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An initial–boundary-value problem for a class of wave equations with nonlinear
damping and source terms in a bounded domain is considered. We establish the
non-existence result of global solutions with the initial energy controlled above by a
critical value via the method introduced in a work by Autuori et al . in 2010. This
improves the 2009 result of Liu and Wang.

1. Introduction

This paper is concerned with the initial–boundary-value problem for the following
equation:

(|ut|l−2ut)t − ∆ut − div(a(x)|∇u|α−2∇u)

− div(|∇ut|β−2∇ut) + Q(x, t, ut) = f(x, u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t � 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.1)
where l, α, β � 2 and Ω is a bounded domain in R

N , N � 1, with a smooth
boundary ∂Ω so that the divergence theorem can be applied. Here ∇ denotes the
gradient operator and a(x), Q and f satisfy some conditions given in (A1)–(A3)
below.

The equations in (1.1) form a class of essential nonlinear evolution equations
used to describe longitudinal motion in viscoelasticity mechanics, and they can
also be considered as a system governing the longitudinal motion of a viscoelastic
configuration obeying the nonlinear Voight model [1–3,9].

In the absence of viscosity and strong damping, equation (1.1) becomes

(|ut|l−2ut)t − div(a(x)|∇u|α−2∇u) + Q(x, t, ut) = f(x, u), x ∈ Ω, t > 0.

For f = 0, it is well known that the damping term ensures global existence and
decay of the solution energy for arbitrary initial data [8, 10]. On the other hand,
for Q = 0, the source term causes global non-existence of the solution and finite
time blow-up in some cases [5, 7, 11, 12, 20]. While considering the interaction of
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Figure 1. The phase plane (λ, E).

the nonlinear damping and source terms, there are also many results discussed by
many authors (see [6, 9, 13–15,18,19,22] and the references cited therein).

In the presence of viscosity and strong damping, Yang [24] obtained the non-
existence properties of the global solutions when the initial energy is sufficiently
negative with l = 2, a(x) = 1, Q(x, t, ut) = |ut|m−2ut, m > 2 and f(x, u) = |u|p−2u,
p > 2. Later, Messaoudi and Houari [17] extended the result of [24] to a situation
when the initial energy is negative. Recently, following the technique used in [17,21],
Liu and Wang [16] generalized the result of [17] to a more general model with small
positive initial energy. Regarding equations of Kirchhoff type, Autuori et al . [4]
investigated the following dissipative anisotropic non-homogeneous p(x)-Kirchhoff
system

utt − M(ϕu(t))∆p(x)u + µ|u|p(x)−2u + Q(t, x, u, ut) = f(t, x, u).

They established the new result of global non-existence for nonlinear Kirchhoff
systems by a new approach of the classical potential well and concavity method.

Motivated by this research, we show in this study that the global non-existence
results for equation (1.1) can be extended from the region

Σ = {(λ, E) | λ > λ1, E < E1}

to

Σ̃ = {(λ, E) | λ > λ1, E < Ẽ1}

(see figure 1, from [4]), where λ1, E1 and Ẽ1 are as given in § 3. To this end, we
will improve the global non-existence results of [16] to a bigger region

Σ1 = {(λ, E) | λ > λ1, E � E1}.

Our proof technique closely follows the arguments of [4, 16, 17], with some modi-
fications being needed for our problem. The content of this paper is organized as
follows. In § 2 we give some notation and assumptions and state the local existence
result. In § 3 we state and prove the non-existence result of global solutions of (1.1)
in theorems 3.6 and 3.9.
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2. Preliminary and local existence results

In this section we give some notation and assumptions that will be used through-
out this work. We denote by m′ the Hölder conjugate of m, ‖u‖p = ‖u‖Lp(Ω),
‖u‖1,r = ‖u‖W 1,r(Ω), where Lp(Ω) and W 1,r(Ω) stand for Lebesgue spaces and
classical Sobolev spaces, respectively. Now we make the following assumptions on
a, Q and f as in [16].

(A1) a(x) ∈ L∞(Ω) so that a(x) � a0 > 0 almost everywhere (a.e.) in Ω.

