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Direct numerical simulation has been used to study the effects of external turbulence
on axisymmetric wakes. In the absence of such turbulence, the time-developing axially
homogeneous wake is found to have the self-similar properties expected whereas, in
the absence of the wake, the turbulence fields had properties similar to Saffman-type
turbulence. Merging of the two flows was undertaken for three different levels of
external turbulence (relative to the wake strength) and it is shown that the presence of
the external turbulence enhances the decay rate of the wake, with the new decay rates
increasing with the relative strength of the initial external turbulence. The external
turbulence is found to destroy any possibility of self-similarity within the developing
wake, causing a significant transformation in the latter as it gradually evolves towards
the former.
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1. Introduction
Axisymmetric turbulent wakes have been studied for over half a century, not least

because in the far field (when the maximum wake deficit velocity, Us, is small
in comparison to the free-stream velocity, U∞) they are one of the classical free
shear flows for which the equations of motion suggest the possibility of self-similar
behaviour. This was famously clarified by Townsend (1976) and numerous experiments
have been conducted which confirm such behaviour. However, recent authors have
suggested that the universal self-similarity hypothesis is false (as explained in the
historical review of Johansson, George & Gourlay 2003). In particular, it has been
argued that the asymptotic structure of such self-preserving wakes (just as for
other related flows) is perhaps not independent of initial conditions. Indeed, such
independence seems unnecessary for self-similar solutions to appear. This was perhaps
first illustrated by the measurements of Bevilaqua & Lykoudis (1978), whose data
obtained in wakes behind bodies differing in character but having the same drag
coefficient showed that the wakes reached different states of similarity. Wygnanski,
Champagne & Marasli (1986) subsequently undertook a similar and even more
convincing experiment of the same kind, but for planar wakes, reaching essentially
the same conclusions. Johansson et al. (2003), following George (1989), provided a
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‘proper equilibrium similarity analysis’, which demonstrated, as did their experiments
on an axisymmetric wake, that initial conditions (and local Reynolds number)
dominate the asymptotic behaviour. Although the effects of initial conditions do not
appear in the appropriately normalized velocity profiles, they certainly do in growth
rate and higher velocity moments.

A further major conclusion of the more recent work in the context of spatially
developing, fully turbulent axisymmetric wakes is that there are two possible self-
similar scalings for the far-field behaviour (i.e when Us/U∞ � 1). Each has δ ∝ xn

and Us ∝ x−2n, where δ is a typical wake length scale, e.g. the half-width (defined
throughout this paper in the usual way as twice the value of the radial coordinate
r where the mean velocity deficit is half its maximum value). The first possibility
is the classical result that n = 1/3, valid when viscous effects can be ignored, i.e.
at asymptotically large Reynolds numbers. The second has n = 1/2, which appears
from the analysis of the momentum equation when viscous terms are included,
provided either that the turbulent stresses are identically zero (the purely laminar
wake originally analysed by Batchelor 1967), or that the turbulence stress term is
of the same order as the viscous term. If the former is of greater order than the
latter, the n = 1/2 solution can also appear if either the radial variations of turbulent
and viscous stresses are identical or the eddy viscosity is constant with x. It is not
easy to identify which scaling appears in experiments, whether numerical or physical,
but Johansson et al. (2003) claim that both have done so. However, as Redford,
Castro & Coleman (2012) have recently demonstrated, even after extremely long
times (or, equivalently, spatial distances) the turbulent wake retains relatively large
turbulent stresses (cf. the laminar ones), so it seems that the n = 1/2 solution for
a turbulent wake can only properly occur under either of the restrictive conditions
mentioned above. A fully turbulent wake might not asymptotically become genuinely
laminar, as indeed Johansson et al. (2003) suggested, but proof of this would require
full consideration of all the higher-order transport equations; the transition from the
long-time universal n = 1/3 turbulent state identified by Redford et al. (2012) to the
very final state has never been fully explored.

In recent years there have been a few direct numerical simulations (DNS) of the
time-dependent analogue of spatially developing wakes. Moser, Rogers & Ewing
(1998) studied planar wakes, and undertook a similarity analysis in the spirit of
George (1989), whereas Gourlay et al. (2001) considered the axisymmetric wake,
a flow very recently re-visited by Redford et al. (2012) specifically in order to
demonstrate the effect of initial conditions and explore the possible consequent non-
universality of such wakes. Although there are some fundamental differences between
a time-dependent, axially homogeneous flow and the time-independent, spatially
developing flow (as discussed by Redford et al. 2012), there is no reason to suppose
any fundamental differences in their long-lived dependence on initial conditions. These
various computations at first sight reinforce the above conclusions about dependence
on initial conditions derived from studies on spatially developing wakes. However,
Redford et al. (2012) conclude that such dependence is simply a result of the
lack of sufficient time (or space) development; a truly universal wake structure (i.e.
independent of initial conditions) does eventually appear but (in the spatial case) not
before a distance downstream equal to at least 40 000 initial wake diameters – so far
as to be unlikely ever to appear in real situations.

In practice many axisymmetric wakes develop in the presence of free-stream
turbulence. Examples include submarine and wind turbine wakes, where the external
turbulence may not decay on time or length scales similar to those of the wake
decay, and turbine blade wakes, where it presumably does. Provided it is strictly of
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an isotropic, homogeneous type (i.e. contains no Reynolds shear stress) the presence
of such turbulence does not explicitly affect the similarity analyses – at least as far
as the momentum equations are concerned. But it is intuitively clear that it must
affect the way in which the wake decays, to an extent which is likely to depend
on a number of governing parameters. Suppose that the external fully developed
homogeneous isotropic turbulence (HIT) can be ‘switched on’ once the wake has
reached its self-similar state and has an initial turbulence level characterized by an
r.m.s. velocity fluctuation u′eo and an integral length scale of Leo. Arguably the most
important of the governing parameters are u′eo/Uso and Leo/δo, where Uso and δo are
the maximum wake deficit velocity and the wake half-width, respectively, at the time
the free-stream turbulence appears. Of course, this is a somewhat idealized situation
which could never be produced experimentally. Note that throughout this paper suffix
‘e’ refers to conditions in the external turbulence and suffix ‘o’ to initial conditions –
at the time when the two fully developed flows are combined.

