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The mean conformation tensor in
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This work demonstrates that the popular arithmetic mean conformation tensor
frequently used in the analysis of turbulent viscoelastic flows is not a good
representative of the ensemble. Alternative means based on recent developments
in the literature are proposed, namely, the geometric and log-Euclidean means. These
means are mathematically consistent with the Riemannian structure of the manifold
of positive-definite tensors, on which the conformation tensor lives, and have useful
properties that make them attractive alternatives to the arithmetic mean. Using a
turbulent FENE-P channel flow dataset, it is shown that these two alternatives are
physically representative of the ensemble. By definition, these means minimize the
geodesic distance to realizations and exactly preserve the scalar geometric mean of
the volume and of the principal stretches. The proposed geometric and log-Euclidean
means have clear physical interpretations and are attractive quantities for turbulence
modelling.
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1. Introduction

Fluid turbulence is defined by irregular and chaotic ‘eddying’ motions, whose
characterization has been subjected to intense study over the last century. In
practical applications, one usually separates out a statistically persistent state of
the turbulence, and analyses fluctuations with respect to this mean state. This simple,
yet revolutionary, perspective originated in the kinetic theory of gases and was
first introduced by Reynolds. Since then, the mean–fluctuation separation has been
adopted as the staple approach to quantify turbulence. The mean velocity is typically
calculated using standard arithmetic averaging in some or all of the statistically
homogeneous spatiotemporal directions and is commonly accepted to be a good
first-order approximation of the actual instantaneous velocity. It is thus widely used
to study the flow physics and also for turbulence modelling.

In viscoelastic flows, the velocity field is insufficient to describe the dynamics
because it necessarily depends on the flow deformation history. The latter is encoded
in a second-order positive-definite tensor known as the conformation tensor. In
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Re Reτ Wi Lmax β Lx × Ly × Lz Nx ×Ny ×Nz 1t ∆+x ×∆
+

y ×∆
+

z

4667 180 6.67 100 0.9 4π× 2× 4π 512× 400× 512 0.0025 4.42× [0.13, 1.90] × 4.42

TABLE 1. Parameters of the simulation of viscoelastic turbulent channel flow: Re is the
Reynolds number, Reτ is the frictional Reynolds number, Wi is the Weissenberg number,
Lmax is the maximum polymer extensibility, and β is the viscosity ratio. The length scale
is the channel half-height and velocity scale is the bulk flow speed. The friction velocity
is approximated using the mean velocity gradient at the wall. The size of the domain in
the direction p is Lp, while Np is number of points. The spatial resolution in direction p
is ∆p.

analogy with the approach adopted for the velocity field, arithmetic averaging is
typically assumed to yield a representative conformation tensor. Such an approach
has the convenience of maintaining consistency with the averaging approach used
for the velocity field. In addition, the resulting mean conformation tensor appears
directly in the mean momentum equation for some common constitutive models. As
such, the arithmetic mean conformation tensor has often been adopted in the analysis
and modelling of viscoelastic turbulence (Housiadas & Beris 2003; Masoudian et al.
2013; Lee & Zaki 2017).

Here, we show that the arithmetic mean conformation is a poor representative of
the typical conformation. As a result, using it to infer the flow physics may lead
to erroneous conclusions, and also to difficulties in turbulence modelling because it
would limit the role played by physical intuition to derive closures and reduced-order
models. We propose alternative means based on recent results that rely on Riemannian
geometries natural to the set of positive-definite tensors, and use these means to
examine drag-reduced channel flow.

For the majority of the present work, we use a dataset of 60 % drag-reduced
turbulent channel flow of a dilute polymer (FENE-P) solution obtained from
direct numerical simulations (DNS) reported by Hameduddin et al. (2018). The
constant-mass-flow-rate channel flow simulation is periodic in the horizontal directions
and the relevant parameters are given in table 1. Detailed descriptions of the DNS
are provided in Hameduddin et al. (2018). Where data from additional simulations
are reported, the set-up is identical except for the value of the Weissenberg number,
which is varied in order to assess the influence of elasticity.

In § 2 we discuss the deficiency of the arithmetic mean. Alternatives are proposed
in § 3, and evaluated in FENE-P turbulent channel flow in § 4. Conclusions are offered
in § 5.

2. Problem of the arithmetic mean
The utility of the arithmetic mean in representing an ensemble is not always

guaranteed: the arithmetic mean of a set of rotation matrices is, in general, not a
rotation matrix and thus cannot possibly be representative of a typical rotation. As
will be shown, the arithmetic mean of the conformation tensor is not representative,
even though it is still a positive-definite tensor. Hameduddin et al. (2018) found that
the volume of the arithmetic mean conformation tensor is several orders of magnitude
larger than the typical realization, and demonstrated that evaluating fluctuations about
such a mean may not be meaningful. This volume ‘swelling’ of the arithmetic mean
has been found in other contexts as well (Arsigny et al. 2007).
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FIGURE 1. (Colour online) Characterization of conformation tensor: (a,b) sum of stretches,
A and A6; (c,d) surface area, S and S6; (e, f ) volume, V and V6; (g,h) surface area to
volume ratio, S/V and S6/V6 . Fluctuating quantities along a z traverse at y+= 100 (solid
grey line) and quantities calculated using the arithmetic mean along the traverse (blue line
with circles). The (a,c,e,g) represents quantities on a linear scale, and (b,d, f,h) represents
the same quantities on a logarithmic scale.

