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Converging gravity currents over a
permeable substrate
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We study the propagation of viscous gravity currents along a thin permeable substrate
where slow vertical drainage is allowed from the boundary. In particular, we report
the effect of this vertical fluid drainage on the second-kind self-similar solutions
for the shape of the fluid–fluid interface in three contexts: (i) viscous axisymmetric
gravity currents converging towards the centre of a cylindrical container; (ii) viscous
gravity currents moving towards the origin in a horizontal Hele-Shaw channel with
a power-law varying gap thickness in the horizontal direction; and (iii) viscous
gravity currents propagating towards the origin of a porous medium with horizontal
permeability and porosity gradients in power-law forms. For each of these cases
with vertical leakage, we identify a regime diagram that characterizes whether the
front reaches the origin or not; in particular, when the front does not reach the
origin, we calculate the final location of the front. We have also conducted laboratory
experiments with a cylindrical lock gate to generate a converging viscous gravity
current where vertical fluid drainage is allowed from various perforated horizontal
substrates. The time-dependent position of the propagating front is captured from the
experiments, and the front position is found to agree well with the theoretical and
numerical predictions when surface tension effects can be neglected.

Key words: geophysical and geological flows, gravity currents, thin films

1. Introduction
The spreading of viscous gravity currents arises in many geophysical and industrial

contexts, and has received renewed attention as a result of technical challenges posed
by geological CO2 sequestration and other subsurface fluid mechanics problems (see
e.g. Bear 1972; Barenblatt 1979; Lake 1989; Nordbotten & Celia 2012; Huppert &
Neufeld 2014). The analysis of many of these problems proceeds using the lubrication
approximation to reduce the flow problem to a single nonlinear partial differential
equation (PDE) for the shape of the spreading current. The time-dependent extent
of spreading is also an output of the solution to the problem. In standard cases
involving outward spreading, the solution to the PDE can be accomplished by
dimensional inspection; such first-kind similarity solutions have been presented for
many geometries: lock exchange, spreading over substrates and through porous media,
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or other confined systems, etc. (see e.g. Smith 1969; Huppert 1982; Lister 1992;
Huppert & Woods 1995; Nordbotten & Celia 2006; Hesse et al. 2007; MacMinn,
Szulczewski & Juanes 2010; Pegler, Huppert & Neufeld 2014a; Zheng et al. 2015).

Many natural systems leak either through an edge or through a fractured or porous
boundary. Also, various coating flows occur above porous substrates. Because the
boundaries are porous, a variety of studies in recent years have analysed spreading
gravity currents with leakage (Acton, Huppert & Worster 2001; Pritchard, Woods
& Hogg 2001; Pritchard & Hogg 2002; Pritchard 2007; Neufeld & Huppert 2009;
Neufeld, Vella & Huppert 2009; Spannuth et al. 2009; Neufeld et al. 2011; Vella
et al. 2011; Zemoch, Neufeld & Vella 2011; Zheng et al. 2013). In this case,
it is possible in some cases involving outward spreading to make a change of
variables to arrive back at a PDE that again admits a similarity solution of the
first kind (Pritchard et al. 2001). A brief summary of previous studies on fluid
drainage effects on the ‘outward’ propagation of viscous gravity currents is provided
in table 1

A distinct class of thin film spreading problems concerns ‘inward’ motions, where
the reservoir or source of fluid is on the outside and motion occurs towards an
‘origin’ (Gratton & Minotti 1990; Diez, Gratton & Gratton 1992; Zheng, Christov
& Stone 2014). In these cases, although the same PDE describes the dynamics, a
first-kind similarity solution is not possible. Rather, given a scaling ansatz, a distinct
analysis of the differential equations for mass and momentum is used to construct
an eigenvalue style analysis to determine the scaling exponent (Barenblatt 1979). In
this paper, we present such an analysis for converging spreading gravity currents
with leakage through a thin permeable boundary (figure 1), which to the best of
our knowledge has not been treated previously. We highlight the general idea and so
summarize how the approach and results apply to various geometric configurations. In
addition, our experimental set-up of fluid drainage through a thin perforated plate (§ 3)
provides a new model experimental system to study the behaviour of fluid drainage
from spreading gravity currents, and extends the existing experimental systems of
drainage through a deep porous medium (Acton et al. 2001), through long parallel
tubes (Spannuth et al. 2009) and through thin parallel plates (Pritchard et al. 2001).

In structuring this paper, we begin in § 2 by studying the model problem of a
converging viscous gravity current with fluid drainage in the axisymmetric geometry;
we describe the theoretical model, introduce a transformation of variables and derive
a second-kind self-similar solution considering the effect of vertical fluid drainage.
In § 3, we conduct laboratory-scale experiments, and compare the experimental
observations with the predictions of our theoretical models. We extend our discussion
in § 4 to viscous gravity currents in Hele-Shaw cells and porous media with horizontal
heterogeneities and leakage so as to characterize similar problems as broadly as
possible. We close our paper in § 5 with some final remarks.

