
TLP 16 (5–6): 515–532, 2016. C© Cambridge University Press 2016

doi:10.1017/S1471068416000375

515

Assertion-based analysis via slicing with
ABETS�

(system description)

M. ALPUENTE, F. FRECHINA and J. SAPIÑA

Universitat Politècnica de València, Departamento de Sistemas Informáticos y Computación, Camino de

Vera, s/n, 46022 Valencia (Spain)

(e-mails: alpuente@dsic.upv.es, ffrechina@dsic.upv.es, jsapina@dsic.upv.es)

D. BALLIS

Università degli Studi di Udine, Dipartimento di Matematica e Informatica, Via delle Scienze, 206, 33100

Udine (Italy)

(e-mail: demis.ballis@dimi.uniud.it)

submitted 29 April 2016; revised 6 August 2016; accepted 22 August 2016

Abstract

We present ABETS, an assertion-based, dynamic analyzer that helps diagnose errors in

Maude programs. ABETS uses slicing to automatically create reduced versions of both a

run’s execution trace and executed program, reduced versions in which any information

that is not relevant to the bug currently being diagnosed is removed. In addition, ABETS

employs runtime assertion checking to automate the identification of bugs so that whenever an

assertion is violated, the system automatically infers accurate slicing criteria from the failure.

We summarize the main services provided by ABETS, which also include a novel assertion-

based facility for program repair that generates suitable program fixes when a state invariant

is violated. Finally, we provide an experimental evaluation that shows the performance and

effectiveness of the system.

KEYWORDS: runtime assertion checking, dynamic program and trace slicing, program

diagnosis and Debugging, rewriting logic, Maude

1 Introduction

Bug diagnosis is a time-consuming and, most often, tedious manual task that forces

developers to painstakingly examine large volumes of complex execution traces while

trying to locate the actual cause of observable misbehaviors. This paper describes

a dynamic program analyzer called ABETS (Assertion-BasEd Trace Slicer), which

aims to mitigate the costs of diagnosing errors in concurrent programs that are

written in Maude.

� This work has been partially supported by the EU (FEDER) and Spanish MINECO grant TIN2015-
69175-C4-1-R, and by Generalitat Valenciana PROMETEOII/2015/013. J. Sapiña was supported by
FPI-UPV grant SP2013-0083.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

http://orcid.org/http://orcid.org/0000-0003-2994-6986
https://doi.org/10.1017/S1471068416000375

516 M. Alpuente et al.

Maude is a language and a system that efficiently implements Rewriting Logic

(Meseguer 1992), which is a logic of change that seamlessly unifies a wide variety

of models of concurrency. Thanks to its logical basis, Maude provides a precise

mathematical model, which allows it to be used as a declarative language and as

a formal verification system. Maude supports rich formal specification, equational

rewriting, and logical reasoning modulo algebraic axioms (such as associativity,

commutativity, and identity), providing tools for a number of formal techniques that

include theorem proving, protocol analysis, state space exploration, deductive verifi-

cation, model transformation, constraint solving, and model checking. The execution

traces generated by Maude are complex objects to analyze since they may contain

a huge number of compound rewrite steps that, however, omit crucial information

for debugging such as the application of algebraic axioms (which is concealed

within Maude’s equational matching algorithm). While this maximizes efficiency and

is certainly justified during the program operation, it further complicates debugging.

The dynamic analyzer ABETS described in this paper facilitates the debugging of

Maude programs. It does this by drastically simplifying the size and complexity

of the analyzed programs and runs while still showing all relevant information for

debugging, which is done by a fruitful combination of runtime assertion checking

and slicing that was originally formalized in Alpuente et al. (to appear). In assertion-

based slicing, the user supplements the Maude program to be analyzed with a set

of logical assertions that are checked at runtime. Upon an assertion failure, an

accurate set of discordant positions (called symptoms) is automatically calculated

by ABETS by comparing the computed erroneous program state with the expected

pattern for the state (as defined by the violated assertion), with the comparison being

performed by using least general generalization modulo the algebraic axioms of the

operators involved (Alpuente et al. 2014). By filtering out everything but the distilled

disagreements, a so-called slicing criterion is synthesized by ABETS that accurately

identifies the (position of the) faulty information in the erroneous last state of the

trace. Then, in order to locate the source of the error, a trace slicing procedure is

automatically triggered that propagates the anomalous information. This is done by

recursively computing the origins or antecedents (Field and Tip 1994) of the observed

positions while removing everything but the computed antecedents at each step. The

given combination of runtime checking and slicing yields a self-initiating, enhanced

dynamic slicing technique that traverses the program execution and makes every

single computation detail explicit while revealing only and all data in the trace that

contribute to the criterion observed. As a by-product of the trace slicing process, an

executable program slice is also automatically extracted that captures the program

subset that is concerned with the error.

Assertion-based slicing is efficiently implemented in ABETS not just for Maude,

but also for Full Maude (Clavel et al. 2007), which is a powerful extension of

Maude that provides support for object-oriented specification and advanced module

operations. The major strength of the system is that the user needs not identify

criteria or error symptoms in advance because the assertions (or more precisely,

their runtime checks) are used to synthesize the slicing criteria. This is a significant

improvement over more traditional, hand-operated slicing in which the criteria for

slicing need to be provided by the user.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

Assertion-based analysis via Slicing with ABETS 517

Contributions. The basic algorithms behind ABETS were introduced in

Alpuente et al. (to appear), where we evaluated them on a prototype implementation

of the system. This work describes the latest, fully fledged ABETS implementation,

which improves system efficiency as well as the generality/flexibility of the overall

technique.