It appears that Wu & Feath (1994) were the first to conduct measurements of
a wake in turbulent environments. They used a sphere as the wake generator and,
inevitably, the free-stream turbulence was present during the initial formation and
development of the wake as well as further downstream. The ambient turbulence
intensity u′e/U∞ (at the location of the wake-generating body) was 4 % and the sphere
Reynolds number was in the low to moderate range (125 < Red = U∞d/ν < 1560,
where d is the sphere diameter and U∞ is an appropriate reference velocity). The
free-stream turbulence was generated using a turbulent pipe flow and the sphere
was mounted at the downstream end of the pipe. In comparison with non-turbulent
environments (and high-Reynolds-number conditions) Wu & Feath found a decay
rate governed by n = 1/2, which they noted is like a self-preserving laminar wake.
They later studied the effect of different ambient turbulence intensities, 2–9.5 %, on
the sphere wake at similar Reynolds numbers (Wu & Feath 1995). This time, each
different ambient turbulence intensity was generated in a different way and they found
a final decay region, beginning when the wake centreline turbulence intensity was
approximately equal to the ambient one, in which decay rates faster that n= 1/2 were
noticed, although no quantitative values were given. They also found some cases in
which vortex shedding from the sphere had significant effects. Similar studies were
undertaken by Legendre, Merle & Magnaudet (2006), who used large-eddy simulation
(LES) to compute the wakes of a spherical bubble and of a solid sphere in a turbulent
pipe flow. They also found a faster decay rate regime once the r.m.s. velocity in
the free stream was of the same order as that on the wake centreline. The wakes
of small particles in isotropic turbulence have also been studied using DNS (Bagchi
& Balachandar 2003, 2004). In this case the turbulence integral scale was very large
compared with the particle diameter (because the application was typical two-phase
flows).

Recently studies of sphere wakes in roughly HIT have been reported (Amoura et al.
2010), for 110 < Red < 1080. These were in some senses less complex cases than
some of the earlier experiments mentioned above, in that there was no mean velocity
shear outside the wake, and the turbulence there was approximately both homogeneous
and isotropic. On the other hand, Red was sufficiently small to mean that their various
cases covered only the laminar and transitional regimes for their pure-wake base
cases. They also used external turbulent fields with very high turbulence intensities
(0.17 < u′e/U∞ < 0.26) and integral scales some 3–4 times the sphere diameter, so
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Authors Methodology Red u′e/U∞ Le/d Reλe n

WF Expt (pipe) 125–1560 0.02–0.095 8–59 — > 1
2

LMM LES (pipe) 200 0.021 7.69 — > 1
3 → 1

BB DNS (free) 58–610 0.06–0.15 52.6–333.3 164 1
2

ARRB Expt (free) 110–1080 0.17–0.26 2.9–3.9 — 1
Present DNS (free) >10 000 ≈0.022–0.087 ≈3.6–5.3 133–314 1

3 → 1
2

TABLE 1. Wake decay law found (n) and defining parameters at the body location, of
the different earlier works: WF, Wu & Feath (1994, 1995); LMM, Legendre et al. (2006);
BB, Bagchi & Balachandar (2003, 2004); AARB, Amoura et al. (2010). ‘Pipe’ refers
to experiments in which the wake-generating body was on the centreline of a developed
turbulent pipe flow and ‘free’ refers to open flow conditions with (roughly) isotropic
external turbulence. Reλe = u′eλe/ν is the microscale Reynolds number in the external flow.
L is the (axial) integral scale, suffix ‘e’ denotes values in the external turbulence.

the turbulence remained (nearly) axially homogeneous over some 15d downstream of
the sphere. They found an n = 1 decay and, interestingly, that the wake scaled with
the standard deviation of the eternal turbulence (u′e) rather than the mean free-stream
velocity (U∞), but measurements only extended to x/d = 15, i.e. not into the genuine
far-wake region. We mention finally the work of Eames et al. (2011), who presented
a theoretical analysis of sphere wakes in external turbulence. Although, when the
external turbulence velocity is comparable with the centreline wake deficit, they found
an n= 1 decay, they only considered low-Reynolds-number cases, i.e. when there was
no turbulence generation by the sphere itself. They specifically excluded consideration
of the high-Reynolds-number fully turbulent cases like those studied here.

These various works clearly revealed that free-stream turbulence generally increases
the wake decay rates, as might be expected. However, there are significant differences
in the results, probably reflecting in the earlier cases the important influences of mean
velocity shear in the free stream and possibly the constraining effects of pipe walls
as the wakes grew and, in the later cases, the very different turbulence intensities and
ratios of integral scale to body diameter. Table 1 lists the salient parameters from
the various laboratory and numerical experiments. Notice that all these earlier sets
of data were at relatively low Reynolds numbers and all but Amoura et al. (2010)
had Le/d ratios of O(10) or higher. On the other hand, although the latter had Le/d
nearer O(1) they had very high external turbulence levels. In an initial attempt to set
up an experiment with fewer complications than those of Wu & Feath (1994, 1995)
and Legendre et al. (2006), Redford & Coleman (2007) used DNS to model the time-
dependent, axially homogeneous axisymmetric wake immersed in essentially isotropic
but decaying free-stream turbulence. Like Gourlay et al. (2001) but unlike the later
work of Bagchi & Balachandar (2003, 2004), they did not include the generating
body. Unlike Gourlay et al., however, they created an initial wake using a series of
ring vortices, which with time broke and developed into an axisymmetric wake. This
was then combined with the free-stream turbulence. Their main finding was that the
stronger the free-stream turbulence, the more rapidly did the wake merge into its
turbulent surroundings.

The present work is essentially a continuation of the Redford & Coleman (2007)
study, using the same code but with different initial conditions and a range in the
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governing parameters which covers intensities significantly smaller than those used by
Amoura et al. (2010) but still with O(1) values of Le/d. Furthermore, the present
work concentrates on the effect of the turbulence on the structure of the fully turbulent
decaying far wake in situations where the external turbulence is also decaying (unlike
the Amoura et al. 2010 case), as well as issues concerning wake decay rates and
the possibility of self-similarity. Because the present methodology does not include
a free-stream mean velocity, it is not straightforward to define either Red or u′e/U∞.
Approximate values are included in table 1 (see later); note immediately that Red is
much higher than in all earlier work, so typical velocity spectra in the present work
contain clear inertial subranges with the classical −5/3 slope. Some corresponding
experiments of the spatially developing analogue have also been conducted; these have
been reported separately (Rind & Castro 2012).