One intuitive way to characterize the conformation tensor, C, is by examining
its eigenvalues, which represent the squared lengths along the principal axes of the
deformation. The eigenvalues are strictly positive, and expansions with respect to
the thermodynamic equilibrium lead to eigenvalues >1, while compressions lead
to eigenvalues <1. Thus A= tr

√
C and V =

√
det C are proportional to the average

stretch and the volume, respectively. A good proxy for the surface area of the ellipsoid
represented by the principal axes and stretches of C is S= [(tr

√
C)2 − tr C]/2.

The quantities A, V , S and S/V in drag-reduced viscoelastic FENE-P turbulent
channel flow are shown in figure 1. Also shown are corresponding quantities
calculated from the arithmetic mean conformation tensor: A6 = tr

√
〈C〉6 , V6 =√

det〈C〉6 , S6 = [(tr
√
〈C〉6)2 − tr〈C〉6]/2 and S6/V6 , where 〈C〉6 is the arithmetic

mean of C. The quantities are along a spanwise (z) traverse at wall-normal location
y+= 100, where the + superscript indicates friction units, and an arbitrary streamwise
(x) location. The averaging is performed along the traverse.

The average stretch A shown in figure 1(a) appears to be captured well by the
arithmetic mean conformation tensor. However, S and V shown in figures 1(c,e) are
not captured well, with the arithmetic mean having much larger surface area and
volume. The ratio S/V , shown in figure 1(g), is a proxy for the inverse of sphericity
since it is minimized when all the stretches are equal. The sphericity associated with
the arithmetic mean is strikingly larger than that of the typical conformation tensor
along the traverse, demonstrating that the shape of the former is not representative
and cannot be easily used to infer the physics of turbulent polymer deformation.
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FIGURE 2. (Colour online) Fluctuating components of conformation tensor along a
z traverse at y+ = 100 (solid grey line) compared to components of the arithmetic
conformation tensor along the traverse (blue line with circles): (a) xx, (b) yy, (c) zz, (d) xy,
(e) xz and ( f ) yz.

The eigenvalues of C are restricted to (0, 1) for compressions and (1, ∞) for
expansions and thus the latter will appear larger on a linear scale than a corresponding
compression. This behaviour reflects the logarithmic nature of the principal stretches
of the conformation tensor and accordingly leads to the large excursions evidenced
in figure 1(a,c,e,g). We have therefore plotted A, V , S and S/V on a logarithmic
scale in figure 1(b,d, f,h). On this scale, V , S and S/V are more ill-represented by the
arithmetic mean conformation tensor, while A appears to be now overpredicted.

The measures in figure 1 are holistic in the sense that they characterize the
conformation tensor as a whole rather than individual components. Figure 2 shows
the individual components of the conformation tensor and the arithmetic mean
conformation tensor along the same z traverse shown in figure 1. The normal
components are dominated by the streamwise component except for brief intervals
during which Cyy and Czz are dramatically elevated. The normal components are
restricted to be greater than zero, similar to the principal stretches. No such restriction
is imposed on the cross-components, which also show large excursions, both positive
and negative. As expected, the components of the arithmetic mean conformation tensor
appear representative of the respective components of C when plotted on a linear scale.
However, as discussed earlier, the arithmetic mean conformation tensor as a whole
is not representative of the ensemble, especially when the associated deformation
is evaluated on a logarithmic scale, which is the natural scale when representing
compressions and expansions. The large excursions in the normal components noted
earlier are considerably less severe on such a scale. It is not clear how to evaluate
the large excursions in the cross-components since these take on both positive and
negative values.

The mathematical reason for the ill-suitability of the arithmetic mean conformation
tensor is rooted in the geometry of the set of positive-definite tensors, here referred
to as Pos3, which is not Euclidean. For instance, consider the straight line

X(r)= (1− r)A+ rB, r ∈R, A, B ∈ Pos3. (2.1a,b)
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It is straightforward to show that, for |r|� 1, X(r) loses positive-definiteness, i.e. exits
the set Pos3, thereby violating Euclid’s second postulate. In fact, it can be shown
that X(r) is guaranteed to be in Pos3 only for r ∈ [0, 1]. As a result of the lack
of Euclidean structure to Pos3, Euclidean geometric notions, e.g. distances, do not
apply. The lack of Euclidean structure on Pos3 is a direct reflection of the fact
that compressions and expansions lead to eigenvalues of C in (0, 1) and (1, ∞),
respectively, which is partially the reason for the ill-suitability of the arithmetic mean:
averaging compressions and expansions in the usual sense would bias the mean
towards expansions. In addition, the rotation of the principal axes of C introduces
new complications because deformations are then not averaged along unique directions
any more as assumed above.