(A2) There are m > 1 and a measurable function d = d(x, t) defined on Ω ×J such
that d(·, t) ∈ Lp/(p−m)(Ω) for a.e. t ∈ J and

Q(x, t, v)v � 0, |Q(x, t, v)| � [d(x, t)]1/m[Q(x, t, v)v]1/m′
, (2.1)

for all values of x, t, v, where J = [0, T ), 0 < T � ∞, and

d(x, t) � 0, ‖d(·, t)‖p/(p−m) ∈ L∞
loc(J). (2.2)

(A3) f(x, u) ∈ C(Ω × R
N ; RN ), f(x, u) = ∇uF (x, u), with F (x, 0) = 0. There are

constants d1 > 0, p > α and 0 < µ < µ0a0 such that, for x ∈ Ω and u ∈ R
N ,

|f(x, u)| � d1|u|p−1 + µ|u|α−1, (2.3)

where µ0 is the first eigenvalue of the nonlinear eigenvalue problem

− div(|∇u|α−2∇u) = τ |u|p−2u in Ω, u|∂Ω = 0.

Moreover, there is ε0 > 0 such that, for all ε ∈ (0, ε0), there exists d2(ε) > 0
such that

f(x, u)u − (p − ε)F (x, u) � d2|u|p (2.4)

for all x ∈ Ω.

Remark 2.1. We note that when

Q(x, t, ut) = b(1 + t)ρ|ut|m−2ut, −∞ < ρ � m − 1,

condition (A2) holds.
Let

U = L∞([0, T ), W 1,α
0 (Ω)) ∩ W 1,∞([0, T ), L2(Ω))

∩ W 1,β([0, T ), W 1,β
0 (Ω)) ∩ W 1,m([0, T ), Lm(Ω)),

where T > 0 is a real number. Now we are in a position to state the local existence
result that can be obtained by combing arguments in [23,25].

Theorem 2.2. Assume that (A1), (A2) and (A3) hold. Suppose 2 < α < p < p∗ and
u0 ∈ W 1,α

0 (Ω), u1 ∈ L2(Ω). Then there exists a unique local solution u of (1.1)
satisfying u ∈ U , where p∗ = Nα/(N − α) if N > α and p∗ = ∞ if N � α.
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3. Non-existence of global solutions

In this section we shall discuss the non-existence of global solutions of problem (1.1).
For this purpose, we first define the energy function associated with a solution u of
(1.1) by

E(t) =
l − 1

l
‖ut‖l

l + A(u) − F(u) for t � 0, (3.1)

where
A(u) =

1
α

∫
Ω

a(x)|∇u|α dx − µ

α
‖u‖α

α (3.2)

and
F(u) =

∫
Ω

F (x, u) dx − µ

α
‖u‖α

α. (3.3)

We also set

λ1 =
(

a0 − µ

µ0

)1/(p−α)

(d1B
p
1)−1/(p−α), (3.4)

E1 =
(

1
α

− 1
p

)(
a0 − µ

µ0

)p/(p−α)

(d1B
p
1)−α/(p−α)

=
(

1 − α

p

)
w1, (3.5)

where

w1 =
1
α

(
a0 − µ

µ0

)
λα

1

and B1 is the best constant of the Sobolev embedding W 1,α
0 (Ω) ↪→ Lp(Ω) given by

B−1
1 = inf{‖∇u‖α

α : u ∈ W 1,α
0 (Ω), ‖u‖p

p = 1}.

Remark 3.1. From (3.2), (A1) and the definition of µ0 by (A3), we observe that

A(u) =
1
α

∫
Ω

a(x)|∇u|α dx − µ

α
‖u‖α

α

� 1
α

(
a0 − µ

µ0

) ∫
Ω

|∇u|α dx (3.6)

and since f(x, u) = ∇uF (x, u), it follows from (3.3), (2.3) and the Sobolev embed-
ding W 1,α

0 (Ω) ↪→ Lp(Ω) that

F(u) =
∫

Ω

F (x, u) dx − µ

α
‖u‖α

α

=
∫

Ω

∫ 1

0
f(x, τu)u dτ dx − µ

α
‖u‖α

α

� d1

p
‖u‖p

p � d1B
p
1

p
‖∇u‖p

α. (3.7)

Then, as in [16], we have the following results.
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Lemma 3.2 (Liu and Wang [16]). Suppose that (A1)–(A3) hold, that

u0 ∈ W 1,α
0 (Ω), u1 ∈ L2(Ω)

and let u be a solution of (1.1). Then E(t) is a non-increasing function on [0, T ]
and

E′(t) = −
∫

Ω

|∇ut|2 dx −
∫

Ω

|∇ut|β dx −
∫

Ω

Q(x, t, ut)ut dx � 0. (3.8)

Theorem 3.3 (Liu and Wang [16]). Suppose that

l, α, β, m, p � 2, max{l, β, m} < α < p < p∗, (‖∇u0‖α, E(0)) ∈ Σ

that (A1), (A2) and (A3) hold, and that u ∈ U is a solution to (1.1) on [0, T ]. Then
T is necessarily finite, i.e. u cannot be continued for all t > 0.