Our work was motivated by interest in the development of the decaying wake in
cases where the external turbulence decays simultaneously (unlike any other work).
Furthermore, we initially speculated that if, for the spatially developing case, the
external turbulence decays at about the same rate as the wake in the absence of
external turbulence, then the wake in the presence of free-stream turbulence may not
initially be strongly affected by the latter. Given that in at least some wind tunnel
realizations of HIT u′e/U∞ has been reported to decay like x−p/2 with p ≈ 1.3 (but
see § 3.2), whereas the (high-Reynolds-number) axisymmetric-wake maximum velocity
deficit Us/U∞ decays like x−2n = x−0.67, the parameter u′e/Us may remain roughly
constant. Likewise, with these decay power laws, it can be shown that the ratio
of the free-stream-turbulence integral scale to the wake width Le/δ may also be
almost constant. Thus the lowest-order governing parameters for a wake immersed in
free-stream turbulence might perhaps not change much along the wake, which might
therefore initially have just the same decay behaviour as in the absence of external
turbulence. DNS for isotropic turbulence typically shows decay rates similar to those
found in wind tunnels, so one would anticipate analogous behaviour for the time-
dependent spatially homogeneous case. It turns out that this expectation is not fulfilled
except perhaps in the very weakest external turbulence fields; wake self-similarity
rapidly collapses even with relatively weak external turbulence, as we will show.

The methodology is presented in § 2, followed by consideration of the separately
computed wake and turbulent fields in § 3. Results and discussion for the combined
flows are given in § 4 and conclusions are summarized in § 5.

2. Methodology
The use of DNS for any study of far-field wakes would be impossibly expensive

if the wake-generating object were to be included. (Note that although the Bagchi &
Balachandar 2003, 2004 DNS included the obstacle, it used a very restricted domain
which did not extend beyond 15d downstream). We therefore followed Gourlay et al.’s
(2001) and Redford & Coleman’s (2007) less expensive approach – simulating the far-
wake region only. The code was that used by Redford & Coleman (2007) and Redford
et al. (2012); this is a triply periodic pseudo-spectral approach based on the method
of Kim, Moin & Moser (1987). The simulation is thus of a time-developing, axially
(and circumferentially) homogeneous flow with zero free-stream velocity which, as
explained in Redford et al. (2012), maintains a time-invariant volume flux. Whether or
not there is turbulence outside the wake, the volume flux deficit is ṁ=−2π

∫∞
−∞Ur dr
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so if the mean velocity field is self-similar (i.e. U = Us(t) f (η) where η = r/δ(t)) then
δ2Us is time-invariant; r is the radial coordinate measured from the axis of symmetry
(with x and θ the axial and circumferential coordinates, respectively). Note that in
the spatially developing case, with a free-stream velocity of U∞, U is the difference
between U∞ and the velocity in the wake, uw say. But self-similarity in such a wake
only occurs asymptotically for U∞ − uw � U∞; the constant-momentum constraint is
then in fact equivalent to conservation of ṁ.

The specified initial condition for the wake mean velocity profile was extracted
from experimental measurements of a spatially developing wake, just as Moser et al.
(1998) did for their plane-wake DNS. Wake data reported by Chevray (1968) were
used, with the reported mean velocity deficit profile at one disk diameter downstream
scaled, while maintaining the profile shape, so that the wake initial Reynolds number
Re, based on the half-width, δ, and the centreline deficit velocity, Us, was 10 000.
Note that with the assumption that this is equivalent to a spatially developing wake
in a free stream such that the wake width and velocity deficit are similar to those
found experimentally by Amoura et al. (2010) at x/d ≈ 10, this is roughly equivalent
to an obstacle Reynolds number Red well in excess of 10 000 – hence the entry in
table 1. The scaled profile was then inserted into the computational domain with
appropriate wake turbulence statistics superimposed using a modified version of Xie
& Castro’s (2008) digital filter. This essentially required specification of a random-
number field, suitably filtered and correlated to ensure an initial integral length scale
equal to the wake half-width. This is not consistent with a divergence-free field but,
since continuity is immediately enforced by the code, the initial correction stage was
quite short. The subsequent evolution towards the expected pure-wake structure was
much longer, but still very short compared with the total computational time. Precise
details of this evolution are immaterial (Redford et al. 2012) but depend on the
details of the initial turbulence field. The eventual, self-similar wake discussed in § 3
has (at least) the expected first- and second-order properties, which would emerge
independently of the initial conditions. Alternative methods might have marginally
reduced the computational time required for this period of evolution, but were not
tried. It is important to note that this wake, although self-similar, is not the eventual,
universal self-similar state that is totally independent of initial conditions and only
appears after extremely long computational times (Redford et al. 2012). But for the
present purposes this does not matter; it is the effects of external turbulence on a
genuinely self-similar wake that are of interest.

In addition to the wake, three HIT fields were generated separately. Recall that
perhaps the major parameters affecting the wake development in a turbulent field
include u′eo/Uso, which we call the ‘strength’ of the free-stream turbulence (relative to
the wake), and Leo/δo, where u′eo and Leo are the r.m.s. velocity and integral length
scale of the external turbulence at the time the latter is added outside the wake. The
integral length scale is defined in the usual way as the area under the normalized
spatial correlation Λx (defined by (2.1) below) of the axial velocity, up to the point
where Λx is first zero. In order to achieve a specific turbulence strength a weaker
field was generated first and prevented from decaying by using the forcing scheme of
Sullivan, Mahalingam & Kerr (1994). Then, knowing the initial value of Uso from the
preceding (pure) wake computation, the forcing constant (the turbulent kinetic energy)
was increased gradually until the required u′eo/Uso was achieved. Note that the integral
length scale is actually only an output of the simulation and cannot be controlled
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FIGURE 1. (a) A typical one-dimensional energy spectrum, E11, at the wake half-width
point. Solid line: the computed spectrum; dashed line: the universal inertial region value, C.
(b) Example of the (axial velocity) spatial correlation function, Rx(∆), at the wake half-width
point; 3000< Re< 4000. Λx/2Lx = 43, where Λx is the axial length of the domain.

a priori. Also note that the forcing was only used during the development process and
was removed immediately the turbulent field was added to the region outside the wake.

