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An initial-boundary-value problem for a class of wave equations with nonlinear
damping and source terms in a bounded domain is considered. We establish the
non-existence result of global solutions with the initial energy controlled above by a
critical value via the method introduced in a work by Autuori et al. in 2010. This
improves the 2009 result of Liu and Wang.

1. Introduction

This paper is concerned with the initial-boundary-value problem for the following
equation:

(Jue' "2 ) — Auy — div(a(z)| Vu|*"2Vu)
—div(|[Vu|’72Vuy) + Q(z, t,u) = flx,u), z €0, t>0,
w(z,0) = up(x), w(x,0)=ui(z), x€1,

u(z,t) =0, x€0f2, t=0,
(1.1)
where [, o, 8 > 2 and £2 is a bounded domain in R, N > 1, with a smooth
boundary 02 so that the divergence theorem can be applied. Here V denotes the
gradient operator and a(z), @ and f satisfy some conditions given in (A1)—(Aj3)

below.

The equations in (1.1) form a class of essential nonlinear evolution equations
used to describe longitudinal motion in viscoelasticity mechanics, and they can
also be considered as a system governing the longitudinal motion of a viscoelastic
configuration obeying the nonlinear Voight model [1-3,9].

In the absence of viscosity and strong damping, equation (1.1) becomes

(|ut\l_2ut)t — div(a(m)|Vu|°‘_2Vu) +Q(z,tyur) = f(z,u), x€ 2, t>0.

For f = 0, it is well known that the damping term ensures global existence and
decay of the solution energy for arbitrary initial data [8,10]. On the other hand,
for @ = 0, the source term causes global non-existence of the solution and finite
time blow-up in some cases [5,7,11,12,20]. While considering the interaction of
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Figure 1. The phase plane (A, E).

the nonlinear damping and source terms, there are also many results discussed by
many authors (see [6,9,13-15,18,19,22] and the references cited therein).

In the presence of viscosity and strong damping, Yang [24] obtained the non-
existence properties of the global solutions when the initial energy is sufficiently
negative with [ = 2, a(x) = 1, Q(z,t,us) = |ug|™ 2wy, m > 2 and f(z,u) = |u|P~2u,
p > 2. Later, Messaoudi and Houari [17] extended the result of [24] to a situation
when the initial energy is negative. Recently, following the technique used in [17,21],
Liu and Wang [16] generalized the result of [17] to a more general model with small
positive initial energy. Regarding equations of Kirchhoff type, Autuori et al. [4]
investigated the following dissipative anisotropic non-homogeneous p(x)-Kirchhoff
system

Utt — M(‘)Du(t))Ap(I)u + M‘u|P(I)—2u + Q(t7 €, U, Ut) = f(t7 z, U)

They established the new result of global non-existence for nonlinear Kirchhoff
systems by a new approach of the classical potential well and concavity method.

Motivated by this research, we show in this study that the global non-existence
results for equation (1.1) can be extended from the region

Y ={(\E)|A>\, E<E}
to
S ={(\E)|A>\, E<E;}

(see figure 1, from [4]), where A\, F; and E; are as given in §3. To this end, we
will improve the global non-existence results of [16] to a bigger region

Y= {()\,E) | A> A, EK El}

Our proof technique closely follows the arguments of [4,16,17], with some modi-
fications being needed for our problem. The content of this paper is organized as
follows. In § 2 we give some notation and assumptions and state the local existence
result. In § 3 we state and prove the non-existence result of global solutions of (1.1)
in theorems 3.6 and 3.9.
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2. Preliminary and local existence results

In this section we give some notation and assumptions that will be used through-
out this work. We denote by m’ the Hélder conjugate of m, |lull, = |[ull (o),
|ull,r = [Jullwir(2), where LP(£2) and W' (£2) stand for Lebesgue spaces and
classical Sobolev spaces, respectively. Now we make the following assumptions on
a, Q and f as in [16].

(A1) a(x) € L™(S2) so that a(z) > ag > 0 almost everywhere (a.e.) in §2.

