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Modal decomposition techniques have become important mathematical methodologies
in analysing complex flow physics. The data-driven methods, such as proper orthogonal
decomposition and dynamic mode decomposition are used to extract coherent structures
in the form of spatial modes. These methods can be applied to both numerical and
experimental data to identify the characteristic dynamics of the system. However, the
classical data-driven modal decomposition methods are only applicable to problems with
a fixed shape and are not suitable for systems with fluid–structure interaction or systems
with shape-changing geometries. In this paper we propose a novel method utilizing
a conformal mapping technique to solve this issue. Through different examples with
deforming geometry, the capability of the method to accurately capture the flow features is
demonstrated. The proposed method is found to be suitable for a wide range of applications
and a possible candidate for reduced-order flow modelling of complex shape-changing
systems.
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1. Introduction

Fluid flows can be very complex in simple configurations, and the interaction between fluid
and structures or the presence of reconfigurable boundaries can further complicate the
problem. The nonlinear nature and multiple time scales involved in these problems make
it challenging to analyse and dissect the dynamic characteristics of the system (Bazilevs,
Takizawa & Tezduyar 2013). In recent years, modal decomposition techniques have shown
the potential for extracting critical flow structures from the complex flow fields. However,
there are several mathematical and formulation challenges that should be overcome before
adopting these techniques to study the flow dynamics of reconfigurable systems. This is
the main focus of this paper.
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Modal decomposition is a branch of methods that aim to highlight energetically or
dynamically significant features of data (Taira et al. 2017). Modal analysis methods have
been proposed for different purposes in the past decade, including identifying the linear
modal representation of complicated flows. The spatial modes extracted from the flow
field, along with their characteristic temporal values, can be used to pinpoint important
dynamics, build reduced-order models or develop control strategies. Some modal analysis
methods involve discretizing the governing equations to examine the stability of the
system (McKeon, Sharma & Jacobi 2013; Jeun, Nichols & Jovanović 2016). Modal
analysis methods serve a critical role in modern fluid dynamics research and have been
continuously evolving for more challenging problems. Further details can be found in
many books and review papers, just to name a few here: Ukeiley et al. (2001), Theofilis
(2011), Holmes et al. (2012) and Kutz (2013), etc.

Two of the most popular modal analysis tools, proper orthogonal decomposition
(POD) and dynamic mode decomposition (DMD), share the same characteristic of being
data-driven. They both do not need governing equations and are applicable to various
disciplines. However, the lack of spatial recognition of the boundaries in these methods
poses a problem when they are applied to the problems with moving or deforming
geometries. Their spatial modes should be embedded onto a fixed Eulerian space to
provide physical representation. However, in many problems, including fluid–structure
interaction (FSI) problems, fluid motion often is coupled to deforming or/and vibrating
bodies where the geometry is continuously changing. Under such circumstances, without
employing a unique geometrical description, the application of the data-driven modal
analysis methods is restrained. Different approaches have been proposed to solve this issue.

The fluid-only approaches, wherein the modal analysis is used only within the fluid
domain, have been applied to the flow past a pitching foil (Mariappan et al. 2013) or
a flexible cantilever beam (Cesur et al. 2014). It is also utilized to extract the modal
content of the wake behind a flexible membrane in experiments (Schmid 2010). Similar
techniques are proposed for the structural response and were employed to identify the
characteristic pattern of a flapping fish pectoral fin (Bozkurttas et al. 2009) and a waving
flag (Michelin, Smith & Glover 2008). Although the most important features of structure
or fluid are revealed with these methods, the connection between them is not captured.
To understand the correlation between the two domains, some research includes both
fluid and solid dynamics in the modal analysis. For example, Goza & Colonius (2018)
used the combined energy of the fluid and structural phases in constructing POD modes
and group the responses of the fluid and structure into a single dataset and employ the
DMD technique on them. Liberge & Hamdouni (2010) computed the POD modes by
interpolating the time-variant grid to a fixed uniform grid to form a global velocity field.
Tadmor et al. (2008) leveraged the known periodicity of the system to partition the data
and extract the physical harmonic modes. Menon & Mittal (2020a) performed DMD to
a pitching rigid airfoil by a change of reference frame. However, when these methods
are applied to systems involving deforming and/or moving volumetric bodies, certain
restrictions are encountered, like the representation of moving interfaces between the
fluid and solid requires an infinite number of modes, or the system exhibits non-periodic
dynamics preventing the use of any prior knowledge.

Moreover, in many FSI systems, the structural response consists of a few fundamental
modes, while the flow response is made up of many dynamically important modes and
hidden variables (Blevins 1977; Saffman 1992; Eldredge 2019). The interaction between
fluid and solid can persist even at a very small deflection limit of their interfaces. In this
situation, the coupled system can be linearized around the mean interface, and the dynamic
interactions between two phases can be captured with Eulerian linear models. Still, there
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exists another mode of interaction that is accompanied by large changes in the geometry
of the solid. This mode interaction is more abundant in the systems with large deformation
and extensive reconfiguration capabilities such as flag vibration, bird and insect wings,
or fish fins. In many of these systems, repositioning of the interface results in new flow
conditions and substantial changes in the interaction forces between the fluid and structure.
In this case, to represent the flow with a linear combination of modes, it is necessary to
incorporate the geometry changes of the flow domain in the modal analysis and essentially
map the problem to a domain with fixed interfaces and bring the effect of mapping function
into the governing equations of flow and structure.

In this paper we propose a novel method to combine the conformal mapping technique
with the modal analysis. An arbitrary smooth geometry is transformed into a fixed
geometry through a unique invertible mapping that preserves many important properties
of the flow (Pozrikidis 2011; Eldredge 2019). Conformal mappings preserve angles and
form a systematic framework to perform shape analysis of deformable surfaces. They are
simple, efficient, energy-invariant and mathematically well-understood procedures with
infinitely many derivatives. We focus on two-dimensional systems and express the flow
equations based on the vorticity-stream function form in the transformed domain to obtain
the flow field on a canonical planar domain for the subsequent data-driven modal analysis.
This method provides a natural mapping (as a model of geometric group theory) between
a canonical geometry and the real geometry and is applicable to a broad class of smooth
geometry. Through examples, the benefit of this method will be shown in the later sections.

The rest of this paper is as follows. In § 2 we first provide an introduction to POD and
DMD. We discuss how the proposed method can overcome modal analysis limitations for
systems with shape-changing bodies. In § 3 different examples with deforming surfaces are
examined to demonstrate how the proposed method can be applied to identify significant
flow features. Finally, the conclusion and future direction will be given in § 4.

2. Methodology

The basics of the two most popular modal analysis techniques, POD and DMD, will be
introduced first. Both of these methods are data-driven and are widely used for various
applications. We introduce the proposed method aiming to enable the modal analysis of
systems with deforming/moving geometries. The limitations of the proposed method will
be reviewed at the end.

2.1. Proper orthogonal decomposition
The proper orthogonal decomposition technique, also known as the principal component
analysis and Karhunen–Loeve transformation, optimally decomposes a complex system
into linear combinations of modes. The orthogonal spatial modes acquired from the
POD technique capture the most disturbance energy of the flow. Proper orthogonal
decomposition was introduced to analyse flow problems first by Lumley (1967), and since
then, it has been one of the popular techniques for analysing diverse flow fields. It has
numerous applications including but not limited to reduced-order modelling (Aubry et al.
1988; Noack et al. 2003; Rowley, Colonius & Murray 2004), flow control (Ravindran 2000;
Afanasiev & Hinze 2001) and design optimization (LeGresley & Alonso 2000).

The purpose of POD is to form a group of deterministic functions φi(z) that is most
similar to the members of a sample function q(z), with z representing the embedded
coordinate of the field (Lumley 1967). The notion of ‘most similar’ is defined by
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maximizing the cosine similarity quantity of

〈q, φ〉
‖φ‖2‖φ‖2

. (2.1)

Here the parenthesis 〈 , 〉 denotes the inner product 〈f , g〉 = ∫
Ω

f ∗(x)g(x) dx, where the
asterisk superscript represents both the complex conjugate of a complex scalar and
the Hermitian transpose of a vector or tensor, and ‖ · ‖ denotes the Euclidean 2-norm.
When this normalized inner product is maximized, the function φ is nearly parallel to
a particular characteristic feature of the field q. The necessary condition for the optimal
linear representation is that φ should be an eigenfunction of the eigenproblem∫

Ω

〈q(z), q(z′)〉φ(z′) dz′ = λφ(z). (2.2)

Since R(q(z), q(z′)) = 〈q(z), q(z′)〉 is compact and bounded, the Hilbert–Schmidt
theory guarantees that the eigenproblem has a solution (Lumley 1967). The eigenmodes
φi can be ranked according to their eigenvalues λi ≥ 0, guaranteed to be larger than 0
due to the non-negative definiteness of R(q(z), q(z′)). The eigenvectors are orthogonal and
provide complete bases for representing q.