The domain for the wake simulations (both with and without external turbulence)
was 4π×16π×4π, with 512×2048×512 Fourier modes. Each time step typically took
50 s when using 512 processors of the UK’s HPCx facility. Since up to 40 000 time
steps were required for the initial HIT simulations to achieve a stationary state (see
§ 3.2) a cheaper approach was required in order to reduce the computational cost. First
the domain size was chosen to be 4π×4π×4π, i.e. only one quarter the axial length of
the wake domain. Moreover, for the first 95 % of those initial simulations the domain
had only 256×512×256 Fourier modes (with each time step typically taking 5 s when
using 256 processors) and for the final 5 % it was increased to 512 × 512 × 512 (with
each time step typically requiring 21 s when using 256 processors). The code uses
Cartesian coordinates and solutions were interpolated to the appropriate cylindrical
coordinates using Press et al.’s (1992) two-dimensional interpolation. (Since the
wake is axisymmetric and axially homogeneous, both circumferential and axial data
averaging at fixed r was possible.)

In all computations, local Kolmogorov length scales, η = (ν3/ε)
1/4, where ε is

the mean local dissipation rate, varied between 20–110 % of the computational
grid resolution. As an example of the satisfactory nature of both resolution and
statistical convergence in all the simulations, figure 1(a) shows an axial kinetic energy
(compensated) spectrum in the pure wake at r = δ averaged over times corresponding
to 3000 < Re = Usδ/ν < 4000. The spectrum is compared with the universal result
expected in the inertial subrange (E11 = Cε2/3κ−5/3 where κ is the wavenumber and C
is proportional to the Kolmogorov constant and has the value 0.49, e.g. Pope 2000).
The spectral properties (i.e. E11 and ε, where E11 is the one-dimensional spectrum
of the axial velocity) were directly calculated from the simulation data using the
exact relationship, ε = 2νSijSij where Sij is the usual fluctuating strain rate tensor.
The agreement is very satisfactory and it may be noted that a significant inertial
subrange is present, where the compensated spectrum is constant, although recall that
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Wang et al. (1996), among others, suggest that the Kolmogorov constant might be
slightly larger than 0.49; small differences would not be apparent on such a plot.

As the wakes grow there will eventually come a time when the cross-stream domain
size is too small. Test simulations (with larger domains and discussed in detail in
Redford et al. 2012) showed that wake widths up to ∼65 % of the domain size were
not affected and in the results presented here the wake was always smaller than that
limit. (‘Wake width’ here means twice the distance from the centreline to where the
mean velocity has fallen to 1 % of its centreline value.) In addition, it was important to
ensure a domain length sufficient to allow development of the largest axial structures.
Figure 1(b) provides an example of the spatial correlation function of the axial velocity
component, Rx(∆), at the wake half-width point (r = δ), when the local Re was ∼2000.
Rx(∆) is defined by

Rx(∆)= ux[x/Λx]ux[(x+∆)/Λx]
ux (x/Λx)

2
. (2.1)

It is clear that the domain is more than adequate in that respect; its half-length is some
43 times the axial integral scale, computed as the area under the spatial correlation
up to the first zero-crossing point. It was chosen to be so long in order to improve
the data quality – recall the wake is axially homogeneous, so axial averaging could be
employed to enhance statistical convergence.

Before presenting the basic data for both the self-similar wake (without external
turbulence) and the HIT fields, we describe how the former was artificially combined
with each of the latter. Each combination was implemented at a normalized time
(t = t1 ≈ 66) when the pure wake had recovered from the very early response to
the unphysical initial conditions and was approaching its self-similar state. Two
constraints were used: the free-stream turbulence was inserted into the domain at
all locations outside the mean wake (defined by the region in which the velocity was
below 1 % of the centreline value) and at all places inside the mean wake where the
turbulence kinetic energy (TKE) was smaller than 5 % of the maximum TKE inside
the wake. Since the external turbulence flow fields were one quarter the length of
the wake domain, and axially periodic, four identical turbulence fields were stacked
axially. This is justified because the initial integral length scale of the turbulence
field, Leo, was in all cases small compared with the quarter-length domain, Ldom

(0.04< Leo/Ldom < 0.09). Figure 2 illustrates the entire flow just after the two separate
flows were combined; the axial stack of four external fields is clearly visible. Such
fields (wake plus external turbulence) were then allowed to develop and decay with
time and their features were analysed. We discuss first the two simulated base flows:
the pure axisymmetric wake and the HIT.

3. The base flows
3.1. The pure axisymmetric wake

Johansson et al. (2003) suggested that the high-Reynolds-number similarity solution
would not be expected to appear if the local Reynolds number (Re = Usδ/ν) falls
below ∼500, although in view of the Redford et al. (2012) conclusions, and since even
at that Re the viscous terms are still small compared with the turbulence terms, this
seems rather arbitrary. The latter authors also found that the existence of self-similarity
does not rest on the existence of a clear inertial subrange in the energy spectrum.
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1

2

3

0.4 0.6 1.00 0.2 0.8

FIGURE 2. An example of the non-dimensional vorticity magnitude contours, ω̃ = ωδo/Uso,
immediately after the pure wake was artificially combined with the free-stream turbulence;
grey: ω̃ = 12.8 (the wake region) and black: ω̃ = 0.6 (the external turbulence).