(Ag) There are m > 1 and a measurable function d = d(z,t) defined on {2 x J such
that d(-,t) € LP/(P=™)(0) for a.e. t € J and

Qz,t,0) >0, Q. t,0)| < [dlx, )]/ [Q(z, t,v)0] /™, (2.1)
for all values of z, ¢, v, where J =1[0,T), 0 < T < oo, and

d(z,t) =20, [ld(, )llp/p—m) € Lise()- (2.2)

(A3) f(z,u) € C(2 x RY;RY), f(x,u) = V,F(z,u), with F(z,0) = 0. There are
constants d; > 0, p > a and 0 < p < poao such that, for z € 2 and u € RV,

[f (@ w)| < dafufP™ + pful* (2.3)
where p is the first eigenvalue of the nonlinear eigenvalue problem
— div(|Vu|*"2Vu) = 7[ulP"2u in 2, ulsn = 0.

Moreover, there is €9 > 0 such that, for all & € (0,¢q), there exists da(e) > 0
such that

flz,w)u— (p—e)F(z,u) = da|ulP (2.4)
for all z € 2.
REMARK 2.1. We note that when
Q(z,t,up) = b(L + )P |ug|™ 2uy, —o00 < p<m—1,

condition (As) holds.
Let

U = L>([0,T), Wy (£2)) nW>([0,T), L*(£2))
N W20, T), Wy (2)) n W™ ([0, T), L™(£2)),

where T' > 0 is a real number. Now we are in a position to state the local existence
result that can be obtained by combing arguments in [23,25].

THEOREM 2.2. Assume that (A1), (A2) and (As) hold. Suppose 2 < a < p < p* and
uy € Wy (2), uy € L*(2). Then there exists a unique local solution u of (1.1)
satisfying u € U, where p* = Na/(N —a) if N >« and p* = 00 if N < a.
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3. Non-existence of global solutions

In this section we shall discuss the non-existence of global solutions of problem (1.1).
For this purpose, we first define the energy function associated with a solution u of

(1.1) by
1—1
E@:ATﬂmM+MM—fm)bﬂ>& (3.1)
where
Aw—l/MMWMM—QMP (3.2)
o (6] 0 0] @ ’
and
f@:/F@mmfhwg (3.3)
0 [0
We also set
1 1/(p—a)
Al = (ao — > (dpr)il/(pfo‘) (3 4)
Ho
p/(p—a)
E; = (1 _ 1) (ao _ ,u) (dpr)’a/(p*“)
a p Ho

where

and By is the best constant of the Sobolev embedding W, *(£2) < LP(£2) given by
Bit = mf{|Vullg: w € Wy (@), [lulf = 1}.
REMARK 3.1. From (3.2), (A;) and the definition of py by (Aj3), we observe that

1
Aw:f/amwmm—ﬁw@
0 (0]

«

1
> <a0 - H> / |Vu|® dz (3.6)
a po/) Ja

and since f(z,u) = V,F(z,u), it follows from (3.3), (2.3) and the Sobolev embed-
ding W, “(£2) — LP(£2) that

Flw = [ Flau)da - Efalz

1
://fmmmwm—ﬁwg
nJo o
d d,BY
< —Jul]p < ——||Vul. 3.7
pll 5 ) [Vullf, (3.7)

Then, as in [16], we have the following results.
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LEMMA 3.2 (Liu and Wang [16]). Suppose that (A1)—(As) hold, that
up € W™ (),  wuy € L*(R)

and let u be a solution of (1.1). Then E(t) is a non-increasing function on [0,T)
and

E'(t) = —/ |Vut\2dx—/ |Vut|5dx—/ Q(x, t,us)uy da < 0. (3.8)
17} 17} 17}

THEOREM 3.3 (Liu and Wang [16]). Suppose that
La,Bymp=2, max{l,f,m} <a<p<p’,  ([Vuola, E(0) € ¥

that (A1), (A2) and (As) hold, and that uw € U is a solution to (1.1) on [0,T]. Then
T is necessarily finite, i.e. u cannot be continued for all t > 0.