Remark 3.4. It follows from (3.1), (3.6), (3.8) and 0 < µ < µ0a0 by (A3) that

F(u) =
l − 1

l
‖ut‖l

l + A(u) − E(t)

� 1
α

(
a0 − µ

µ0

) ∫
Ω

|∇u|α dx − E(0)

� −E(0)

for all t � 0. In other words, F(u) is bounded below for all t � 0 along any solution
u ∈ U .

Lemma 3.5. If u is a solution of (1.1), then

w2 = inf
t∈R+

0

F(u) > −∞.

Furthermore, if E(0) < (p/α − 1)w2 = Ẽ1, then

w2 > 0 and (‖∇u(t)‖α, E(t)) ∈ Σ̃ = {(λ, E) | λ > λ1, E < Ẽ1}

for all t ∈ R+
0 .

Proof. From remark 3.4 and E(0) < (p/α − 1)w2 = Ẽ1, we have

w2 � 1
α

(
a0 − µ

µ0

)
‖∇u‖α

α − E(0)

>
1
α

(
a0 − µ

µ0

)
‖∇u‖α

α −
(

p

α
− 1

)
w2,

which implies

w2 >
1
p

(
a0 − µ

µ0

)
‖∇u‖α

α � 0

due to 0 < µ < µ0a0, and so w2 > 0.
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By (3.8), it is clear that E(t) � E(0) < Ẽ1 for all t ∈ R+
0 . Suppose that there

exists t1 ∈ R+
0 such that ‖∇u(t1)‖α � λ1. Then, by (3.7), (3.1) and (3.6),(

p

α
− 1

)
d1B

p

p
‖∇u(t1)‖p

α �
(

p

α
− 1

)
F(u)

�
(

p

α
− 1

)
w2

= Ẽ1 > E(0)

� A(u(t1)) − F(u(t1))

� 1
α

(
a0 − µ

µ0

)
‖∇u(t1)‖α

α − d1B
p
1

p
‖∇u(t1)‖p

α.

This implies that

‖∇u(t1)‖α >

(
a0 − µ

µ0

)1/(p−α)

(d1B
p
1)−1/(p−α) = λ1,

which is a contradiction. Thus

‖∇u(t)‖α > λ1 and (‖∇u(t)‖α, E(t)) ∈ Σ̃ for all t ∈ R+
0 .

Theorem 3.6. Let l, α, β, m, p � 2 and max{l, β, m} < α < p < p∗. Assume that
(A1), (A2) and (A3) hold, and that u0 ∈ W 1,α

0 (Ω), u1 ∈ L2(Ω). Then any solution
of (1.1) with initial data satisfying E(0) < Ẽ1 cannot be continued for all t > 0.

Proof. We will prove this theorem by contradiction, so we suppose that a solution
u of (1.1) is admitted on [0, ∞) and set

H(t) = E2 − E(t), ∀t � 0, (3.9)

where E2 > 0, E2 ∈ (E(0), Ẽ1). By (3.8), we get H ′(t) � 0. Thus, we obtain

H(t) � H(0) = E2 − E(0) > 0, ∀t � 0. (3.10)

In addition, by the choice of E2, (3.1), the definition of Ẽ1 and the definition of w2,
we have

H(t) = E2 − E(t) < Ẽ1 + F(u)

=
(

p

α
− 1

)
w2 + F(u)

� p

α
F(u).