2. Theoretical model
2.1. Governing equations

We consider an axisymmetric geometry and describe the thin film flow using
cylindrical coordinates. In particular, we first examine the inward spreading of a
converging gravity current on a permeable boundary of thickness d and permeability
kd, see figure 2. The viscosity of the fluid is µ, and the density of the fluid is
ρa + 1ρ, where ρa is the density of air. The height of the air–liquid interface is
denoted as h(r, t). We neglect the effect of surface tension and fluid mixing at the
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Converging gravity currents over a permeable substrate 671

Reservoir condition Substrate description Experimenta Reference

Exposed in air, Deep porous medium Yes Acton et al. (2001)
two-dimensional
Exposed in air, Parallel vertical tubes Yes Spannuth et al. (2009)
axisymmetric
Porous media Thin permeable layer Yes Pritchard et al. (2001)
Porous media, Vertical fracture No Pritchard & Hogg (2002)
two-dimensional
Porous media, Parallel fractures No Pritchard (2007)
two-dimensional
Porous media, Thin permeable layer No Neufeld & Huppert (2009)
two-dimensional
Porous media, Permeable layer, No Farcas & Woods (2009)
two-dimensional (capillary retention)
Porous media, Permeable layer, No Woods & Farcas (2009)
two-dimensional (capillary threshold)
Porous media, Local fissure Yes Neufeld et al. (2009)
two-dimensional
Porous media, Local fissure, No Zemoch et al. (2011)
two-dimensional (inclined substrate)
Porous media, Local point sink No Neufeld et al. (2011)
point injection
Porous media, Local line sink No Vella et al. (2011)
point injection
Porous media, Multiple fractures, Yes Hesse & Woods (2010)
two-dimensional (multiple layers)
Porous media, Drainage from edge Yes Zheng et al. (2013)
two-dimensional
Porous media, Local point sink No Nordbotten et al. (2009)
confined layers (and multiple sinks)
Porous media, Local fissure No Pegler, Huppert & Neufeld (2014b)
confined layers
Exposed in air, Thin permeable layer Yes Current work
axisymmetric (inward flow)
Heterogeneous, Thin permeable layer No Current work
porous media, (flow towards ‘origin’)
Hele-Shaw cells

TABLE 1. Summary of previous studies on the propagation of a viscous gravity current
over a permeable substrate such that vertical fluid drainage occurs through the substrate.
All of the references except for the last two referring to this paper concern outward
spreading and so similarity solutions of the first kind are possible. In the current work,
for propagation of gravity currents in Hele-Shaw cells and porous media with horizontal
heterogeneities, the ‘origin’ is defined as the location of zero permeability.
aWe note that in the current study and some previous studies experiments have also been

conducted to verify the theoretical models.
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Spacer cylinder

Outer wall
Viscous fluid

Perforated plate

d

FIGURE 1. (Colour online) Schematic of a converging gravity current on a thin permeable
plate with fluid drainage through the substrate in the vertical direction. Initially, a viscous
fluid fills the space between the outer wall and a spacer cylinder. Then, the inward flow is
initiated by removing the spacer cylinder, i.e. the flow is due to a ‘cylindrical lock gate’.
For the finer spacing of holes used in the experiments, see figure 4.

FIGURE 2. (Colour online) Side view of an axisymmetric converging gravity current on a
thin permeable plate with thickness d and permeability kd. Slow fluid drainage occurs in
the vertical direction through the substrate. Flow is generated by removing a cylindrical
lock gate (not shown), which is located at r0 (figure 1).

interface and contact line effects at the moving boundary, as well as viscous stresses
at the air–liquid boundary. When the spreading current is long and thin, it is natural
to use the lubrication approximation, in which case we neglect the vertical velocity
and the fluid has a hydrostatic pressure distribution. Following standard steps, the
vertically averaged velocity along the horizontal direction u(r, t) is given by

u(r, t)=−1ρgh2

3µ
∂h
∂r
. (2.1)
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Next, we assume that the thickness of the permeable boundary d is small compared
with the height of the gravity current h, i.e. h/d� 1; this assumption is only violated
in a region very close to the front. Since fluid is allowed to drain from the permeable
boundary, the gravitationally driven drainage rate w(r, t) (w< 0) is estimated by

w(r, t)=−1ρgkd

µ

(
1+ h

d

)
≈−1ρgkdh

µd
, (2.2)

where kd is the effective permeability of the substrate. This model has been employed
in several previous studies on the spreading of gravity currents with vertical fluid
drainage (see e.g. Acton et al. 2001; Pritchard et al. 2001; Pritchard & Hogg 2002;
Pritchard 2007; Spannuth et al. 2009; Neufeld et al. 2011; Vella et al. 2011). The
applicability of this model has been discussed in other viscous film spreading
problems on porous bases (see e.g. Davis & Hocking 1999, 2000). Note that if
the permeable boundary is a perforated plate, e.g. as in our laboratory experiments
presented below, when estimating kd, the resistance from entering and exiting the
holes may also need to be considered if the thickness of the plate is small (see e.g.
Sampson 1891; Weissberg 1962; Dagan, Weinbaum & Pfeffer 1982; Jensen, Valente
& Stone 2014).

Considering fluid drainage, the local continuity equation is written as
∂h
∂t
+ 1

r
∂

∂r
(rhu)=w, (2.3)

where the drainage rate w is given by (2.2). Substituting (2.1) and (2.2) into (2.3), we
obtain a PDE that describes the time evolution of the air–liquid interface:

∂h
∂t
− 1ρg

3µ
1
r
∂

∂r

(
rh3 ∂h

∂r

)
=−1ρgkdh

µd
. (2.4)

Note that in previous studies on outward-spreading viscous gravity currents over
permeable substrates, the governing equations for the fluid–fluid interface are the
same as or similar to (2.4) (see e.g. Acton et al. 2001; Pritchard et al. 2001;
Spannuth et al. 2009). However, converging currents are distinguished by distinct
boundary conditions, and a different solution procedure also needs to be described,
as given below.