REMARK 3.4. It follows from (3.1), (3.6), (3.8) and 0 < p < poao by (Ag) that

Flu) = "l + Aw) — B ()

> 1 (ao - ”) / Vu|® dz — B(0)
o Mo/ Ja
> _E(0)

for all ¢t > 0. In other words, F(u) is bounded below for all t > 0 along any solution
uel.

LEMMA 3.5. If u is a solution of (1.1), then

wy = inf F(u) > —o0.
teRS

Furthermore, if E(0) < (p/a — 1)wy = Ey, then
wy >0 and (|Vu®)|a, E®) € X ={(NE)|A> X\, E<E}
for allt € Ry .

Proof. From remark 3.4 and E(0) < (p/a — 1)wy = E;, we have

1
wy > L ( - “) IVl — E(0)
o Ho
1
> = (ao - ”) [ Vul|® — <p - 1>w2,
«Q Ho &

1
wy > - (ao - ”) [Vul|® >0
p Ho

which implies

due to 0 < p < poag, and so wy > 0. O
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By (3.8), it is clear that E(t) < E(0) < E; for all t € R{. Suppose that there
exists t; € Ry such that [|[Vu(t1)||o < A1. Then, by (3.7), (3.1) and (3.6),

<§_1>*an<mmz>(§—1)ﬂm

<Z 1)’(1]2
= FE, > E(0)
> Alulin)) ~ Fu(tr)

1 _F U o di B u P
> 2 (a0 - L) 1vutenl - 22 vuten.

This implies that

M 1/(p—c)
IVu(ti)||e > (ao — ,u0> (dyBP)~1/ (=) = \ |

which is a contradiction. Thus
IVu)la > A1 and  (|Vu(t)|a, E(t)) € X for all t € Ry.

THEOREM 3.6. Let I, B,m,p > 2 and max{l, 8, m} < a < p < p*. Assume that
(A1), (A2) and (Ajg) hold, and that uy € Wolf‘(ﬁ) uy € L*(02). Then any solution
of (1.1) with initial data satisfying E(0) < Ey cannot be continued for all t > 0.

Proof. We will prove this theorem by contradiction, so we suppose that a solution
u of (1.1) is admitted on [0, 00) and set
H(t)=FEy— E(t), Vt=0, (3.9)
where Ey > 0, Ey € (E(0), E1). By (3.8), we get H'(t) > 0. Thus, we obtain
H(t)> H(0)=FE,— E(0) >0, Vt>0. (3.10)

H
In addition, by the choice of Es, (3.1), the definition of E; and the definition of ws,
we have

H(t) = Ey — E(t) < Ey + F(u)

- (Z - 1)w2 + F(u)

Hence, by (3.10) and (3.7), we get

0< HO)< H(t) <

QI

d
F(u) < éIIUIII’i- (3.11)

Let
@(t):/ ulug| "2y da. (3.12)
[0}
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Taking the derivative of @(t) and using (1.1) yield
() = |Jug|} —/ VuVu dx —/ a(z)|Vu|* dz —/ |V P2V, Vu dz
2 Q Q

—/QQ(LU,Lut)udx—i—/Qf(x,u)udx. (3.13)

In correspondence to (Ag), there exists €g > 0 such that (Asz) holds true. Without
loss of generality, we take £y so small that

eows < (p — @)wy — By, (3.14)

which is possible since wy > 0 and E; > Ej. Fix € € (0,&0). Then, via (3.1), (3.13)
becomes

Q/(t):alﬂutmf/ VuVutdxf/ |Vut\ﬁ*2VutVudx+/ flz,w)ude
o) o) 2

+(p—e—a)A(u) — ﬂA |u|* dz — /Q Q(z,t,u)udz
—(p—e)E(t) — (p— &) F(u),

here a; =14 (I —1)(p—¢)/l > 0. On the other hand, we note from (3.3) and (2.4)
that