• We explain the functionality of ABETS in Section 3. In Section 3.1, we describe

the assertion-based trace slicing facility. In Section 3.2, we outline a new repair

technique that automatically suggests program corrections to fix the program

faults that are signalled by the violation of a state invariant property. The

corrected rules are guarded by a suitable instance of the invariant so that

the repaired rule is fired only if the invariant is fulfilled. In Section 3.3, we

present some novel extra analysis features that complement the ABETS core

functionality.

• We provide a description of those novel implementation details and optimiza-

tions that have boosted the system performance in Section 4. Also, we report a

new in-depth experimental evaluation of the system in Section 5 that assesses

critical aspects such as the assertion-checking and slicing capabilities, and the

system input/output (I/O) performance, which is a usual weak spot of tools

developed in (Full) Maude.

• The ABETS system is available at http://safe-tools.dsic.upv.es/abets.

It can be downloaded and locally installed as a stand-alone console application,

or it can be remotely used via a user-friendly web interface. A brief discussion

of related tools and concluding remarks are provided in Section 6.

2 Modeling concurrent Systems in Maude: Our running example

Concurrent systems can be formalized through Maude programs. A Maude program

essentially consists of two components, E and R, where E is a canonical (member-

ship) equational theory that models system states as terms of an algebraic data

type, and R is a set of rewrite rules that define transitions between states. Algebraic

structures often involve axioms like associativity (A), commutativity (C), and/or

identity (a.k.a unity) (U) of function symbols, which cannot be handled by ordinary

term rewriting but instead are handled implicitly by working with congruence classes

of terms. This is why the membership equational theory E is decomposed into a

disjoint union E = Δ � Ax, where the set Δ consists of (conditional) equations and

membership axioms (i.e., axioms that assert the type or sort of some terms) that

are implicitly oriented from left to right as rewrite rules (and operationally used

as simplification rules), and Ax is a set of algebraic axioms, implicitly expressed as

function attributes, that are only used for Ax-matching.

The concurrent system evolves by rewriting states using equational rewriting,

i.e., rewriting with the rewrite rules in R modulo the equations and axioms in

E (Meseguer 1992). More precisely, execution traces (i.e., system computations)

correspond to rewrite sequences t0
r0−→E t1

r1−→E . . ., where t
r−→E t′ denotes a

transition (modulo E) from state t to t′ via the rewrite rule of R that is uniquely

labeled with r. Assuming that the initial term t is normalized (this assumption is

not essential, but it will simplify the exposition), each single transition t
r−→E t′

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

518 M. Alpuente et al.

Fig. 1. (Conditional) rewrite rules and equations modeling the stock exchange

system.

(or Maude step) is computed as a rewrite chain t
r−→ t′′ →∗

Δ (t′′↓Δ
) = t′, where

t′′ →∗
Δ (t′′↓Δ

) is an equational simplification sequence that rewrites t′′ into its canonical

(i.e., irreducible) form (t′′↓Δ
) using the oriented equations in Δ. Although advisedly

omitted in our notation, all rewrites in the chain (either applying r or any of the

equations in Δ) are performed modulo Ax. When a rewrite step from term t to term

t′ via a rule r ∈ R must be fully characterized, we will write t
r,σ,w
−→ t′, where w is the

position in t where the rewrite occurred and σ is the computed substitution obtained

by pattern matching modulo E. As usual, term positions are defined by means of

sequences of natural numbers (Λ denotes the empty sequence, i.e., the root position).

The result of replacing the subterm of t at position w by the term s is denoted by

t[s]w .

The following Maude program will be used as a running example throughout the

paper.

Example 2.1

Let us introduce a (faulty) rewrite theory that specifies a simplified1 stock exchange

concurrent system, in which traders operate on stocks via limit orders, that is, orders

that set the upper bound (price limit) at which traders want to buy stocks.

When the stock price equals or drops below the price limit L, the associated order

is opened and the trader buys the stocks at the current stock price. An order is

automatically closed and the associated stocks are sold either (a) when the stock

price P exceeds the purchase price limit L plus a predetermined profit target PT (i.e.,

P−L � PT), or (b) when L−P exceeds a predetermined stop loss SL (i.e., L−P � SL).

1 Maude’s syntax is hopefully self-explanatory. Due to space limitations and for the sake of
clarity, we only highlight those details of the system that are relevant to this work. A
complete Maude specification of the stock exchange model is available at the ABETS website at
http://safe-tools.dsic.upv.es/abets.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

Assertion-based analysis via Slicing with ABETS 519

Within our system model, variable names are fully capitalized, while names that

begin with the symbol ’ are constant identifiers for traders, stocks, and orders.

System states have the form R : SS | TS | OS, where R is a natural number

(called round) that models the market time evolution, and SS, TS, and OS are sets2

of stocks, traders, and orders, respectively.

Stocks are modeled as terms st(SID,P) with SID being the stock identifier and P

being the current stock price. Traders are modeled as tr(TID,C), where TID is the

trader identifier and C is the trader’s available capital. We consider two classes of

traders: premium traders and ordinary (or non-premium) traders. Premium traders

are allowed to buy even if they run out of capital. Premium traders are identified by

the conditional membership axiom premT (see Figure 1) that simply checks whether

the trader identifier belongs to the (hard-coded) list PreferredTraders, which in

this example just contains the premium trader ’T2.

Orders are specified by terms of the form ord(OID,TID,SID,L,PT,SL,ST), which

record the order identifier OID, the trader identifier TID, the stock identifier SID, the

stock price limit L, the profit target PT, the stop loss SL, and the order status ST

(which can be either open or closed). For simplicity, an order allows only a single

stock to be traded at a time. This is not a limitation since multiple stocks can be

managed by multiple orders.