To see more directly why the standard arithmetic mean is problematic on Pos3, it is
instructive to consider an alternative characterization of the arithmetic mean. Without
loss of generality, assume the conformation tensor C(x) is to be averaged over x ∈
Ω ⊆R. The Fréchet mean is given by

arg minW∈Pos3

∫
Ω

dist(C(x),W ) dx, (2.2)

where dist(C(x), W ) is a given function measuring distance between C(x) and W .
Geometrically, the Fréchet mean is the centroid – in terms of the distance function
chosen – of the set of conformation tensors represented by C(x). If the distance
function is chosen to be the Frobenius norm ‖ · ‖F, the Fréchet mean reduces to the
standard arithmetic mean, i.e.

〈C〉6 = arg minW∈Pos3

∫
Ω

‖C(x)−W‖2
F dx. (2.3)

The problem with such a characterization in the form (2.3) is that C(x)−W assumes
that the Euclidean straight line is the relevant ‘shortest path’ between C(x) and W .
However, as described earlier, Pos3 is not a Euclidean space and therefore Euclidean
paths are not relevant.

Specifically, the shortest path joining two points cannot be indefinitely extended
and thus violates our intuitive understanding of how well-behaved shortest paths
should behave: they should be indefinitely extendible. Thus, the Euclidean distance
(the Frobenius norm) associated with the shortest path is not appropriate. It is
instructive here to consider the scalar case: if s represents the length of a uniaxial
rod undergoing deformation, then because the rod cannot be compressed to zero
length, s = 0 is unattainable and is thus infinitely far from every other value s can
take. The standard Euclidean distance does not treat s = 0 as such – it is possible
to go from 0 < s <∞ to zero length by finitely extending a Euclidean path – and
accordingly the Fréchet mean with such a distance would not yield a representative
mean. We can expect the provision of appropriately formulated infinitely extendible
shortest paths to overcome this problem, as then s= 0 would have to be infinitely far
from every other value of s.

Since the underlying problem with the arithmetic mean is related to the geometric
structure on Pos3, the challenge is to formulate a mean conformation tensor based on
the geometry natural to Pos3. This challenge has been addressed in the mathematical
literature in various forms (Ando, Li & Mathias 2004; Moakher 2005; Arsigny et al.
2006). In § 3, we present the principal results that provide better alternatives to the
arithmetic mean.
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3. Alternative means
The set Pos3 can be endowed with a powerful geometric structure; it is a simply

connected, geodesically complete Riemannian manifold (Lang 2001). In this geometry,
straight lines are replaced by geodesic curves, which are guaranteed to be unique,
smooth and indefinitely extendible. The guarantee on indefinite extension of geodesic
curves is provided by the geodesic completeness property and is a key component
of constructing a geometry that provides an intuitive analogue to Euclidean geometry
and one which will then lead to reasonable definitions of the mean. The Frobenius
norm, which measures Euclidean distances, is replaced by the geodesic distance. The
geodesic distance between A,B ∈Pos3 associated with the Rao–Fisher metric on Pos3
is

d(A, B)=
√

tr log2(A−1/2 · B · A−1/2). (3.1)

The set Pos3 forms a complete metric space under the distance function (3.1) as a
consequence of the well-behaved geometric structure.

The distance function in (3.1) exhibits several features that are analogous to the
notion of distance in Euclidean space. Analogous to the translation invariance of
distance in Euclidean space, the geodesic distance is invariant under the action of
the general linear group: d(A, B)= d(Y · A · Y T, Y · B · Y T) for any invertible Y . The
action of the general linear group has a physical interpretation as the application of
a deformation since the conformation tensor can be viewed as a left Cauchy–Green
tensor with deformation gradient C1/2. Then Y · C · Y T

= (Y · C1/2) · (Y · C1/2)T

implies that Y · C1/2 is the new total deformation gradient. Then invariance under
this action means that the distance between two tensors remains the same if both
are simultaneously deformed in the same way, which is a physically intuitive notion.
Hameduddin et al. (2018) used this interpretation to formulate an alternative to
the Reynolds decomposition that is appropriate for conformation tensors, while
Hameduddin, Gayme & Zaki (2019) used it to derive perturbative expansions to the
conformation tensor.

Another important property of the distance function is invariance under inversion:
d(A, B) = d(A−1, B−1). This property is especially attractive because it implies
that expansions and compressions are treated on an equal footing, unlike with the
Euclidean distance function. It is also analogous to the invariance of distance in
Euclidean space under reversal of direction.

