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Corner effect and separation in transonic
channel flows
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An investigation into parameters affecting separation in normal shock wave/boundary
layer interactions (SBLIs) has been conducted. It has been shown that the effective
aspect ratio of an experimental facility (defined as δ∗/tunnel width) is a critical factor
in determining when shock-induced separation will occur. Experiments examining
M∞ = 1.4 and 1.5 normal shock waves in a wind tunnel with a small rectangular
cross-section have been performed and show that a link exists between the extent
of shock-induced separation on the tunnel centre-line and the size of corner-flow
separations. In tests where the corner-flows were modified ahead of the shock (through
suction and vortex generators), the extent of separation around the tunnel centre-line
was seen to vary significantly. These observations are attributed to the way corner
flows modify the three-dimensional shock-structure and the impact this has on the
magnitude of the adverse pressure gradient experienced by the tunnel wall boundary
layers.
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1. Introduction
Streamwise corners are a common and often unavoidable feature of many internal

transonic flows such as the internal compression intakes for the engines of supersonic
aircraft or the working sections of high speed wind tunnels. Often the approach taken
in wind tunnel tests is to try and minimise corner effects by focusing measurements on
the flow away from the tunnel walls. However, this approach does not guarantee two
dimensionality of the flow and there is evidence that the effects of the corner flows
cannot be ignored, even on the tunnel centreline. See, for example, the experiments
of Chriss et al. (1989) and Titchener & Babinsky (2011). Furthermore, situations
exist where it is not practical to restrict measurements to regions close to the tunnel
centreline. This is especially true for small experimental facilities and limits their
usefulness as a means for simulating nominally two-dimensional flow-fields.

Flow development in streamwise corners through normal shock wave/boundary
layer interactions (SBLIs) can be complex and often the physics of these flows
are not fully understood. This lack of understanding represents a major hurdle for
the development of numerical methods such as Reynolds-averaged Navier–Stokes
(RANS), Large eddy simulation (LES) and detached eddy simulation (DES) codes
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Figure 1. Experimental shock-induced incipient separation limit in transonic flow,
proposed by Delery (1985).

that are capable of capturing the flow structure in three-dimensional geometries with
corners where shock waves are present.

Historically, much research has focused on the prediction of shock-induced
separation in normal SBLIs. Principal contributors in this area over the last 60 years
include Ackeret, Feldmann & Rott (1947), Seddon (1960), Kooi (1978), Delery (1985)
and Sajben et al. (1991). Researchers agree that interaction strength (specifically
the free-stream Mach number ahead of a normal shock wave) is the single most
important factor in determining whether a turbulent boundary layer separates or
remains attached through a normal SBLI. Other factors such as the incompressible
boundary layer shape factor ahead of the interaction (Hi0) are thought to be of
secondary importance. It should also be noted that the more traditionally considered
Reynolds number (Re) effect is for the best part incorporated in the incompressible
boundary layer shape factor Hi0 (these two parameters not being mutually exclusive
for a flat plate zero-pressure-gradient boundary layer). This was well illustrated by
Delery (1985), who produced the plot shown in figure 1, where the onset of separation
is seen to be only weakly dependent on Hi0 and occurs at around M∞ = 1.3 for a
wide range of Hi0 and Re.

The free interaction theory developed by Chapman, Kuehn & Larson (1957)
examines the idea that the flow behaviour up to the point of separation is independent
of the post shock geometry, as discussed by Delery (1985) and Zheltovodov, Dvorak
& Safarik (1990). The work of Chapman et al. (1957) was extended by Erdos &
Pallone (1962) to develop a criteria for determining the point at which shock-induced
separation occurs. As well as the Mach number ahead of the shock, the skin friction
of the incoming flow is also taken into account when calculating the pressure jump
that the boundary layer can withstand without separating. However, a limitation of
the criteria is that it does not take into account how rapidly the pressure jump occurs
due to the interaction length not being considered.

Sajben et al. (1991) also collected data from a number of transonic SBLI
experiments that were considered to be nominally two-dimensional and plotted
approach Mach number against Reynolds number based on boundary layer
momentum thickness θ , see figure 2.
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Figure 2. Experimental data for attached (open symbols) and separated (filled symbols)
transonic SBLIs, from Sajben et al. (1991). The reader is referred to the paper by Sajben et al.
(1991) for full details of the references that the experimental data are taken from.