Hence, by (3.10) and (3.7), we get

0 < H(0) � H(t) � p

α
F(u) � d1

α
‖u‖p

p. (3.11)

Let
Φ(t) =

∫
Ω

u|ut|l−2ut dx. (3.12)
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Taking the derivative of Φ(t) and using (1.1) yield

Φ′(t) = ‖ut‖l
l −

∫
Ω

∇u∇ut dx −
∫

Ω

a(x)|∇u|α dx −
∫

Ω

|∇ut|β−2∇ut∇u dx

−
∫

Ω

Q(x, t, ut)u dx +
∫

Ω

f(x, u)u dx. (3.13)

In correspondence to (A3), there exists ε0 > 0 such that (A3) holds true. Without
loss of generality, we take ε0 so small that

ε0w2 � (p − α)w2 − αE2, (3.14)

which is possible since w2 > 0 and Ẽ1 > E2. Fix ε ∈ (0, ε0). Then, via (3.1), (3.13)
becomes

Φ′(t) = a1‖ut‖l
l −

∫
Ω

∇u∇ut dx −
∫

Ω

|∇ut|β−2∇ut∇u dx +
∫

Ω

f(x, u)u dx

+ (p − ε − α)A(u) − µ

∫
Ω

|u|α dx −
∫

Ω

Q(x, t, ut)u dx

− (p − ε)E(t) − (p − ε)F(u),

here a1 = 1 + (l − 1)(p − ε)/l > 0. On the other hand, we note from (3.3) and (2.4)
that ∫

Ω

f(x, u)u dx − (p − ε)F(u) − µ

∫
Ω

|u|α dx

=
∫

Ω

f(x, u)u dx − µ‖u‖α
α − (p − ε)

( ∫
Ω

F (x, u) dx − µ

α
‖u‖α

α

)

� d2‖u‖p
p +

µ(p − ε − α)
α

‖u‖α
α.

Thus,

Φ′(t) � a1‖ut‖l
l + d2‖u‖p

p −
∫

Ω

∇u∇ut dx + (p − ε − α)(A(u) − E(t))

− αE(t) −
∫

Ω

|∇ut|β−2∇ut∇u dx −
∫

Ω

Q(x, t, ut)u dx.

Therefore, by using (3.1) again, the definition of w2 and E(t) = E2 −H(t) by (3.9),
we see that

Φ′(t) � a2‖ut‖l
l + d2‖u‖p

p −
∫

Ω

∇u∇ut dx + (p − ε − α)F(u)

− αE(t) −
∫

Ω

|∇ut|β−2∇ut∇u dx −
∫

Ω

Q(x, t, ut)u dx

� a2‖ut‖l
l + d2‖u‖p

p −
∫

Ω

∇u∇ut dx + (p − ε − α)w2

+ αH(t) − αE2 −
∫

Ω

|∇ut|β−2∇ut∇u dx −
∫

Ω

Q(x, t, ut)u dx, (3.15)
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where a2 = 1 + α(l − 1)/l. Furthermore, since εw2 < ε0w2 � (p − α)w2 − αE2 by
(3.14), we derive from (3.15) that

Φ′(t) � a2‖ut‖l
l + d2‖u‖p

p + αH(t) −
∫

Ω

∇u∇ut dx

−
∫

Ω

|∇ut|β−2∇ut∇u dx −
∫

Ω

Q(x, t, ut)u dx. (3.16)

Next, we want to estimate the last three terms of the right-hand side of (3.16) as
in [16]. Using (A2), the Hölder inequality and Young’s inequality, we obtain∫

Ω

Q(x, t, ut)u dx

� δm

m

∫
Ω

|u|m d(x, t) dx +
m − 1

m
δ−m/(m−1)

∫
Ω

Q(x, t, ut)ut dx

� δm

m
‖u‖m

p ‖d(·, t)‖p/(p−m) +
m − 1

m
δ−m/(m−1)

∫
Ω

Q(x, t, ut)ut dx

� δma3

m
‖u‖m

p +
m − 1

m
δ−m/(m−1)

∫
Ω

Q(x, t, ut)ut dx, (3.17)

∫
Ω

∇u∇ut dx � 1
4µ1

∫
Ω

|∇u|2 dx + µ1

∫
Ω

|∇ut|2 dx (3.18)

and∫
Ω

|∇ut|β−2∇ut∇u dx � µβ
2

β

∫
Ω

|∇u|β dx +
β − 1

β
µ

−β/(β−1)
2

∫
Ω

|∇ut|β dx, (3.19)

where δ, µ1, µ2 and a3 are some positive constants. A substitution of (3.17)–(3.19)
into (3.16) gives