Although the particular Riemannian structure described above is well known in
the mathematical literature, it has not been exploited in studies of viscoelastic flows.
In addition, it is not the only one possible for the set of positive-definite tensors;
e.g. Hiai & Petz (2009) introduce a family of Riemannian metrics defined by a
kernel function and of which the present metric is a member. However, the present
Riemannian metric brings together the above described distinct features that make
the geometry analogous to that used in Euclidean spaces and also physically intuitive:
it is geodesically complete, it is invariant under the action of the general linear
group and it is invariant under inversions. Another interesting geodesically complete
Riemannian metric to be introduced later, the log-Euclidean metric, is invariant under
inversions but is not invariant under the action of the general linear group.

The distance function (3.1) allows us to formulate an alternative to (2.3) by
replacing the Euclidean distance with the geodesic one; the geometric mean is
defined as

〈C〉∏ ≡ arg minW∈Pos3

∫
Ω

d2(C(x),W ) dx. (3.2)
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The geometric mean defined in (3.2) was proposed by Moakher (2005) and can be
shown to be a generalization of the scalar counterpart (

∏M
i=1 ai)

1/M for a set of M
numbers {ai}

M
i=1. By the inversion invariance of d(·, ·), the geometric mean of C−1

is precisely 〈C〉−1∏ . This notable result shows that expansions and compressions are
treated equivalently by the geometric mean, unlike the arithmetic one.

The definition of the geometric mean in (3.2) can be shown to satisfy the
Ando–Li–Mathias properties, which have been proposed as necessary for a reasonable
definition of a geometric mean of positive-definite tensors (Ando et al. 2004; Bhatia
& Karandikar 2012). These properties, for the geometric mean of C : Ω → Pos3,
are listed below and provide mathematically rigorous constraints which lead to a
well-behaved mean.

(i) Consistency with scalars in the commutative case. If C(x)C(x′)= C(x′)C(x) for
all x, x′ ∈Ω then

〈C〉∏ = exp〈log C〉6. (3.3)

This property guarantees that (3.2) is a generalization of the standard scalar
geometric mean.

(ii) Joint homogeneity. If f : Ω → R>0 is a strictly positive scalar function on Ω ,
then

〈 f (x)C(x)〉∏ = (exp〈log f (x)〉6)︸ ︷︷ ︸〈C(x)〉∏, (3.4)

where the braced quantity is the scalar geometric mean of f (x).
(iii) Translation/scaling invariance. For any a, b ∈R,

〈C(ax+ b)〉∏ = 〈C(x)〉∏. (3.5)

The Ando–Li–Mathias properties are usually written for a discrete set of
tensors. In that context, the translation/scaling invariance property is known
as permutation invariance and refers to invariance of the mean under arbitrary
reordering of the set.

(iv) Monotonicity. Given a positive-definite tensor-valued function K : Ω → Pos3
such that C(x)> K (x) for each x ∈Ω , then

〈C〉∏ > 〈K 〉∏. (3.6)

Here and for the rest of the paper we assume the usual partial order (Loewner
order) on the set of positive-definite tensors. Monotonicity is especially helpful
in ensuring that the normal components of the geometric mean do not take
on unreasonable values: 〈C〉∏ > 〈K 〉∏ guarantees that each of the normal
components of 〈C〉∏ is greater than or equal to the corresponding normal
component of 〈K 〉∏ – an intuitive requirement since C(x)> K (x).

(v) Continuity. Given a sequence of positive-definite tensor-valued functions C(k) :

Ω→ Pos3 for k ∈N, such that limk→∞ C(k) = C in a pointwise sense, then

lim
k→∞
〈C(k)〉

∏ = 〈C〉∏. (3.7)

(vi) Joint concavity. Given a positive-definite tensor-valued function K :Ω→ Pos3,
if 0 6 α 6 1, then

α〈C〉∏ + (1− α)〈K 〉∏ 6 〈αC + (1− α)K 〉∏. (3.8)
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(vii) Congruence invariance, or invariance under the action of the general linear
group. For any invertible, constant Y

〈Y · C · Y 〉T∏ = Y · 〈C〉∏ · Y T. (3.9)

As mentioned previously, this is a physically appealing property which says
that if C(x) is modified at each x ∈ Ω by a fixed deformation given by the
deformation gradient Y , then the geometric mean of the resulting modified
conformation tensor is also modified similarly by Y .