Basic operations of the stock exchange model (i.e., market time evolution, opening

and closure of orders) are implemented via the rules and equations of Figure 1. The

open-ord rule opens a trader order only if the stock price P falls below or is equal

to the order price limit L. When the order is opened, the stock price is subtracted

from the trader’s capital, thereby updating the capital. Note that, in the set of stocks

(st(SID, P), SS), the stock st(SID, P) is distinguished from all other stocks SS in the

system.

Similarly, the close-ord-SL rule closes an order for the stock SID and removes

it from the current state when the SID stock price P falls below or is equal to the

L − SL stop loss threshold. The trader’s capital then increases by the price P that

the trader gets for the sold stocks. The close-ord-PT rule is similar and closes an

order when its stock price satisfies the profit target.

Finally, the next-rnd rule models the time evolution by simply increasing the

round number by one and then automatically updating the stock prices by means

of the function updP, which randomly increases or decreases the stock prices via the

näıve pseudo-random number generator rndDelta that is re-seeded at the beginning

of each round with the round tick R+1.

Note that the specification given in Figure 1 contains two sources of error. First,

the function updP is flawed because it could generate non-positive stock prices,

which are meaningless and should be disallowed. Second, the rule open-ord does

not check if the available capital of a non-premium trader is enough to cover the

2 To specify sets of X-typed elements, we instantiate the Maude parameterized sort Set{X}, which defines
sets as associative, commutative, and idempotent lists of elements that is simply written as (e1, . . . , en).
The empty set is denoted by the constant symbol empty.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

520 M. Alpuente et al.

order price limit. For instance, for the ordinary Trader ’T, the following reachability

goal (which can be solved in Maude via the search command3)

(1 : st(’S,8) | tr(’T,9) | ord(’O,’T,’S,12,4,3,closed)) =>* R : SS | tr(’T,C) | OS.

computes (among other solutions) the substitution {R/3, SS/st(’S, 12), C/-3,

OS/ord(’O, ’T, ’S, 12, 4, 3, open)} that witnesses the existence of an execu-

tion trace that starts from the specified initial state and ends in a final state with a

faulty, negative capital C = -3.

3 Assertion-based program analysis and repair with ABETS

ABETS implements an automated trace slicing technique based on

Alpuente et al. (2014) that facilitates the analysis of Maude programs by drastically

reducing the size and complexity of entangled, textually large execution traces. The

technique first uncovers data dependencies within the execution trace T w.r.t. a

slicing criterion (i.e., a set of selected symbols in the last state of T) and then

produces a trace slice T• of T in which pointless information that is detected to

be irrelevant w.r.t. the chosen criterion (i.e., symbols in T that are not origins or

antecedents of the observed symbols) is replaced with the special variable symbol •.

Unlike the original trace slicing methodology of Alpuente et al. (2014) where

the slicing criterion must be manually determined in advance by the user, ABETS

encompasses a runtime assertion-checking mechanism (which is built on top of

the slicing engine) that was originally formalized in Alpuente et al. (to appear) and

preserves the program semantics. This mechanism allows the slicing criteria to be

automatically inferred from falsified assertions, thereby offering more automatic

support to the analysis of erroneous programs and traces.

The slicing algorithm employs unification to implement the origin-tracking proce-

dure that properly tracks back the data dependences along the trace, and the gen-

eralization (i.e., anti-unification) algorithm modulo axioms of Alpuente et al. (2014)

to automatically identify semantic disagreements of the program behavior w.r.t. the

assertions (Alpuente et al. to appear).

ABETS is also provided with an automatic program repair facility, which is

described in Section 3.2, that suggests fixes to potentially buggy rewrite rules

whenever it detects a faulty system state of a trace T that does not satisfy a system

assertion S{ϕ}. Roughly speaking, the technique transforms the rewrite rule that is

responsible for the system assertion failure (i.e., the last applied rule in T that causes

(a piece of) the transformed state to match the state pattern S). This fix is done by

adding a constrained instance of the logic formula ϕ into the conditional part of the

rule, which is computed by using Maude’s built-in E-unification (Durán et al. 2016).

3 Given a (possibly) non-ground term s, Maude’s search command checks whether a reduct of t is an
instance (modulo the program equations and axioms) of s and delivers the corresponding (equational)
matcher as the computed solution.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

Assertion-based analysis via Slicing with ABETS 521

3.1 Assertion-based slicing in ABETS

ABETS supports two types of assertions: system assertions and functional assertions.

(i) System assertions: Their general syntax is S{ϕ}, where S is a term (called state

template), and ϕ is a logic formula in conjunctive normal form ϕ1 ∧ . . . ∧ ϕn.

A system assertion S{ϕ} defines a state invariant that must be satisfied by all

system states that match (modulo the equational theory E) the state template S .

When a system state s does not satisfy a system assertion S{ϕ}, the position p in s,

which is called bug position, precisely indicates the subterm of s that matches S and

is responsible for the assertion violation.

Example 3.1

The following system assertion specifies that the capital of ordinary traders must be

non-negative in every system state of the trace:

R:Nat : SS:Set{Stock} | tr(TID:TraderID,C:Int),TS:Set{Trader} | OS:Set{Order}

{ordinary(tr(TID:TraderID,C:Int)) implies C:Int >= 0}

where the user-specified predicate ordinary(T) simply checks whether T is a non-

premium trader in the Maude program of Example 2.1.