To complete the problem, appropriate boundary and initial conditions are needed.
We assume that a viscous fluid of height h0 initially fills the space between r= r0, i.e.
the location of the cylindrical lock gate, and r = rout, i.e. the radius of a cylindrical
tank. Thus, the initial condition is given by

h(r, 0)=
{

h0, r0 6 r< rout,

0, 0 6 r< r0.
(2.5)

The boundary conditions for this problem are given by
∂h
∂r
(rout, t)= 0, (2.6a)

h(rf (t), t)= 0, (2.6b)

where rf (t) denotes the location of the moving front. In order to develop second-kind
similarity solutions, where dimensional inspection is not sufficient to determine the
functional form of rf (t), it is necessary to consider the momentum (2.1) and continuity
(2.3) equations in their primitive forms. Our main goal is to describe the propagation
of the fluid towards r→ 0, i.e. to determine rf (t) for kd 6= 0. Note that when kd = 0,
i.e. when the substrate is not permeable, the problem statement reduces to the previous
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674 Z. Zheng, S. Shin and H. A. Stone

studies of second-kind similarity solutions given by Gratton & Minotti (1990) and
Diez et al. (1992).

2.2. Non-dimensionalization

Let us now define dimensionless variables h̃ = h/h0, r̃ = r/r0, t̃ = t/tc and ũ = u/uc,
with

tc = 3µr2
0

1ρgh3
0
, uc = 1ρgh3

0

3µr0
. (2.7a,b)

Then, the equation for the horizontal velocity (2.1) and local continuity equation (2.3)
can be rewritten in dimensionless form,

ũ=−h̃2 ∂ h̃
∂ r̃
, (2.8a)

∂ h̃
∂ t̃
+ 1

r̃
∂

∂ r̃
(r̃h̃ũ)=−βh̃, (2.8b)

where the constant β, which measures the strength of drainage from the permeable
boundary, is defined as

β ≡ 3kdr2
0

dh3
0
. (2.9)

Note that β only involves geometric parameters.
In addition, the governing equation (2.4) for the height of the gravity current h takes

the dimensionless form

∂ h̃
∂ t̃
− 1

r̃
∂

∂ r̃

(
r̃h̃3 ∂ h̃

∂ r̃

)
=−βh̃. (2.10)

The dimensionless initial condition for (2.10) is

h̃(r̃, 0)=
{

1, 1 6 r̃< r̃out,

0, 0 6 r̃< 1,
(2.11)

where r̃out ≡ rout/r0, and the dimensionless boundary conditions are

∂ h̃
∂ r̃
(r̃out, t̃)= 0, (2.12a)

h̃(r̃f (t̃), t̃)= 0, (2.12b)

where r̃f (t̃)≡ rf (t)/r0. Equation (2.10) together with the boundary and initial conditions
(2.11) and (2.12) can be solved numerically to provide the time evolution of the fluid–
fluid interface h̃(r̃, t̃).

2.3. Transformation of the problem
The free-boundary problem of (2.10), subject to (2.11) and (2.12), can be reorganized
by introducing new dimensionless variables f and τ based on the following transform
(see e.g. Murray 1989; Pritchard et al. 2001; Seminara et al. 2012):

h̃(r̃, t̃)= f (r̃, τ )e−β t̃, where τ = 1− e−3β t̃

3β
. (2.13a,b)
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Note that τ→ 0+ as t̃→ 0+, and τ→ 1/(3β) as t̃→+∞. Then, (2.10) is transformed
to a well-known nonlinear diffusion equation:

∂f
∂τ
= 1

r̃
∂

∂ r̃

(
r̃f 3 ∂f
∂ r̃

)
. (2.14)

The initial condition (2.11) can be rewritten as

f (r̃, 0)=
{

1, 1 6 r̃< r̃out,

0, 0 6 r̃< 1,
(2.15)

and the boundary conditions (2.12) can be rewritten as

∂f
∂ r̃
(r̃out, τ )= 0, (2.16a)

f (r̃f (τ ), τ )= 0. (2.16b)

Thus, the change of variables (2.13) eliminates β from the problem statement and
effectively reduces the problem to that of propagation of gravity currents over a rigid
impermeable boundary, as has been noted in many of the papers listed in table 1.
Now (2.14) can be solved numerically subject to initial condition (2.15) and boundary
conditions (2.16) using previously reported algorithms (see e.g. Gratton & Minotti
1990; Diez et al. 1992; Zheng et al. 2014).

2.4. Phase-plane analysis
In order to further study the analytical behaviour of this problem in terms of a second-
kind similarity solution, let us now eliminate β from the independent momentum and
mass equations (2.8) by introducing a new dimensionless variable v,

ũ(r̃, t̃)= v(r̃, τ )e−3β t̃, (2.17)

and recall (2.13), so (2.8) can be rewritten as

v =−f 2 ∂f
∂ r̃
, (2.18a)

∂f
∂τ
+ 1

r̃
∂

∂ r̃
(r̃fv)= 0. (2.18b)

This pair of equations is independent of β and is defined over the time interval 0 6
τ 6 1/(3β). We note again that τ → 0+ as t̃→ 0+, and τ → 1/(3β) as t̃→ +∞.
Now, (2.18) recovers the same governing equations for converging gravity currents on
an impermeable horizontal boundary (Gratton & Minotti 1990). For completeness, we
give details on conducting a phase-plane analysis based on (2.18), and seek a self-
similar solution of the second kind for the time evolution of the fluid–fluid interface.