For fluid problems, POD is usually applied to the fluctuation of the flow quantities.
In the current work we adopt the snapshot POD variant proposed by Sirovich (1987)
for its efficiency in handling very high-dimensional problems often encountered in
computational fluid dynamics problems. The flow field u is decomposed into spatial modes
φi(x) and temporal coefficients ai(t), i.e.

u(x, t) = ū(x)+ u′(x, t) = ū(x)+
N∑

i=1

ai(t)φi(x), (2.3)

where ( ¯ ) denotes the time-averaging operation. The procedure of applying snapshot
POD to a discrete dataset is explained below. For a discrete dataset with m snapshots,
the data matrix of U = {u′

1,u′
2, . . . ,u′

m} is formed by stacked together u′
i, the discrete

flow disturbance data of the ith snapshot, into a n × 1 vector. The data could be the flow
velocity, vorticity or any other quantity of interest. Since UUT and UTU have the same
set of non-zero eigenvalues, the data structure is examined to decide which combination is
a better choice for the eigenvalue calculation. In modern flow applications, the dimension
of the acquired dataset from either numerical simulation or an experimental particle
image velocimetry system is usually much larger than the number of snapshots. Therefore,
oftentimes, it is reasonable to select the covariance matrix as UTU instead, and solve the
eigenvalue problem of

UTUWψj = λjψj, ψj ∈ R
m, m 	 n. (2.4)

The matrix W here is a weighting matrix accounting for the numerical quadrature and can
be constructed for different purposes (Schmidt & Colonius 2020).

The POD modes, φj, are defined as the eigenvector of the covariance matrix UUT, and
are related to ψj by

φj = Uψj
1√
λj

∈ R
n, j = 1, 2, . . . ,m, (2.5)

where the eigenvalues λj represent the energy level of the corresponding POD modes, φj.
The more popular choices in the flow data are velocity or vorticity, which POD modes are

911 A41-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
90

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1090


Geometric modal decomposition

selected based on their physical representation of the kinetic energy or enstrophy of the
flow, respectively. Note that this procedure is essentially equivalent to executing a singular
value decomposition (SVD) on the data matrix U , with the left-singular matrix containing
the orthonormal POD modes. The temporal coefficients can be obtained from

aj = UTφj, aj ∈ R
m. (2.6)

The reconstruction of the snapshots can be performed with a truncated set of POD
modes. A simple criterion for deciding the number of required modes p is based on their
cumulative representation of the energy or enstrophy, or equivalently, when

∑p
i=1 λi ∼ 1.

The truncation of the lower-energy modes are equivalent to denoising the signal, a
technique which is extensively used in the fields of signal processing, estimation and
pattern recognition (Ly & Tran 2001; Lanata & Del Grosso 2006; Astrid et al. 2008).
The reconstructed snapshots can be recovered by

ũj(t) =
p∑

j=1

aj(t)φj. (2.7)

Proper orthogonal decomposition modes have several important and unique advantages.
They are orthogonal to each other and encode unique aspects of the flow, which
is beneficial for constructing an efficient reduced-order model for various flow
configurations. Another advantage is that POD distributes the energy of the non-noise
part of the signal into the leading POD modes with coherent structures, and, hence,
equivalently increases the signal-to-noise ratio. Numerous extensions of the POD
technique are developed to overcome different practical and computational challenges.
We will introduce some of them that are relevant to the proposed work later in § 2.3.

2.2. Dynamic mode decomposition
Dynamic mode decomposition, first proposed by Schmid (2010), is another popular
and widely used flow analysis technique. It produces a set of spatial modes with
corresponding characteristic frequencies and growth/decay rates. The idea behind DMD is
to identify the linear harmonic modes which disclose distinct dynamics of a nonlinear
system through the eigendecomposition of a best-fit linear operator. The data matrix,
defined as U = {u1,u2, . . . ,um}, is partitioned into two time-consecutive sets U1:m−1 =
{u1,u2, . . . ,um−1} and U2:m = {u2,u3, . . . ,um}. Dynamic mode decomposition seeks to
find a constant transition matrix A such that U2:m ≈ A U1:m−1, subject to minimizing the
cost function

C =
m−1∑
i=1

‖u2,i − A u1,i‖2, (2.8)

where u1,i and u2,i are the ith columns of the matrices U1:m−1 and U2:m, respectively. The
unique minimum-norm solution of this problem based on the Frobenius norm of A is

A = U2:m U+
1:m−1, (2.9)

where U+
1:m−1 = (U∗

1:m−1 U1:m−1)
−1U∗

1:m−1 is the Moore–Penrose left inverse of the
matrix U1:m−1. The eigenvectors of A are defined as the DMD modes, where the
frequencies and growth/decay rates are determined from the imaginary and real parts of
the eigenvalues.
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A computationally efficient technique to calculate DMD modes is introduced by Schmid
(2010). This technique is used in this paper. Here, the first step is to compute the reduced
SVD of the data matrix

U1:m−1 = S Σ V ∗, (2.10)

where S is the left-singular matrix, Σ is the singular value matrix and V is the
right-singular matrix. We then define the function

B ≡ S∗ U2:m V Σ−1 (2.11)

and solve the eigenproblem of
B ω̃j = μ̃j ω̃j (2.12)

to find the DMD modes as
ψ̃j = S ω̃j. (2.13)

The modes ψ̃j and eigenvalues μ̃j are acquired from matrix B and are related to that
acquired from using matrix A with

ψj = μ̃−1
j U2:mVΣ−1 ω̃j, μj = log(μ̃j)

δt
, (2.14a,b)

where δt is the time separation between two consecutive snapshots (Tu et al. 2014).
Each DMD mode is a spatial mode indicating a distinct dynamic of the system. These

modes are equivalent to a finite-dimensional approximation of the Koopman operators
(Rowley et al. 2009; Mezić 2013), which map a nonlinear system to an infinite-dimensional
linear system. The DMD technique, as Schmid (2010) points out, is not limited to temporal
but can also be spatial stability analyses through rearranging the data matrix along the
spatial axis of interest.

If the jth mode obtained from the DMD approach has a corresponding eigenvalue μ̃j,
then the frequency and growth/decay rate of this mode can be calculated from

fj = ang
(
μ̃j
)

2π δt
, dj = log |μ̃j|

δt
, (2.15a,b)

where the ang(μ̃j) is the phase angle of the complex eigenvalue μ̃j. The low-rank projected
solution can be reconstructed at any time with

uDMD(t) =
K∑

k=1

bk(0) ψk eμjt, (2.16)

where K is the rank of the reduced SVD approximation to U1:m−1 and bk(0) is the initial
amplitude of the kth mode. The above equation can be represented in matrix form as

uDMD(t) = Ψ diag(eμjt) b, (2.17)

where Ψ is the matrix formed from the DMD modes ψ , diag(eμjt) is a diagonal matrix
with eμjt as entries and b is a vector calculated by

b = Ψ +x1, (2.18)

where x1 is the initial snapshot and b is a vector formed from bk(0).
The above algorithm is one of the common definitions of DMD modes. As Tu et al.

(2014) point out, there are multiple different definitions of DMD modes and each definition
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provides a different perspective of the system dynamics. Dynamic mode decomposition
is capable of isolating specific dynamics in the system according to their frequencies. It
is data-driven and can be expanded with mathematical tools for numerous applications.
Compared with POD, DMD modes are not orthogonal to each other and have no
differentiation in eigenvalue importance, but they can reveal critical dynamic information
of the system.

2.3. Geometrically weighted modal decomposition
The commonly used snapshot POD and classical DMD both produce spatial Eulerian
modes, whereas the temporal effects are incorporated in their temporal coefficients or
eigenvalues. Different variants of the POD and DMD methods have been proposed to
expand the capabilities of these methods (Holmes et al. 2012; Kutz 2013; Taira et al. 2017).

One of the usual difficulties of the popular snapshot POD is that while their resultant
modes are energetically optimal, they might fail to capture critical system dynamics. The
spectral POD proposed by Towne, Schmidt & Colonius (2018) finds modes that depend
on both space and time by extending the stochastic ensemble from snapshots of a flow
field to a collection of realizations of the time-dependent flow. Another method with the
same name (Sieber, Paschereit & Oberleithner 2016) applies a filter to the correlation
matrix such that the stochastic fluctuations are attenuated while leaving the coherent
structures unaffected. The sequential POD (Jørgensen, Sørensen & Brøns 2003) collect
multiple sets of snapshots with different parameter settings to ensure that the dynamically
important data are better represented in the extracted modes. Also, POD techniques have
been extended to incorporate available information about the importance of modes as a
weighting function in Bayesian methods such as the probabilistic principle component
analysis (PCA) (Tipping & Bishop 1999) or sensible PCA (Moghaddam & Pentland 1995;
Roweis 1998).

Modified DMD methods have been developed to improve certain shortcomings of the
classical DMD approach. For example, the streaming DMD (Hemati, Williams & Rowley
2014) can update the DMD computations incrementally with a number of orthogonal basis
vectors, windowed DMD (Zhang et al. 2019) permits the frequency change in the system
by placing less weight on older snapshots, and multiresolution DMD (Kutz, Fu & Brunton
2016) recursively isolates the lower-rank modes of the system to separate the important
dynamics with distinct scales.

However, lots of FSI systems such as fish swimming (Liu, Wassersug & Kawachi 1996),
flapping wings (Takizawa et al. 2012), heart valves (Kamensky et al. 2015) or wind
turbines (Hsu & Bazilevs 2012) have moving or deforming volumetric structures with
large deformation. As most of the modal analysis techniques are data-driven, their spatial
description must remain time invariant for the modes to capture physically significant
features of the flow. When there is a large deformation body in the flow, immersed interface
techniques (Mittal & Iaccarino 2005) with a fixed grid or a body-fitted time-varying
coordinate system (Connell & Yue 2007) can be employed to study the flow dynamics
computationally. In the former group, to capture the moving interface, an infinite number
of modes are needed, akin to how infinite Fourier modes are required to rebuild a step
function. For the latter case, the spatial modes acquired from the modal analysis do
not have a fixed spatial grid to embed on and are hence uninterpretable. Suppose the
data-driven techniques like POD and DMD are to be employed to understand the flow
physics in these applications, in that case, a mathematical framework is necessary for
efficiently and accurately transforming a time-variant fluid domain into a time-invariant
one with minimal changes to the flow equations. The proposed geometrically weighted
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modal decomposition techniques combine a proper transformation and the modal analysis
to tackle the spatial embedding problem.