(ii) Functional assertions: Their general form is I {ϕin} → O {ϕout}, where I, O are

terms, and ϕin , ϕout are logic formulas. Intuitively, functional assertions specify

pre- and post-conditions over the equational simplification t →∗
Δ (t↓Δ

) that heads

the rewriting t
r−→E t′ of any term t in the system trace by providing (i) an

input template I that t can match and a pre-condition ϕin that t can meet; (ii)

an output template O that the canonical form (t↓Δ
) of t has to match and a

post-condition ϕout that (t↓Δ
) has to meet (whenever the input term t matching

I meets ϕin).

Example 3.2

Consider again the Maude program of Example 2.1. The functional assertion

updP(R:Nat,S:Nat,(st(SID:StockID, P:Int),SS:Set{Stock})) { P:Int > 0 }
-> (st(SID:StockID, P’:Int),SS’:Set{Stock}) { P’:Int > 0 }

specifies that stock market fluctuations modeled by function updP should generate

positive stock prices provided that the input stock prices are also positive.

The satisfiability of the provided assertions can be checked in two different

modalities, either as a synchronous (and trace-storing) procedure that incrementally

executes, checks, and potentially slices execution traces at runtime, or as an

asynchronous (off-line) procedure that processes a previously computed execution

trace against the set of provided assertions. In ABETS, system traces can be easily

generated by providing both an initial and a final reachable state. As for equational

simplification traces, they can be generated by simply providing the initial term,

which is then simplified to its irreducible form.

Synchronous as well as asynchronous assertion checking is implemented via

equational rewriting that automatically reduces all matched assertions to Boolean

truth values.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

522 M. Alpuente et al.

Fig. 2. Trace slice for automatically synthesized criterion tr(’T1,-3).

Example 3.3

Consider the Maude program of Example 2.1 and the execution trace T = s0
next-rnd−→

s1
open-ord

−→ s2 that starts in the initial state

s0 = 1 : (st(’S1,23), st(’S2,8)) | (tr(’T1,9), tr(’T2,20)) | ord(’O1,’T1,’S2,12,4,3,closed)

and ends in the state

s2 = 2 : (st(’S1,4), st(’S2,12)) | (tr(’T1,-3), tr(’T2,20)) | ord(’O1,’T1,’S2,12,4,3,open)

The negative capital of the ordinary trader ’T1 in the state s2 is demonstrably

wrong by the violation of the system assertion of Example 3.1. Hence, ABETS

automatically computes the slicing criterion tr(’T1,-3) that pinpoints this faulty

information and produces the trace slice T• of Figure 2, which represents a partial

view of the system evolution that focuses on T1’s trading actions and exposes the

erroneous behavior of the open-ord rule to user inspection.

ABETS also provides a handy way to automatically synthesize refined slicing

criteria by means of special variables (whose name begins with �) that can be used

in the assertions to indicate pieces of the matched term that the user does not want

to observe along the generated trace slice. For instance, if we replace TID:TraderID

with �TID:TraderID in the system assertion of Example 3.1, we compute the refined

criterion tr(• ,-3) for the trace T of Example 3.3.

3.2 Automatic repair of program rules in ABETS

Given an equational theory E = Δ ∪ Ax and two terms t1 and t2, an E-unifier for

t1 and t2 is a substitution σ such that t1σ =E t2σ. In Maude, E-unifiers are not

represented as a single substitution, but as a pair of substitutions (σ1, σ2), one for

left unificands and the other for right unificands (i.e., t1σ1 =E t2σ2). Also, Maude’s

E-unification algorithm may generate new (fresh) unification variables, denoted by

%n, with n being a natural number. The set of all such variables contained in a given

term t is denoted by UnifVar(t). Let us see an example.

Example 3.4

Consider a simple Maude program whose signature consists of two unary operators,

m and c, and one commutative, binary operator f. The program includes a single

equation m(X) = c(X). Then, σ = (σ1, σ2) = ({X/%1}, {Z/%1}) is an E-unifier for

the terms t1 = f(m(X),0) and t2 = f(0,c(Z)). The new, unification variable %1 is

used to establish that X and Z represent the same value, and it is the only common

variable shared by t1σ1 and t2σ2.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

Assertion-based analysis via Slicing with ABETS 523

Our repair technique is based on a two-phase algorithm that takes as input (i)

the last Maude step t
r,σ,w
−→ t′→∗

Δt
′
↓Δ of the execution trace that violates S{ϕ}, with r

being λ => ρ if C, (ii) the violated system assertion S{ϕ}, and (iii) the bug position

p in the last trace state t′↓Δ.

Phase 1 [Semantic unification of the failing assertion and rule]. First, we E-unify the

terms t′[ρ]w (that is, a more general version of t′ = t[ρσ]w that does not apply the

substitution σ to the reduced term) and t′↓Δ[S]p (that is, a more general version of

t′↓Δ, where the subterm at the bug position p is replaced by the assertion pattern

S itself) in order to relate the variables in the right-hand side ρ of r with the

variables that appear in the state template S . Since there may be several E-unifiers,

we just select an E-unifier (σρ, σS) such that the bindings in σρ do not clash with

the bindings in the computed substitution σ. This is done by performing a standard

consistency check through the parallel composition of σρ and σ, which computes

the most general unifier of the set of all the equations x = t that represent a binding

x/t in either σρ or σ. If such an most general unifier exists, σρ is consistent w.r.t. σ,

and the corresponding E-unifier (σρ, σS) is selected.

As a side note, observe that we cannot simply E-unify ρ with S because the state

template S could include operators that are not in ρ but in t′, and, hence, the two

terms could be not E-unifiable and lead to no repair. This is the reason why we

need to E-unify ρ and S within their corresponding state contexts, that is, t′[ρ]w and

t′↓Δ[S]p.