/ flz,w)udz — (p — ) F(u) — ,u/ |ul® dz
Ie; Q

= [ Fwuude = gl - <ps>( [ Fuds- “||u|3)

Q2 [0 a
—c—«

> dofull + PP E= D

Thus,
P'(t) 2 anl|ue; + dzlullh / VuVuydz + (p — & — a)(A(u) - E(t))
7
—aE(t) —/ Vg |? =2V, Vu dz —/ Q(z,t, up)udz.
2 I7;

Therefore, by using (3.1) again, the definition of we and E(t) = E2 — H(t) by (3.9),
we see that

(1) > asluell} + dallull?, - / VuVuede + (p— ¢ — a)F(u)
Q
—aE(t) — / |V | P2 Vu; Vu dz —/ Q(z,t,u)udz
o 7
> asug|l] + daul|’ — / VuVugdr + (p — e — a)ws
Q

+aH(t)—aE2—/ |Vut|ﬁ72VutVudx—/ Q(z,t,up)udx, (3.15)
7 7}
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where as = 1+ «(l — 1)/1. Furthermore, since ewy < ggws < (p — @)we — aEs by
(3.14), we derive from (3.15) that

P (t) > ag|luelj + dallul|? + aH (¢t / VuVu, dz

—/ |Vut\’6_2VutVudx—/ Q(z,t,us)udz. (3.16)
17} 2

Next we want to estimate the last three terms of the right-hand side of (3.16) as
[16 Using (Aj), the Holder inequality and Young’s inequality, we obtain

/Q t,ug)udzr

/|u|m x,t) de + 2 5 m/(m= D/thut)utdx

m m—1 —m/(m—1
< EHUHP G, )l p—rm) + ———0 /" )/QQ(%t,ut)utdx

< 6""@3

—1
||u||17)n + mT(S_m/(nl_l) L Q(-T, t7ut)ut d.’I), (317)

1
/VuVutdxg—/ |Vu|2dx+u1/ |V |? da (3.18)
Q dpr Jo Q
and

/|vut|ﬁ 2V, Vude < u2/|Vu|de—|—/B; py P ”/ V| dz, (3.19)

where 9§, p11, p2 and as are some positive constants. A substitution of (3.17)—(3.19)
into (3.16) gives

1
qﬁ/(t) > a2||ut||§ + d2|\u||§ +aH(t) — Too / |Vu|2 dx
U1 Jo

-1 _ _
—,u1/ |V |? da — / |Vu|? dz — LMQ hlB 1)/ Vg |? da
B B 0

(5(13

|| — 7(5—’”/ m=0 [ Q(x, t, u)uy da. 3.20
p
m Q
At this point, we choose §, u1, o so that
57m/(m71) _ Mler(t), = Mszr(t), —5/(5 1) _ = MsH™ ( )
for My, My and M3 to be specified later and

0 < <m‘n{a2 a— 03 a—m al}
r i , , , )
p T p(B-1)" pm—1)" ol

(3.21)
Then, using the fact that

H/(t):fE'(t):/ |Vut\2dx+/ |Vut|ﬂdx+/ Q(z,t,up)up do
0] 2 2
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by (3.9) and (3.8), we deduce from (3.20) that

@' (t) = aslluell] + dallulb + aH(t) — 7H’" / |Vul* dz
(B— 1)
My M / \wﬂdx——H“W”(tnmuy
— M
- [Mg/ \Vut|2dm+(ﬁ73/ (Vg dze
2 ﬁ N
+M/ Q(Lt,ut)utdm}H_’”(t)
> allurll} + daljull? + aH(t )_71{7” / Va2 dz
—(B-1) 1-m
_ MSiHr(Bfl)(t)/ 1Vul? do — MHr(mfl)(t)”uH;n
B Q m
— MH™"(t)H'(t) (3.22)

where
(B—1)M3 n (m — 1)M1.