We assume that there is a finite time tf , and hence τf from (2.13b), for the front
to reach the origin, and we introduce s≡ τf − τ , which represents the time remaining
for the front to arrive at the origin. We define

v(r̃, τ )= r̃
s

V(r̃, s), f (r̃, τ )=
(

r̃2

s
F(r̃, s)

)1/3

, (2.19a,b)
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FIGURE 3. (Colour online) The phase plane for the first-order ordinary differential
equation (2.22a) for different values of δ: (a) δ = 0.712, (b) δ = 0.762, (c) δ = 1.06. In
(b), the integral curve connects points O and A, thus δ = 0.762 . . . is the solution to the
nonlinear eigenvalue problem.

and substitute (2.19) into (2.18). After some algebra, we obtain the equivalent
equations in terms of V(r̃, s) and F(r̃, s):

3V + r̃
∂F
∂ r̃
+ 2F= 0, (2.20a)

s
∂F
∂s
− F− 3r̃F

∂V
∂ r̃
− r̃V

∂F
∂ r̃
− 8FV = 0. (2.20b)

Next, we define the similarity variable ξ = r̃/sδ, where the scaling exponent δ is to be
determined. Then, F(r̃, s) and V(r̃, s) become functions of only the similarity variable
ξ , i.e. F= F(ξ) and V = V(ξ). In this case, (2.20a,b) take the self-similar form:

3V + ξF′ + 2F= 0, (2.21a)
δξF′ + F+ 3ξFV ′ + ξVF′ + 8FV = 0. (2.21b)

We can further eliminate ξ in (2.21) and obtain the autonomous forms

dV
dF
= F(6V − 2δ + 1)− 3V(V + δ)

3F(2F+ 3V)
, (2.22a)

d ln |ξ |
dF

=− 1
2F+ 3V

. (2.22b)

Equation (2.22a) is a first-order nonlinear ordinary differential equation with an
unknown parameter δ. Given the value of the parameter δ, the phase portrait of
(2.22a) can be obtained; different solution curves in the phase portrait represent
different self-similar flows subject to different boundary conditions, see figure 3.

The boundary conditions of a specific physical problem are associated with the
critical points in (2.22a) in the phase plane (see e.g. Gratton & Minotti 1990). By
letting the numerator and denominator be equal to zero, we obtain three finite critical
points in the phase plane of (2.22a):

O: (F, V)= (0, 0), (2.23a)
A: (F, V)= (0,−δ), (2.23b)

B: (F, V)= ( 3
16 ,− 1

8

)
. (2.23c)
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Converging gravity currents over a permeable substrate 677

Experiment Permeability Thickness Initial height ‘Touch-down’ time Parameter
kd (10−8 m2) d (10−3 m) h0 (m) tf (s) β

1 0 — 0.020 12.5 0
2 0 — 0.030 5.01 0
3 3.9 3.2 0.029 19.4 0.019
4 3.9 3.2 0.030 16.1 0.017
5 3.9 3.2 0.031 13.1 0.015
6 3.9 3.2 0.033 8.55 0.012
7 5.0 6.4 0.029 11.1 0.012
8 13 1.6 0.043 6.34 0.017
9 13 1.6 0.046 5.14 0.014

10 13 1.6 0.055 2.47 0.0082
11 3.9 3.2 0.013 +∞ 0.207
12 3.9 3.2 0.020 +∞ 0.057

TABLE 2. Summary of experiments on viscous converging gravity currents spreading over
impermeable and permeable horizontal substrates. In all of the experiments golden syrup
was used as the viscous fluid, and the viscosity µ and density ρ were measured: µ =
7.6 Pa s and ρ = 1.47 × 103 kg m−3. The outer radius of the cylindrical tank is rout =
0.147 m, and the location of the lock gate is r0 = 0.112 m. The ‘touch-down’ time tf is
defined as the time for the front to arrive at the centre of the tank. The dimensionless
parameter β is calculated based on (2.9).

Point A describes a state of zero height and finite velocity, which corresponds to the
moving front of the gravity current, where h(rf (t), t)= 0 and drf (t)/dt 6= 0. Point O
corresponds to the state when s = 0, i.e. τ = τf (see e.g. Gratton & Minotti 1990).
Physically, point O corresponds to the state when the front arrives at the origin, i.e. the
centre of the cylinder. Thus, the integral curve connecting points O and A in the phase
plane describes an inwardly converging viscous gravity current when the front is near
the origin.

In order to obtain the integral curve connecting points O and A, we first linearize
(2.22a) near point O, and we obtain the eigenspace:

λ1 =−3δ, e1 = (0,±1), (2.24a)

λ2 = 0, e2 =±
(

3δ
1− 2δ

, 1
)
. (2.24b)

To solve (2.22a) subject to (2.23a,b), we start from an initial condition (Fi,Vi) slightly
perturbed from point O in the neutral eigendirection given by e2. Given a value of δ,
the integral curve starting from (Fi,Vi) can be calculated numerically using the built-in
Mathematica subroutine NDSolve, as shown in figure 3. Then, we adjust the values of
δ, and we observe that the integral curve connects to point A only when δ= 0.762 . . .,
see figure 3, which agrees with the calculation of Gratton & Minotti (1990). Thus, we
have found a second-kind self-similar solution for the converging gravity currents with
vertical fluid leakage through a permeable substrate.

3. Experimental observations
We have conducted a series of experiments on a viscous converging gravity current

using Lyle’s golden syrup, see table 2. The viscosity and density were measured,
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(a) (b) (c)

(d) (e) ( f )

10 cm

10 cm

FIGURE 4. (Colour online) Typical experimental observations of viscous converging
gravity currents: (a–c) over an impermeable substrate, experiment 2 in table 2; (d–f )
over a thin perforated plate with vertical fluid drainage, experiment 4 in table 2. The
dashed circle indicates the location of the cylindrical lock gate at the beginning of the
experiments. Golden syrup was used as the viscous fluid in the experiments. Time from
start of experiment: (a) 1.67 s; (b) 2.94 s; (c) 4.71 s; (d) 4.34 s; (e) 8.09 s; (f ) 15.10 s.

respectively, to be µ = 7.6 Pa s and ρ = 1.47 × 103 kg m−3. In the experiments, a
cylindrical lock gate of radius r0= 0.112 m was used to create the horizontal inward
flow within a cylindrical tank of radius rout = 0.147 m. Several perforated plates
(with different permeability due to changing distributions of holes) were used as the
bottom leaky boundary such that slow fluid drainage occurs during the spreading of
the current. A digital camera was installed above the experimental set-up to capture
from the top the time evolution of the gravity currents. Typical experimental pictures
are shown in figure 4.