Example 3.5

Consider a Maude program that contains the rewrite rule rl [r] f(X) => g(X)

and no equations, together with the execution trace a & f(0)
r−→ a & g(0) and

the system assertion (a & g(Z)) {Z>0}, which is violated in the state a & g(0).

Observe that there is no E-unifier between the right-hand side g(X) of r and

the state template a & g(Z), whereas the pair ({X/%1},{Z/%1}) is an E-unifier for

the terms a & g(X) and a & g(Z), which include g(X) and a & g(Z) in their

corresponding state context. More importantly, the bindings in the computed E-

unifier enforce X and Z to bind the very same value. This suggests to us that we can

achieve a repair by forcing the rewrite rule argument X to inherit the constraints

on Z.

Phase 2 [Strengthening the rule condition]. Given the computed E-unifier (σρ, σS),

first we split σρ into two sets σrule and σnew such that σrule = {x/t ∈ σρ | x ∈
Var(ρ) ∧ UnifVar(t) = ∅}, and σnew = σρ \ σrule. Note that σnew contains all those σρ
bindings that introduce new unification variables, while the bindings of σrule only

use the original variables of ρ. Then, we replace the faulty rule r with the following

corrected rule whose condition is strengthened by adding a constrained version (that

is built by using σS and σrule) of the violated logic formula ϕ:

crl [rfix] : λσnew => ρσnew if Cσnew /\
((∧

x/t∈σrule

x == t
)
implies ϕσS

)

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

524 M. Alpuente et al.

The corrected rule rfix is produced by instantiating the original rule r with the

substitution σnew that introduces in rfix the fresh variables generated during the

unification process of Phase 1 and by adding the instance ϕσS of the falsified logical

formula ϕ. The variables of such an instance are constrained via a logical implication

whose premise is the conjunction of all the bindings x/t in σrule interpreted as

Boolean expressions x == t4. In the case when σrule is empty, the logical implication

corresponds to (true implies ϕσS), and thus simply reduces to the term ϕσS .

Example 3.6

Consider a Maude program that includes the following rewrite rule r and

equation e

crl [r] : f(X,Y) => c(2,g(X,Y)) if X =/= Y .

eq [e] : g(X,Y) = m(X,Y) .

and assume that the operator m is declared commutative. Let us consider the system

assertion c(2,m(Z,5)) {even(Z)}, where even(Z) checks if Z is an even natural

number.

The execution trace f(5, 3)
r,σ

−→ c(2, g(5, 3))
e−→ c(2, m(5, 3)), with computed

substitution σ = {X/5, Y/3}, is erroneous since the formula even(Z) does not

hold for the binding Z/3 that is computed by matching modulo commutativity the

state c(2,m(5,3)) in the assertion state template c(2,m(Z,5)).

The repair proceeds by first performing Phase 1, which computes two E-unifiers

of the terms c(2,g(X,Y)) and c(2,m(Z,5)), namely,

(σρ1
, σS1

) = ({X/%1, Y/5}, {Z/%1}) (σρ2
, σS2

) = ({X/5, Y/%1}, {Z/%1})

Now, observe that the E-unifier (σρ1
, σS1

) is discarded since σρ1
is not consistent

w.r.t. σ. Actually, there is no most general unifier of σρ1
and σ because of the clash

between the bindings Y/5 ∈ σρ1
and Y/3 ∈ σ. The E-unifier (σρ2

, σS2
) is consistent

w.r.t. σ and thus is used to infer the repair in Phase 2 of the algorithm.

Phase 2 generates the partition σρ2
= σrule ∪ σnew = {X/5} ∪ {Y/%1} and uses it

together with σS2
to yield the following corrected version of the rule r:

crl [rfix] : f(X,%1) => c(2,g(X,%1)) if (X =/= %1 /\ (X == 5 implies even(%1)).

Note that the generated condition of a repaired rule rfix might not be satisfiable,

which makes rfix not applicable. This is not bad since the non-applicability of the

corrected rule prevents the system from reaching the faulty state signaled by the

assertion violation. This therefore has the inherent effect of reducing the number

of erroneous runs in the system, which is of primary importance in the repair of

critical systems as first advocated by Logozzo and Ball (2012).

4 A binding x/t in σrule can always be interpreted as an executable, Boolean expression x == t, since all
the variables included in x/t appear in the rewrite rule as well and thus take concrete values when the
rule is applied.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

Assertion-based analysis via Slicing with ABETS 525

Fig. 3. Extended view of the computed trace slice after refuting the functional

assertion of Example 3.2 (trusted mode).

3.3 New additional analysis features

The system functionality of ABETS has been extended by introducing the following,

new additional features.

Trusted/Untrusted modes. ABETS encompasses two slicing modes: trusted and

untrusted. In trusted mode, Maude built-in operators are considered to be trusted

(i.e., not to have bugs) and are therefore ignored in the trace slice (See Figure 3),

which further reduces its size. In untrusted mode, all relevant operators are traced.

The trusted mode is set to true by default and can be switched to untrusted mode

by choosing the Trace Information option in the main menu and then clicking the

Trusted/Untrusted mode button. To help the user compare the original, extended

trace, and the trace slice when they are shown side-by-side (e.g., in the table view),

trusted reduction steps (as well as duplicate states modulo axioms) are not omitted

but are depicted in light gray.

Computation graph exploration. To help identify traces of interest for asynchronous

checking, ABETS supports two different representations of the computation space

for a given initial term: the (standard) tree representation that is provided by

default and a novel graph representation of the state space that can improve user’s

understanding of the program behavior (see Figure 4). It is possible to switch

between the two representations by left-clicking on any node of the tree or graph.