Figure 2 shows that significant variation exists between the Mach numbers
corresponding to the onset of shock-induced separation in different experimental
facilities. Furthermore, the plot suggests that these differences cannot be attributed
solely to differences in Re (or Hi0).

This paper aims to address this issue and proceeds by reviewing the conditions
for shock-induced separation, including re-assessment of the data in figure 2 to
demonstrate that three-dimensional effects can also have a strong influence on shock-
induced separation. Following this, the results from a range of experiments carried
out in Cambridge are presented, with particular emphasis on examining the flow
structure in the streamwise tunnel corners.

2. Review of factors affecting separation in normal SBLIs
Figures 1 and 2 do not show a clear trend between the onset of incipient

separation and flow properties such as Re or Hi0 for experimental data from different
experimental facilities. The results from a number of experimental studies are plotted
in figure 3 against Reθ and Hi0. In addition to the results from figure 2, data are also
included from tests by Burton, Babinsky & Bruce (2010) and Chriss et al. (1989). The
latter of these two is particularly noteworthy because they found that the boundary
layer along the tunnel centreline remained attached through a M∞ = 1.59 SBLI in
a confined channel. Interestingly, flow visualisation performed for this experiment
revealed that extensive flow separation regions were present in the wind tunnel
corners. The solid horizontal lines marked in figure 3(a) highlight the lowest Mach
number at which separation was observed and also the highest Mach number at
which attached flow was maintained on the tunnel floor centreline.

The broken lines marked in figure 3(b) correspond to a number of (analytically
determined) predicted limits for the onset of incipient separation, including that pro-
posed by Inger (1976) (which also appeared on Delery’s plot, see figure 1), Nussdorfer
(1956) and Alber et al. (1973). All of the limits shown in figure 3(b) are in reasonable
agreement at low Re but exhibit different trends and thus diverge as Re increases.

In the case of the prediction based on free interaction theory, the increase in
separation limit with increasing Hi0 is due to the strong dependence of the resistance
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Figure 3. Experimental data for attached (open symbols) and separated (filled symbols)
transonic SBLIs, plotted against: (a) Reynolds number based on momentum thickness of the
incoming boundary layer; (b) incompressible shape factor of the incoming boundary layer.

of the boundary layer to withstand a pressure jump on the skin friction coefficient of
the incoming boundary layer, which is essentially a measure of how full the boundary
layer velocity profile is. Because a change in Re leads to variation in Cf (see, for
example, Van Driest 1951), free interaction theory predicts a significant change in
the separation limit with Re. Such a trend is not seen in experiments because it
is thought that a higher value of Cf (i.e. a fuller boundary layer profile) in turn
leads to a shorter interaction length which strengthens the adverse pressure gradient
making separation more likely. This almost exactly cancels the previous effect (greater
resistance to separation) making shock-induced separation relatively independent of
Reynolds number or shape factor, as discussed by Delery (1985).

Free interaction theory, however, assumes separation onset is observed at a fixed
pressure jump, independent of interaction length, thus predicting a strong dependency
of separation limit on Re. Inger’s theory, in contrast, which takes both effects into
account to some extent, actually predicts a slight decrease in the value of M∞
required for separation with increasing Hi0. The criteria of Nussdorfer (1956) and
Alber et al. (1973) do not incorporate Hi0 or Re at all and, therefore, show no
variation with separation limits of M∞ = 1.3 and 1.33, respectively. Crucially though,
while some predicted limits are perhaps better than others, none of them can explain
the considerable scatter observed in experimental data.

Analysis of the results from flow visualisation studies performed for a number of the
experiments in figure 3 highlights an interesting pattern: facilities where separation
on the centreline is observed early (e.g. Doerffer & Szwaba 2004) have relatively
small corner separations whereas those where separation on the centreline is seen
late or not at all (notably Chriss et al. 1989) have considerable corner separations.
Unfortunately, such flow visualisation (or any other information on corner flow
topology) is not readily available in the vast majority of the cases shown here. For
this reason, we propose to use a new parameter, defined as the ratio of boundary
layer displacement thickness in the centre of the tunnel (δ∗) to tunnel width (w).
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Figure 4. Experimental data for attached (open symbols) and separated (filled symbols)
transonic SBLIs, plotted against the variable δ∗/w. Symbols are as defined in figure 3.