M =M
2+ 3 -

Since a > 3 > 2, we have

2/«

/|Vu2dx<C(Q)(/ |Vu|o‘d:17> ,
2 2

B/a

/ |Vu|ﬁdx<C(Q)</ |Vu|adm> ,
2 2

where C'(£2) is some positive constant depending on {2 only. We then use the embed-
ding W, “(£2) < LP(£2) and (3.11) to obtain

/|Vu|2dx o0 )(del) (/ |Vu|0‘da:>(p7+2)/a, (3.23)

del r(B—1) (pr(B—1)+B)/«a
H"W—l)(t)/ |vu|5dx<0(9)< 1 ) (/ |Vu|°‘dx> :
(9 2

07

(3.24)

BPd, VD (pr(m—1)+m)/a

H D () |ul < C(Q)( - ) B;ﬂ(/ Vu|°‘dx) :

2
(3.25)
Now, exploiting the relation in [17],
¢ 1

FsErs {1+ )+, (3.26)
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which holds for all z > 0, 0 < £ < 1 and n > 0, then, taking n = H(0) and using
(3.10) and (3.21), we have the following:

(pr+2)/a
</ |Vu|adx> <a4(/ |Vu|® dz + H(t) ) (3.27)
7 o)
(pr(3-1)+8)/e
(/ |Vu|ad:£> <a4(/ [Vu|de + H(t >
o) o)
(pr(m—1)4m) /o
(/ |Vu|ad:£> <a (/ [Vu|dz + H(t )
Q

for all t > 0 and a4 = 1+ 1/H(0). Inserting (3.23)—(3.25) and (3.27)-(3.29) into
(3.22), we see that

(3.28)

(3.29)

C c ¢
D' (t) = as|luellj + dalullb + (O‘ ~ T T 3>H(t)

B ( Gy & Cs

- e el _ /
M1 Mo 1)/ |Vu|*de — MH™"(t)H' (), (3.30)

where
o o (BT L e (BRY as (B YO
m a 1> 4 o ) 3 5 o -
and
a5 = 040(9)
Now, we define
L(t)=H(t)" "+ &ad(t), t=0, (3.31)

where ¢; is a positive constant to be chosen later. Differentiating (3.31) and then
using (3.30), (3.1), E(t) = E; — H(t) by (3.9), (3.6) and (3.7) to obtain

E(l—1
L'(t)y>(1—r—06MYH "(t)H'(t) + <§1a2+ ( z )>||ut|§+61 da||ull?

k C1 CQ CS
—kEy + kA(u) k}'(u)+51(61 +a— <M{”1 +— YA + e 1))H(t)

c Cy O /
(2 T Vul®d
1<M{"—1 M2+M§1) 9| uf*dz

k(l—1
>(1—r—06MYH"(t)H'(t) + <(51a2—|— ( l )>||ut|§
kd, k Cy C Cs
<51 2 — p>|| ||p+51<6+04 (Mm_l + — M, + M'B 1>)H(t)

k 1% Cl Cg C /
) — = - Vu|®dx — kE>,
+ 1( 51(@0 HO) (Mm 1+M +M )) |Vu|® dz 2

https://doi.org/10.1017/50308210510001125 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510001125

Non-ezistence of global solutions for a class of wave equations 875

where k is some positive constant. We also observe from the definition of F; and
the definition of ws and (3.7) that

- d
Ey < Ey = (Z —1>w2 < (Z —1>~7:(U) < <§—1>pl||ug-

Thus, by choosing k = ad2d1/2d;, we note that

kd kd k(p — d
(51d21)| 12— By > (51d21>H jp - Mooy,
p p (6% p

Sdaby [[ullb

-2
> 0.
Therefore,

L'(t) > (L—r— 6 M)H " (t)H'(t) + ag|luc;
dQOé Cl CQ CB
ra(g (Mlm—ﬁMﬁMﬁ—l))H“)
da(ao — /o) & Cy Cs / o
+51< 54, Vi + o, + M’B T Q|Vu| dz,

where ag = d1a2 + d2d1a(l — 1)/2d11l. Now, we take M7, Mo and Mj3 large enough
such that

