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Abstract

We prove that if two C1,1(Ω) solutions of the second boundary value problem for the generated Jacobian
equation intersect in Ω then they are the same solution. In addition, we extend this result to C2(Ω)
solutions intersecting on the boundary, via an additional convexity condition on the target domain.
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1. Introduction

The prescribed Jacobian equation coupled with the second boundary value problem
arises in optimal transport and geometric optics. These equations, with their boundary
condition, take the form

det DY(·, u,Du) =
f (·)

f ∗(Y(·, u,Du))
in Ω, (1.1)

Y(·, u,Du)(Ω) = Ω∗, (1.2)

where Y : Rn × R × Rn → Rn, and the functions f , f ∗ are positive densities on the
prescribed domains Ω,Ω∗ ⊂ Rn. Such equations have not been profitably studied
without additional structure on Y . In this paper we require that Y arise from a
generating function and thus work in the framework of generated Jacobian equations
(GJE), which were introduced by Trudinger [10]. Since Y depends on u in an unknown
way we no longer have uniqueness of solutions (even up to a constant). In this paper
we prove a version of a uniqueness result: that distinct solutions cannot intersect at
any point in the domain.

Theorem 1.1. Suppose that g is a generating function on Γ satisfying properties A1,
A1∗ and A2, specified below, and f , f ∗ > 0 are C1 and satisfy the mass balance
condition (2.7). Suppose that u, v ∈ C1,1(Ω) are g-convex generalised solutions of (1.1)
subject to (1.2). If there is x0 ∈ Ω such that u(x0) = v(x0), then u ≡ v in Ω.
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Our plan is as follows. In Section 2 we introduce the theory of generating functions
and the definitions required to understand the statement of Theorem 1.1. In Section 3
we prove, using a lemma of Alexandrov, that wherever solutions intersect they have
the same gradient. We show in Section 4 a weak Harnack inequality that we use in
Section 5 to prove that solutions intersecting in the interior of Ω are the same. Finally,
in Section 6, we give conditions which yield the same result when x0 ∈ ∂Ω.

2. Generated Jacobian equations and g-convexity

The following framework is standard for GJE and mirrors [7]. Further details on
GJE may also be found in [5, 6]. Let Γ ⊂ Rn × Rn × R be a domain for which the
projections

I(x, y) := {z ∈ R : (x, y, z) ∈ Γ},

are (possibly empty) open intervals. We consider a function g ∈ C4(Γ) which we
assume satisfies the following properties.

A1 For each (x, u, p) inU, which is defined by

U = {(x, g(x, y, z), gx(x, y, z)) : (x, y, z) ∈ Γ},

there exists a unique (x, y, z) ∈ Γ such that

g(x, y, z) = u, gx(x, y, z) = p.

A1∗ For each fixed (y, z), the mapping

x→
−gy

gz
(x, y, z),

is one to one.
A2 gz < 0 and

E := gx,y − (gz)−1gx,z ⊗ gy,

satisfies det E , 0.

Assumption A1 allows us to define mappings Y :U → Rn and Z :U → R by the
requirement that they uniquely solve

g(x,Y(x, u, p),Z(x, u, p)) = u, (2.1)
gx(x,Y(x, u, p),Z(x, u, p)) = p. (2.2)

Herein we assume that Y is the mapping appearing in (1.1) and (1.2). This assumption
allows us to rewrite (1.1) as a Monge–Ampère type equation as follows. Setting
u = u(x), p = Du(x) and differentiating (2.1) with respect to the jth coordinate yields

gx j + gyk D jYk + gzD jZ = D ju,

and, since gx = Du,

D jZ = −
1
gz

gyk D jYk. (2.3)

https://doi.org/10.1017/S0004972720000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000052


464 C. Rankin [3]

Similarly differentiating (2.2) yields

gxi,x j + gxi,yk D jYk + gxi,zD jZ = Di ju. (2.4)

We substitute (2.3) into (2.4) and obtain(
gxi,yk −

1
gz

gxi,zgyk

)
D jYk = Di ju − gxi x j .

Thus, with E as defined in A2,

DY(x, u,Du) = E−1[D2u − gxx(x,Y(x, u,Du),Z(x, u,Du))]

and we rewrite (1.1) as

det[D2u − A(·, u,Du)] = B(·, u,Du), (2.5)

where

A(·, u,Du) = gxx(·,Y(·, u,Du),Z(·, u,Du)),

B(·, u,Du) = det E
f (·)

f ∗(Y(·, u,Du))
.

