate is represented by intensity, with the
brightest regions showing the highest extensional strain (∂v/∂y > 0), and darkest
regions showing the greatest compressive (∂v/∂y < 0) vertical strain. Boundaries
between regions of extension and compression are also shown. As seen in the figure,
positive strain is generated in the wake region, with peak extensional strain produced
close to the jet centreline. The positive strain in the vertical direction is hypothesized
to stretch the scalar field, thus producing the thin vertical filaments, or ‘fingers’
seen in the wake of the jet. Although the line vortex pair is an admittedly simple
model for vorticity in the transverse jet, the general behaviour should hold for the
real flow. A downward (injection direction) velocity is induced between the regions
of opposite-signed vorticity, and this downwash, coupled with a no-through-flow
condition imposed by the wall, necessarily produces extensional strain in the vertical
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direction in the wake. The correlation between the observed anisotropy of the scalar
field and location of the maximum vertical strain rate suggests that the small-scale
anisotropy is a consequence of the large-scale dynamics of the transverse jet.

Although these observations are based on measurements at x/dj of the Vr = 10
transverse jet, the observed local anisotropy of the scalar field is likely to be
characteristic of the far field of high-velocity-ratio transverse jets in general, since the
counter-rotating vortex pair is a robust feature of the far field of strong transverse
jets. In addition, the conclusion that the large-scale dynamics can impose itself on the
small scales of the scalar field has possible implications for other turbulent mixing
flows. One consequence is that the small-scale structure of turbulent mixing is likely to
depend on the flow geometry. This is consistent with the results of mixing experiments
by Villermaux, Innocenti & Duplat (2001) in a turbulent jet, which showed that the
injection features of the scalar persist. (The mixing time of the axisymmetric jet
was found by Villermaux et al. (2001) to scale with the injection scale, independent
of Reynolds number. In addition, the dependence of the mixing times on scalar
diffusivity was reported to be a weak (logarithmic) function of Schmidt number.)
Another consequence of the apparent connection between large and small scales is
that scalar fields produced by turbulent mixing may be anisotropic at small length
scales, as observed not only in the transverse jet, but also for other turbulent flows.
For instance, as previously discussed, a link has been reported between large-scale
anisotropic dynamics and the small scales of the scalar field (even within the mixing
zone) for Rayleigh–Taylor flows (Cook & Dimotakis 2001). The link between large
and small scales has also been noted in other flows such as heated grid turbulence
(Warhaft 2000). The heated grid-turbulence experiments, of course, were quite different
from scalar mixing of the transverse jet. In particular, for the heated grid-turbulence
flows, the velocity and vorticity fields were isotropic, but the scalar field had an initial
large-scale anisotropy (a linear temperature profile) which manifested itself in small-
scale scalar anisotropy. In contrast, the transverse jet has large organized vorticity
which produces small-scale anisotropy in the scalar field. In both cases, however, the
source for the small-scale anisotropy is postulated to be a coupling between large and
small scales of the turbulent mixing flows.

6. Conclusions
In summary, enhanced mixing, in the sense of better spatial homogenization of

the scalar field, is found with increasing Reynolds number in the far field of high-
velocity ratio liquid-phase transverse jets over the range 1.0 × 103 � Rej � 20 × 103.
Many classical measures, such as scalar trajectories, decay of mean concentration
on the centreline, and the spatial extent of the jet, are essentially independent of
Reynolds number. However, the mixed-fluid distribution, as quantified by the PDF
of jet-fluid concentration, evolves with Reynolds number at fixed location in the
far field of the transverse jet. With the enhanced stirring that comes with increasing
Reynolds number, the scalar field develops a preferred concentration, and the jet-fluid-
concentration PDF evolves from a monotonically decreasing function to a strongly-
peaked distribution. This behaviour, which occurs despite the greater entrainment rate
of the transverse jet (at x/dj = 50) as compared to the jet discharging in a quiescent
reservoir, suggests that the transverse jet is an efficient mixer.

Whole-field scalar increments show the concentration field of the turbulent
transverse jet to be intermittent, with plateaux of nearly constant concentration
separated by cliffs of sharp changes in concentration. The distribution of scalar
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differences is seen to tend toward long-tailed exponential distributions with decreasing
separation distance. These long-tailed PDFs of scalar differences, which persist for the
Reynolds number range studied, are similar to results reported for grid-turbulence,
Rayleigh–Bénard convection, and other turbulent flows. The long exponential tails
and strongly peaked shape of the PDF of scalar differences is consistent with the
physical picture of well-mixed plateaux, separated by cliffs, in the scalar field.