2.3.1. Conformal mapping and body-fitted grids
To describe the fluid dynamics around a moving and deforming structure, we employ
a body-fitted mesh and the finite difference approach. The grid is generated with a
well-established conformal mapping technique (Pozrikidis 2011; Eldredge 2019), which
can be deployed upon any arbitrary smooth shape to transform the geometry into a
canonical shape, e.g. a cylinder with a specified diameter. The choice of the transformation
is a critical aspect of calculating the physically relevant geometric weighting function for
the modal analysis procedures.

We assume that the shape of an arbitrary object can be represented with a series
of sufficiently smooth contour curves in the Cartesian space. The procedure, following
Pozrikidis (2011), is as follows.

(i) The contour boundary of the body is traced with N points. The coordinates of the
points are represented as zj = xj + iyj numbered in the counterclockwise direction
for j = 1, . . . ,N.

(ii) Here we choose to map the exterior of the body to the exterior of a circle with the
radius λ centred at the origin. The computational grid is constructed based on the
cylindrical coordinate around the circle defined as ζ = λeiφ , with φ being the polar
angle. The relation between λ, φ and z can be expressed with the Laurent series
expansion

z(φ) = λeiφ + a0 +
∞∑

n=1

ane−i nφ. (2.19)

(iii) The radial distance λ and the series coefficients an are calculated with the use of the
orthogonality properties of e−i nφ kernel,

λ = 1
2π

∫ 2π

0
[x(φ) cos(φ)+ y(φ) sin(φ)] dφ, (2.20)

Re[an] = 1
2π

∫ 2π

0
[x(φ) cos(nφ)− y(φ) sin(nφ)] dφ, (2.21)

Im[an] = 1
2π

∫ 2π

0
[x(φ) sin(nφ)+ y(φ) cos(nφ)] dφ. (2.22)

(iv) The coordinates z(φ) are expressed on the Cartesian plane for selected values of
λ and φ, and compared with the original contour curve. The values φi are then
optimized through minimization of L2-norm of the error,

‖	zi‖2 = (xi − x(φi))
2 + ( yi − y(φi))

2. (2.23)

As an example, the conformal grid for an energy efficient transport (EET) high-lift
airfoil with an attached flap generated from this algorithm along with the cylindrical
grid in ζ plane are shown in figure 1. The grid is also strained logarithmically in the
radial direction with more resolution near the surface to accurately capture the unsteady
aerodynamic effects.

The most important advantage of this procedure for the modal decomposition is that the
transformed domain in the ζ -plane is time invariant. In general, the computational grid
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Figure 1. Computational grid in the physical domain around an EET high-lift airfoil and the transformed
domain around a unit circle.

of the transformed domain is designed to resolve the space where most dynamics happen,
or where the geometry has its most temporal variations. The conformal mapping mainly
expands the region next to the surface where fine flow details are present and, thus, results
in better identification of such flow features. Note that the conformal mapping process
does not change the value of the independent variables embedded in the spatial grid; thus,
the mapping effectively redistributes the independent variables in space. In this paper,
the distribution of the points along the contour curve is determined by the local surface
curvature. The technique also sets up the fixed grid required for POD, DMD and other
spatial modal decomposition methods. More discussion about this aspect will be given
later in this section.

2.3.2. Governing flow equations
The flow dynamics around the structure is solved in the transformed domain ζ = reiφ

using the modified Navier–Stokes equation incorporating the effect of the conformal
transformation. The Navier–Stokes equations are expressed in the vorticity-stream
function (ω − ψ) form as

∂ω

∂t
+ 1√|J|

[
vr
∂ω

∂r
+ vθ

r
∂ω

∂θ

]
= 1

Re |J|
[
∂2ω

∂r2 + 1
r
∂ω

∂r
+ 1

r2
∂2ω

∂θ2

]
, (2.24)

∂2ψ

∂r2 + 1
r
∂ψ

∂r
+ 1

r2
∂2ψ

∂θ2 = −|J|ω, (2.25)

where Re is the Reynolds number, |J| is the determinant of the Jacobian of the
transformation ζ = ξ + iη ⇒ z = x + iy, and vr and vθ are the transformed velocities
which incorporate time-dependent effects of the mapping process. Because the
independent variables like the vorticity do not change during the conformal mapping
process, we can recover the desired flow data with the reverse mapping from the solution
obtained in the transformed domain. A similar procedure using Joukowski transformation
can be found in Guglielmini & Blondeaux (2004) and Zhu & Peng (2009). Further detail
of the formulation is provided in appendix B.
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2.3.3. Fluid–structure interaction
Aside from the geometry change, the current algorithm also embodies the translational and
rotational motions of the structure, denoted with the heaving distance h and pitching angle
α, respectively. For the FSI problem in § 3.3, the body motion is modelled by connecting
the structure to a set of linear and torsional dampers and springs with damping and stiffness
coefficients ch/α and kh/α , respectively. The structural motions are related to the fluid
forces and torques by the equations of motion[

m Sα
Sα I

] [
ḧ
α̈

]
+
[

ch 0
0 cα

] [
ḣ
α̇

]
+
[

kh 0
0 kα

] [
h
α

]
=
[

Ffluid

Mfluid

]
, (2.26)

where m is the mass of the body and Sα and I are the static imbalance and moment of
inertia, respectively.

The fluid and the structural equations are solved using a tightly coupled algorithm with
the following steps.

(i) At time step n, the heaving motion ḣn−1 and pitching motion α̇n−1 from the last
time step are used as the initial values for solving FSI problem at time n.

(ii) The hydrodynamic forces and moment are calculated based on the current value of
ḣ and α̇.

(iii) We update ḣn and α̇n with the calculated hydrodynamic forces and moment exerted
on the airfoil.

(iv) The iteration between the fluid and foil dynamics repeats until ḣn and α̇n converge,
then the algorithm progresses to the next time step.

The Navier–Stokes equations are discretized in r, θ and t. For the vorticity transportation
equation, a central difference scheme with second-order accuracy is implemented. For
time integration, the vorticity field is updated at each time step via an alternative direction
implicit technique. Two boundary conditions are imposed: on the structure surface, the
no-slip boundary condition is enforced, and the free stream velocity is specified at the
far-field boundaries. The Poisson equation is solved using a semi-spectral method, wherein
the Fourier transformation is employed along θ , and the finite difference technique is used
along r. The validation of the algorithm is presented in appendix A.

2.3.4. Modal analysis
The algorithm introduced above is capable of modelling the flow dynamics of a system
with arbitrary smooth shape-changing bodies. Through the conformal mapping procedure,
the system now resides on a time-invariant grid. This resolves the aforementioned problem
of spatial recognition when applying classical modal analysis techniques to FSI systems
involving a deforming/moving volumetric body. The conformal mapping enables the
modal analysis to be applied to such a system by weighting the spatial distribution of
the flow data based on the geometry in the physical domain and, thus, is named as
geometrically weighted modal decomposition (GW-MD). However, since the conformal
mapping process transforms the time-dependent structural domain to a fixed shape, the
modes obtained from GW-MD are now spatio-temporal modes. Some questions arising
from this procedure would be: what temporal effects have been incorporated in these
modes? How does the transformation change the POD or DMD modes, and how should
we interpret them? We will discuss these questions next.

First, let us consider how the mapping process changes the physical properties of the
modes. In the transformed ζ domain, the grid is time invariant, and we can employ modal
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analysis techniques to get the spatial modes. When an inverse mapping is applied to project
the modes to the original z domain, temporal effects are introduced through the Jacobian
J of ζ = ξ + iη ⇒ z = x + iy transformation, with the metric of the transformation being

|J|(t) = ∂x(t)
∂ξ

∂y(t)
∂η

− ∂x(t)
∂η

∂y(t)
∂ξ

, (2.27)

wherein the x and y are the time-varying physical position of a particular point in the
physical domain. Therefore, the Jacobian is also time variant. It follows that

d�z = |J| d�ζ and ∇z = J−1 · ∇ζ , (2.28a,b)

and based on the mapping properties,

J−1 = 1
|J|J T. (2.29)

The Jacobian serves as a spatial weighting originating from the conformal mapping
procedure; hence, called the geometric weighting. To illustrate how this weighting affects
the outcome of the POD modes, we take the velocity and vorticity as examples. From (2.2)
we know that the POD modes are the solution to the eigenproblem. This inner product in
the transformed domain Ωζ defines how the geometric mapping affects the modes.