L/(t) > (1 —-r— (51M)H_7(t)H/(t) + a751 (H(t) + ||’U/t||§ + /!; |Vu|0‘ d.’L’),

where ay; is a positive constant. Once My, My and Mj are fixed, pick §; sufficiently
small such that
1—r—6M>0

and
L(0) = H'""(0) + 51/ uo|ug | 2uy dz > 0.
7]
Hence
L'(t) > a7, (H(t) + ||ut|\§ +/ [Vu|* da:) >0 (3.32)
o
and

L(t) > L(0) >0 forallt>0

Setting 6; = 1/(1 —r) > 1 by (3.21), it is evident that, by Young’s inequality and
the Holder inequality, (3.31) takes the form

61
L)% < 20 [H(t)+ (51 / |2 dx) }
(9]

<2 H () + 87 7 e

1 1—1)0,v
< ag[H () + [[ull{™ + [l =),
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where ag is some positive constant and 1/pu+1/v = 1. Taking (I — 1)61v =1 (hence
w=(1-=r)/(1-1r)) to give
l/(1=Ir
L) < as[H (1) + [jull /"7 + [l (3.33)
Using
Z7<(z+1D) < +1/n)(z+n)

once more, with z = ||Vu||%, £ = 1/((1 = Ir)a) < 1 by (3.21) and n = H(0), we
obtain

Q=i t/(A=lr o —lr)a
[l /O < BY O (g2 (A=te)

N

1/(1—Ir) i ull®
B/ (14 g ) (9l + HO))
< ap([Vull3 + H (1),

where ag = Bi/(lflr)(l +1/H(0)). Consequently, (3.33) becomes

L(t)" < axo (H(t) + (e} +/ |Vu|°‘d:10>, (3.34)

o
where ay is some positive constant. Combining (3.32) and (3.34), we have
L'(t) > an L), t>0, (3.35)

where a1 = ayd1/a10. An integration of (3.35) over (0,t) yields

L(t) > (L(0)=% — ayy (0, — 1))~/ O=1), (3.36)
Since L(0) > 0, (3.36) shows that L cannot be global. This completes the proof. O

REMARK 3.7. If E(0) < Ey, then, by (3.6), lemma 3.5 and the definition of w; by

(3.5),
Au) = i(ao - ,50> /Q |Vu|® dz

1
> — (ao — M))\(ll
o Ho
= ;. (3.37)

Hence, using (3.1) and since E(t) is non-increasing by (3.8), we have

E, = (p — 1)11)2 > <1 - a>w1 = Fy,
« p

thus, we improve the non-existence result of [16] from the region

This yields that

S={NE)|A>X\, E<E} to Y={(\E)|A>\, E<E}

(see figure 1).
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LEMMA 3.8. If u € U is a global solution of (1.1) with E(0) < Fy, then we <
(a/p)ws.

Proof. If not, then wy > (a/p)wy and so

Elz(p—1>’LU2>(1—a>’LU1=E1>E(O).
«Q p
Thus, by theorem 3.6, u could not be a global solution of (1.1). O

To state our next result, dealing with the case F(0) = E;, we need a supplemen-
tary assumption:

(A4) there exists t* > 0 such that ¢ € U and

/{Z Qa.t,d)ddz =0 in [0, 7]

implies that ¢:(t,-) = 0 for all ¢t € [0,¢*].

THEOREM 3.9. Let u be a solution of (1.1) and suppose that (A1)—(A4) hold. Then,
if the initial data satisfy ||[Vu(0)||o > A1 and E(0) = E4, the solution u cannot be
continued for all t > 0.