(viii) Self-duality. The geometric mean satisfies the identity

〈C−1
〉
−1∏ = 〈C〉∏, (3.10)

which implies that it treats compressions and expansions equivalently.
(ix) Determinant identity. The determinant of C satisfies

det〈C〉∏ = exp〈log det C〉6, (3.11)

where the right-hand side is the scalar geometric mean of det C.
(x) Arithmetic–geometric–harmonic means inequality. One has

〈C−1
〉
−1
6 6 〈C〉∏ 6 〈C〉6. (3.12)

Moakher (2005) obtained a more convenient expression for the geometric mean by
explicitly solving the minimization problem (3.2). It can be shown that 〈C〉∏ satisfies∫

Ω

log(C−1(x) · 〈C〉∏) dx= 0 ⇐⇒

∫
Ω

log(C(x) · 〈C〉−1∏ ) dx= 0. (3.13)

Although (3.13) is still an implicit definition of 〈C〉∏, it is useful in implementations.
Pre-multiplying the left equality in (3.13) by 〈C〉1/2∏ and post-multiplying by 〈C〉−1/2∏
(and vice versa for the right equality) yields∫

Ω

log(G−1(x)) dx= 0 ⇔

∫
Ω

log(G(x)) dx= 0, (3.14)

where we used the fact that log(A ·B ·A−1)=A · log(B) ·A−1 when A,B ∈Pos3 and

G≡ 〈C〉−1/2∏ · C · 〈C〉−1/2∏ . (3.15)

The expression (3.15) defines a fluctuating conformation tensor obtained by a
geometric decomposition about 〈C〉∏. The geometric decomposition was recently
introduced by Hameduddin et al. (2018) as the appropriate definition of a fluctuating
conformation tensor relative to a given nominal conformation. The condition (3.14)
is a natural statistical characterization of such a fluctuating conformation tensor;
it implies that 〈log G〉6 = 0, or e〈log G〉6 = I , which is the geometric analogue
to the property that the arithmetic mean of (Euclidean) fluctuations in Reynolds
decomposition is zero. One of the Ando–Li–Mathias properties is a corollary: the
volume of 〈C〉∏ is equal to the scalar geometric mean of the volumes of C(x) – an
indication that the volume will be well captured by 〈C〉∏, unlike 〈C〉6 . Furthermore,
since the volume is equal to the product of the principal stretches, the scalar geometric
mean of the principal stretches of 〈C〉∏ is equal to that of all principal stretches
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of C(x) – an indication that the principal stretches of C(x) will also be well captured
by 〈C〉∏, which suggests that tr〈C〉∏ should be a good representative of tr C.

The geometric mean is an appealing quantity as it is obtained via an attractive
geometry and has useful properties. However, there is no explicit way to calculate
it and one must either solve a minimization problem (3.2) or find the unique root of
a multi-variable nonlinear equation (3.13), both relatively more difficult than simple
averaging. An alternative to the geometric mean which can be calculated explicitly
is the log-Euclidean mean. As with the geometric one, the log-Euclidean mean is
also based on an underlying geodesically complete Riemannian structure on the set of
positive-definite tensors (Arsigny et al. 2006). The distance between positive-definite
tensors A and B with this geometric structure is given by

dlog(A, B)≡ ‖log A− log B‖F. (3.16)

As with d(·, ·) defined in (3.1), dlog(·, ·) is invariant under inversions but it does not
have the physically appealing property of invariance under the action of the general
linear group. The resulting log-Euclidean mean can be calculated explicitly – typically
also at a significantly reduced computational cost compared to the geometric mean –
and is given by

〈C〉log ≡ arg minW∈Pos3

∫
Ω

d2
log(C(x),W ) dx= exp(〈log C(x)〉6). (3.17)

The log-Euclidean mean satisfies all of the Ando–Li–Mathias properties listed
previously, except for monotonicity and invariance under the action of the general
linear group. The former property is important in ensuring that the normal components
of C do not develop spurious peaks, while the latter ensures that an arbitrary
deformation of conformation tensors results in the same deformation of their mean.
Interestingly, the log-Euclidean mean can be shown to be monotone under the chaotic
order: A > B if log A− log B is positive-semidefinite (Seo 2013).

The trace of the log-Euclidean mean is always guaranteed to be greater than that of
the geometric mean (Arsigny et al. 2005). Since the determinants of both are equal
by the determinant identity (see the ninth Ando–Li–Mathias property), this implies
that the log-Euclidean mean is less isotropic than the geometric one. In this sense, if
the log-Euclidean and geometric means differ, the latter will be closer to the identity
and hence represent a smaller deformation. By the first Ando–Li–Mathias property, the
two means coincide when the principal axes of C are aligned and thus any difference
between the two means arises due to rotation of the principal axes.

Finally, for completeness, we define a square-root mean,

〈C〉√ = (〈C(x)1/2〉6)2. (3.18)

This mean is motivated by recent work that proposes using C1/2 in numerical schemes
and for theoretical analysis since it simplifies some of the challenges associated
with maintaining positivity of C (Wang et al. 2014; Nguyen et al. 2016). In § 4, we
calculate the various means defined in this section and compare them to the arithmetic
one.
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FIGURE 3. Characterization of conformation tensor: (a) sum of stretches, A and A◦;
(b) surface area, S and S◦; (c) volume, V and V◦; (d) surface area to volume ratio, S/V
and S◦/V◦. Here ◦ ∈ {

∑
,
∏
, log,√}. Fluctuating quantities along a z traverse at y+= 100

(solid grey line) and quantities calculated from various means along traverse (coloured
lines with markers): arithmetic (blue, circles), geometric (red, diamonds), log-Euclidean
(green, triangles) and square-root (orange, squares).