(i) Velocity: the inner product of the velocity in the physical and transformed domains
are related through

R(v, v) = 〈v, v〉 =
∫
Ωζ

v∗(z)v(z) dζ =
∫
Ωζ

(∇ζ × ψ)∗(∇ζ × ψ) dζ

=
∫
Ωz

(J · ∇z × ψ)∗(J · ∇z × ψ)
1
|J| dz =

∫
Ωz

(∇z × ψ)∗(∇z × ψ) dz. (2.30)

The conformal transformation hence preserves the kinetic energy. This is because of a
specific relation between the role of mapping on the dilatation term and gradient operator.
As a result, for stationary objects, modes acquired in the transformed domain are the exact
modes obtained in the physical domain based on the kinetic energy. We should emphasize
that currently there is no proper way to perform POD in the actual physical domain due to
the moving structures. Through the conformal mapping we merge the structural effect
into the governing equation and the POD modes acquired in the transformed domain
incorporate the solid movement into the flow. Geometrically weighted proper orthogonal
decomposition (GW-POD) modes are, therefore, hybrid modes in nature and act as lifting
operators (Marsden 1981).

To demonstrate that the energy content is the same in the transformed and physical
domains, we look at a stationary airfoil submerged in an ambient flow. Proper orthogonal
decomposition is performed in both the transformed and physical domains with the
velocity in the respective domain. The velocity in the transformed domain for a stationary
geometry, based on (B20) and (B21), is defined as

vξ = 1√|J|
∂ψ

∂η
, vη = −1√|J|

∂ψ

∂ξ
. (2.31a,b)

The projection process is simple to carry out for stationary geometry cases since the
operator ∇ζ does not include any time-dependent effect. The velocity modes in the two
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0

–20 –10 0

–4

0.5

–0.5

0.5

0 5 10 15

Physical

Transformed

Modes

1.0

–2

x/L

y/L

0
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Figure 2. The first and third velocity POD modes and the normalized accumulative energy level in the
transformed and physical domain of an airfoil with (a) 10◦, (b) 20◦ and (c) 30◦ angles of attack. For simplicity,
the duplicate axis indices are not present.

domains are related through

u = ∂ψ

∂y
=
√

|J|
(
vξ
∂η

∂y
− vη

∂ξ

∂y

)
, v = −∂ψ

∂x
=
√

|J|
(

−vξ ∂η
∂x

+ vη
∂ξ

∂x

)
.

(2.32a,b)

For simplicity, we only show the horizontal velocity component in figure 2. For all
three cases with different AoA, the accumulative energy curves are identical across two
different domains. As shown in figure 3, the modes are also found to be similar, proving
the energy conservation nature of the conformal mapping process. In fact, the individual
modes also contain the same energy content. An extra J TJ term is cancelled out with the
domain expansion and contraction through the mapping process. This guarantees that the
contribution of eigenvalues stays the same after the transformation. Therefore, the energy
captured by each mode is also conserved. We will talk about how the mapping process
affects the modal analysis performed with the vorticity next.

(ii) Vorticity: we start by inspecting the inner product:

R(ω, ω) = 〈ω,ω〉 =
∫
Ωz

ω∗(z)ω(z) dz =
∫
Ωζ

ω∗(ζ )ω(ζ )|J| dζ. (2.33)

Since the vorticity remains the same at corresponding locations through the mapping
process, the same procedure brings forward an extra Jacobian term in the correlation factor.
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–4
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y/L

0

1st mode

3rd mode

(b)(a) (c)

Figure 3. The velocity POD modes of an airfoil with (a) 10◦, (b) 20◦ and (c) 30◦ angle of attack acquired in
the transformed domain mapped to the physical domain. These modes are identical to the modes acquired in
the physical domain in figure 2.

To recover the enstrophy in the physical domain, we can adopt a new definition of the
geometrically weighted inner product:

RGW(v1, v2) = 〈J · v1, J · v2〉GW

=
∫
ΩGW

(J · v1(z))∗(J · v2(z)) dz =
∫
ΩGW

v∗
1(z)v2(z) |J| dz. (2.34)

We will check if this modified product satisfies the principle definition of the inner
product next. A vector space V with underlying field R or C is known as an inner product
when operation 〈 , 〉 satisfies the following conditions.

(a) Symmetry: for all vectors v1 and v2, 〈v1, v2〉 = 〈v2, v1〉.
(b) Linearity: for any scalar a and all vectors v1, v2 and v3, 〈av1, v2〉 = ā〈v1, v2〉 and

〈v1, v2 + v3〉 = 〈v1, v2〉 + 〈v1, v3〉.
(c) Positive-definiteness: for any vector v, 〈v, v〉 ≥ 0 and that 〈v, v〉 = 0 implies that

v = 0.

Now let us inspect if the product RGW(v1, v2) satisfies these properties.

(a) Symmetry:

RGW(v1, v2) = 〈J · v1, J · v2〉GW =
∫
ΩGW

v∗
1(z)v2(z) |J| dz = 〈J · v2, J · v1〉GW .

(2.35)
(b) Linearity:

RGW(av1, v2) = 〈J · av1, J · v2〉GW =
∫
ΩGW

(av1(z))∗ v2(z) |J| dz

= ā
∫
ΩGW

v∗
1(z) v2(z) |J| dz = ā〈J · v1, J · v2〉GW , (2.36)

RGW(v1, v2 + v3) = 〈J · v1, J · (v2 + v3)〉GW =
∫
ΩGW

v∗
1(z)(v2 + v3)(z) |J| dz

=
∫
ΩGW

v∗
1(z)v2(z) |J| dz +

∫
ΩGW

v∗
1(z)v3(z) |J| dz

= 〈J · v1, J · v2〉GW + 〈J · v1, J · v3〉GW . (2.37)
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(c) Positive-definiteness:

RGW(v, v) = 〈J · v, J · v〉GW =
∫
ΩGW

v∗(z)v(z)|J| dz ≥ 0. (2.38)

We see that the new definition satisfies all three criteria and, thus, represents a proper
energy form that combines the flow energy and the structure motion with a proper
weighting function. The key to this is that a conformal mapping always provides a positive
Jacobian determinant. There is no fold-over in the mapping process, and the angle and
topology are preserved. The geometric weighting is hence not arbitrary but coming from
a unique transformation. For the scenarios in which weighting is not desirable, such as
when the far-field flow feature is of primary interest, with a simple modification of the
inner product, the effect can be removed from the modes.

In figure 4 we provide examples with static geometry to illustrate this unique property
of the mapping. We perform POD analysis of an airfoil with a 20◦ angle of attack
in different settings: with and without the Jacobian modification. The modes acquired
with the modified inner product RGW are denoted as the ‘physical-domain’ modes as the
weighting counterbalance the mapping effect. When POD is performed in the near-body
region, the modes and the accumulative enstrophy curves with or without the Jacobian
modification are mostly the same. However, in the full-field modal analysis, the mode
shapes show some differences in the wake, which result from the grid area expansion in the
downstream location. Interestingly, the accumulative enstrophy curves are nearly identical
in near-body and full-field cases, indicating that most of the enstrophy aggregates in the
near-body region in this case.

Applying weights to data in order to emphasize the important aspect of a system can
be seen in several previous works. For example, the weighted POD (Christensen, Brøns &
Sørensen 1999) and sequential POD (Jørgensen et al. 2003) assign weights to the snapshots
to detect the low energetic yet dynamically important modes. The phase-invariant POD
(Fogleman et al. 2004) stretches the velocity field in one direction to bring the POD modes
to the same configuration, which a similar strategy is also used for a backward-facing
ramp (Taylor & Glauser 2004). The proposed method here offers a systematic weighting
function through the unique benefit of the conformal mapping, and if necessary, the users
can recover the physical-domain enstrophy with the modified inner product.

On the other hand, the DMD modes represent the dynamics with specific characteristic
frequencies. In the proposed method, A or B matrices identify how the system evolves over
time in the transformed space. The conformal mapping provides a time-invariant frame for
the spatial modes to embed on in the transformed space. The deforming or moving body
in the fluid can be seen as a sharp boundary sweeping through the fluid domain, and
approximating such motion in the Eulerian domain requires an infinite number of linear
modes. The GW-MD instead integrates the nonlinear effect into a Laplacian-conserved
mapping between domains to avoid the problem.

The method described above shows several significant benefits. First, based on the
uniformization theorem, there is a conformal connection between any simply connected
Riemann surface with one of three canonical shapes of the unit disk, the complex
plane or the Riemann sphere. Hence, there is no restriction to the geometries other than
being smooth. Secondly, it does not demand an additional definition of energy or prior
knowledge of the system. Also, all the available extended versions of the modal analysis
techniques, such as the aforementioned online DMD or multiresolution DMD (mrDMD),
can be readily deployed. The proposed method is also applicable to both experimental
and computational data provided the geometry contour is available. In those cases,
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Figure 4. The vorticity POD modes and accumulative normalized enstrophy level of an airfoil with
AoA = 20◦ within (a) the near-body field and (b) an extended region, including further downstream.

the conformal mapping procedure can be applied in post-processing modal analysis. A
similar idea of post-applying modal analysis techniques is suggested by Troshin et al.
(2016) and tested on a set of heaving airfoil results.