Figure 1 shows that in the present computations there is in fact a reasonable −5/3
range and figure 3(a) shows the variation of Re with time t. Note that t has (here
and hereafter) been non-dimensionalized using the initial values of wake half-width δo

and maximum velocity deficit Uso. Each variable was obtained at every time step by
circumferential and axial averaging and, for clarity, only a small subset of the data is
shown. After an initial development period (not shown, but prior to t = 50) Re remains
above 1000 for the entire computation. The n= 1/3 solution predicts that both Re and
Ret will fall like t−1/3. Taking the virtual origin to be to = 50 and choosing appropriate
amplitudes yields the solid and dashed lines shown in the figure. Both Re and Ret

behave largely as expected beyond about t ≈ 125. Likewise, the turbulence Reynolds
number, defined by Ret = k2/εν, remains higher than 300. The n = 1/3 solution has
turbulence stress values at fixed r/δ varying like t−4/3. The three fluctuating (r.m.s.)
velocities at the wake half-width (r = δ) are appropriately plotted in figure 3(b) and
it is clear that they demonstrate quite a good fit to the expected behaviour, again
suggesting a virtual origin of about to = 50 using the data for t > 125. Data at the
half-width location are used throughout this paper, since these inevitably have a much
smaller level of statistical scatter. Recall that axial and circumferential averaging are
used; the latter naturally contributes very little to reduction in statistical scatter for r
close to zero.

The growth of the wake half-width and decay in centreline velocity are shown in
figure 4(a), where values have been normalized by the initial values at t = 0. It is
evident that good fits to the expected slopes in these log–log plots are observed at least
over the period beyond t ≈ 125. Note that the necessary similarity constraint δ2Us is
also closely satisfied. Figure 4(b) shows the variation of the r.m.s. velocities at r = δ,
normalized by U2

s ; these all become roughly constant for t >≈ 125, as they should in a
self-similar region, where uxur/U2

s at fixed r/δ is constant (and similarly for the other
stresses). Although choice of a smaller to would yield reasonable mean flow data fits
(in figure 3) over an earlier time period, the r.m.s. data of figure 4(b) indicate that
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FIGURE 3. (a) Variations of Re (×) and Ret (◦) with (normalized) time. (b) Un-normalized
r.m.s. velocities at r = δ: ◦, u′x; 4, u′r; ×, u′θ . The lines are fits to the data over the
75< t − to < 205 period, with a virtual origin of t ≡ to = 50.

self-similarity is not closely achieved much earlier than t ≈ 125. The velocity profile
(not shown) was obtained by assuming similarity and averaging over 125 < t < 255
and is very close to the cosinusoidal variation suggested to provide a reasonable fit
by Ostowari & Page (1989). However, there is no fundamental reason why one should
expect a cosinusoidal velocity variation – this would, for example, require a rather
special variation of eddy viscosity if it were to arise naturally from the similarity form
of the equations.

Turbulence quantities were also computed and the dimensionless Reynolds stress
profiles are presented in figure 5(a). Individual profiles were obtained by appropriate
circumferential and axial averaging and collapsed quite well for each time within
the self-similar period (t > 125), so the profiles shown are those resulting from time-
averaging over that period. They agree qualitatively with previously reported data (for
example Uberoi & Freymuth 1970) but, as mentioned in § 1, quantitative agreement
might not be expected unless sufficient time has elapsed (or downstream distance is
great enough, in the spatial case). In fact, the profiles are quantitatively quite close
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FIGURE 4. (a) Variation of wake half-width (◦) and maximum deficit velocity (4) with
time; ×, δ2Us/δ

2
0Uso. The data are normalized by their initial values at t = 0, δo = 0.732,

Uso = 0.505. (b) r.m.s. velocities at r = δ: ◦, u′x/Us;�, u′r/Us;4, u′θ/Us;×,√uxur/Us.

to the results of Redford et al. (2012), with peak r.m.s. levels not very different from
those found by the latter in the genuinely self-similar regime.

Finally, once all the wake properties were extracted the TKE balance was calculated
using the following equation:

Convection
δ

U3
s

∂
[

1
2

(
u2

x + u2
r + u2

θ

)]
∂t

Transport + 1
r/δ

∂

∂ (r/δ)

 r

δ
ur

[
p

ρ
+

1
2

(
u2

x + u2
r + u2

θ

)
U3

s

]
Production −uxur

U2
s

∂

∂ (r/δ)

(
U
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)

Dissipation +15ν
δ

U3
s

(
∂ux

∂x

)2

= 0.

(3.1)
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FIGURE 5. (a) Profiles of the dimensionless turbulent velocity fluctuations in the self-
similar wake where uz, ur and uθ are the fluctuating velocities in the x-, r- and θ -directions
respectively and overbars refer to spatial averages. (b) Profiles of the various dimensionless
components of the TKE balance in the self-similar wake.

Note that the boundary layer approximation has been used and, in computing the
dissipation term (ε), local isotropy of the smallest scales of motion was assumed.
The difference between the resulting value of ε and that obtained by using the exact
expression was found to be negligible everywhere. Each term is normalized using the
characteristic scales, Us and δ. The data for the directly computed transport term (i.e.
from gradients of triple velocity and pressure–velocity products) were found to be too
scattered – an even longer domain would have been required to reduce the scatter. The
transport term was therefore deduced as the balance from the other terms, as is often
done in experimental studies, for just the same reasons (see Uberoi & Freymuth 1970,
for example). Figure 5(b) shows the resulting TKE balance. Again, only qualitative
agreement with the Uberoi & Freymuth (1970) wake is expected. Nonetheless, the
absolute value of the ratios between the production and all the other terms at the wake
half-width location are of order one, which is not much lower than those deduced from
the Uberoi & Freymuth (1970) data.

We conclude that the computed wake, at least beyond t ≈ 125, is satisfactorily self-
similar with n = 1/3, yielding mean velocity, stress and TKE profiles quite similar to
those previously reported. The Reynolds number is sufficiently high to yield isotropy
of the smallest scales and around a decade of inertial subrange. At the end of this
period t = 255,Re = 1035 and the Taylor-microscale Reynolds number Reλ = 104.6
(deduced using λ2 = 2u2

x/(∂ux/∂x)2, Pope 2000). At t = t1, Reλ = 130. For all the
computations discussed in § 4 the external turbulence was imposed at (normalized)
t = t1 ≈ 66, slightly earlier than the start of the self-similar region. This allowed the
unphysical behaviour arising from the combination process to die down, so that the
resulting wakes beyond t = 125 could sensibly be compared with the pure-wake case.