Φ′(t) � a2‖ut‖l
l + d2‖u‖p

p + αH(t) − 1
4µ1

∫
Ω

|∇u|2 dx

− µ1

∫
Ω

|∇ut|2 dx − µβ
2

β

∫
Ω

|∇u|β dx − β − 1
β

µ
−β/(β−1)
2

∫
Ω

|∇ut|β dx

− δma3

m
‖u‖m

p − m − 1
m

δ−m/(m−1)
∫

Ω

Q(x, t, ut)ut dx. (3.20)

At this point, we choose δ, µ1, µ2 so that

δ−m/(m−1) = M1H
−r(t), µ1 = M2H

−r(t), µ
−β/(β−1)
2 = M3H

−r(t),

for M1, M2 and M3 to be specified later and

0 < r < min
{

α − 2
p

,
α − β

p(β − 1)
,

α − m

p(m − 1)
,

α − l

αl

}
. (3.21)

Then, using the fact that

H ′(t) = −E′(t) =
∫

Ω

|∇ut|2 dx +
∫

Ω

|∇ut|β dx +
∫

Ω

Q(x, t, ut)ut dx
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by (3.9) and (3.8), we deduce from (3.20) that

Φ′(t) � a2‖ut‖l
l + d2‖u‖p

p + αH(t) − 1
4M2

Hr(t)
∫

Ω

|∇u|2 dx

− M
−(β−1)
3

β
Hr(β−1)(t)

∫
Ω

|∇u|β dx − M1−m
1 a3

m
Hr(m−1)(t)‖u‖m

p

−
[
M2

∫
Ω

|∇ut|2 dx +
(β − 1)M3

β

∫
Ω

|∇ut|β dx

+
(m − 1)M1

m

∫
Ω

Q(x, t, ut)ut dx

]
H−r(t)

� a2‖ut‖l
l + d2‖u‖p

p + αH(t) − 1
4M2

Hr(t)
∫

Ω

|∇u|2 dx

− M
−(β−1)
3

β
Hr(β−1)(t)

∫
Ω

|∇u|β dx − M1−m
1 a3

m
Hr(m−1)(t)‖u‖m

p

− MH−r(t)H ′(t), (3.22)

where

M = M2 +
(β − 1)M3

β
+

(m − 1)M1

m
.

Since α > β � 2, we have

∫
Ω

|∇u|2 dx � C(Ω)
( ∫

Ω

|∇u|α dx

)2/α

,

∫
Ω

|∇u|β dx � C(Ω)
( ∫

Ω

|∇u|α dx

)β/α

,

where C(Ω) is some positive constant depending on Ω only. We then use the embed-
ding W 1,α

0 (Ω) ↪→ Lp(Ω) and (3.11) to obtain

Hr(t)
∫

Ω

|∇u|2 dx � C(Ω)
(

Bp
1 d1

α

)r( ∫
Ω

|∇u|α dx

)(pr+2)/α

, (3.23)

Hr(β−1)(t)
∫

Ω

|∇u|β dx � C(Ω)
(

Bp
1d1

α

)r(β−1)( ∫
Ω

|∇u|α dx

)(pr(β−1)+β)/α

,

(3.24)

Hr(m−1)(t)‖u‖m
p � C(Ω)

(
Bp

1d1

α

)r(m−1)

Bm
1

( ∫
Ω

|∇u|α dx

)(pr(m−1)+m)/α

.

(3.25)

Now, exploiting the relation in [17],

zξ � (z + 1) �
(

1 +
1
η

)
(z + η), (3.26)
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which holds for all z � 0, 0 < ξ � 1 and η > 0, then, taking η = H(0) and using
(3.10) and (3.21), we have the following:

( ∫
Ω

|∇u|α dx

)(pr+2)/α

� a4

( ∫
Ω

|∇u|α dx + H(t)
)

, (3.27)

( ∫
Ω

|∇u|α dx

)(pr(β−1)+β)/α

� a4

( ∫
Ω

|∇u|α dx + H(t)
)

, (3.28)

( ∫
Ω

|∇u|α dx

)(pr(m−1)+m)/α

� a4

( ∫
Ω

|∇u|α dx + H(t)
)

, (3.29)

for all t � 0 and a4 = 1 + 1/H(0). Inserting (3.23)–(3.25) and (3.27)–(3.29) into
(3.22), we see that