3.1. Permeability estimates
In estimating the permeability kd (see (2.2)) of the perforated plates in our
experiments, we use

kd = φkhole, (3.1)

where φ denotes the porosity of the substrate and khole is the permeability of each
hole (see e.g. Bear 1972; Phillips 1991). The well-known result from the Poiseuille
model gives

khole = r2
hole/8, (3.2)

where rhole represents the radius of the parallel circular holes. When the holes are
short, the resistance to flow entering and exiting the holes also needs to be considered
besides the wall friction along the hole; for example, see (5) in Jensen et al. (2014),
and for more discussions see e.g. Sampson (1891), Weissberg (1962) and Dagan et al.
(1982). The interactions of flows entering and exiting each hole may also need to be
considered when the spaces between the holes are small; a correction coefficient G is
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FIGURE 5. (Colour online) Time evolution of the front locations from our experiments on
viscous converging gravity currents with fluid drainage through the permeable substrate.
In (a), the location of the lock gate is 0.112 m, which provides the initial value for all
experiments. In (b), r0 is the location of the lock gate; tf represents the time for the front
to arrive at the centre of the tank, which can be read in (a) as the intercept with the
horizontal axis (except for experiments 11 and 12, which stop at a stationary non-zero
radial position).

provided for both square and hexagonal arrays, see (16) and figure 5 in Jensen et al.
(2014). In our data analysis, in estimating khole for each hole, we combined (5) and
(16) in Jensen et al. (2014), and we obtain:

khole =
(

8
r2

hole
+ 3π(1−G)

rholed

)−1

, (3.3)

where d is thickness of the plate and G is the correction coefficient. For example, one
perforated plate in our experiments contains parallel circular holes of radius rhole ≈
1.6 mm in hexagonal arrays, and the centre-to-centre distance between each pair of
holes is L≈ 2.6 mm. The thickness of the plate is d≈ 1.6 mm. With G≈ 0.13 from
figure 5 of Jensen et al. (2014), then based on (3.3), the permeability of each hole is
khole≈1.6×10−7 m2. The porosity of the plate is φ≈0.42, and hence the permeability
is kd ≈ 6.6 × 10−8 m2. As a comparison, based on the Poiseuille model (3.2) alone,
khole ≈ 3.2× 10−7 m2 and kd ≈ 1.3× 10−7 m2. As can be seen, both khole and kd are
smaller than the estimates from the Poiseuille model, because of the second term in
the denominator of (3.3), which indicates the effect of resistance to flow entering and
exiting the holes.

3.2. Front propagation law
We track the locations of the moving front as a function of time, as shown in figure 5.
Then, we plot the time evolution of the front locations in the rescaled coordinates,
i.e. rf /r0 versus (τf − τ)/τf , see figure 6. Note that the front is not perfectly circular
during the propagation process, so we have used an effective radius reff in our data
analysis, defined as reff ≡ (A/π)1/2, where A denotes the area formed by the moving
front. Numerical solutions of the PDE (2.14) subject to initial condition (2.15) and
boundary conditions (2.16) are also plotted. The dashed line in figure 6 indicates
the slope of 0.762, which comes from the prediction of the second-kind self-similar
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Numerical
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0.01 0.10 1.00

FIGURE 6. (Colour online) Experimental results of the front locations versus the
prediction of numerical simulations (axes are log–log). The theoretical slope of 0.762 is
shown, which is the prediction of the second-kind self-similar solution. We only show
the numerical results for experiment 3 since the calculations only show slight differences
for experiments 1–10 in table 2 in this plot (the differences are due to different initial
conditions). τf is defined based on (2.13b).

solution (§ 2.4). Good agreement is observed among the experimental, numerical and
theoretical results.

3.3. Will the front reach the origin?
When the initial height is very small in the experiments, e.g. experiments 11 and 12
in table 2, we have observed that the front stops and does not reach the centre of the
tank. This result is different from the prediction of the gravity current model without
drainage. Note that the height of the gravity current decreases during the experiments
because of horizontal spreading and vertical drainage through the permeable substrate;
and the vertical drainage prevents the converging front from reaching the centre of the
tank for a small initial height.

A numerical simulation has been conducted by solving (2.14) subject to initial
condition (2.15) and boundary conditions (2.16). The simulation stops at τ = 1/(3β),
which corresponds to t̃→+∞. The final location of the front, defined as

r∞ ≡ lim
t̃→+∞

rf (t̃), (3.4)

can be obtained through the numerical simulations. To demonstrate the idea, we have
chosen rout/r0 ≈ 1.31 (based on our experiments), and we show, in figure 7, the
relationship between the final front location r∞/r0 and the drainage constant β. When
β > βc ≈ 0.058, the drainage effect becomes important, and the front does not reach
the origin. As β continues to increase, the effect of drainage becomes more important,
and the final front location increases. Experimental measurements of the final front
locations have also been plotted in figure 7, and we have observed good agreement.
The error bar indicates a 10 % error for the value of the dimensionless parameters
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FIGURE 7. (Colour online) The final location of the propagating front r∞/r0 depends
on the value of drainage constant β, defined in (2.9), which only involves geometric
parameters. We have set rout/r0 ≈ 1.31 in the numerical calculation, based on our
experiments. When β > βc ≈ 0.058, the front does not reach the origin. The observations
from experiments 3–6 and 11–12 are also shown in this figure. The error bar represents a
10 % error in the estimates for the final front location r∞/r0 and the drainage constant β.