While not being an exact quantifier of corner separation size, it is thought that the
extent of corner flow separation should scale (at first order) with δ∗, so that δ∗/w can
be seen as an estimate of the three-dimensionality of a particular flow. Values of δ∗/w
close to zero correspond to experiments that are nominally two-dimensional (such
as those in axisymmetrical facilities or those in large facilities with thin boundary
layers) while large values of δ∗/w represent more highly confined experiments in
small facilities with relatively thick boundary layers. The results in figure 3 have been
re-plotted in figure 4 using this new parameter.

Figure 4 shows that the use of the variable δ∗/w enables the results from a large
number of different experimental facilities to be divided into two regions (with and
without separation) with only a single exception. This is in contrast to the scatter
seen previously in the plots in figure 3, which suggests that geometrical differences
between experimental facilities are a significant factor that can affect the onset of
separation. Furthermore, the ratio of displacement thickness to tunnel width appears
to be a suitable variable for comparing the results from different facilities.

Interestingly, the M∞ = 1.4 data point (attached flow) from Burton et al. (2010) lies
very slightly below the dashed line in figure 4, suggesting that it may be sensitive to
manipulations of the corner flow-field. In practice, any reduction of the corner flow
separation should push the test case towards the domain where flow separation in
the centre is observed. This idea is explored in § 3 of this paper.

The relationship between corner flows and the onset of shock-induced boundary
layer separation

It is hypothesised that the corner flows within a wind tunnel working section can
have a significant impact on the entire flow-field, including the centreline, where
regions of separated flow may be present. Two possible mechanisms for how corner
flows affect the centreline are proposed: Firstly, large corner flow separations may
cause a large three-dimensional bifurcation of the shock wave structure that spans a
significant proportion of the wind tunnel and has an effect on the amount of pressure
smearing experienced by the tunnel wall boundary layers. This is in agreement with
the findings of previous authors such as Weber et al. (2002) and Handa, Masuda &
Matsuo (2005), who observed that the 3-D (bifurcated) shock structure produced in a
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M∞ δ (mm) δ∗ (mm) θ (mm) H

1.4 4.9 0.86 0.41 2.04 (1.36)
1.5 4.1 0.85 0.37 2.28 (1.37)

Table 1. Compressible integral boundary layer parameters for incoming flow, measured at
x = −30 mm on the tunnel centreline using LDA. Incompressible shape factor is given in
parentheses.
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Figure 5. Schematic diagram of wind tunnel setup.

confined transonic SBLI increased the amount of pressure smearing near the corners.
Secondly, corner flow separations may act as an effective blockage to the core flow
in the tunnel and (depending on their size and relative positions) could decelerate the
(supersonic) pre-shock flow and/or re-accelerate the (subsonic) post-shock flow, both
of which would act to smear the adverse pressure gradient imposed by the normal
shock wave.

To further investigate whether both of the mechanisms described above are
plausible, experiments have been conducted in the Cambridge University supersonic
wind tunnel facility. Two sets of experiments have been performed to assess the impact
of corner flows on the appearance of shock-induced separation: firstly, suction was
used to reduce the size of the corner flow separations in a M∞ = 1.4 normal SBLI,
where the boundary layer on the tunnel floor centreline is normally attached. Secondly,
vortex generators were used to modify the corner flows upstream of a M∞ = 1.5 normal
SBLI, where the boundary layer on the tunnel floor centreline is normally separated
and moderate size corner flow separations are present.

3. Experiments studying the effects of manipulating the corner flows
3.1. Methodology

The supersonic wind tunnel at the University of Cambridge has a rectangular parallel-
walled working section with a constant cross-section 114 mm wide by 178 mm high.
A schematic diagram of the working section is depicted in figure 5. Two pairs
of interchangeable convergent–divergent nozzle blocks were used to set the Mach
number in the working section to M∞ = 1.4 and 1.5. The wind tunnel is a blow-
down facility and tunnel run times of approximately 35–40 s were possible with the
arrangement shown. Properties of the incoming boundary layer with M∞ = 1.4 and
1.5 are provided in table 1. These values were calculated from velocity measurements
on the tunnel centreline obtained using laser Doppler anemometry (LDA).
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Figure 6. Schematic diagrams showing the experimental arrangements used for tests
manipulating the corner flows: (a) no-control case; (b) suction experiments; (c) corner-VG
experiments.