Φ′(t) � a2‖ut‖l
l + d2‖u‖p

p +
(

α − C1

Mm−1
1

− C2

M2
− C3

Mβ−1
3

)
H(t)

−
(

C1

Mm−1
1

+
C2

M2
+

C3

Mβ−1
3

) ∫
Ω

|∇u|α dx − MH−r(t)H ′(t), (3.30)

where

C1 =
a3a5

m

(
Bp

1 d1

α

)r(m−1)

Bm
1 , C2 =

a5

4

(
Bp

1 d1

α

)r

, C3 =
a5

β

(
Bp

1 d1

α

)r(β−1)

and
a5 = a4C(Ω).

Now, we define
L(t) = H(t)1−r + δ1Φ(t), t � 0, (3.31)

where δ1 is a positive constant to be chosen later. Differentiating (3.31) and then
using (3.30), (3.1), E(t) = E2 − H(t) by (3.9), (3.6) and (3.7) to obtain

L′(t) � (1 − r − δ1M)H−r(t)H ′(t) +
(

δ1a2 +
k(l − 1)

l

)
‖ut‖l

l + δ1 d2‖u‖p
p

− kE2 + kA(u) − kF(u) + δ1

(
k

δ1
+ α −

(
C1

Mm−1
1

+
C2

M2
+

C3

Mβ−1
3

))
H(t)

− δ1

(
C1

Mm−1
1

+
C2

M2
+

C3

Mβ−1
3

) ∫
Ω

|∇u|α dx

� (1 − r − δ1M)H−r(t)H ′(t) +
(

δ1a2 +
k(l − 1)

l

)
‖ut‖l

l

+
(

δ1 d2 − kd1

p

)
‖u‖p

p + δ1

(
k

δ1
+ α −

(
C1

Mm−1
1

+
C2

M2
+

C3

Mβ−1
3

))
H(t)

+ δ1

(
k

αδ1

(
a0 − µ

µ0

)
−

(
C1

Mm−1
1

+
C2

M2
+

C3

Mβ−1
3

)) ∫
Ω

|∇u|α dx − kE2,
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where k is some positive constant. We also observe from the definition of Ẽ1 and
the definition of w2 and (3.7) that

E2 < Ẽ1 =
(

p

α
− 1

)
w2 �

(
p

α
− 1

)
F(u) �

(
p

α
− 1

)
d1

p
‖u‖p

p.

Thus, by choosing k = αd2δ1/2d1, we note that
(

δ1d2 − kd1

p

)
‖u‖p

p − kE2 >

(
δ1 d2 − kd1

p

)
‖u‖p

p − k(p − α)
α

d1

p
‖u‖p

p

= 1
2d2δ1‖u‖p

p

� 0.

Therefore,

L′(t) � (1 − r − δ1M)H−r(t)H ′(t) + a6‖ut‖l
l

+ δ1

(
d2α

2d1
+ α −

(
C1

Mm−1
1

+
C2

M2
+

C3

Mβ−1
3

))
H(t)

+ δ1

(
d2(a0 − µ/µ0)

2d1
−

(
C1

Mm−1
1

+
C2

M2
+

C3

Mβ−1
3

)) ∫
Ω

|∇u|α dx,

where a6 = δ1a2 + d2δ1α(l − 1)/2d1l. Now, we take M1, M2 and M3 large enough
such that

L′(t) � (1 − r − δ1M)H−r(t)H ′(t) + a7δ1

(
H(t) + ‖ut‖l

l +
∫

Ω

|∇u|α dx

)
,

where a7 is a positive constant. Once M1, M2 and M3 are fixed, pick δ1 sufficiently
small such that

1 − r − δ1M > 0

and
L(0) = H1−r(0) + δ1

∫
Ω

u0|u1|l−2u1 dx > 0.

Hence

L′(t) � a7δ1

(
H(t) + ‖ut‖l

l +
∫

Ω

|∇u|α dx

)
> 0 (3.32)

and
L(t) > L(0) > 0 for all t � 0.