In the case when the user left-clicks on a node in the graph, the topmost leftmost

node in the tree that is associated with the considered graph node is highlighted.

Trace querying and manipulation. This feature allows information of interest to be

searched in huge execution traces by undertaking a query that specifies a template

for the search (see Figure 5). This query is a filtering pattern with wildcards that

define irrelevant terms by means of the underscore character () and relevant terms

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

526 M. Alpuente et al.

Fig. 4. Computation graph generated from initial state s0 of Example 3.3 (partial

view).

Fig. 5. Result of the trace query st(, - ?).

by means of the question mark character (?). In addition, traces and trace slices can

be manipulated using their meta-level representation to be exported to other Maude

tools. The meta-representation of terms can be visually displayed, which is par-

ticularly useful for the analysis of object-oriented computations where some object

attributes can only be unambiguously visualized in the meta-level (desugared) states.

Several extra features, described in Alpuente et al. (to appear), are (i) an incre-

mental trace slicing capability that allows the computed trace slices to be further

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

Assertion-based analysis via Slicing with ABETS 527

simplified by automatically applying backward as well as forward trace slicing w.r.t.

user-provided slicing criteria refinements (Alpuente et al. 2015); (ii) a program slicing

feature for delivering program fragments that include all and only the rules/equations

responsible for the detected error.

A starting guide that contains a typical analysis session with ABETS can be found

at http://safe-tools.dsic.upv.es/abets/quickstart.pdf.

4 Implementation details and optimizations

The architecture of ABETS consists of the following: (i) a Maude-based slicer

and constraint-checker core that can run at both Maude and Full Maude levels

interchangeably; (ii) a scalable, high-performance NoSQL database powered by

MongoDB that endows the tool with memoization capabilities in order to improve

the response time for complex and recurrent executions; (iii) a RESTful web service

written in Java that is executed by means of the Jersey JAX-RS API; and (iv) an

intuitive user interface that is based on AJAX technology and written in HTML5

canvas and Javascript. ABETS contains about 3,500 lines of Maude code, 1,000 lines

of C++ code, 1,000 lines of Java code, and 3,000 lines of Javascript code. The system

has been (re-)implemented by primarily focusing on its performance, including

improvements for both the analysis and for the input and output operations.

Analysis optimizations. One of the many features of ABETS is its ability to manipu-

late all the relevant information regarding the application of equations, algebraic ax-

ioms, and built-in operators at the meta-level, which is a feature that is not supported

by Maude. We implemented this extension in a new developer version of the Maude

system called Mau-Dev (available at http://safe-tools.dsic.upv.es/maudev)

without affecting the efficiency of the latest Maude 2.7 release. Also, to boost the

system performance, the functions that are more frequently used in ABETS have

been re-implemented in C++ as new, highly efficient, built-in Mau-Dev (meta-level)

operations that are available at Mau-Dev’s website.

I/O optimizations. Maude’s efficient parser allows very large initial calls to be

efficiently parsed in just a few milliseconds. In contrast, Full Maude’s parser is

entirely developed in Maude itself; hence, its efficiency can be seriously penalized

when dealing with mixfix operator definitions due to extensive backtracking. As

a result, ABETS initial calls that contain large and complex execution traces as

arguments typically took some minutes to be loaded into our previous system

(Alpuente et al. to appear). We have overcome this drawback by dynamically creat-

ing a devoted module that defines unique placeholder terms that are subsequently

reduced to the actual arguments of the initial (Full Maude) call. For example, to

encode a Full-Maude, source-level representation of the state s2 of Example 3.3,

ABETS defines the 0-ary operator aState:

op aState : -> String .

eq aState = "1 : (st(’S1,23), st(’S2,8)) | (tr(’T1,10), tr(’T2,20)) |

(ord(’O1,’T2,’S1,10,6,4,open), ord(’O2,’T1,’S2,12,4,3,close))" .

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

528 M. Alpuente et al.

This greatly reduces the size of the initial Full-Maude call since it only contains

the aState placeholder but not the actual state data. These data are later brought

back by applying the aState equation. A similar encoding is used for user-defined

assertions and execution traces that are to be asynchronously checked.

The added module is loaded prior to starting the Full Maude’s execution loop

(Clavel et al. 2007). Thus, by taking advantage of the ability of Full Maude to access

previously loaded Maude modules, the entire call can be parsed directly in Maude,

except for its topmost operator.

The output of ABETS executions typically consists of a Maude term of sort

String, represented in JSON (JavaScript Object Notation) format, that collects

all the computed information (e.g., the source-level and meta-level representation

of the original trace and the trace slice, the associated program slice that can be

computed as described in Alpuente et al. (to appear), and transition information

between subsequent trace states). This output string is later processed by the ABETS

front-end to offer a more friendly, visual representation. Since efficient output

handling is crucial not to penalize the overall performance of the system, (meta)

string conversion has also been implemented in C++.

Some experiments that highlight the efficiency gain of the optimized system w.r.t.

Alpuente et al. (to appear) are shown in Section 5.