4. Means in viscoelastic drag-reduced turbulent channel flow
Figure 3 reproduces the right column of figure 1 and additionally shows the

same quantities calculated from the alternative means outlined in § 3, i.e. A◦ =
tr
√
〈C〉◦, V◦ =

√
det〈C〉◦, S◦ = [(tr

√
〈C〉◦)2 − tr〈C〉◦]/2 and S◦/V◦, where ◦ ∈

{
∑
,
∏
, log, √}. While the arithmetic, log-Euclidean and square-root means were

calculated using their explicit formulas, the geometric mean was calculated via (3.14)
by numerical root finding using the MATLAB nonlinear least-squares solver with
the trust-region-reflective algorithm. The search space was restricted to the feasible
set Pos3 by reformulating the optimization problem in terms of the logarithm of the
geometric mean. The log-Euclidean mean was used to scale the search space and
initialize the solver.

In figure 3, quantities computed using the geometric and log-Euclidean means
are all very similar. The stretch A, surface area S and volume V all appear to be
overpredicted by the arithmetic mean, as was seen earlier, while the geometric and
log-Euclidean means provide the smallest predictions of all three quantities. The
square-root mean lies in the middle and appears to capture A relatively well, but
not necessarily the other quantities. Overall, for these quantities, the alternative
means appear to provide more representative approximation than the arithmetic mean,
especially for S and V , which are best captured by the geometric and log-Euclidean
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FIGURE 4. (Colour online) The j.p.d.f. of LVR and squared geodesic for C ∈
{〈C〉6, 〈C〉∏, 〈C〉log, 〈C〉√ } at various wall-normal locations: (a) y+ ≈ 15, (b) y+ ≈ 48,
(c) y+≈ 100, and (d) y+≈ 179. Solid black contours are for 〈C〉6 , flood contours are for
〈C〉∏, dashed black contours are for 〈C〉√ , and solid grey contours are for 〈C〉log. The red
dash-dotted lines are realizability bounds that were derived by Hameduddin et al. (2018).

means. Both the arithmetic and square-root means show excessive sphericity (low
S/V), while the geometric and log-Euclidean means are the most representative of this
quantity. These results are consistent with mathematical considerations that suggest
that the geometric and log-Euclidean means are the most appropriate representative
conformation tensors.

In order to examine the behaviour of the fluctuations about various choices of the
mean in a more quantitative fashion, we plot the joint probability density function
(j.p.d.f.) of the logarithmic volume ratio (LVR) and the squared geodesic distance
(cf. (3.1)) of C from the chosen mean. The LVR, log(det C/det C)/2, is the logarithm
of the ratio of the volume of C to that of the chosen mean C. The LVR is the worst
predicted independent quantity by the arithmetic mean as suggested by figure 1; this
observation was found to hold more generally throughout turbulent channel flow
by Hameduddin et al. (2018). Those authors analysed the LVR because it naturally
appears when the geometric structure of Pos3 is leveraged to analyse turbulent
fluctuations of the conformation tensor. They found that the LVR with respect to the
arithmetic mean was highly skewed to negative fluctuations. In contrast, we expect the
log-Euclidean and geometric means to much better represent the fluctuating volume,
as their determinants are guaranteed to be equal to the scalar geometric mean of
det C.

The j.p.d.f. of LVR and squared geodesic distance are shown in figure 4 at four
wall-normal locations in the bottom half of the channel. The j.p.d.f. and associated
means were calculated using 12 snapshots spaced 10 convective time units apart from
each other and by exploiting statistical homogeneity in the streamwise, spanwise
and temporal directions. Reflection symmetry in y was used to assess statistical
convergence. The means calculated in one half of the channel were qualitatively
similar to the other half, and quantitative differences were less than 12 % for any
of the components. In all subsequent results, we only show results for the bottom
half of the channel for maximum clarity. Some statistics, such as the mean velocity
and certain components of the conformation tensor, converge much faster than others.
We compared the arithmetic mean conformation tensor obtained from 12 snapshots
spaced 10 convective time units apart with an average over all the simulation time
steps; all the components of the two arithmetic mean conformation tensors were
qualitatively similar. Quantitatively, the xx and xy components matched within 10 %;
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FIGURE 5. (Colour online) (a) Mean LVR, 〈log (det C/det C)〉6/2 and (b) mean-squared
geodesic distance from the mean, 〈d2(C,C)〉6 , where C ∈ {〈C〉6, 〈C〉∏, 〈C〉log, 〈C〉√ }. See
figure 3 for line types.

the yy and zz components showed greater variations, up to 30 % for the former and
20 % for the latter. These results are consistent with finite-time statistics of turbulent
viscoelastic flows having low-frequency variations that can span very long time scales
(O(103)–O(104) convective time units).