Setting θ1 = 1/(1 − r) > 1 by (3.21), it is evident that, by Young’s inequality and
the Hölder inequality, (3.31) takes the form

L(t)θ1 � 2θ1−1
[
H(t) +

(
δ1

∫
Ω

u|ut|l−2ut dx

)θ1
]

� 2θ1−1[H(t) + δθ1
1 ‖u‖θ1

l ‖ut‖(l−1)θ1
l ]

� a8[H(t) + ‖u‖θ1µ
l + ‖ut‖(l−1)θ1ν

l ],
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where a8 is some positive constant and 1/µ+1/ν = 1. Taking (l −1)θ1ν = l (hence
µ = (1 − r)l/(1 − lr)) to give

L(t)θ1 � a8[H(t) + ‖u‖l/(1−lr)
l + ‖ut‖l

l]. (3.33)

Using
zη � (z + 1) � (1 + 1/η)(z + η)

once more, with z = ‖∇u‖α
α, ξ = l/((1 − lr)α) < 1 by (3.21) and η = H(0), we

obtain

‖u‖l/(1−lr)
l � B

l/(1−lr)
1 (‖∇u‖α

α)l/((1−lr)α)

� B
l/(1−lr)
1

(
1 +

1
H(0)

)
(‖∇u‖α

α + H(0))

� a9(‖∇u‖α
α + H(t)),

where a9 = B
l/(1−lr)
1 (1 + 1/H(0)). Consequently, (3.33) becomes

L(t)θ1 � a10

(
H(t) + ‖ut‖l

l +
∫

Ω

|∇u|α dx

)
, (3.34)

where a10 is some positive constant. Combining (3.32) and (3.34), we have

L′(t) � a11L(t)θ1 , t � 0, (3.35)

where a11 = a7δ1/a10. An integration of (3.35) over (0, t) yields

L(t) � (L(0)1−θ1 − a11(θ1 − 1)t)−1/(θ1−1). (3.36)

Since L(0) > 0, (3.36) shows that L cannot be global. This completes the proof.

Remark 3.7. If E(0) < Ẽ1, then, by (3.6), lemma 3.5 and the definition of w1 by
(3.5),

A(u) � 1
α

(
a0 − µ

µ0

) ∫
Ω

|∇u|α dx

>
1
α

(
a0 − µ

µ0

)
λα

1

= w1. (3.37)

Hence, using (3.1) and since E(t) is non-increasing by (3.8), we have

F(u) � A(u) − E(0) > w1 − Ẽ1.

This yields that

Ẽ1 =
(

p

α
− 1

)
w2 >

(
1 − α

p

)
w1 = E1,

thus, we improve the non-existence result of [16] from the region

Σ = {(λ, E) | λ > λ1, E < E1} to Σ̃ = {(λ, E) | λ > λ1, E < Ẽ1}

(see figure 1).
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Lemma 3.8. If u ∈ U is a global solution of (1.1) with E(0) � E1, then w2 �
(α/p)w1.

Proof. If not, then w2 > (α/p)w1 and so

Ẽ1 =
(

p

α
− 1

)
w2 >

(
1 − α

p

)
w1 = E1 � E(0).

Thus, by theorem 3.6, u could not be a global solution of (1.1).

To state our next result, dealing with the case E(0) = E1, we need a supplemen-
tary assumption:

(A4) there exists t∗ > 0 such that φ ∈ U and∫
Ω

Q(x, t, φt)φt dx = 0 in [0, t∗]

implies that φt(t, ·) = 0 for all t ∈ [0, t∗].

Theorem 3.9. Let u be a solution of (1.1) and suppose that (A1)–(A4) hold. Then,
if the initial data satisfy ‖∇u(0)‖α > λ1 and E(0) = E1, the solution u cannot be
continued for all t > 0.

Proof. Assume by contradiction that u ∈ U is a global solution of (1.1) in R+
0 × Ω.

Then, by lemma 3.8, we get w2 � (α/p)w1. First, we claim that w2 < (α/p)w1
cannot occur. Otherwise there exists t0 such that F(u(t0)) < (α/p)w1. Hence, by
(3.1) and (3.6), we have

w1 − F(u(t0)) >

(
1 − α

p

)
w1 = E1 = E(0)

� E(t0) � A(u(t0)) − F(u(t0))

� 1
α

(
a0 − µ

µ0

)
‖∇u(t0)‖α

α − F(u(t0)),

which implies ‖∇u(t0)‖α < λ1. Thus, t0 > 0 and, by continuity of ‖∇u(t)‖α, there
exists s ∈ (0, t0) such that ‖∇u(s)‖α = λ1. The above argument and (3.5)–(3.7)
show that