r∞/r0 and β. Note that the theoretical predictions are smaller than the experimental
observations. This is likely due to the effect of surface tension and contact angle in
our experiments when the height of the gravity current is small at late times. We note
that the capillary length scale in a typical experiment is lc ≡ √γ /(1ρg) ≈ 2.4 mm,
where we use γ ≈ 80 mN m−1 for golden syrup. Thus, when the film thickness
approaches this length scale at late times, capillary effects become more important.

In addition, depending on the values of the two dimensionless parameters r0/rout and
β, a regime plot can be obtained that describes whether the front reaches the origin or
not (figure 8): a ‘touching’ regime in which the front reaches the origin, and a ‘non-
touching’ regime in which the front does not arrive at the origin. For a given rout/r0,
the front does not reach the origin when the drainage constant β becomes greater than
a critical value βc, which is calculated numerically in this figure (the black curve).
Information from our experiments has also been plotted in the regime diagram.

There are other effects that can contribute to the uncertainty of the experiments
besides the effect of surface tension and contact angle. For example, we have
neglected the effect of leakage through the gap between the substrate and the bottom
of the lock gate at the beginning of the experiments; we also neglected the amount of
fluid that attaches to the lock gate and hence leaves the system when we remove the
lock gate. The error in the measurements of the initial height, the density and viscosity
of golden syrup can also contribute to the uncertainty of our experiments. Overall
the errors are relatively small and we obtain good agreement with the numerical and
theoretical predictions.

4. Generalizations and discussions
In this section, we generalize our discussion and analysis to two more categories

of gravity current spreading problems where vertical fluid drainage occurs through
the permeable horizontal substrate. In particular, we consider the flow situations
where second-kind self-similar solutions are available for the analogous ‘converging’
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1.0 1.2 1.4 1.6 1.8 2.0
0
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Experiments

: Touching

: Non-touching

Non-touching regimeNo. 11

No. 12

No. 3–6

Touching regime

FIGURE 8. (Colour online) Regime diagram that describes whether the front reaches the
origin (i.e. ‘touching’ regime) or not (i.e. ‘non-touching’ regime). For a given rout/r0, the
front does not reach the origin when the drainage constant β is greater than a critical
value βc, calculated numerically in this plot (the black curve). The observations from
experiments 3–6 and 11–12 are also shown in this diagram.

Hele-Shaw cells with varying gap thickness Lock gate

g

Permeable substrate: vertical fluid drainage
(0, 0)
Origin Front

FIGURE 9. (Colour online) Propagation of a viscous gravity current towards the origin in
a Hele-Shaw cell with varying gap thickness b(x) in the horizontal direction. The substrate
is permeable such that fluid drainage occurs in the vertical direction.

flow problems without vertical fluid drainage: (i) the propagation of viscous gravity
currents in Hele-Shaw channels with varying gap thickness (figure 9); and (ii) the
propagation of gravity currents in porous media with horizontal permeability and
porosity gradients (figure 12). We introduce appropriate mathematical transforms on
time, horizontal velocity and the height of the current so that the theoretical models of
spreading with boundary seepage can be mapped to the analogous models describing
the flow situations without vertical fluid drainage (Zheng et al. 2014). A summary of
the theoretical models is provided in table 3. Our work can provide insights into real
flow situations in a crack or in a porous medium with horizontal heterogeneities and
permeable boundaries (see e.g. Bear 1972; Phillips 1991; Class & Ebigbo 2009).

4.1. Hele-Shaw channels with varying gap thickness
We consider viscous gravity currents spreading in Hele-Shaw cells with varying gap
thickness b(x)= b1xn in the horizontal direction (figure 9). In our previous work, we
found a second-kind self-similar solution for 0 < n < 1, when the gravity current
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propagates towards the origin, where the gap thickness is zero (Zheng et al. 2014).
Now, let us consider the same problem but with vertical fluid drainage from a thin
permeable bottom boundary of permeability kd and thickness d. The origin of the
coordinate system is defined as the location of zero gap thickness, i.e. b(0)= 0. The
height of the gravity current and the horizontal velocity are denoted by ha(x, t) and
ua(x, t), and initially fluid of height ha0 is confined by a lock gate at location xa0.
Assuming d� ha for the majority part of the current away from the moving front,
using Darcy’s law and the local continuity equation, we obtain

ua =−1ρgb2
1

12µ
x2n ∂ha

∂x
, (4.1a)

∂ha

∂t
+ 1

xn

∂

∂x
(xnhaua)=−1ρgkdha

µd
. (4.1b)

Let us now define dimensionless variables h̃a ≡ ha/ha0, ũa ≡ 12µua/(1ρgb2
1x2n−1

a0 ha0),
x̃ ≡ x/xa0, and t̃ ≡ 1ρgb2

1x2n−2
a0 ha0t/(12µ). Then, the dimensionless forms of the

governing equations (4.1) become

ũa =−x̃2n ∂ h̃a

∂ x̃
, (4.2a)

∂ h̃a

∂ t̃
+ 1

x̃n

∂

∂ x̃
(x̃nh̃aũa)=−βah̃a, (4.2b)

where the dimensionless parameter βa measures the significance of vertical fluid
drainage from the permeable horizontal boundary, and is defined as