The j.p.d.f.s in figure 4 show that fluctuations with respect to the arithmetic
mean are largely compressive with dramatic asymmetry about the zero LVR line, as
reported by Hameduddin et al. (2018). The square-root mean shows improvement
vis-à-vis the arithmetic mean, but fluctuations remain excessively compressive. The
isocontours of fluctuations with respect to the geometric and log-Euclidean means
are very similar to each other, and both are much more symmetric than those
associated with the arithmetic and square-root means. In particular, the problem with
excessive compression disappears. In addition, large excursions – defined as large
geodesic deviations – are significantly reduced; the geodesic deviation for the most
likely fluctuation is several times smaller for fluctuations defined with respect to
the geometric and log-Euclidean means. These properties had been elusive to date,
because they are not satisfied by the arithmetic and square-root means, and are
precisely captured by the geometric and log-Euclidean mean conformation tensors.

The geometric and log-Euclidean means expose interesting behaviour: the most
likely fluctuation in figure 4 is volumetrically compressive but large excursions
are most likely stretches, as evidenced by the isocontours tending towards the top
right corner in each panel. The latter tendency is minimized at y+ ≈ 100, where
the isocontours are most symmetric about the zero LVR line, and where also the
arithmetic and square-root means show the most compression.

Figure 5 shows the LVR and squared geodesic distance, averaged over the 12
snapshots and in the spanwise and streamwise directions, as a function of y over
the bottom half of the channel. As expected from figure 4, the average LVR of
fluctuations with respect to the arithmetic mean is negative throughout the channel
with a negative peak at y+ ≈ 100. The LVR for the square-root mean also peaks
at y+ ≈ 100 but shows relatively less drastic compressions. As proved in § 3, the
geometric and log-Euclidean mean have zero LVR and thus naturally capture the
volume well.

In figure 5(b), the average squared geodesic distances of C from various means
all feature a peak at y+ ≈ 100. Such a peak was first reported by Hameduddin
et al. (2018) for the arithmetic mean only, but the present results demonstrate that
it is independent of the way fluctuations are constructed. The peak is significantly
higher for the arithmetic mean than the alternative proposed ones, demonstrating its
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FIGURE 6. (Colour online) Components of various mean conformation tensors: (a) Cxx,
(b) Cyy, (c) Czz and (d) Cxy, where C ∈ {〈C〉6, 〈C〉∏, 〈C〉log, 〈C〉√ }. See figure 3 for line
types.

ill-suitability as a representative tensor. The remaining means are relatively close to
each other, with the geometric mean outperforming all others.

The non-zero components of the various mean conformation tensors are shown
in figure 6. The components of 〈C〉6 are the largest, with the square-root mean
showing the second largest components. The cross-stream stretches drop dramatically
for the square-root mean, and even more for the geometric and log-Euclidean
means, indicating that the arithmetic mean is an especially bad predictor of these
stretches. The geometric and log-Euclidean means are similar for Cyy and Czz but
show significant differences below y+ ≈ 100 for Cxx and Cxy. Namely, both the xx
and xy components are much larger for the log-Euclidean mean, with the latter
component showing a peak at y+ ≈ 30. As discussed earlier, if the log-Euclidean and
geometric means do not coincide, the former is guaranteed to be more anisotropic
and have a larger trace. In this sense, it is unsurprising that the xx component of the
log-Euclidean mean seen in figure 6 is larger than that of the geometric mean.

The peak at y+ ≈ 30 in the xy component of the log-Euclidean mean also appears
in the geometric mean, but is much higher for the former. To identify the cause of
its increase, we examine the principal axes and stretches of the mean conformation
tensors. Statistical symmetry requires that one of the principal directions is always
aligned with the z axis and, therefore, the xz and yz components of all the mean
conformation tensors are guaranteed to be zero. The principal stretch associated with
this principal axis is simply the zz component of the mean conformation tensor, which
was already presented in figure 6. The remaining principal stretches and axes of 〈C〉◦
can be identified with the aid of the reduced tensor P◦ defined as

P◦ ≡

[
Cxx Cxy

Cxy Cyy

]
, C = 〈C〉◦. (4.1a,b)

Adopting the convention of ordering eigenvalues by magnitude, the remaining two
principal stretches of 〈C〉◦ are the eigenvalues of P◦, and the respective principal axes
of 〈C〉◦ are the x and y axes rotated through an angle θ◦. It is then straightforward to
obtain

Cxy = [σ
(1)(P◦)− σ

(2)(P◦)] sin θ◦ cos θ◦, C = 〈C〉◦, (4.2a,b)

where σ (k)(P◦) denotes the kth largest eigenvalue of P◦. It is clear from (4.2) that
a large deviation of the log-Euclidean mean from the geometric mean in the stretch
σ (1)(P◦), which is a good approximation for the xx component of 〈C〉◦ in viscoelastic
turbulence, is sufficient to cause a discrepancy in Cxy. This insight is confirmed by
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FIGURE 7. (Colour online) (a) The largest eigenvalue of the tensor P◦ as defined in (4.1),
(b) the second largest eigenvalue of P◦, and (c) the rotation angle of the principal axes
of P◦ from the x and y axes. Here ◦ ∈ {