Flow patterns on the wind tunnel floor and sidewalls were studied using the
technique of surface oil flow visualisation. This involved coating the wind tunnel walls
with a mixture of white titanium dioxide powder, paraffin and oleic acid before tunnel
runs and photographing the resulting flow patterns once the tunnel run had finished.
Information on the pressure distribution in the interaction region was obtained
through pressure measurements made using a 16-channel Scanivalve Netscanner 9116
pressure system and also with pressure sensitive paint (PSP). Pressure measurements
made with the Netscanner system have an accuracy of better than ±0.2 %. Pressures
obtained using the PSP system have an uncertainty of approximately ±1 %. Schlieren
photography was used to visualise the interaction structure.

In order to examine the effect of modifying the corner flow, experiments were
conducted using active suction through slots in the corners on the floor of the wind
tunnel working section upstream of the shock wave. During the suction experiments,
the mass flow through the suction system was 0.2 % of the mass flow through the
wind tunnel working section. Experiments were also conducted with vortex generators
(VGs) placed in the tunnel corners upstream of the shock. The VGs used were a
vane-type design with a maximum height of 2 mm (h/δ ≈ 0.4) and length 20 mm.
Details of the experimental arrangements for these tests are shown in figure 6.

3.2. M∞ = 1.4 experiments

The M∞ = 1.4 baseline oil flow is shown in figure 7(a). The approximate extent of the
regions influenced by separation in the tunnel corners are indicated by a dashed line,
a dot-dashed line represents regions of separated flow away from the corners and a
solid black line indicates the nominal shock location. At this Mach number, there
is no clear separation at the centre of the tunnel floor although slight separation is
seen along the sidewalls. The supersonic Mach number of the incoming flow implies
that the deflection of the streamlines away from the corners ahead of the shock wave
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Figure 7. Oil flow patterns on the tunnel floor and sidewalls for a M∞ = 1.4 shock:
(a) baseline flow and (b) with corner suction. Only the bottom half of the tunnel sidewalls are
shown (0 <y < 89 mm).

must be caused by additional compression waves. These compression waves must
decelerate the flow in the corner regions, thus reducing the local strength of the main
(supposedly ‘normal’) shock wave in the corners. This effect is likely to be especially
significant in small facilities (large δ∗/w), where the corner separations are relatively
large.

The M∞ = 1.4 oil flow visualisation with corner suction is provided in figure 7(b).
It can be seen clearly that the regions influenced by separation in the tunnel corners
are greatly reduced in size while a separation region appears along the centreline of
the tunnel floor. The sidewall separation regions also appear to have grown in size.
Figure 8 shows an enlarged image of the regions highlighted by the white boxes in
figure 7. It is clear that the suction has resulted in a reduction in the size of the
separated flow region in the tunnel corners.

Figure 9 shows schlieren images of the M∞ =1.4 SBLI with and without corner
suction. Both images show similar SBLI structures, albeit with some subtle differences.
In the baseline flow, a strong compression fan exists upstream of the main shock.
When suction is applied, this compression fan is replaced with a more clearly defined
oblique shock to produce a classic λ-shock-foot structure, with a relatively weak rear
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Flow

(a)

(b) Slot

Figure 8. Zoom of oil flow patterns in the tunnel corners at M∞ =1.4: (a) baseline flow and
(b) with corner suction.

Flow Flow

(a) (b)

Figure 9. Schlieren comparison between M∞ = 1.4 interaction: (a) baseline case and (b) with
corner suction. Only the bottom half of the tunnel is shown (0 <y < 89 mm).

leg. This structure is linked to the onset of shock-induced separation, as explained by
many previous researchers, such as Delery (1985) and Atkin & Squire (1992).

Figure 10 compares the pressure rise through the shock with and without suction
at M∞ = 1.4. The pressures were measured along the tunnel floor centreline. It can be
seen that suction produces a slight drop in pressure ahead of the shock and a reduced
upstream influence, which leads to a sharper pressure rise through the initial part of
the SBLI (at around x = −12 mm). This increased pressure gradient is consistent with
the formation of the λ-shock foot structure in figure 9(b) and is the likely cause of
the centreline separation seen in figure 7(b).