Reduced-order modelling can also benefit from the modal analysis. One of the
advantages of POD modes is that they form optimal orthogonal bases to reduce the
governing equations into sets of ordinary differential equations with techniques such as
the Galerkin projection. Through this procedure, the nonlinear system can be
approximated with a reduce-order model (ROM) that could represent the original
system with adequate accuracy. Nevertheless, for systems with deforming or moving
boundaries, the lack of a proper technique to obtain POD modes restricts the ROM
development. Anttonen, King & Beran (2003) looked at a case of potential flow over
an oscillating panel by performing POD on a deforming grid, which is generated by
holding the same grid number in the vertical direction. Freno & Cizmas (2014) further
explored the problem using a dynamic average base flow and basis functions and
showed that this method can recover the flow features better than standard snapshot
POD modes. Liberge & Hamdouni (2010) proposed the multiphase POD method to
extend the Navier–Stokes equations to the solid domain by using a penalization method
and indicated its effectiveness in reconstructing flow over an oscillatory cylinder. The
proposed method is in line with the principle of these previous techniques, with the
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main difference that here the solid motion is systematically lifted and embedded into
the governing flow equations in a fixed domain such that it preserves important flow
properties. It can also equivalently be formulated as a partial differential equation
constraint mapping method in the celebrated topological manifold submersion and
immersion techniques in differential topology (Lang 2012). If the deformation of the
surface is accessible, one can form ROMs of the flow dynamics using the GW-POD
modes. One shortcoming of the proposed method is the lack of information about the
solid internal dynamic in the process of developing the ROM in the reference domain.
A potential remedy is to extend the mapping with a proper complementary energy function
for the solid deformation to obtain the hybrid flow-solid POD modes concurrently (Goza &
Colonius 2018). An alternative technique is to identify the POD modes of the deformable
geometries in their Lagrangian domains and employ their reconstructed surface motion to
form a ROM of the flow dynamics. This method is particularly suitable for FSI problems
in which the time scales of the solid domain are narrow-band imposed by its natural
frequencies while the flow includes a broad range of dynamically important frequencies.

A limitation of the proposed method is that it is restricted to two-dimensional systems
since conformal mapping primarily exists for two-dimensional space. For general two
dimensional embedded surfaces in three-dimensional (3-D) space, techniques such as
Riemann mapping, cone singularities, Cauchy–Riemann equation, Ricci flow or Dirac
equation can be employed to form the conformal mapping between two arbitrary surfaces.
The extension of a full conformal mapping to higher dimensions is only feasible through
Mobius transformation according to Liouville’s theorem (Flanders 1966). However, many
quasi-conformal techniques are still available to form a flexible 3-D mapping between
volumes with minimal distortion from fully conformal mapping (Hurdal et al. 1999;
Gu et al. 2004; Li & Hartley 2007; Zeng & Gu 2011). Also, for systems involving
multiple deforming or moving volumetric bodies, methods such as the large deformation
diffeomorphic metric mapping (Beg et al. 2005; Cao et al. 2005; Vercauteren et al. 2007)
can be employed to optimally equip the domain with a differential background transport
equation and enable the use of modal analysis to multibody systems.

3. Illustrative examples

Three examples of an undulating fish, a shape-changing ellipsoid and an airfoil with
an active deflecting flap are selected to showcase the capabilities of the geometrically
weighted modal analysis technique in dissecting the flow and forming a reduced-order
representation of the flow.

3.1. Undulating fish
A fish model with undulatory motion is selected here to demonstrate the effectiveness
of applying the geometrically weighted modal analysis to a deforming geometry. Using
undulation as their primary propulsion method, fishes can swim with unparalleled
maneuverability and efficiency compared with underwater vehicles. The famous
experiment of the carcass of a rainbow trout passively undulating upstream (Beal et al.
2006) shows how important the interaction between the body deformation and surrounding
flow field is. To learn from the aquatic animals, observations (Gray 1933; Blake 1983;
Sfakiotakis, Lane & Davies 1999; Videler 2012) and metabolic rate measurements (Webb
1971; Clarke & Johnston 1999; Gillooly et al. 2001) are made, and different models
have been proposed to explain the mechanics of fish swimming (Gero et al. 1952;
Lighthill 1960; Wu 1971). These observations and models have been used to design and
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0 t/T 0.25 t/T 0.5 t/T

Figure 5. Snapshots of the deforming grid around the undulating fish model. Here T represents the
normalized period of the deformation.

build several fish robots and undulatory propellers (Triantafyllou & Triantafyllou 1995;
Yu et al. 2004; Liu & Hu 2010; Marchese, Onal & Rus 2014). Computational fluid
dynamics methods have been utilized to study fish locomotion. Techniques such as the
vortex particle method (Ojima & Kamemoto 2005; Eldredge & Pisani 2008; Shoele
& Zhu 2015), Euler–Lagrangian method (Kern & Koumoutsakos 2006) and immersed
boundary method (Bozkurttas et al. 2006; Borazjani & Sotiropoulos 2008; Tytell et al.
2010; Maertens, Gao & Triantafyllou 2017) allow more delicate studies of fish swimming
due to their capabilities to obtain high resolution full-field flow data. However, the methods
either employ a deforming grid or require grid interpolation at the body contour, and this
prevents the classical data-driven modal analysis tools from being employed to investigate
the full flow field. Geometrically weighted modal decomposition solves this problem by
transforming the undulating fish into a fixed cylinder with a time-invariant grid attached.

The fish model examined here is chosen to be a modified NACA0012 airfoil. The
camber of the NACA0012 airfoil undergoes a lateral oscillation in the form of a streamwise
downward travelling wave, described by

y0 = Am(x) cos [2π(x + c t)] , 0 ≤ x ≤ 1, (3.1)

where Am is the amplitude normalized with the fish length and c is the phase speed of
the travelling wave relative to the free stream velocity. From the experimental data of a
steadily swimming saithe (Videler & Hess 1984), the backbone undulation motion of a
fish can be approximated by a quadratic polynomial

Am(x) = C0 + C1x + C2x2, (3.2)

where the coefficients C0, C1 and C2 are obtained from the recorded kinematic data, which
gives Am(0) = 0.02, Am(0.2) = 0.01 and Am(1) = 0.1. This profile is also used in many
other types of research like Dong & Lu (2007) and Borazjani & Sotiropoulos (2008). The
undulation motion is imposed as a pure lateral motion (Wassersug & von Sechendorf Hoff
1985; Liu et al. 1996). Three snapshots of the fish geometry are shown in figure 5. In this
section we are going to show two cases with the same phase speed c = 4 but different
Reynolds number Re = U∞L/ν = 1000, 4000. We will focus on the near-body flow field
to examine the performance of the GW-MD technique in capturing the near-body flow
features.

The snapshots of the vorticity field behind the fish are shown in figure 6. From the time
history and power spectrum of the lift coefficient plotted in figure 7, it is found that for both
Reynolds numbers, the fish experiences periodic forcing at frequency St = 0.25, defined
based on the free stream velocity and chord length. However, in the higher Reynolds
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Figure 6. Snapshots of the undulating fish cases with the phase speed c = 4 and different Reynolds numbers
Re = 1000, 4000. Here T is the period of the motion. The colours represents the vorticity range.

number the vortices break down closer to the body and form multiple clusters. For all the
following examples, the number of snapshots used in the modal analysis process covers
at least 30 structural motion cycles with at least 10 snapshots per cycle. Figure 8 shows
the GW-POD modes for the Re = 1000 case. The first column is obtained by directly
applying the snapshot POD procedure to the vorticity in the transformed domain. For the
second column, we premultiplied the vorticity with

√|J| to mitigate the transformation
effect and denoted this as the physical-domain vorticity. The third and fourth columns
show the horizontal and vertical velocities of GW-POD modes acquired in the transformed
domain. As explained in the previous section, the Jacobian, in this case, has a greater
determinant value at the trailing edge and the parts of the body with a large curvature.
To help understand where the energy aggravates around the deforming body, we place the
acquired modes on the grid constructed around the mean geometry. Note that the velocity
modes are residing on the time-invariant grid in the transformed space, and mapping them
to the mean grid is a visualization procedure.

It is found that less than six modes are required to capture over 95 % of the energy or
enstrophy, regardless of which variable is selected to perform the GW-POD. The difference
between using the vorticity or physical-domain vorticity is that the physical-domain modes
have more emphasis on the leading edge region. Figure 9 shows the same modes with
the inclusion of a wider downstream region. The reconstruction is still very efficient as
only six leading modes recover 95 % of the energy content. We can observe that the
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Figure 7. (a) Time history and (b) power spectrum of the lift coefficient of the undulating fish model.
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Figure 8. Geometrically weighted proper orthogonal decomposition modes, reconstruction of the snapshot
and accumulated energy (enstrophy) level of the near-body flow field with the phase speed c = 1 and Re =
1000. To avoid cluttering the duplicate figure axis labels are not shown.
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Figure 9. Geometrically weighted proper orthogonal decomposition modes, reconstruction of the snapshot
and accumulated energy (enstrophy) level of the further downstream region flow field with the phase speed
c = 1 and Re = 1000.

vorticity modes capture more details in the wake than the physical-domain vorticity modes.
Both the vorticity and velocity modes display that most of the energy is accumulated
around the mid-section and the trailing edge, where the primary vortex shedding happens.
We can also observe that there are three sections with alternative vorticity along the body
due to the sinusoidal wave shape. Since all three analyses using different variables have
similar results, we will only report the modal analysis using the unmodified vorticity
variable in the rest of the paper.