The partial differential equation (PDE) (2.5) is degenerate elliptic when D2u ≥ gxx.
The assumptions on g allow for the introduction of a convexity theory where g

plays the role of a supporting hyperplane. A function u : Ω→ R is called g-convex if
for every x0 ∈ Ω there exists y0, z0 such that

u(x0) = g(x0, y0, z0), (2.6)
u(x) ≥ g(x, y0, z0),

for all x ∈ Ω. We call g(·, y0, z0) a g-support at x0.
Suppose that u is a differentiable g-convex function and g(·, y0, z0) is a g-support at

x0. Then x 7→ u(x) − g(x, y0, z0) has a minimum at x0. Hence Du(x0) = gx(x0, y0, z0)
which, with (2.6), implies via (2.1) and (2.2) that y0 = Y(x0, u(x0), Du(x0)).
Furthermore, if u is C2 then D2u − gxx is nonnegative definite and the equation is
degenerate elliptic.

We work with generalised solutions. A definition of generalised solution exists
for functions which are merely g-convex [10]. However. our results rely on
differentiability so we give the definition of a differentiable g-convex generalised
solution. A differentiable g-convex function u : Ω→ R is called a generalised solution
of (1.1) if, for every E ⊂ Ω,∫

Y(·,u,Du)(E)
f ∗(y) dy =

∫
E

f (x) dx,

where f ∗ is extended to 0 outside Ω∗. If, in addition, Y(·, u,Du)(Ω) ⊂ Ω∗ we say that u
is a generalised solution of (1.1) subject to (1.2), that is, a generalised solution of the
second boundary value problem. Note that under the mass balance condition∫

Ω

f =

∫
Ω∗

f ∗, (2.7)

https://doi.org/10.1017/S0004972720000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000052


[4] Generated Jacobian equations 465

which is necessary for classical solvability, generalised solutions of the second
boundary value problem satisfy

Y(·, u,Du)(Ω) = Ω∗ \ Z, (2.8)

for some setZ of Lebesgue measure 0.
Moreover, any generalised solution which is C1,1(Ω) and thus twice differentiable

almost everywhere satisfies both (1.1) and (2.5) almost everywhere in Ω.

3. Solutions have the same gradients where they intersect

In this section we show that generalised solutions of (1.1) subject to (1.2) satisfy
Du ≡ Dv on {x ∈ Ω : u(x) = v(x)}. Our main tool is a lemma concerning arbitrary
convex functions due to Alexandrov [1] and used by McCann [9, Lemma 13] in the
Monge–Ampère case. We adapt McCann’s proof to the g-convex case. We use the
notation Yu(x) = Y(x, u(x),Du(x)), and similarly for Yv,Zu,Zv.

Lemma 3.1. Assume that u, v : Ω→ R are g-convex and differentiable. Suppose for
some x0 ∈ Ω that u(x0) = v(x0) and Du(x0) , Dv(x0). With Ω′ := {x ∈ Ω : u(x) > v(x)}
set Ξ := Y−1

v (Yu(Ω′)). Then Ξ ⊂ Ω′ and x0 is a positive distance from Ξ.

Proof. We begin by proving the subset assertion. Take ξ ∈ Ξ. The definition of Ξ

implies there is x ∈ Ω′ with Yv(ξ) = Yu(x). We claim Zu(x) < Zv(ξ). Indeed, were this
not the case, Zu(x) ≥ Zv(ξ) which when combined with Yv(ξ) = Yu(x) and gz < 0 yields,
for any z,

g(z,Yu(x),Zu(x)) ≤ g(z,Yv(ξ),Zv(ξ)).

This would imply

u(x) = g(x,Yu(x),Zu(x)) ≤ g(x,Yv(ξ),Zv(ξ)) ≤ v(x),

where the final inequality is because g(·, Yv(ξ), Zv(ξ)) is a g-support. Since x ∈ Ω′ this
contradiction establishes Zu(x) < Zv(ξ). Using this and gz < 0, for any z,

u(z) ≥ g(z,Yu(x),Zu(x)) > g(z,Yv(ξ),Zv(ξ)). (3.1)

For z = ξ we obtain u(ξ) > g(ξ, Yv(ξ), Zv(ξ)) = v(ξ), implying ξ ∈ Ω′ and establishing
the subset relation.