5 Experimental evaluation

To evaluate the performance of the ABETS system, we introduced defects in several

Maude programs endowed with assertions and we used the system to detect assertion

violations. We benchmarked ABETS on the following collection of Maude programs,

which are all available and fully described within the ABETS web platform: Bank

model, a conditional Maude specification that models a distributed banking system;

Blocks World, a Maude encoding of the classical AI planning problem that consists

of setting one or more vertical stacks of blocks on a table using a robotic arm;

BRP, a Maude implementation of the Bounded Retransmission Protocol; Dekker,

a Maude specification of Dekker’s mutual exclusion algorithm; Maze, the non-

deterministic Maude specification of a maze game where multiple players walk,

jump, or collide while trying to reach a given exit point; Philosophers, a Maude

specification of the classical Dijkstra concurrency example; Rent-a-car (fm), a Full

Maude program that models the logic of a distributed, object-oriented, online car-

rental store; Stock Exchange, the running example of this article; Stock Exchange

(fm), a Full Maude, object-oriented version of the Stock Exchange example; Webmail,

a Maude specification of a rich webmail application that provides typical email

management, system administration capabilities, login/logout functionality, etc.

ABETS automatically identifies theories that do not require Full Maude capabilities

so that the highest possible analysis performance is achieved without incurring

unnecessary costs.

In our experiments, we evaluate both the effectiveness and the performance of

ABETS by (synchronously) checking each program against an assertional specifica-

tion that contains at least one failing assertion. This way, an erroneous execution

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

Assertion-based analysis via Slicing with ABETS 529

Fig. 6. Total speedup with respect to Alpuente et al. 2016.

trace Tε is delivered and subsequently simplified into a trace slice T•
ε w.r.t. slicing

criteria that are automatically inferred. The experiments were conducted on a PC

with 3.3 GHz Intel Xeon E5-1660 CPU with 64 GB RAM.

Obviously, the slowdown of the entire checking process depends on the number

of assertions that are contained in the specification and particularly on the degree

of instantiation of their associated patterns. Patterns that are too general can result

in a large number of (often) unprofitable evaluations of the logic formulas involved

since the number of possible matchings (modulo axioms) with the system’s states

can grow quickly. The slowdown can also be affected by the complexity of the

predicates involved in the functional and system assertions to be checked.

Table 1 summarizes our results. The TEx and TExChk columns measure the

execution times (in ms) with and without assertion checking for traces that apply 500

rewrite rules (which expands to 8,292 rewrites—i.e., rule, equation, built-in operator,

and axiom applications—on average). #Chk represents the total number of assertion

checks performed when assertion checking was enabled. OV is the overhead, i.e.,

the ratio = (TExChk − TEx)/TEx which indicates the relative slowdown due to

assertion-checking. The results obtained are quite satisfactory and comparable with

similar logic assertion checking frameworks such as Mera et al. (2009). The average

overhead is 1.92, which is 69% of the average value (2.78) of the overhead of

Alpuente et al. (to appear) that are shown in column OVjlamp for the very same

benchmark programs.

The figures in the Tsynth and Tfix columns, respectively measure the times

for synthesizing the slicing criterion and for inferring the repairs (in ms). Our

experiments show very small synthesis times for the slicing criteria that grow linearly

with the size of the erroneous state. This is particularly evident in the case of webmail

app, whose states are quite large (about 2.5 Kb, which is 20 times the size of the

Stock Ex. states). The time for inferring the repairs is also a small portion of the

total execution time.

The trace slices that are automatically delivered by ABETS are evalutated by

comparing the size of the detected erroneous execution trace Tε (in kilobytes); the

size of the sliced execution trace T•
ε (in kilobytes); and the derived reduction rate

achieved (%Red.), which ranges from 98% to 62% with an average reduction rate

of 85%. With regard to the time required to perform the slicing, our implementation

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

5
3
0

M
.
A

lp
u
en

te
et

a
l.

Table 1. Synchronous assertion-checking performance analysis

Program TEx TExChk #Chk OV OVjlamp Tsynth Tfix TI /O Size Tε Size T•
ε %Red.

Bank model 17 101 2,004 4.94 5.76 2 2 10 9.536 1.236 87%

Blocks world 19 37 509 0.95 2.16 1 1 2 0.279 0.046 84%

BRP 5 23 1,002 3.6 4.6 1 2 9 0.792 0.269 67%

Dekker 40 98 1,002 1.45 2.5 2 14 55 8.268 0.286 97%

Maze 128 409 7,437 2.2 3 1 3 13 2.747 0.423 85%

Philosophers 12 36 811 2 2.92 1 3 47 5.244 1.990 62%

Rent-a-car (fm) 178 263 1,503 0.48 0.52 5 9 247 5.507 0.115 98%

Stock Ex. 36 103 1,503 1.86 2.58 3 12 263 46.423 4.153 91%

Stock Ex. (fm) 726 1,310 2,004 0.8 1.72 5 43 4,688 195.397 20.862 89%

Webmail app 138 271 1,002 0.96 1.99 9 20 541 133.460 7.823 94%

https://doi.org/10.1017/S1471068416000375 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068416000375

Assertion-based analysis via Slicing with ABETS 531

is quite time efficient despite the complex analyses and reasoning modulo axioms

performed underneath; the elapsed times are small even for very complex traces and

also scale linearly. For example, running the slicer for a typical 50 Kb faulty trace

delivered by the analyzer.

Finally, the generation, parsing, and I/O of traces (and trace slices) have been

greatly improved in the current version of ABETS. The I/O times are shown in

column TI /O of Table 1 (in ms) for I/O data sizes that range from 15 Kb (in the

case of the Blocks program) to 7 Mb (in the case of the Stock Ex.(fm) program).

This gives an average I/O cost of 0.6 s, whereas in our previous tool the I/O

operations took minutes.

The total speedups that we achieved w.r.t. our previous implementation (including

checking, slicing, and I/O costs) are represented in Figure 6, with an average speedup

of 9.66 with respect to Alpuente et al. (to appear).