Figure 11 shows the pressure distribution on the wind tunnel floor obtained with
PSP for the baseline and suction experiments at M∞ = 1.4. Regions of low pressure
can be seen emanating from the slots on either side of the tunnel floor in figure 11(b).
These are expansion fans created by the effective convex surface curvature produced
by suction of the boundary layer. The mass flow removed by the suction slots was
calculated to be 0.2 % of the total tunnel mass flow. At the streamwise location of the
slots (upstream of the shock), the removal of this amount of low momentum fluid is
estimated to increase the effective cross-sectional area of the tunnel by approximately
0.5 %. One-dimensional compressible flow theory predicts that this should increase
the ‘average’ Mach number in the tunnel from 1.4 to 1.407 (and hence decrease the
pressure ratio p/p0 from 0.314 to 0.311).
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Figure 10. M∞ = 1.4 static pressure measurements along tunnel floor centreline (z = 0) for
baseline and suction. Symbols correspond to measurements made using pressure tappings. The
dashed and solid lines were obtained from tests using pressure sensitive paint
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Figure 11. (Colour online available at journals.cambridge.org/FLM) Static pressure distri-
bution on the tunnel floor with M∞ = 1.4 normal shock: (a) baseline; (b) with corner suction.
Flow is from top to bottom. Both images show the full tunnel width (−57 <z < 57 mm). The
nominal shock position (x = 0) is shown by the continuous line.

Figure 10 confirms that suction causes the pressure ahead of the shock to decrease,
although the minimum value reached is approximately 0.30, rather than 0.311. This
discrepancy can be explained by the way the (three-dimensional) expansion fans
produced by the suction slots meet on the tunnel centreline a short distance upstream
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Figure 12. Proposed three-dimensional bifurcated shock wave structure in a non-square
rectangular channel with significant corner separations.

of the normal shock to produce a region where the flow is locally over-expanded to
a Mach number of approximately 1.43. It is likely that this modest increase in local
Mach number around the centreline may also have some impact on the appearance
of separation there.

The baseline PSP in figure 11(a) shows that the amount of streamwise pressure
smearing either side of the tunnel centreline is greater than it is on the centreline.
This increase in pressure smearing near the tunnel corners is caused by an increase
in the upstream influence of the SBLI. This observation suggests that the separated
flow regions in the tunnel corners cause an increase in the size of the bifurcated shock
structure in the corner regions. This proposed mechanism is illustrated in figure 12.
Figure 11(b) shows that corner suction decreases the amount of pressure smearing
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Right sidewall Floor Left sidewall

Flow

Figure 13. Oil flow patterns on the tunnel floor and sidewalls for a M∞ = 1.5 shock. Only
the bottom half of the tunnel sidewalls are shown (0<y < 89 mm.)

across the entire tunnel span, which would be consistent with the absence or reduction
of this effect.

Figure 12 highlights a significant difference between the flow structure in regions
of separation on the tunnel floor centreline and in the corners. Separation on the
centreline is relatively two-dimensional, with a so-called bubble of reversed flow
contained between well-defined separation and reattachment lines. In contrast, the
separated regions in the tunnel corners are highly three-dimensional with strong
vortex formation, no clear regions of reversed flow and without a well-defined point
or line of re-attachment. The flow in-between the separation bubble at the centreline
and the corner vortices is attached.

The experiments presented thus far with M∞ = 1.4 have explored the idea of
increasing likelihood of separation in the centre when corner separation is reduced.
In the following, we consider another example where the same relationship between
separation in the centre and in the corners is observed. This test case is a stronger
M∞ = 1.5 normal SBLI, where (unlike at M∞ = 1.4) the flow is separated along the
centreline in the absence of any corner flow modifications.

3.3. M∞ = 1.5 experiments

The oil flow in figure 13 shows that the M∞ = 1.5 baseline flow has a separated region
along the centreline of the tunnel floor. Clear separation regions are also apparent on
the sidewalls.

The introduction of the corner vanes in the M∞ = 1.5 flow resulted in a substantial
increase in the size of the separated regions in the tunnel corners, which can be clearly
seen in figure 14. In contrast, there is no indication of shock-induced separation on
the centreline of the tunnel floor. A possible explanation for this behaviour is that the
vortices produced by the VGs induce a down-wash in the centre of the tunnel, which
makes the boundary layer there more robust. However, this is unlikely because of the
large span-wise distance between the VG location and the tunnel floor centreline.