βa ≡ 12kdx2−2n
a0

dha0b2
1
. (4.3)

Now we introduce the following transform:

h̃a(r̃, t̃)= fa(r̃, τ )e−βa t̃, ũa(r̃, t̃)= va(r̃, τ )e−βa t̃, τ = 1− e−βa t̃

βa
. (4.4a−c)

Immediately, we note that τ→ 0+ as t̃→ 0+, and τ→ 1/βa as t̃→+∞. In addition,
(4.2) are transformed to

va =−x̃2n ∂fa

∂ x̃
, (4.5a)

∂fa

∂τ
+ 1

x̃n

∂

∂ x̃
(x̃nfava)= 0. (4.5b)

Note that (4.5) has the same form as (2.10) in Zheng et al. (2014), which describes
the propagation of viscous gravity currents in a Hele-Shaw cell with an impermeable
substrate. Then, a second-kind self-similar solution can be derived following § 2.1.2
of Zheng et al. (2014), when the current propagates towards the origin:

va(x̃, τ )= x̃
s

Va(ξ), fa(x̃, τ )= x̃2(1−n)

s
Fa(ξ), (4.6a,b)

where s≡ τf − τ , indicating the time remaining for the front to reach the origin, and
the similarity variable is defined as ξ ≡ x̃/sδ. The scaling exponent δ(n) depends on n,
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FIGURE 10. (Colour online) The final location of the propagating front x∞/xa0 depends
on the value of drainage constant βa, defined in (4.3), and the geometric parameter n for
the shape of the channel. We have set xout/xa0 ≈ 1.31 in the numerical calculation, to be
consistent with § 3. When β > βac(n), the front does not reach the origin; the value of
βac(n) depends on n, and we have shown the numerical calculations for n= 0.2, 0.5, 0.8
in this figure.

and can be obtained (for 0< n< 1) by solving a nonlinear eigenvalue problem using
a phase-plane analysis, for example, δ(0.2) ≈ 1.14, δ(0.5) ≈ 1.54 and δ(0.8) ≈ 2.95
from figure 6 of Zheng et al. (2014).

It should also be noted that when the drainage effect becomes important, the front
will not be able to reach the origin. We show the final location of the propagating
front x∞, defined as x∞ ≡ limt̃→+∞ x(t̃), for xout/xa0 ≈ 1.31 in figure 10, based on a
numerical calculation. Note that xout represents the horizontal span of the channel, and
xa0 is the location of the lock gate. When the drainage constant βa, defined in (4.3),
becomes greater than a critical value βac(n) (which depends on n, the shape parameter
of the channel), the front does not reach the origin. A regime diagram (figure 11) can
also be obtained for different values of the drainage constant βa, the dimensionless
parameter xout/xa0 and the shape parameter n for the channel. Analogously to the
discussion in § 3.3, a ‘touching’ regime and a ‘non-touching’ regime can be identified.

4.2. Porous media with horizontal permeability and porosity gradients
Let us now study the propagation of a viscous gravity current in porous media with
permeability and porosity gradients of power-law forms in the horizontal direction:
k(x) = k1xn and φ(x) = φ1xm (figure 12). We note that, in practice, 2 < n/m < 3,
where n/m= 2 represents a porous medium of tubular holes, and n/m= 3 represents a
network of intersecting fissures, as mentioned in Phillips (1991). We allow slow fluid
drainage from the thin permeable substrate of permeability kd and thickness d. The
origin of the coordinate system is placed at the location of zero permeability and
porosity, i.e. k(0) = 0 and φ(0) = 0. We denote the height of the current and the
horizontal velocity as hp(x, t) and up(x, t), and we assume that initially the fluid of
height hp0 is confined by a lock gate at xp0. Then, analogously to the development in
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FIGURE 11. (Colour online) Regime diagram that describes whether the front reaches the
origin (i.e. ‘touching’ regime) or not (i.e. ‘non-touching’ regime). For a given xout/xa0, the
front does not reach the origin when the drainage constant βa is greater than a critical
value βac(n) (shown as the curves for n = 0.2, 0.5, 0.8), which also depends on the
geometric parameter n for the shape of the channel.

§ 4.1, the governing equations for the fluid flow are written as

up =−1ρgk1xn

µ

∂hp

∂x
, (4.7a)

∂hp

∂t
+ 1
φ1xm

∂

∂x
(hpup)=−1ρgkdh

φ1µd
. (4.7b)

Again, we non-dimensionalize (4.7) by defining dimensionless variables h̃p ≡ hp/hp0,
ũp ≡ µup/(1ρgk1xn−1

p0 hp0), x̃ ≡ x/xp0 and t̃ ≡ 1ρgk1xn−m
p0 hp0t/(φ1µ). Then, the

dimensionless form of governing equation (4.7) becomes

ũp =−x̃n ∂ h̃p

∂ x̃
, (4.8a)

∂ h̃p

∂ t̃
+ 1

x̃m

∂

∂ x̃
(h̃pũp)=−βph̃p, (4.8b)

where a dimensionless parameter βp is defined as

βp ≡ kd

xn−m
p0 k1 dhp0

, (4.9)

which measures the significance of the vertical fluid drainage. Then, we can introduce
the following transform:

h̃p(r̃, t̃)= fp(r̃, τ )e−βp t̃, ũp(r̃, t̃)= vp(r̃, τ )e−βp t̃, τ = 1− e−βp t̃

βp
, (4.10a−c)

and we note that τ→ 0+ as t̃→ 0+, and τ→ 1/βp as t̃→+∞. We can also transform
equation (4.8) into

vp =−x̃n ∂fp

∂ x̃
, (4.11a)
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Porous media with horizontal permeability and porosity gradients

Permeable substrate: vertical fluid drainage

Lock gate g

(0, 0)
Origin Front

FIGURE 12. (Colour online) Propagation of a viscous gravity current towards the origin
in a porous medium with horizontal permeability and porosity gradients. The substrate is
permeable such that fluid drainage occurs in the vertical direction.