6 Conclusion and related work

ABETS combines run-time assertion checking and automated (program and exe-

cution trace) transformations for improving the debugging of programs that are

written in (Full) Maude.

Assertions have been considered in (constraint) logic programming, functional pro-

gramming, and functional-logic programming (see Mera et al. (2009), Chitil (2011),

Antoy and Hanus (2012), and references therein). However, we are not aware of

any assertion-based, dynamic slicing system that is comparable to ABETS for

either declarative or imperative languages. Actually, none of the correctness tools

in the related literature integrate trace slicing and assertion-based reasoning to

automatically identify, simplify, inspect, and repair faulty code and runs.

A detailed discussion of the literature related to this work can be found in

Alpuente et al. (to appear), Alpuente et al. (2014). Here, we focus on assertion-

checking tools supporting logical reasoning modulo axioms, which are the closest to

our work. In Durán et al. (2014), the validator tool mOdCL is described that checks

OCL assertions on UML models encoded as Maude prototypes. If a constraint is

violated, the execution is aborted and an error is reported that signals the state and

the constraint involved. In contrast to ABETS, mOdCL does not simplify (either

manually or automatically) the execution trace that reaches the erroneous state or

the program itself in any way.

The (rewriting logic) semantic framework � (Roşu 2015) supports assertion-based

analysis and runtime verification based on Reachability Logic, a particular class of

first-order formulas with equality P ⇒ P′, where P (and P′) consists of a (Boolean)

term b and a constraint ϕ over the logical variables of b (i.e., b∧ϕ). These formulas

P specify those concrete configurations that match the algebraic structure of b

and satisfy the constraint ϕ. They are used to express (and reason about) static

state properties, similarly to our system assertions S{ϕ}. As for our functional

assertions I {ϕin} → O {ϕout}, they are quantifier-free and evaluated on equational

simplifications, while Reachability Logic formulas assert more general properties on

system computations and are used for deductive and algorithmic verification.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

532 M. Alpuente et al.

A different semantic approach for automatic program repair that is based on

abstract interpretation can be found in Logozzo and Ball (2012), which applies to

.Net languages.

References

Alpuente, M., Ballis, D., Frechina, F. and Romero, D. 2014. Using conditional trace slicing

for improving Maude programs. Science of Computer Programming 80, Part B, 385–415.

Alpuente, M., Ballis, D., Frechina, F. and Sapiña, J. 2015. Exploring conditional rewriting

logic computations. Journal of Symbolic Computation 69, 3–39.

Alpuente, M., Ballis, D., Frechina, F. and Sapiña, J. 2016. Debugging Maude programs

via runtime assertion checking and trace slicing. Journal of Logical and Algebraic Methods

in Programmig 85, Issue 5, Part 1, 707–736.

Alpuente, M., Escobar, S., Espert, J. and Meseguer, J. 2014. A modular order-sorted

equational generalization algorithm. Information and Computation 235, 98–136.

Antoy, S. and Hanus, M. 2012. Contracts and specifications for functional logic programming.

In Proc. of the 14th Int’l Symposium on Practical Aspects of Declarative Languages (PADL

2012). Lecture Notes in Computer Science, vol. 7149. Springer-Verlag, 33–47.

Chitil, O. 2011. A semantics for lazy assertions. In Proc. of the 20th ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation (PEPM 2011). Association for

Computing Machinery, 141–150.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J. and Talcott,

C. 2007. All About Maude: A High-Performance Logical Framework. Springer-Verlag.

Durán, F., Eker, S., Escobar, S., Martı́-Oliet, N., Meseguer, J. and Talcott, C. 2016.

Built-in variant generation and unification, and their applications in Maude 2.7. In Proc.

of the 8th International Joint Conference on Automated Reasoning (IJCAR 2016). Lecture

Notes in Computer Science, vol. 9706. Springer-Verlag, 183–192.

Durán, F., Roldán, M., Moreno-Delgado, A. and Álvarez, J. M. 2014. Dynamic validation

of Maude prototypes of UML models. In Specification, Algebra, and Software - Essays

Dedicated to Kokichi Futatsugi (SAS 2014), S. Iida, J. Meseguer and K. Ogata, Eds.,

Lecture Notes in Computer Science, vol. 8373. Springer-Verlag, 212–228.

Field, J. and Tip, F. 1994. Dynamic dependence in term rewriting systems and its application

to program slicing. In Proc. of the 6th Int’l Symp. on Programming Language Implementation

and Logic Programming (PLILP 1994). Lecture Notes in Computer Science, vol. 844.

Springer-Verlag, 415–431.

Logozzo, F. and Ball, T. 2012. Modular and verified automatic program repair. In Proc.

of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2012). Association for Computing Machinery, 133–

146.

Mera, E., López-Garcı́a, P. and Hermenegildo, M. V. 2009. Integrating software testing

and run-time checking in an assertion verification framework. In Proc. of the 25th Int’l

Conference on Logic Programming (ICLP 2009). Lecture Notes in Computer Science, vol.

5649. Springer-Verlag, 281–295.

Meseguer, J. 1992. Conditional rewriting logic as a unified model of concurrency. Theoretical

Computer Science 96, 1, 73–155.

Roşu, G. 2015. From rewriting logic, to programming language Semantics, to program

verification. In Logic, Rewriting, and Concurrency - Festschrift Symposium in Honor of José

Meseguer, N. Martı́-Oliet, P. Csaba Ölveczky and C. L. Talcott, Eds., Lecture Notes in

Computer Science, vol. 9200. Springer-Verlag, 598–616.

https://doi.org/10.1017/S1471068416000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000375