We move on to the distance claim. We suppose to the contrary that there exists
a sequence {ξn}

∞
n=1 in Ξ with ξn → x0. The definition of Ξ implies that for each ξn

there exists an xn ∈ Ω′ with Yv(ξn) = Yu(xn). Now Du(x0) , Dv(x0) implies in any
neighbourhood of x0 that there is a particular z for which

u(z) < g(z,Yv(x0),Zv(x0)). (3.2)

For if not,

u(x0) = v(x0) = g(x0,Yv(x0),Zv(x0)),
u(x) ≥ g(x,Yv(x0),Zv(x0)) in a neighbourhood of x0.

https://doi.org/10.1017/S0004972720000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000052


466 C. Rankin [5]

This implies that u(·) − g(·,Yv(x0),Zv(x0)) has a local minimum at x0. Thus

Du(x0) = gx(x0,Yv(x0),Zv(x0)) = Dv(x0),

and this contradiction establishes (3.2).
Our derivation of (3.1) uses only that x ∈ Ω′ and ξ ∈ Ξ satisfies Yv(ξ) = Yu(x),

so (3.1) also holds for xn and ξn. That is, for any z,

u(z) > g(z,Yv(ξn),Zv(ξn)). (3.3)

Combining (3.2) and (3.3) gives

g(z,Yv(x0),Zv(x0)) > u(z) > g(z,Yv(ξn),Zv(ξn)),

which, on sending ξn → x0 yields a contradiction and completes the proof of
Lemma 3.1. �

We use this lemma to show that solutions have the same gradient where they
intersect.

Corollary 3.2. Assume the conditions of Theorem 1.1. Then Du ≡ Dv on the set
{x ∈ Ω : u(x) = v(x)}.

Proof. Suppose otherwise. Then there is x0 ∈ Ω with u(x0) = v(x0) and Du(x0) ,
Dv(x0). This implies that any neighbourhood of x0 contains a z with u(z) > v(z), which
is to say x0 ∈ ∂Ω′ ∩Ω. By the previous lemma, for ε sufficiently small, Bε(x0) ∩ Ξ = ∅

and thus Ξ ⊂ Ω′ \ Bε(x0). On the other hand, since x0 ∈ ∂Ω′ and u is continuous,
|Bε(x0) ∩Ω′| > 0. Hence

|Y−1
v (Yu(Ω′))| = |Ξ| ≤ |Ω′ \ Bε(x0)| < |Ω′|

and, since f ∗ is bounded below, this implies∫
Y−1

v (Yu(Ω′))
f ∗(Yv) det DYv dx <

∫
Ω′

f ∗(Yv) det DYv dx. (3.4)

The change of variables formula holds for the mappings Yu and Yv even though
they may not be diffeomorphisms. The reasoning here is the same reasoning which
yields the change of variables formula for the gradient of C1,1 convex functions and
uses assumption A1∗ (see [3, Theorem A.31] and [10, Section 4]). In light of this, (3.4)
yields the following contradiction:∫

Ω′
f (x) dx =

∫
Yu(Ω′)

f ∗(y) dy (3.5)

=

∫
Yv(Y−1

v (Yu(Ω′)))
f ∗(y) dy (3.6)

=

∫
Y−1

v (Yu(Ω′))
f ∗(Yv) det DYv dy

<

∫
Ω′

f ∗(Yv) det DYv dy =

∫
Ω′

f (x) dx.
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Here the equality between (3.5) and (3.6) follows from the generalised boundary
condition in conjunction with (2.8) from which we deduce

Yv(Y−1
v (Yu(Ω′))) = Yv(Ω) ∩ Yu(Ω′) = Yu(Ω′) \ Z,

for some set Z with Lebesgue measure 0, so that the integrals over these sets
are equal. �

4. A weak Harnack inequality

Proposition 4.1. Suppose that u, v ∈ C1,1(Ω) satisfy (1.1) almost everywhere and u ≥ v
in Ω. Then for any Ω̃ ⊂ Ω there exist p,C > 0 such that( 1

|Ω̃|

∫
Ω̃

(u − v)p
)1/p
≤ C inf

Ω̃
(u − v). (4.1)

Proof. Provided we are able to show that u − v is a supersolution of a homogeneous
linear elliptic PDE, this is a consequence of the weak Harnack inequality [4, Theorem
9.22] and a covering argument. To apply the Harnack inequality to u − v we recall that
C1,1(Ω) ⊂ W2,∞

loc (Ω) [2, Theorem 4.5]. We now show that w := u − v satisfies

Lw := ai jDi jw + bkDkw + cw ≤ 0, (4.2)

where

ai j = [D2u − A(·, u,Du)]i j,

bi = −ai j(Ai j)pk − B̃pk ,

c = −ai j(Ai j)u − B̃u,

and B̃ = log B. From (2.5), almost everywhere,

0 = log det[D2v − A(·, v,Dv)] − log det[D2u − A(·, u,Du)]
+ B̃(·, u,Du) − B̃(·, v,Dv). (4.3)

A Taylor series for

h(t) := log det[t(D2v − A(·, v,Dv)) + (1 − t)(D2u − A(·, u,Du))]

yields
h(1) − h(0) = h′(0) + 1

2 h′′(τ),

for some τ in [0, 1]. Concavity of log det implies h′′(τ) ≤ 0 and thus, on computing
h′(0), we obtain

log det[D2v − A(·, v,Dv)] − log det[D2u − A(·, u,Du)]