∂fp

∂τ
+ 1

x̃m

∂

∂ x̃
(fpvp)= 0. (4.11b)

Again, we observe that (4.11) has the same form as (2.27) in Zheng et al. (2014),
which describes the propagation of a gravity current on an impermeable substrate.
Therefore, a second-kind self-similar solution can be obtained following § 2.2.2 of
Zheng et al. (2014). Let us denote s = τf − τ , representing the remaining time for
the front to arrive at the origin; then, the self-similar solution is given by

vp(x̃, τ )= x̃m+1

s
Vp(ξ), fp(x̃, τ )= x̃m−n+2

s
Fp(ξ), (4.12a,b)

where the similarity variable ξ is defined as ξ ≡ x̃/sδ, and the scaling exponent δ(m,n),
depending on both m and n, can be obtained by solving a nonlinear eigenvalue
problem, for example, δ(1, 2.5)≈ 2.42 and δ(1.5, 3.1)≈ 2.78.

We also note that as the drainage constant βp increases, the effect of fluid loss
through drainage becomes more significant, and eventually the front may not reach the
origin. Similar to the analysis in §§ 3.3 and 4.1, we are able to numerically calculate
the final location of the propagating front x∞, defined as x∞ ≡ limt̃→+∞ x(t̃), and we
show the results in figure 13(a). We have chosen (m = 1, n = 2.5) and (m = 1.5,
n=3.1) in the numerical calculations as examples; we have also chosen xout/xp0≈1.31
to be consistent with the analysis in §§ 3.3 and 4.1. In addition, we obtain a regime
diagram (figure 13b) that characterizes whether or not the front reaches the origin,
depending on the drainage constant βp, the dimensionless parameter xout/xp0 and the
values of m and n that describe the horizontal heterogeneity of the porous medium.
Note that xout represents the horizontal span of the porous medium and xp0 denotes
the location of the lock gate.

5. Final remarks
It is well known that the spreading of gravity currents can be described by similarity

solutions of the first kind so that dimensional reasoning, along with the structure of
the PDE, yields the shape and spreading characteristics. It is well appreciated that, for
simple models of leakage through a substrate, analysis of the spreading problem is still
possible via a change of variables (2.13) that reduces the problem to one previously
studied. Many problems of this type have been reported (see table 1).

As first summarized for gravity currents without leakage by Gratton & Minotti
(1990), a self-similar solution of the second kind can also be obtained to describe the
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1.0(a)

(b)

0 1 2 3 4 5

1.0 1.2 1.4 1.6 1.8 2.0

0.8

0.6

0.4

0.2

0

0.8
Non-touching regime

Touching regime

0.6

0.4

0.2

0

FIGURE 13. In (a), the final location x∞ of the front depends on the drainage constant
βp, and the values of m and n that describe the horizontal heterogeneity of the porous
medium. We have chosen (m= 1, n= 2.5) and (m= 1.5, n= 3.1) as examples; we have
also chosen xout/xp0≈ 1.31 to be consistent with §§ 4.1 and 3.3. In (b), the regime diagram
is shown and describes whether or not the front arrives at the origin in a porous medium
with horizontal permeability and porosity gradients.

interface shape when the currents propagate towards an ‘origin’. Here we report the
effect of fluid drainage on second-kind self-similar solutions for the time evolution
of the fluid–fluid interface. By extending the change of variables (2.13) to include
velocity (2.17), we map the original problem to the analogous flow situations without
vertical fluid drainage (summarized in table 3); then, various self-similar solutions of
the second kind can be obtained by solving a nonlinear eigenvalue problem using a
phase-plane analysis, following Gratton & Minotti (1990) and Zheng et al. (2014).
In addition, we have obtained a regime diagram that describes whether the front
reaches the origin or not, depending on two dimensionless parameters: rout/r0 and the
drainage constant β. The final location of the front can then be estimated.

We also designed and conducted laboratory experiments for viscous converging
gravity currents over a perforated substrate, which serves as a model of continuous
leakage, where the flow is generated by removing a cylindrical lock gate within a
cylindrical tank. The time evolution of the location of the propagating front was
recorded in the experiments, and we observed both flow regimes where the front
arrived at the origin and the cases where it did not. The experimental data agree well
with the theoretical and numerical predictions. Our experimental set-up provides a
new model system for the study of fluid drainage through a thin permeable substrate,
and extends the existing experimental systems of drainage through thin parallel plates
(Pritchard et al. 2001) and drainage through deep substrates (Acton et al. 2001;
Spannuth et al. 2009).

This study can provide useful insights into industrial and geological processes when
a liquid fills a crack, for example, in the development of gravity-driven polymer
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crack sealers (e.g. Sprinkel & DeMars 1995) and in the process of crack propagation
assisted by chemical reaction (e.g. Atkinson 1984; Vlassak, Lin & Tsui 2005). For
these processes, it is useful to understand the dynamics of the fluid motion and the
time scale when the fluid front arrives at the crack tip. Here we have analysed the
effect of buoyancy-driven fluid loss through a permeable boundary, and how such a
drainage effect can alter the crack-filling dynamics. It should also be noted that the
effect of surface tension can become important when the propagating front is very
close to the crack tip, which forms an interesting topic for future study.
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