E1 = E(0) � E(s) � A(u(s)) − F(u(s))

� 1
α

(
a0 − µ

µ0

)
‖∇u(s)‖α

α − d1B
p

p
‖∇u(s)‖p

α

= E1,

thus E(s) = E1. On the other hand, it follows from (3.8) that

E(s) = E(0) −
∫ s

0

∫
Ω

|∇ut|2 dxdt −
∫ s

0

∫
Ω

|∇ut|β dxdt

−
∫ s

0

∫
Ω

Q(x, t, ut)ut dxdt. (3.38)
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This implies that ∫ s

0

∫
Ω

Q(x, t, ut)ut dxdt = 0

due to E1 = E(0) = E(s) and so, by (2.1) and (A4), ut(t, ·) = 0, for all t ∈ [0, s0],
s0 = min{t∗, s}. Thus u is constant with respect to t in [0, s0] and so u(t, x) = u0(x),
for all t ∈ [0, s0]. Multiplying (1.1) by u0(x) and integrating it over (0, t) × Ω,
t ∈ [0, s0], we obtain

∫ t

0

∫
Ω

div(a(x)|∇u0|α−2∇u0)u0 dxdt

−
∫ t

0

∫
Ω

Q(x, t, 0)u0 dxdt +
∫ t

0

∫
Ω

f(x, u0)u0 dxdt = 0,

where we use u(t, x) = u0(x), for all t ∈ [0, s0]. Yet Q(x, t, 0) = 0 for all t ∈ [0, s0]
by (2.1), and thus

∫
Ω

a(x)|∇u0|α dx =
∫

Ω

f(x, u0)u0 dx,

for all t ∈ [0, s0]. After that, employing (3.2), (2.4) and (3.3), we obtain

αA(u0) =
∫

Ω

a(x)|∇u0|α dx − µ‖u0‖α
α

=
∫

Ω

f(x, u0)u0 dx − µ‖u0‖α
α

� (p − ε)
∫

Ω

F (x, u0) dx + d2‖u0‖p
p − µ‖u0‖α

α

= (p − ε)
( ∫

Ω

F (x, u0) dx − µ

α
‖u0‖α

α

)
+

(
p − ε

α
− 1

)
µ‖u0‖α

α + d2‖u0‖p
p

� (p − ε)F(u0),

for some small ε ∈ (0, ε0). Hence,

E1 = E(0) = A(u0) − F(u0)

� A(u0) − α

p
A(u0)

> E1,

because of ut(0, ·) = 0, A(u0) > 1/(a0 −µ/µ0)λα
1 = w1 by (3.37) and (1−α/p)w1 =

E1. This is a contradiction. Thus, w2 = (α/p)w1. In particular, F(u(t)) � (α/p)w1
for all t ∈ R+

0 . We assert that the equality cannot occur at a finite time. Indeed, if
there is s such that F(u(s)) = (α/p)w1, then, by (3.7),

α

p
w1 = F(u(s)) � d1B

p
1

p
‖∇u(s)‖p

α,
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and so ‖∇u(s)‖α � λ1. But ‖∇u(s)‖α > λ1 would imply

E(0) � A(u(s)) − F(u(s))

� 1
α

(
a0 − µ

µ0

)
‖∇u(s)‖α

α − αw1

p

> E1.

This contradicts E(0) = E1. Hence (α/p)w1 = F(u(s)), ‖∇u(s)‖α = λ1 and so
E(s) = E1. We can repeat the argument above in correspondence at such s and
assumption (A4) to get contradiction again.

It therefore remains to consider the case where

w2 = (α/p)w1, F(u(t)) > w2, ‖∇u(s)‖α > λ1

for all t ∈ R+
0 . A continuity shows that

lim inf
t→∞

F(u(t)) = w2.

On the other hand, by (3.1) and (3.8), we have

w1 − F(u) < E(t) � E(0) = E1,

so that lim supt→∞ E(t) = E1. Hence,∫ ∞

0

∫
Ω

Q(x, t, ut)ut dxdt = 0

by (3.38). In particular, ∫
Ω

Q(x, t, ut)ut dx = 0 in R+
0 ,

which is again impossible by using the argument already produced. This completes
the proof.
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