3.2. External turbulence
Three different turbulent flow fields were generated. There have been many examples
of HIT generated within a box by DNS (for example Rogallo 1981; Sullivan et al.
1994; Wang et al. 1996; Kaneda et al. 2003; Ishida, Davidson & Kaneda 2006) so we
present only a brief discussion along with the basic data for the three cases.
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FIGURE 6. (a) Taylor microscale Reynolds number versus t/T for u′eo/Uso = 0.36. Solid line:
DNS result; dashed line: trace of the running average. (b) Decay of TKE (ke ∼ t−n) in the
external turbulence: ◦, weak; ×, medium; and +, strong turbulence cases.

Symbol u′eo/Uso Leo/δo λeo/λδo ηeo/ηδo Teo/Tδo λeo/Leo ηeo/Leo Reλe

◦ 0.09 0.76 3.34 3.39 7.33 0.5 0.0187 133
× 0.17 0.52 1.9 1.84 2.6 0.41 0.0147 146
+ 0.36 0.63 2.06 1.3 1.5 0.35 0.0085 314

TABLE 2. Defining parameters of the different external turbulence flow fields at t1: λδ and
λe are the Taylor microscale at the wake half-width location and in the external turbulence
respectively; ηδ and ηe are the Kolmogorov scale η at the wake half-width location and in
the external turbulence respectively; and Reλe = u′eλe/ν is the microscale Reynolds number
in the external flow. L is the (axial) integral scale, suffix ‘e’ denotes values in the external
turbulence and suffix ‘o’ denotes values at the time when the two flows are combined.

As mentioned in § 2, to achieve specific values of u′eo/Uso Sullivan et al.’s (1994)
forcing scheme was used and the computation proceeded until a fully quasi-stationary
state was reached (as explained by Kaneda et al. 2003, for example). Figure 6(a)
shows the time variation of Reλe and its running average for the u′eo/Uso = 0.36 case.
Recall that here Uso is the base-line wake deficit velocity at t1, the time at which
the external turbulence field is added. (Suffix ‘e’ has its usual meaning, so that
Reλe denotes the Taylor-microscale Reynolds number u′λ/ν in this external turbulence
field.) Note that the running average converges gradually to an approximately constant
value such that additional simulations for t/T > 30, where T = Leo/u′o is one eddy
turnover time, showed little further change. Table 2 provides a summary of the
turbulent characteristics of the three different HIT flow fields at t1. The table shows
that the range of external turbulence ‘strengths’, u′eo/Uso, was from 0.09 to 0.36. For a
corresponding spatially developing case of a wake in a turbulent free stream (velocity
U∞) and taking a centreline deficit velocity of around 10 % of the free-stream velocity,
this range is roughly equivalent to u′e/U∞ = 0.01–0.04.

As soon as the external turbulence was artificially combined with the wake, its
Sullivan et al. (1994) forcing was removed so that it was allowed to decay in the usual
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FIGURE 7. (a) Axial velocity one-dimensional energy spectrum and (b) the corresponding
compensated spectra at t = t1. Solid line: u′eo/Uso = 0.36; dashed line: 0.17; dashed-dot line:
0.09; dotted line in (b) is the universal spectrum.

way. The nature of this decay was determined by interrogating the turbulence field
without the combined wakes being present. As emphasized by Ishida et al. (2006),
isotropic turbulence can decay either like Saffman’s turbulence, ke ∼ t−6/5 (where
ke = (1/2)(u2

x + u2
r + u2

θ) is the TKE), or Batchelor’s turbulence, ke ∼ t−10/7, depending
on initial conditions. For the former case keL3

e = constant and our simulations yielded
only small variations in this parameter with time whereas keL5

e , the corresponding
parameter which would be constant in Batchelor turbulence, actually rises significantly
in all three cases. This suggests that our DNS turbulence is more Saffman-like, as
also found by Krogstad & Davidson (2010) in their wind tunnel grid turbulence. They
argue that if the constant A in the empirical decay law

du2

dt
=−A

u2
3/2

Le
(3.2)

falls with t like A∼ t−q Saffman turbulence would yield a decay exponent for u2 ∼ t−n

of n= 1.2(1 − q) (q� 1). Our data do indeed show a slow (although rather scattered)
fall in A with t and fits to the turbulence energy using n = 1.15 are reasonable, as
shown in figure 6(b) and consistent with expectations (ta in figure 6b is an appropriate
virtual origin chosen for each case to allow collapse of all data to the same line). Note,
however, that the strongest case requires an even smaller value of n, consistent with a
faster drop in A.

Figure 7 shows axial velocity spectra for all three cases at t = t1, plotted in the
usual way to emphasize collapse in the inertial subrange and, more clearly in the
compensated spectra of figure 7(b), the extent of this range. In all three cases the latter
is comparable with the extent of the inertial range in the pure-wake spectrum (see
figure 1a). Note that the range of (normalized) scales captured by the simulation is
rather smaller for the higher energy cases, since the Kolmogorov scales are larger in
those cases (see table 1).

We conclude that our three HIT fields show reasonable consistency and agreement
with previously reported ones, but it is emphasized again that the influence of initial
conditions can undoubtedly lead to different behaviour.
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FIGURE 8. (a) Decay of deficit velocity, Us. (b) Growth of wake half-width, δ. Solid line is
the pure-wake case and the different values of u′eo/Uso, see table 2, are shown in the legend.

4. The wake embedded in external turbulence
Once the pure wake and the turbulent flows were achieved separately they were

artificially combined (as explained in § 2) and the whole field – wake plus external
turbulence – was then allowed to develop and decay with time.

In the light of the discussion in § 1, the first anticipated feature is that the presence
of free-stream turbulence will enhance the decay rate of the wake. Figure 8 shows
the wake growth and corresponding decay of the centreline velocity. Recall that
the external turbulence was in each case imposed at (normalized) t = t1 ≈ 66. It is
immediately obvious that increasing levels of external turbulence cause substantial
changes, although these appear to be small for the weakest turbulence case. Since it
is not known a priori whether similarity is possible nor, even if it is, what the virtual
origin would be for that region of the wake, it is not sensible to use log–log plots like
these to deduce decay rates. Figure 9(a) shows the deficit velocity plotted as U−1/2n

s
versus t for the three cases, compared with the pure-wake case. The value of n has
been chosen in each case to yield reasonable straight lines after an initial adjustment
region; these values are 0.33, 0.4 and 0.5 in the order of increasing u′eo/Uso (see
table 1), compared with 1/3 for the pure-wake case.