≤ ai jDi j(v − u) + ai j(Ai j(·, u,Du) − Ai j(·, v,Dv)), (4.4)
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where ai j = [D2u − A(·, u,Du)]i j. Substituting (4.4) into (4.3) implies

0 ≤ ai jDi j(v − u) + ai j(Ai j(·, u,Du) − Ai j(·, v,Dv))
+ B̃(·, u,Du) − B̃(·, v,Dv). (4.5)

The mean value theorem yields

Ai j(·, u,Du) − Ai j(·, v,Dv) = Au(·,w, p)(u − v) + Apk (·,w, p)Dk(u − v),

for some w = t1v + (1 − t1)u and p = t2Dv + (1 − t2)Du, and there is a similar result for
B̃(·, u,Du) − B̃(·, v,Dv). Thus (4.5) becomes

0 ≤ ai jDi j(v − u) −
(
ai j(Ai j)pk +

Bpk

B

)
Dk(v − u) −

(
ai j(Ai j)u +

Bu

B

)
(v − u),

which is (4.2). (Multiply by −1 since w = u − v.) �

5. Solutions intersecting on the interior are the same

Here we provide the proof of Theorem 1.1. The Harnack inequality implies that
one solution cannot touch another from above. Now we show that, given two distinct
solutions, since their derivatives are equal where they intersect, their maximum is a
C1,1(Ω) solution touching from above—a contradiction.

Proof of Theorem 1.1. At the outset we fix Ω̃ ⊂ Ω containing x0. Since u, v are g-
convex, the same is true for w := max{u, v}. Furthermore, Du ≡ Dv on {u = v}, implies
that w is C1,1(Ω). Thus w solves (2.5) almost everywhere. Hence we may apply our
weak Harnack inequality (4.1) to w − v to obtain w ≡ v in Ω̃. The same argument yields
w ≡ u in Ω̃ and hence u ≡ v in Ω via continuity. �

6. Solutions intersecting on the boundary are the same

We conclude by proving that if solutions intersect on the boundary then they are the
same throughout the domain. We require a convexity assumption on the target domain
Ω∗. We say that a C2 connected domain Ω∗ is Y∗ convex with respect to x ∈ Ω and
u ∈ R provided there exists a defining function ϕ∗ ∈ C2(Ω∗) satisfying

ϕ∗ < 0 in Ω∗ ϕ = 0 on ∂Ω∗

D2
pϕ
∗(Y(x, u, p)) ≥ 0 |Dϕ| , 0 on ∂Ω∗.

For a comparison between this and other definitions of domain convexity see
[8, Section 2.2]. In the same paper Liu and Trudinger prove that for C2(Ω) solutions
and

G(x, u, p) := ϕ∗(Y(x, u, p))

the boundary condition
G(·, u,Du) = 0 on ∂Ω

is oblique, that is, it satisfies Gp · γ > 0 where γ, is the outer unit normal.
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Theorem 6.1. Assume the conditions of Theorem 1.1. In addition, assume that u, v ∈
C2(Ω) are generalised solutions of (1.1) subject to (1.2) and Ω∗ is Y∗-convex with
respect to each x ∈ Ω and an interval containing u(Ω) ∪ v(Ω). If there is x0 ∈ ∂Ω with
u(x0) = v(x0) then u ≡ v in Ω.

Proof. Using Theorem 1.1, it suffices to prove that there is x ∈ Ω with u(x) = v(x). For
a contradiction suppose that at some x0 in ∂Ω we have u(x0) = v(x0), yet u > v in Ω.
Hopf’s lemma [4, Lemma 3.4] yields

Dγ(u − v)(x0) < 0. (6.1)

Here we used the fact that the linear elliptic inequality (4.2) is uniformly elliptic under
the assumption u ∈ C2(Ω) and that no sign condition is needed on the lowest-order
coefficient in (4.2) since u(x0) − v(x0) = 0.

Consider the function h(t) := G(x0, u(x0), tDv(x0) + (1 − t)Du(x0)). A Taylor series
yields

h(1) = h(0) + h′(0) + h′′(τ)/2,

for some τ ∈ [0,1]. Since u(x0) = v(x0), we have h(1),h(0) = 0. Furthermore, convexity
implies h′′(τ) ≥ 0 and hence

0 ≥ h′(0) = Gp · D(v − u),

or equivalently 0 ≤ Gp · D(u − v). Combined with obliqueness, this gives

Dγ(u − v)(x0) ≥ 0,

which contradicts (6.1) and thus establishes the result. �
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