The scalar field of the liquid-phase high-Schmidt-number transverse jet is found
to be anisotropic at even the smallest length scales. For instance, scalar power
spectra for the far field of the jet are found to be essentially axisymmetric for
lower wavenumbers, but increasingly elliptical for higher wavenumbers. The small-
scale anisotropy is also seen in the difference between PDFs of scalar increments
in different directions. Probability distributions of scalar increments have narrower
shapes for vertical separations than for horizontal separations. These results indicate
that the scalar field has less variation (in terms of PDFs of scalar increments, and
power spectra) in the vertical direction than in the horizontal direction. Thus, the fine
scales of the concentration field appear to have preferential orientation in the vertical
direction. The small-scale anisotropy of the scalar field persists from the lowest
Reynolds numbers investigated, Rej = 1.0 × 103, to the highest Reynolds numbers
studied, Rej = 20 × 103. Further evidence for the anisotropy of the scalar field is seen
in the scalar microscales computed for different directions. The difference between
scalar microscales in two directions is greatest in the wake region of the jet, between
the body of the jet and the wall. The observed local anisotropy is believed to be
a consequence of the strain field produced by the counter-rotating vorticity in the
transverse jet. Thus, the large-scale vortex structure of the transverse jet appears to
impose itself on even the smallest features of the advected scalar field. The scalar
anisotropy that is found in the Vr = 10 jet is expected in other high-velocity-ratio jets,
since the counter-rotating vortex pair is a characteristic feature of strong transverse
jets.

One consequence of the apparent link between large and small scales that is
observed in these experiments (and which has been previously reported for other
turbulent flows) is that local scalar isotropy need not exist for turbulent mixing
flows having anisotropic large scales. In addition, the long-tailed and peaked scalar-
increment distribution found in the transverse jet is a consequence of intermittent,
well-mixed plateaux in the scalar field separated by cliffs, and thus can be found in
many other turbulent mixing flows. Furthermore, as a consequence of the connection
between large-scale dynamics and the small scales of the scalar field, the detailed
structure of turbulent mixing may depend on flow geometry. These conclusions,
which are drawn from the study of liquid-phase transverse jets up to Reynolds
numbers of 20 × 103, add to the existing evidence that the universality of small scales
of the scalar field is not typical of turbulent-mixing flows. Additional experimental
and numerical work is desirable to further analyse the behaviour of the transverse
jets and other turbulent-mixing flows at yet higher Reynolds numbers and different
Schmidt or Prandtl numbers.
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Appendix. PDFs for higher-dimensional diffusive fields
The PDF for a distribution, C(r), in d-dimensional space is the differential

d-dimensional volume, dVd(C), associated with a differential concentration, dC,
equation (16b).
Normalization by the total volume, Vd,tot, is necessary so that the PDF has the
properties discussed in § 3, and proper dimensions of inverse concentration.

Consider, for instance, the Gaussian scalar distribution,

C(r, t) =
1

2d(πDt)d/2
exp(−r2/4DT ) =

1

(2π)d/2σ d
exp(−r2/2σ 2). (A 1)

This is the solution to the d-dimensional initial-value problem for the diffusion
equation on an infinite domain with initial conditions of a delta function at the
origin, C(r, t = 0) = δ(r). Here, σ 2 = 2Dt . The differential length, dr , at any given
time (i.e. σ = constant) is related to dC by

dr

dC
= − (2π)d/2σ d

2r
exp(r2/2σ 2). (A2a)

Using (A 1), dr/dC can be written as a function of C alone:

dr

dC
=

1

2 C r
=

1

2σC
{

−2 ln
[
(2π)d/2σ dC

]}1/2
. (A2b)

The differential d-dimensional volume dVd(C) may then be expressed as a function of
C using (A 1) and (A2) to yield the form of the PDF for a d-dimensional Gaussian
distribution:

fd(C) ∝ [ln(1/C)]d/2−1

C
. (A3)

For one-, two- and three-dimensional Gaussian concentration distributions, the
PDFs are then:

f1(C) ∝ 1

C [ ln(1/C) ]1/2
. (A4a)

f2(C) ∝ 1

C
. (A4b)

f3(C) ∝ [ ln(1/C) ]1/2

C
. (A4c)

These functions are shown in figure 33. The distribution for the one-dimensional
case has two peaks, at C =0 and C = 1, while the distributions for the two- and
three-dimensional cases each have a peak at C =1. The PDF decreases monotonically
to zero at C = 1 for the three-dimensional Gaussian, and to a non-zero minimum for
the two-dimensional Gaussian.

Since d-dimensional transects of a higher-dimensional Gaussian are themselves
d-dimensional Gaussians, the PDFs above can be viewed as PDFs of concentration
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Figure 33. PDFs of diffusive (Gaussian) distributions. Solid line: one-dimensional; dashed
line: two-dimensional; dotted line: three-dimensional.

distributions in d-dimensional space, or as d-dimensional measurements of a higher-
dimensional distribution. Thus, a PDF can depend on the dimensionality of the space
(or measurement), as well as the concentration field, C(r).
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