Now we look at the higher Reynolds number case. This case also includes a periodic
flow, but instead of the more continuous wake observed in the Re = 1000 case, the wake
consists of alternative vortices. The GW-POD modes are shown in figure 10 and it is
noticed that the higher Reynolds number affects the dominant modes of the flow in two
significant ways: the lack of coherent structures at further downstream locations and the
need for more modes to reconstruct the flow field. The vortices shed from the trailing
edge are propagating downstream as a vortex street, and more harmonic mode shapes are
required to capture these coherent structures correctly. As a result, with only six modes,
the reconstruction can hardly recover any wake distribution. Even with 14 modes, which
contain just over 95 % of the enstrophy disturbance, the downstream region is still not
represented well (figure 11). However, vorticity distribution in the near-body region does
not change much with the inclusion of higher modes. One should anticipate that since the
force experienced by the body is mostly affected by the near-body vortex distribution, the
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Figure 10. Geometrically weighted proper orthogonal decomposition modes, reconstruction of the snapshot
and accumulated energy (enstrophy) level of the vorticity field in the further downstream region with the phase
speed c = 1 and Re = 4000.
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Figure 11. Reconstruction of the vorticity field with different numbers of modes for the case with phase
speed c = 1 and larger Reynolds number Re = 4000.

hydrodynamic force acting on the body can be recovered with fewer modes than otherwise
needed to reconstruct the whole flow field.

The undulating fish model shows how conformal mapping enables the modal analysis
to be employed to study the flow field around a deforming body. The modes extracted
with different variables have different indications of the dynamics but have similar
reconstruction performance. Through two illustrative cases, we observe that the GW-POD
modes can identify where the energy aggregates and reveal that the near-body vorticity
distributions are similar in the dominant modes. Hence, we can explain why the force
profiles are alike despite the very different wake. In the next section we will show how the
geometrically weighted dynamic mode decomposition (GW-DMD) modes can be used to
isolate system dynamics with characteristic frequencies.

3.2. Shape-changing ellipsoid
Deforming bodies in the flow stream have many engineering and biological applications
such as icing plane wings (Bragg, Gregorek & Lee 1986) or dissolving icebergs (Taylor
1953; Eames 2008; Weymouth & Triantafyllou 2012), insect flight and ocean animals
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Figure 12. An ellipsoid expanding and contracting in the X-direction. Here T represents the normalized
period of the deformation.

swimming by sudden shape change (Childress, Vandenberghe & Zhang 2006; Steele,
Weymouth & Triantafyllou 2017). In this section we consider a canonical case of a
deforming ellipsoid. As said in the previous section, we will use the vorticity in the
transformed domain as the analysis object as it better captures the near-body flow field.

The geometry inspected here follows the work of Spagnolie & Shelley (2009). The
semi-major axis a(t) and semi-minor axis b(t) of the body are changing with time, while
the area of the ellipse πa(t)b(t) is kept constant. The periodic deformation of the body is
defined by

a(t) = 1
4

[5 + sin(2πt)] and b(t) = 1
a(t)

. (3.3a,b)

Several snapshots of the ellipsoid deformation and the corresponding body-fitted grid are
shown in figure 12. The ambient flow velocity U∞ is used as the velocity scale, and the
characteristic length is related to the area and defined as L = √

a(t)b(t). Here the Reynolds
number is fixed at Re = U∞L/ν = 1000.

In this section we focus on the effect of different deforming frequencies and the principal
stretching direction on the flow around the body. We will use the pair (elongation direction,
Strouhal number St = f L/U∞) to represent different cases. Figure 13 displays snapshots
of the vorticity field of two cases, (X, 1/2) and (X, 1/8). While it is very challenging to
understand the impact of the deformation on the flow from the snapshots alone, GW-DMD
can be applied to the transformed cylindrical domain to investigate the modal frequency
content of the flow field. Here, for brevity, only the real part of each GW-DMD mode is
shown as similar observations can be made for the imaginary part.

The frequency-magnitude plots of the principal eigenvalue of GW-DMD modes for both
cases are shown in figure 14. It is observed that for the (X, 1/2) case, the harmonics of
St = 0.5 (the frequency of the geometry deformation) have large peaks in magnitude;
whereas such peaks are not present in the (X, 1/8) case and the first three most significant
peaks are at St = 0.1916, 0.0045, 0. The comparison of the spatial GW-DMD modes in the
transformed domain, as shown in figure 15, reveals the difference between the two cases.
The modes of the (X, 1/2) case have a periodic wake with distinct alternative vortices
shedding within a narrow region right behind the trailing end. The dominant modes have
the inherent frequencies of the harmonics of the geometry change. On the other hand, the
(X, 1/8) case does not possess coherent spatial modes and instead the vortices distribute
throughout the whole domain, forming a broad wake behind the body. These modes have
frequencies that are not directly connected to body motion.

We can now see how body motion impacts the flow field from the snapshots shown
in figure 13. In the (X, 1/2) case the ellipsoid expands and contracts at a relatively fast
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Figure 13. Snapshots of the vorticity field of the deforming ellipsoid for (a) (X, 1/2) and (b) (X, 1/8) over
one structural motion period.

0

10–4

10–2

N
o
rm

al
iz

ed
 m

ag
n

it
u
d
e

100

10–4

10–2

100

1 2

fL/U
0 1 2

fL/U

(b)(a)

Figure 14. Frequency-magnitude plot of the GW-DMD modes of the case (a) (X, 1/2), (b) (X, 1/8).

rate compared with the vortex shedding time scale, and each time it elongates the vortices
convect only a small distance downstream. However, before the vortices can completely
separate away from the body, the ellipsoid body contracts and causes a reverse flow. This,
in return, stops the shedding and forms a chain of smaller vortices near the surface. The
pressure gradient formed by the vortex chain eventually affects the breakup of the shear
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Figure 15. The first three GW-DMD vorticity mode pairs of the case (a) (X, 1/2) and (b) (X, 1/8) are shown
from top to bottom in order.

layer and results in a wake that resembles the von-Karman vortex street. Hence, the vortex
shedding frequency is controlled by the frequency of the shape changing.

Conversely, the (X, 1/8) case shows a weak correlation between the vortex shedding and
deformation. The reason is that the deformation occurs much slower compared with the
previous case where strong reverse flow and suppression of the boundary layer separation
are present. Here the vortices are formed based on the instantaneous geometry, and as a
result, the chaotic behaviours with unsteady vortex shedding frequencies emerge.

Now we turn our focus to how the elongation direction affects the flow field. In figure 16
snapshots of the case (Y, 1/2) are shown wherein the vortices appear in a broader area
in the wake and do not follow any pattern. This observation can be explained by the
presence of a powerful reverse flow from the large elongation in the cross-flow direction.
Here the reverse flow with a large pressure gradient is so strong that the vortex shedding
becomes unstable, quite different from the (X, 1/2) case where the reverse flow is weak
and the separated vortices are close to the body. To further investigate this observation, we
compare the GW-POD representations of both (X, 1/2) and (Y, 1/2) cases. In figure 17 we
see a distinctive difference in the accumulative normalized energy level. In the (X, 1/2)
case more than 90 % of its energy is in the first seven modes while the (Y, 1/2) case
requires 18 modes to reach the same level. This comparison shows the lack of coherent
structures in the (Y, 1/2) case and can be further supported by the spatial modes shown
in figure 18. Compared with the alternative vortex pairs found in the leading GW-POD
modes of the (X, 1/2) case, the most energetic modes of the (Y, 1/2) case exhibit a broad
wake. In this case, the energy aggregates closer to the body due to the sparse wake and the
near-body reverse flow.

For a periodic system, it can be useful to reconstruct the flow fields with truncated
modes. This eliminates the less energetic modes often contaminated with noise and
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Figure 16. Snapshots of the vorticity field of deforming ellipsoid case (Y, 1/2) over one structural motion
period.
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Figure 17. Normalized accumulative energy level of GW-POD vorticity modes for cases (a) (X, 1/2) and
(X, 1/8), (b) (Y, 1/2). The dashed line denotes the 90 % accumulated enstrophy level.

numerical errors and permits representing the system with less complexity. Figure 19
shows instantaneous snapshots for the (X, 1/2) and (Y, 1/2) cases and their reconstruction
with a different number of GW-POD modes. It can be seen that with only eight modes, the
reconstruction can capture most of the vorticity distribution in the (X, 1/2) case, while in
the (Y, 1/2) case even with 20 modes, the reconstruction is not able to represent the flow
field well. Furthermore, by using the geometrically weighted technique, the near-body
dynamically critical flow features are given higher weights and the near-body flow field
is captured with the first dominant modes while the higher modes essentially correct the
vortices far from the ellipse.

In this section we used three cases of the shape-changing ellipsoid problem to
demonstrate how the GW-MD can reveal the crucial dynamics of a system involving
flow and deforming geometry. The characteristic frequencies acquired from GW-DMD
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Figure 18. The first three most energetic GW-POD vorticity modes of the cases (a) (X, 1/2) and (b) (Y, 1/2)
shown from top to bottom. The normalized energy level ε = λi/

∑
i λi of each mode is overlaid.

successfully separate the effect of the deformation versus the spatial fluid modes. The
results show that the computed GW-POD modes are a good candidate to form a
reduced-order representation of the flow field.

3.3. Oscillating airfoil with an active deflecting flap
Oscillating airfoils appear in diverse systems, such as the flutter of the aircraft wings
(Kehoe 1995), animal locomotion (Guglielmini & Blondeaux 2004) or renewable energy
extraction devices (Zhu & Peng 2009). To achieve better control of the oscillation of the
airfoil, NASA and Boeing collaborated to develop the EET high-lift airfoil (Morgan 2002).
The airfoil is equipped with actuators that can extend and deform the airfoil contours. We
adopt this system as an example and focus on applying the GW-MD technique to inspect
how the active deformation of the flap affects the flow structure in the wake. This system
involves the feedback from the fluid loading force to the solid motion and exhibits a wide
range of motion.