Proof. Assume by contradiction that u € U is a global solution of (1.1) in R} x £2.
Then, by lemma 3.8, we get we < (a/p)w;. First, we claim that we < (a/p)w;
cannot occur. Otherwise there exists ¢y such that F(u(tp)) < («/p)w;. Hence, by
(3.1) and (3.6), we have

wy — f(u(to)) > (1 — Z)wl =F = E(O)
> Blte) > Alu(to)) — Flulto))
1 1% o _ 7y
>(%—jm)wwmna Flulty)),

(67

which implies ||[Vu(to)||a < A1. Thus, o > 0 and, by continuity of || Vu(t)||w, there
exists s € (0,%p) such that ||Vu(s)|lo = A1. The above argument and (3.5)—(3.7)
show that

Ey = E(0) > E(s) =2 A(u(s)) — F(u(s))

1 0 o_ GLB?
>@0)WMQM B S
« Ko

p
:E17

thus E(s) = E7. On the other hand, it follows from (3.8) that

E(s):E(O)f/ / |Vut|2dxdt7/ / |Vut\ﬁdxdt
0 2 0 (9]

—/ Q(z, t, u)u, da dt. (3.38)
0o Jo
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This implies that

S
//Q(x,t,ut)utda:dtzo
0o Jo

due to By = E(0) = E(s) and so, by (2.1) and (A4), ut(t,-) = 0, for all ¢ € [0, so],
so = min{t*, s}. Thus u is constant with respect to ¢ in [0, so] and so u(t, z) = ug(z),
for all ¢ € [0, sg]. Multiplying (1.1) by wuo(z) and integrating it over (0,¢) x {2,
t € [0, so], we obtain

t
//div(a(:b)|Vu0|O‘_2Vu0)uodxdt
0o Je

t t
—/ / Q(a:,t,O)udedt+/ /f(x,uo)uodzdt:(),
0o J 0 J

where we use u(t,z) = ug(x), for all ¢ € [0, so]. Yet Q(z,¢,0) = 0 for all ¢ € [0, so]
by (2.1), and thus

/a(:v)|Vu0|adx:/ f(z, up)uo dz,
Q o

for all ¢ € [0, so]. After that, employing (3.2), (2.4) and (3.3), we obtain

aA(ug) = / a(#)|Vuo|* dz — pljuo]|®
(94
- / f (@, uouo dz — pulluoll®
(9]
> (p-o) / F(z, uo) dz + dajup|l?,— pulluo|
(9]

— &
— (p- s>( R “nwz) n (p - 1)u||uo||z T dafjuol?
0 8] 0]
> (p—e)F(up),
for some small € € (0,eq). Hence,
E; = E(0) = A(up) — F(uop)
> A(ug) — %A(w)
> E17

because of us(0,-) =0, A(ug) > 1/(ag— p/po) Ay = wy by (3.37) and (1 —«a/p)w; =
E,. This is a contradiction. Thus, we = (a/p)w;. In particular, F(u(t)) > (a/p)w:
for all t € RJ . We assert that the equality cannot occur at a finite time. Indeed, if
there is s such that F(u(s)) = (a/p)ws, then, by (3.7),

[0 dlB;f
—wy, = F(u(s)) <
— (u(s)) )

IVu(s)lI&,
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and o | Vu(s)|la = A1. But ||Vu(s)||o > A1 would imply

E(0) = A(u(s)) — F(u(s))

This contradicts E(0) = Eq. Hence (a/p)wr = F(u(s)), [[Vu(s)|la = A1 and so
E(s) = E;,. We can repeat the argument above in correspondence at such s and
assumption (A4) to get contradiction again.

It therefore remains to consider the case where

wy = (a/p)wr,  Flut)) >wz,  [Vu(s)a >\
for all t € R} . A continuity shows that
hglogf F(u(t)) = wa.
On the other hand, by (3.1) and (3.8), we have
wr — F(u) < E(t) < E(0) = Eq,

so that limsup,_, . E(t) = E;. Hence,
/ Q(z,t,up)uy dezdt =0
0o Jo
by (3.38). In particular,
/ Q(z,t,u)ugdz =0 in RY,
2

which is again impossible by using the argument already produced. This completes
the proof. O
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