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Abstract

We introduce the notion of weakly local reflexivity in operator space theory and prove that any dual
operator space is weakly locally reflexive.
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1. Introduction

The theory of operator spaces is a natural noncommutative quantisation of Banach
space theory. Many problems in operator spaces are naturally motivated from both
Banach space theory and operator algebra theory. Some properties such as local
reflexivity, exactness, nuclearity and injectivity have been intensively studied (see
[5, 6, 10]). In particular, for any operator space V,

V is nuclear⇒ V is exact⇒ V is locally reflexive.

The first implication was proved in [10] and the second in [6]. In [6], Effros et al.
showed that an operator space V is nuclear if and only if V is locally reflexive and
V∗∗ is injective. As pointed out in [6], local reflexivity is an essential condition in this
result since Kirchberg [8] had constructed a separable nonnuclear operator space V for
which V∗∗ =

∏+∞
n=1 Mn. Turning to C∗-algebra theory, using Conne’s deep work in [3],

Choi and Effros proved the following result in [1, 2]:

A C∗-algerbaA is nuclear⇔ its second dualA∗∗ is injective.

In [4], Dong and Ruan showed that an operator space V is exact if and only if V is
locally reflexive and V∗∗ is weak∗ exact.

In [5], Effros et al. used the technique of mapping spaces to prove the most
surprising result in the theory of operator spaces: the dual A∗ of any C∗-algebra A
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is locally reflexive. In light of the fact that C∗-algebras need not be locally reflexive,
it was thought that the same would be true for their dual operator spaces. It therefore
came as quite a surprise to find that all such dual spaces, as well as all von Neumann
algebraic preduals, are locally reflexive. In this short paper, we introduce the notion
of weakly local reflexivity in operator space theory. We prove that any dual operator
space is weakly locally reflexive.

2. Weakly local reflexivity

We first recall the definition of local reflexivity in operator space theory (see [7]).

DEFINITION 2.1. Suppose that V is an operator space. We say that V is locally reflexive
if for any finite dimensional operator space L, every complete contraction ϕ : L→ V∗∗

is the point-weak∗ limit of a net of complete contractions ϕα : L→ V .

DEFINITION 2.2. We say that a dual operator space V∗ is weakly locally reflexive if for
any finite dimensional operator space L and every complete contraction ϕ : L→ V∗∗∗,
there exists a net of complete contractions ϕα : L→ V∗ such that

〈ϕα(x), f 〉 −→ 〈ϕ(x), f 〉 for all x ∈ L, f ∈ V .

It is well known that B(H) is not locally reflexive for any infinite dimensional
Hilbert space H . However, the following result implies that B(H) is weakly locally
reflexive.

THEOREM 2.3. Any dual operator space V∗ is weakly locally reflexive.

PROOF. For any finite dimensional subspaces E ⊆ V∗∗∗ and F ⊆ V ⊆ V∗∗, it follows
from [7, Lemma 14.3.4] that for each n ∈ N, we can find a mapping ψ(n) : E → V∗

such that ‖(ψ(n))n‖ < 1 + 1/n and

〈ψ(n)(x), f 〉 = 〈x, f 〉 for all x ∈ E, f ∈ F.

Thus, {ψ(n)} is a sequence in the closed ball of radius 2 of B(E, V∗) = (E
γ
⊗ V)∗. From

Alaoglu’s theorem and [9, Lemma 7.2], we may choose a limit point ψ : E → V∗ of
the sequence {ψ(n)} in the point-weak∗ topology. If r ≤ n, then

‖(ψ(n))r‖ ≤ ‖(ψ(n))n‖ ≤ 1 +
1
n

and thus ‖ψr‖ ≤ 1. It follows that ‖ψ‖cb ≤ 1. Furthermore,

〈ψ(x), f 〉 = 〈x, f 〉 for all x ∈ E, f ∈ F.

Now for any finite dimensional operator space L and every complete contraction
ϕ : L→ V∗∗∗, we fix E = ϕ(L) ⊆ V∗∗∗. For any finite dimensional subspaces F ⊆ V , it
follows from the above proof that there exist complete contractions ψF : E → V∗ such
that

〈ψF(y), f 〉 = 〈y, f 〉 for all y ∈ E = ϕ(L), f ∈ F.
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Thus, the net ψF ◦ ϕ : L→ V∗ satisfies

〈ψF ◦ ϕ(x), f 〉 −→ 〈ϕ(x), f 〉 for all x ∈ L, f ∈ V ,

with ‖ψF ◦ ϕ‖cb ≤ 1. This implies that the dual operator space V∗ is weakly locally
reflexive. �
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