Note first from figure 9(a) that the wake decay rate for the weakest external
turbulence case is not noticeably different from that of the pure wake, although
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FIGURE 9. (a) Variation of U−1/2n
s ; solid line is the pure-wake case. Dotted lines have

n = 0.33, 0.4 and 0.5 for the u′eo/Uso = 0.09, 0.17 and 0.36 cases, respectively. (b) Variation
of Usδ

2; lines and symbols as in (a).

the multiplying factor α in Us = αt1/2n is rather smaller. Secondly, however, the rate
of decay thereafter increases significantly with increasing strength of the external
turbulence. This is unlike the behaviour reported by Wu & Feath (1994) and
Legendre et al. (2006) who each noticed only one decay rate (Us ≈ x−1 and Us ≈ x−2,
respectively). But as discussed earlier, these cases had additional complications (like
mean velocity shear external to the wake). Amoura et al. (2010) also found Us ≈ x−2

but their external turbulence was very strong (see table 1). The present trend is in
general agreement with the initial work of Redford & Coleman (2007). It is worth
emphasizing that in determining decay rates one should recognise the likely non-zero
value of a virtual origin. This makes detailed comparisons with the earlier literature
problematic, because none of the authors listed in table 1 took any account of possible
virtual origins, using plots like those in figure 8(a) to determine n.

Thirdly, it is also clear that the effect of the external turbulence does not take place
instantaneously but is delayed by a time that tends to decrease with increasing u′eo/Uso.
By examining energy spectra it was found that the stronger the external turbulence,
the longer the initial correction stage was but in all three cases it was shorter than
20 time units. So the correction stage presumably has little influence on the time taken
to affect the decay rate. Note that the correction stage, which evolves as a result of
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FIGURE 10. (a) u′xδ/Us versus time; line and symbols as in figure 9. (b) The change in u′e/Us

versus time for the different wake–background combinations; lines and symbols as in figure 8.

the artificial ‘wake plus free stream’ assemblage, was typified by, for example, energy
spectra containing unphysical peaks, but this stage has no physical significance and is
not explored here.

Although a reasonable power-law fit to Us ∼ (t − to)
−2n seems possible in every case,

figure 9(b) demonstrates that self-similarity does not hold even approximately, at least
for the two stronger turbulence cases, since Usδ

2 is far from constant. (This parameter
is only constant on the self-similar assumption that U = Us f (η), η = r/δ.) Moreover,
neither mean velocity nor turbulence profiles can be collapsed in self-similar form (see
later). Figure 9(b) suggests, however, that in the weakest external turbulence case, the
wake may not be very far from a self-similar form, at least in terms of its mean
velocity behaviour, since Usδ

2 remains constant within ∼± 4 %.
The time variation of the ratio u′xδ/Us, where u′xδ is the r.m.s. axial velocity at the

wake half-width location, is shown in figure 10(a). Notice again that the divergence
from the pure-wake data (for which the ratio is approximately constant) is increasingly
more rapid and larger as u′eo/Uso increases. Recall that an early idea in considering
these flows was that since the pure-wake decay in Us/U∞ occurs at about the same
rate as the HIT decay of u′e/U∞, perhaps the controlling parameter u′e/Us in the
combined case may be roughly constant. However, our data show very different
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FIGURE 11. Variation with time of the ratio of axial intensity in the wake (at r = δ) to
free-stream intensity; symbols as in figure 8 and the lines are plausible extrapolations towards
the final state u′xδ = u′e.

behaviour, as illustrated in figure 10(b): in the presence of external turbulence, the
decay of the wake centreline deficit velocity is significantly faster than the natural
decay in the free-stream turbulence intensity, so u′e/Us in fact continually rises with
time. The behaviour is emphasized in figure 11, which shows that the ratio of the
half-width axial turbulence intensity, u′xδ, to the free-stream intensity, u′e, continually
falls (or, in the case of u′eo/Uso = 0.37 initially, rises) towards what must be the
eventual state in which u′xδ = u′e. Since the wake r.m.s. velocity profiles must eventually
be determined by the background, which is decaying relatively slower, no self-similar
state can be achieved.

The non-dimensional profiles of the different turbulence stresses were also examined.
They change with time, each from its original self-similar profile into one which
is more closely uniform and clearly determined by the external turbulence intensity
– higher values of u′eo/Uso lead to more rapid and larger effects, as noted earlier;
examples are presented in figure 12. Notice that the shear stress (figure 12a,c), when
normalized using the centreline velocity deficit, grows (in magnitude) rather than
decays with time. This might at first seem something of a surprise, as one might
suppose that the external turbulence would tend to make the wake turbulence more
isotropic and hence reduce the Reynolds shear stress. However, the production term
in the transport equation for the shear stress is u′r

2∂Ur/∂r (normalized using Us and
δ) and, like the axial stress shown in figure 12(b,d), u′r

2 rises significantly with time.
The maximum mean shear is relatively less affected so production of Reynolds shear
stress is rapidly enhanced by the external turbulence. This cannot continue for ever,
however; eventually, the mean flow deficit profile will become sufficiently ‘eaten away’
by the external turbulence that it will essentially collapse, although recall that the
wake volume flux must remain constant. This will cut off the source of shear stress
production so that the latter must eventually also decay. The present computations did
not extend sufficiently in time to reach that point.

Nonetheless, since the non-dimensional r.m.s. velocity profiles develop with time to
ones which are eventually determined by their values in the (isotropic) free stream, the
turbulence normal stress profiles inside the wake must eventually become more equal
and uniform, at least for the two strongest cases. The u′x

2 data in figure 12(b,d) have
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FIGURE 12. Profiles of u′xu′r/U
2
s at different times for (a) u′eo/Uso = 0.09, (c) 0.17 initially.