The schlieren images in figure 15 suggest that there may be small differences between
the size of the λ-foot in each test case, although the images are not conclusive. Both
images show a broadly similar level of boundary layer growth through the interaction.
Image (a) shows the existence of a faint shear-layer that emanates from the triple
point, while (b) does not. The leading shock-leg in image (b) also appears to be slightly
weaker and at a more normal angle than in the baseline test case. These observations
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Flow

Figure 14. Oil flow pattern on the tunnel floor with VGs placed in the corners upstream of a
M∞ = 1.5 shock. The dashed white lines show the approximate extent of the separated regions
in the tunnel corners for the baseline test case for comparison.

Flow Flow

(a) (b)

Figure 15. Schlieren images of the M∞ = 1.5 interaction: (a) baseline case; (b) with corner
vanes. Only the bottom half of the tunnel is shown (0<y < 89 mm).

are consistent with an interaction of reduced strength without separation, in agreement
with the oil flows.

Figure 16 contains information on the streamwise pressure gradient on the tunnel
floor at M∞ = 1.5 with and without corner-vane VGs. The pressure profiles show that
the addition of corner vanes reduces the adverse pressure gradient on the tunnel floor
centreline. This is consistent with the disappearance of separation observed in the oil
flow when corner-vane VGs were used at M∞ = 1.5. This result further supports the
idea that separations in the corners and on the centreline of an experimental facility are
related through the way in which features of the flow modify the streamwise pressure
gradients experienced by the boundary layers in different parts of the facility.

In the case of the M∞ =1.5 test case described here, the reduced adverse pressure
gradient with corner-vane VGs is due to a combination of an increased upstream
influence and reduced downstream pressure. The increase in upstream influence is
attributed to the way the corner separations modify the bifurcated shock structure,
while the lower downstream pressure is attributed to re-acceleration of the post-shock
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Figure 16. M∞ = 1.5 static pressure measured on the tunnel centreline in the baseline
and with corner-vane VGs.

core-flow due to the blockage effect from the large regions of separation in the
corners. This blockage effect is supported by the oil flow visualisation in figure 14,
which shows that the regions of separation in the corners are much larger downstream
of the shock in the test case with corner-vane VGs. The schlieren images with and
without the corner-vane VGs in figure 15 provide some evidence that the corner-vane
VGs do slightly increase the upstream influence of the SBLI.

4. Conclusions
Previously proposed limits for the onset of separation in normal SBLIs based on

experimental or analytical results give reasonable agreement in facilities where the
flow is considered to be nominally two-dimensional. However, results from different
experimental facilities show large discrepancies that are not predicted by previous
theories.

In the present study, it has been found that when a tunnel confinement ratio
is introduced the results fall into a much clearer trend. More ‘three-dimensional’
facilities, where the ratio of δ∗ and w is large show a delay of classical quasi-2-D
shock-induced separation on the centreline. The parameter δ∗/w seems to capture the
relative importance of three-dimensional effects (including the influence of regions of
separation in the tunnel corners) on the flows in different facilities.

This result supports the findings of previous studies that have suggested a link
between corner flows and centreline separation may exist. This includes experimental
studies of supersonic shock reflection SBLIs, such as those performed by Dupont
et al. (2005) and Doerffer et al. (2010), where the authors also report that the extent
of the shock-induced separation region on the tunnel floor is strongly affected by
the state of the flow in the tunnel corners and on the sidewalls. This suggests that
there may be significant similarities between transonic and supersonic SBLIs in this
respect.

Experiments manipulating the corner flows upstream of a M∞ = 1.4 normal SBLI
using corner suction have shown the possibility of introducing a separated region in
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a previously attached flow-field by reducing the size of corner effects. A suction mass
flow rate of 0.2 % of the total wind tunnel mass flow was used to achieve this result.

Additional experiments examining a M∞ = 1.5 shock were conducted. Here, the
incoming flow was manipulated to give an exaggerated corner effect and this
eliminated shock-induced separation on the tunnel centreline. A mechanism which
explains this trend has been suggested based on the relationship between large corner
flow separations and variations in the shock-induced streamwise adverse pressure
gradient across the tunnel span. These results raise questions over assumptions that
the vast majority of experiments can be treated as ‘nominally two-dimensional’.

The authors gratefully acknowledge the support of part of this work by AFRL
(Grant No. FA8655-08-1-3091)
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