Figure 20 shows the physical model of an EET high-lift airfoil with the active
trailing-edge flap. The physical parameters of the system include the geometric angle of
attack α of the airfoil relative to the horizontal direction, the heaving displacement h and
the angle of the flap relative to the mean chord of the foil θ . The aeroelastic oscillating
effect is modelled by a set of linear and torsional spring-damper systems with damping
and stiffness coefficients of ch/α and kh/α , respectively.

The comprehensive study of the dynamics of this system was discussed more in-depth
in Wang & Shoele (2018), and here the main focus instead is on the use of modal analysis
to differentiate the flow structures between different cases.
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Figure 19. Reconstruction of the vorticity field of cases (a) (X, 1/2) and (b) (Y, 1/2) with different numbers
of GW-POD modes. The top row shows the original snapshot.
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Figure 20. The physical model of an EET high-lift airfoil.

The foil is fixed at an angle of attack α and a sinusoidal oscillation is imposed on the flap
to study how the flap motion influences the airfoil movement. The flap angle is θ = θ0 +
A sin(Ωt), where θ0 and A are the mean angle and amplitude, respectively, and f = Ω/2π
is defined as the frequency of the oscillation. The Reynolds number (Re = U∞L/v) based
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Figure 21. From left to right are time histories of heaving displacement, power spectrum and the phase
portrait plot of cases St = 0.0, 0.1, 0.9 respectively shown from the top to bottom row.

on the chord length of the foil L is chosen to be 1000. The flap length is l = 0.12L. In
the rest of this section we use the Strouhal number, St = fL/U∞, to differentiate different
cases while keeping other parameters fixed at α = 10◦, A = 1.5◦ and θ0 = 23.5◦.

Two cases with the flap frequency St = 0.1 and 0.9, along with the control group with
a stationary flap St = 0, are selected for this discussion. Figure 21 plots the heaving
displacement time history of the airfoil and its power spectrum. The frequencies of the
power peaks are denoted on the plot. We also provide the phase portrait plot, which is the
mapping between the heaving displacement h and velocity dh/dt, coloured from white to
black in the temporal order.

From the control group, we observe a steady periodic vibration of the airfoil with
frequency St = 0.96, as proved by the single-cycle phase portrait and a single dominant
peak in the power spectrum. The heaving motion at the natural frequency is caused
by the interaction between the alternative vortex shedding and the linear spring-damper
system. When the actuation is activated, both the St = 0.1 and St = 0.9 cases exhibit
a large heaving motion. The instantaneous snapshots within one actuation period for
both cases are plotted in figure 22, which show a very similar wake profile and heaving
amplitude between the two cases. It is possible to identify from the power spectrum and
the torus-projected phase portrait that both cases are quasi-periodic systems with two
distinct frequencies. However, the natural frequency fL/U∞ = 0.96 is only present in the
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Figure 22. Instantaneous vorticity field of (a) St = 0.1 and (b) St = 0.9. The time span between each figure
is normalized with the structural deformation period.

St = 0.1 case. Some questions arise from these observations: what role does the active
flap play in creating these large-amplitude motions compared with the control case? What
is the difference between the two actuated cases when their heaving time histories look
similar? What flow features are connected to the dominant frequencies identified from the
structural motion?

The GW-DMD modes can be utilized to answer the above questions. Figure 23(a)
shows the principal eigenvalues (Ritz values) of the GW-DMD modes of the St = 0.1
case on the complex plane. The size of the points is scaled based on the magnitude of the
corresponding modes, and the colour matches the frequency plot shown in figure 23(b).
We should note that only the magnitudes with positive frequencies, i.e. Im[λ] > 0, are
presented here. Most of the Ritz values are located on the unit circle |λ| = 1, which is
expected as the system exhibits an orderly periodic vortex shedding. The four modes
corresponding to the largest magnitudes are also plotted in figure 23(c). The one with
the largest magnitude has a frequency of St = 0, representing the mean flow field. The
second and the fourth modes have frequencies St = 0.96 and St = 1.92, respectively.
They are related to the vortex-induced vibration natural frequencies. We will explain what
mode 3 represents after looking at the GW-DMD modes of the case with the flapping
frequency St = 0.9, shown in figure 24. In this case, most of the Ritz values still fall
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modes, (c) first four modes with the largest magnitudes for case St = 0.1 with α = 10◦ and A = 1.5◦, and (d)
the comparison between the reconstructed and original vorticity field.

on the unit circle, indicating these modes do not grow or decay and are, therefore, either
stationary or periodic. The first, second and fourth modes are identical to the St = 0.1 case,
related to the mean and the natural frequency and its harmonics, respectively. However,
the third mode is exceptionally different from the St = 0.1 case. In the St = 0.9 case, the
third mode, with frequency St = 0.9, extends further downstream and signifies the vortex
shedding caused by the rapid flap motion. When the flap moves downward, it induces
large pressure gradient forces on a negative vortex layer on top of the flap. The flow
separates but remains close to the upper surface of the trailing edge. When the flap moves
upward, the vortex is propelled away. This creates an orderly wake that interacts with the
geometry-induced vortex shedding wake structure in mode 2. The interference between
these two modes creates the two peaks in the power spectrum at St = 0.9 and St = 0.06
(figure 21). The slight mismatch between the flap- and geometry-induced vortices results
in the periodically large-amplitude heaving motion. On the other hand, with the flapping
frequency of St = 0.1, the third mode only affects a small region close to the trailing edge.
This implies that the slow-moving active flap, in this case, does not induce vortex shedding
as the pressure gradient is much weaker. Instead, the movement of the flap modifies the
geometry of the system and the departure angle of the geometry-induced wake, resulting
in the large-amplitude motion with the same frequency as the flap motion St = 0.1.

The reconstruction of a selected frame with the first four mode pairs is shown in
figures 23(d) and 24(d). The reconstruction is relatively accurate, meaning that the
GW-DMD has successfully extracted the dominant dynamic features in both systems.

In this section we demonstrated the capability of GW-DMD modes for isolating
important flow features along with their corresponding characteristic frequencies in an
FSI system. Similar heaving responses from two cases with different flap frequencies are

911 A41-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
90

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1090


Geometric modal decomposition

(a) (b)

0 0
10–10

10–5

100

2 4

Re{λ}
1–1

–1.0

–0.5

0.5

1.0

0

N
o
rm

al
iz

ed
 m

ag
n
it

u
d
e

fL/U

Mode 1 Mode 2 Original snapshot

7-mode reconstructionMode 3 Mode 4

2
–1

3

–10

(c) (d)

Im
{
λ

}

x/L

y/L

Figure 24. (a) The principal eigenvalues, (b) normalized magnitude relative to the frequency of GW-DMD
modes, (c) first four modes with the largest magnitudes for case St = 0.9 with α = 10◦ and A = 1.5◦, and (d)
the comparison between the reconstructed and original vorticity field.

shown to have inherently different driving mechanisms using the GW-DMD modes. At
low frequency, the flap does not induce vortex shedding but changes the direction of the
wake. In contrast, at higher flap frequencies the fast structural deformation introduces
new vortices to the wake and causes interference between this flap-induced and the
geometry-induced wake leading to the periodic motion of the foil. This shows that
the proposed method enables a discriminating modal analysis of FSI systems with a
simultaneously moving and deforming body. The method can also be employed to extract
information not directly available from the structural response or the wake dynamics.

4. Conclusions

In this paper a novel approach is proposed to systematically generate a spatial weighting
based on local geometry to enable data-driven modal decomposition techniques for FSI
problems involving a deforming and moving body. Through the conformal mapping
process, we can map an arbitrary smooth geometry to a unit circle with the mapping
incorporated in the Jacobian. We demonstrate how the GW-MD methods can successfully
extract characteristic system dynamics with three illustrative examples. The GW-DMD
modes can connect the frequency information obtained from the structural motion to flow
structures. Besides, the GW-POD modes can be used to efficiently reconstruct the flow
field and could serve as a basis for reduced-order modelling.

The GW-MD techniques have the benefits of being readily deployable to any smooth
geometry. They can be post applied to experimental or numerical methods providing
the geometry is available for the conformal mapping process. However, the method
employed here is limited to two-dimensional analysis due to the constraint of much fewer
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full conformal mappings available at higher dimensions. The current effort explores the
possibility of extending the same concept to 3-D geometries using differential geometry
techniques. In computational science research quasi-conformal mapping techniques have
been used for shape recognition and surface mapping. Among different quasi-conformal
techniques, there are methods such as discrete conformal mapping that preserves the angle
of the mesh while being Laplacian conservative (Gotsman et al. 2003; Floater & Hormann
2005; Li & Hartley 2007), which is suitable for the current work. Also, harmonic mapping
(Yanushauskas 1970; Wang et al. 2003) and volume parameterization of three-manifolds
with small angular and volume distortions (Paillé & Poulin 2012; Kovalsky et al. 2015) are
promising techniques to extend these analyses to higher dimensions. Advanced methods
can also handle deformation in the structure (Zeng & Gu 2011; Lee, Lam & Lui 2016),
which provides a path to extend the current study. With further development, the current
method can be exploited to form ROMs and the subsequent design of control methods
for shape-changing FSI problems. Another future direction is to relate interface forces
between the solid and fluid to flow field modes using the force partitioning kernel
technique (Martín-Alcántara, Fernandez-Feria & Sanmiguel-Rojas 2015; Zhang, Hedrick
& Mittal 2015; Moriche, Flores & García-Villalba 2017; Wu, Liu & Liu 2018; Menon
& Mittal 2020b) and essentially extend the modal analysis to solid using these force
kernels. The conformal mapping provides a systematic way to investigate the fluid dynamic
forces in a spatially fixed domain and retrieve a linear model describing how the structure
interacts with the fluid.