Profiles of u′x
2/U2

s at different times for (b) u′eo/Uso = 0.09, (d) 0.17 initially. Line types in
(c,d) have the same t as those in (a,b). Note the different ordinate scales in (a,c), and in (b,d).

this feature. Overall, the external turbulence drives an evolution of the wake turbulence
away from its initial self-similar state towards the (decaying) state of the external
turbulence. This behaviour can be further illustrated by considering the development of
the stress anisotropy tensor (Pope 2000). Formulating the computed stresses in terms
of the second and third invariants of that tensor in the usual way and plotting in the
form of the ‘Lumley triangle’ leads, for the u′es/Uso = 0.09 and 0.36 cases, to the
results shown in figure 13. At t = t1 the wake data (the square) lie within the region
containing all the pure-wake data, but as time progress the ξ − η point moves out of
this region and eventually (the triangle) lies within the external turbulence regime, not
far from the exact isotropy point on the map, ξ = η = 0.

We comment finally on the possible influence of the initial scale ratio, Leo/δo. This
varied only weakly through the three cases, although the variation was non-monotonic,
with the smallest value (0.52) occurring for the medium-strength turbulence case,
u′eo/Uso = 0.17 (see table 2), and the values were all O(1). Such values might be
expected to lead to more significant effects on the wake than would be the case for
either very large (�1) or very small (�1) scale ratios. For the former one might
expect that the initial first-order effect of external turbulence would be to ‘shake’ the
wake around whereas for the latter it would simply ‘nibble’ very slowly at the edges
of the wake. In the present case, as the wake develops the local ratio Le/δ falls.
For the u′es/Uso = 0.09 case the fall is from 0.75 to 0.4 over the time range of the
computation, whereas it is 0.52 to 0.43 and 0.63 to 0.33 for the u′es/Uso = 0.17 and
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FIGURE 13. The Lumley triangle (solid lines) on the plane of the invariants ξ and η
of the Reynolds-stress anisotropy tensor. Development in time of the turbulence. (a) The
u′es/Uso = 0.09 case; t =: �, t1; �, 132; O, 202; 4, 275. (b) The u′es/Uso = 0.36 case; t =: �,
t1; �, 94; O, 112; 4, 130. The dashed circles contain the external turbulence data over the
entire period and the dashed ellipses contains the self-similar (pure) wake data.

0.36 cases, respectively. Compared with the changes with time in u′e/Us (figure 10)
these are quite small variations and it seems very likely that it is the latter parameter
which has the major controlling influence on the developing wake, at least for the
present cases for which Le/δ = O(1). It is likely that larger variations in Leo/δo

between the three cases for, say, the same values of u′es/Uso would lead to noticeable
(and separable) effects of the former, but such cases have not been studied. In the
context of wall boundary layers in the presence of external turbulence Hancock &
Bradshaw (1989) have shown that both parameters can have significant effects and, as
noted above, this seems intuitively likely for free shear flows also. Recall that due to
the way in which the external turbulence was generated in the present case, the initial
integral length scale could not be specified a priori. However, it would be possible to
embed significantly smaller wakes into such fields (so that Leo/δo is higher) and this
may be a fruitful avenue of further work, although to extend the range of Leo/δo very
significantly would probably require greater computational resources.

5. Final remarks and conclusions
Time-developing axisymmetric wakes embedded in external turbulence have been

studied using DNS. In spite of the inherent limitations of the method, it has been
shown first that our pure wake (no external turbulence) is comparable to previously
reported spatially developing far axisymmetric wakes in uniform free streams and
that the external turbulence is very similar to the Saffman-type HIT generated by
previous authors. The self-similar wake was inserted into three HIT fields and allowed
to develop with time. Our chosen distinguishing parameter between the three resulting
wake cases was u′es/Uso, the ratio of the external turbulence intensity to the wake
centreline velocity deficit at the moment the external turbulence was added. This
varied from 0.09 to 0.36, representing relatively weak to significantly stronger external
turbulence and is equivalent roughly to a range of 0.01–0.04 in the ratio of free-stream
intensity to free-stream mean velocity, u′e/U∞, in a typical corresponding case of a
spatially developing flow (for a wake whose maximum velocity deficit is around 10 %
of the free-stream mean velocity). So none of the cases studied here has as strong
an initial external turbulence as that studied by Amoura et al. (2010). In all three
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cases the initial ratio of the integral scale in the external turbulence to the wake
width, Leo/δo, was in the range 0.5–0.75 and did not change very significantly during
the subsequent development of the wake and the external turbulence; this is quite
similar to the values in the spatially developing case of Amoura et al. (2010). The
more rapid decays found in the latter studies compared with those found here (albeit
with the uncertainty regarding possible effects of virtual origins, mentioned earlier) are
therefore probably caused by the much stronger external turbulence, although recall
too that the Amoura et al. (2010) wakes developed in axially homogeneous turbulence.
Unlike previous work, the wakes studied here are embedded within decaying external
turbulence. But despite similar decay rates of this turbulence and the pure wake,
it seems clear that external turbulence enhances the wake decay rate increasingly
rapidly as u′eo/Uso rises, so that (apparent) power laws have an increasing value of the
exponent n (from the classical pure-wake value of 1/3). This is all in the context of
cases for which the integral length scale of the external turbulence is initially of the
same order as that of the wake.

The major conclusion of the present work is that even though power-law decay may
seem to occur, any possibility of self-similarity in the developing wake is destroyed
by the action of the external turbulence. This suggests that there is in fact no reason
in principle to anticipate a fixed (for each case) power-law behaviour in the decay
of centreline deficit velocity or growth in wake width. The turbulence structure inside
the wake evolves from its initial self-similar state towards the state of the external
turbulence, with the normal Reynolds stresses becoming progressively more uniform
across the wake. This happens gradually, starting at the wake edges and, like the wall
boundary layer case discussed by Hancock & Bradshaw (1989), is probably driven
primarily by the influence of fluctuating strain rates in the external flow on the outer
part of the wake, through the intermittent ingestion of the external fluid into the
wake. Although typical wake shear stresses initially increase in magnitude (because
the relevant shear stress production term in its transport equation increases) they must
eventually decay along with the mean flow profile, consistent with a complete collapse
of the wake towards the state of the external turbulence. It has not been possible,
however, to explore the details of this final collapse.
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