The authors hope that the proposed framework opens up the path to systematically
analyse FSI problems with deforming geometries and expand the horizon of analysing
complex FSI systems.
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Appendix A. Validation of the algorithm

To validate the numerical algorithm used in this study, we compare our predictions to
literature for several benchmark canonical problems.

The first case is a stationary cylinder placed in uniform flow. The Reynolds number Re
is based on the diameter of the cylinder, and the incoming flow speed ranges from 50 to
1000.

The computational grid is set up with the same mapping procedure introduced in
§ 2, with the resolution 400 × 512 in the radial and angular directions, respectively, and
extended to 50 diameters of the cylinder. The time interval is chosen to be 	t = 0.0005.
Figure 25 shows the flow field compared with results from Saiki & Biringen (1996) and
Ding et al. (2007). The present model could correctly replicate the position and intensity
of the coherent structure in both Reynolds numbers 100 and 200. The Strouhal number
based on the lift, defined as St = fD/U with D as the diameter of the cylinder, is plotted
in figure 26, and compared with the results obtained by other authors experimentally
(Roshko 1961) and numerically (Lei, Cheng & Kavanagh 2000; Zhao et al. 2005). Present
results agree well with the previously reported numerical results but slightly higher than
the experimental results due to the 3-D effect.
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(a)

(b)

(c)

Re = 100 Re = 200

Figure 25. Vorticity field behind a cylinder predicted by (a) Saiki & Biringen (1996), (b) Ding et al. (2007)
and (c) the current method.
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Figure 26. Strouhal number of the cylinder flow. The two lines indicate the range of experimental results
from Roshko (1961).

The second case is the lift coefficient of a translating ellipsoid at different angles of
attack. The canonical problem is compared with the results from Wang (2000) where, as
shown in figure 27, a good match is found.

The third case is the dynamic force measurement comparison of a translating and
rotating wing described by Wang, Birch & Dickinson (2004). The ratio of the translational
motion amplitude and the chord length is A0/c = 2.8, and there is no phase difference
between the translational and rotational motion. The angle of attack is fixed at α0 = π/2,
the amplitude of pitching angle at β = π/4 and the frequency at f = 0.25. The Reynolds
number based on the translational amplitude A0 and chord length c is 75. Following
the definition by Wang et al. (2004), the forces are normalized with the maximum
quasi-steady forces. Figure 28 and table 1 show the comparison of the lift and drag
coefficients between current work, both simulation and experimental results provided by
Wang et al. (2004), and numerical results from Eldredge (2007). Due to the 3-D effect,
none of the numerical results can perfectly replicate the force information acquired from
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Figure 27. Comparison of the lift coefficient of an ellipsoid at different angles of attack with the literature.
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Figure 28. Dynamic force coefficients of a flapping elliptic wing.

the experiments. However, the maximum value and the overall profile are comparable
between the numerical results and the proposed algorithm should be sufficient to support
the current work.

Appendix B. Formulation of the modified Navier–Stokes equation in the
transformed domain

To solve the Navier–Stokes equation in the transformed space, we need to modify
the Navier–Stokes equations accordingly. We follow the procedure introduced by
Batchelor (2000) to achieve this. The transformation process has two stages: first, the
global Cartesian coordinate (x, y) is transformed into a moving reference frame (X, Y)
considering the heaving and pitching motion of the structure, then through the conformal
mapping procedure (X, Y) is transformed into a cylindrical coordinate system reiφ .

A smooth geometry is considered in the Cartesian coordinate system (x, y). The
structure is assumed to have heaving and pitching motion, with the amplitude being
h and α, respectively. The Navier–Stokes equations to be solved, represented in the

911 A41-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
90

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1090


Geometric modal decomposition

CL Max Min Avg. r.m.s.

Wang (2004), exp. 0.9971 −0.1078 0.4440 0.5311
Wang (2004), num. 1.1459 −0.1142 0.4902 0.5680
Eldredge (2007) 1.2663 −0.1114 0.5984 0.6992
Current method 1.1392 −0.0798 0.5282 0.6412

CD Max Min Avg. r.m.s.

Wang (2004), exp. 1.7791 −0.8636 0.6052 0.8697
Wang (2004), num. 1.5334 −1.3274 0.4075 0.8284
Eldredge (2007) 1.9298 −1.4816 0.7041 1.1123
Current method 1.9311 −1.3636 0.9705 1.2855

Table 1. Statistical comparison of the dynamic force coefficients of a flapping elliptic wing.

vorticity-stream function (ω − ψ) form, are

∂ω

∂t
+ ∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
= 1

Re

[
∂2ω

∂x2 + ∂2ω

∂y2

]
, (B1)

∂2ψ

∂x2 + ∂2ψ

∂y2 = −ω. (B2)

With the coordinate transformation

(X, Y) = x(cosα,− sinα)+ ( y − h)(sinα, cosα), (B3)

we acquire the Navier–Stokes equation in the (X, Y) domain as

∂ω

∂t
+ U

∂ω

∂X
+ V

∂ω

∂Y
= 1

Re

[
∂2ω

∂X2 + ∂2ω

∂Y2

]
, (B4)

∂2ψ

∂X2 + ∂2ψ

∂Y2 = −ω, (B5)

where U and V are

U = u cosα +
(
v − dh

dt

)
sinα + Y

dα
dt
, (B6)

V =
(
v − dh

dt

)
cosα − u sinα − X

dα
dt
, (B7)

while u = ∂ψ/∂y and v = −∂ψ/∂x are the horizontal and vertical velocities under the
(x, y) coordinate.

Now we look at the transformation from the (X, Y) plane to the ζ = (ξ, η) plane. We
can assume that the transformation and inverse transformation are

ξ = f (X, Y), η = g(X, Y), (B8)

X = F(ξ, η), Y = G(ξ, η). (B9)

It follows that [
dX
dY

]
=
[

Fξ Fη
Gξ Gη

] [
dξ
dη

]
, (B10)
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and [
dξ
dη

]
= 1

FξGη − FηGξ

[
Gη −Fη

−Gξ Fξ

] [
dX
dY

]
, (B11)

where the subscript variables denote derivation relative to the variable. We define the
determinant of the Jacobian to be |J| = FξGη − FηGξ . Then we can follow the relations
given in Batchelor (2000) to calculate the convective term. We have the relation

(dX)2 + (dY)2 = (F2
ξ + G2

ξ )(dξ)
2 + (F2

η + G2
η)(dη)

2 + 2(FξFη + GξGη) dξ dη. (B12)

Note that since the transformation is conformal, the Cauchy–Riemann relation holds and
the last term goes to zero, i.e. FξFη + GξGη = 0, and, hence, the scaling factors are

h1 =
√

F2
ξ + G2

ξ = √
FξGη + Gξ (−Fη) =

√
|J|, (B13)

h2 =
√

F2
η + G2

η = √
Fη(−Gξ )+ GηFξ =

√
|J|. (B14)

The unit vectors parallel to the coordinate lines are

ã = h1

(
∂ξ

∂X
,
∂ξ

∂Y

)
= 1√|J|

(
∂Y
∂η
, −∂X

∂η

)
, (B15)

b̃ = h2

(
∂η

∂X
,
∂η

∂Y

)
= 1√|J|

(
−∂Y
∂ξ
,
∂X
∂ξ

)
. (B16)

We then recover the convective term in the (ξ, η) domain as

v · ∇ω = (Vξ ,Vη) ·
(

ã
h1

∂

∂ξ
,

b̃
h2

∂

∂η

)
ω. (B17)

The Navier–Stokes equations in the (ξ, η) are thus

∂ω

∂t
+ Vξ√|J|

∂ω

∂ξ
+ Vη√|J|

∂ω

∂η
= 1

Re |J|
[
∂2ω

∂ξ2 + ∂2ω

∂η2

]
, (B18)

∂2ψ

∂ξ2 + ∂2ψ

∂η2 = −|J|ω, (B19)

with the Vξ and Vη being

Vξ = 1√|J|
{(

FηGt − FtGη
)+

[
∂ψ

∂η
+
(

Y
dα
dt

− dh
dt

sinα
)

Gη

+
(

X
dα
dt

+ dh
dt

cosα
)

Fη

]}
, (B20)

Vη = 1√|J|
{(

GξFt − GtFξ
)+

[
−∂ψ
∂ξ

−
(

Y
dα
dt

− dh
dt

sinα
)

Gξ

−
(

X
dα
dt

+ dh
dt

cosα
)

Fξ

]}
. (B21)

911 A41-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
90

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1090


Geometric modal decomposition

Finally, we introduce the polar coordinate (r, θ) in the plane (ξ, η). The final form of
the Navier–Stokes equations in the (r, θ) are thus

∂ω

∂t
+ 1√|J|

[
Vr
∂ω

∂r
+ Vθ

r
∂ω

∂θ

]
= 1

Re |J|
[
∂2ω

∂r2 + 1
r
∂ω

∂r
+ 1

r2
∂2ω

∂θ2

]
, (B22)

∂2ψ

∂r2 + 1
r
∂ψ

∂r
+ 1

r2
∂2ψ

∂θ2 = −|J|ω, (B23)

with Vr and Vθ being

Vr = Vξ cos θ + Vη sin θ, (B24)

Vθ = −Vξ sin θ + Vη cos θ. (B25)
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