∑
,
∏
, log,√}. See figure 3 for line types.

figure 7, which shows σ (k)(P◦) for k = 1, 2 and θ◦. The stretch σ (1)(P◦) closely
matches the xx component shown in figure 6 for all the means, and thus shows a
large difference between the log-Euclidean and geometric means. At the same time,
σ (2)(P◦) and θ◦ do not show as large a difference between the two means. Thus, the
larger peak in the xy component of the log-Euclidean mean in figure 6 is largely a
consequence of its greater xx component. The discrepancy between the log-Euclidean
and geometric means arises due to misalignment of the principal axes of C for
different realizations, which primarily appears to exaggerate the largest stretch in the
log-Euclidean mean.

Particularly interesting is the disappearance of the near-wall peak in Cxx for the
geometric and log-Euclidean means in figure 6. The near-wall peak in the arithmetic
mean conformation tensor has been widely reported in the literature (see, for instance,
plots of the trace of 〈C〉6 in Housiadas & Beris (2003)) but our results suggest that
it may be an artefact of the choice of the mean. To understand how this peak and
other broader differences between the arithmetic mean and the log-Euclidean (and
geometric) means arise, we rewrite the arithmetic mean in terms of the log-Euclidean
mean. Using the fact that log C=〈log C〉6 +C′, where C′ has a zero arithmetic mean,
we have

〈C〉6 = 〈C〉log + 〈exp C′〉6 +
∞∑

k=0

H(k), (4.3)

where the higher-order terms are

H(k) ≡
1
k!

〈
−
(
〈log C〉k6 + C′k

)
+
(
〈log C〉6 + C′

)k
〉
6
, k= 0, 1, . . . . (4.4)

The first five terms of H(k) are

H(0) =−I, (4.5)
H(1) = 0, (4.6)
H(2) = 0, (4.7)

H(3) =
1
6 〈C

′
· 〈log C〉6 · C′〉6 + 1

3 sym(〈log C〉6 · 〈C′2〉6), (4.8)

H(4) =
1
24(〈log C〉6 · 〈C′2〉6 · 〈log C〉6 + 〈C′ · 〈log C〉26 · C

′
〉6)

+
1
12 sym [〈C′3〉6 · 〈log C〉6 + 〈log C〉26 · 〈C

′2
〉6

+〈C′2 · 〈log C〉6 · C′ + (〈log C〉6 · C′)2〉6], (4.9)

where sym(A)= (A+ AT)/2 is the symmetric part of tensor A.
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FIGURE 8. (Colour online) (a) The xx component of H(k) for 1 6 k 6 15 with max H(k)

marked with red filled circles. (b) The xx component of C, where 〈C〉log and 〈C〉6 are
the lower and upper red dashed lines, respectively, and C = 〈C〉log+ 〈expC′〉6 +

∑p
k=0 H(k)

for p = 0, 3, 4, . . . , 14, 15 are the solid lines: black to light grey solid lines represent
increasing terms from p= 0 to p= 15.

If one is to concede that the geometric mean is the most appropriate, and the log-
Euclidean mean is an approximation, then (4.4) conveys that the arithmetic mean is
a function of the ‘correct’ mean and the fluctuations about it. In other words, the
arithmetic mean of the conformation tensor is a complex higher-order statistic when
viewed from the appropriate statistical framework. The wall-normal gradients of the
arithmetic mean of the conformation tensor appear in the mean momentum equation
directly, at least to first order. Their contribution can now be correctly interpreted as
arising partially due to the direct effect of fluctuations. Thus, the arithmetic mean
conformation tensor is similar in spirit to the Reynolds stress tensor, a higher-order
statistic that is a direct function of the velocity fluctuations.

Figure 8(a) shows the streamwise (xx) component of H(k) for 0 6 k 6 15. The
maximum value taken on by H(k)xx increases as k increases up to k= 8, after which it
decreases. At the same time, the location of the maximum moves closer to the wall.
The cumulative effect of these higher-order terms is shown in figure 8(b), where the
peak seen in the arithmetic mean emerges very clearly when all the terms up to H(15)xx
are included in the expansion (4.3). Interestingly, the locations of the maxima of H(k)xx
for k 6 15 are always above y+ = 17 but the location of the peak in the arithmetic
mean is at y+≈10. This behaviour suggests that the peak in the arithmetic mean is not
necessarily a consequence of increased polymer deformation localized at y+ ≈ 10 but
rather the cumulative effect of higher-order moments which have their own maxima
elsewhere arising due to different reasons, e.g. rare events affect higher-order moments
more.

It is well known that the existence of the near-wall peak in the xx component of
〈C〉6 is Wi-dependent (Housiadas & Beris 2003). In order to verify that the lack of
this peak in the log-Euclidean and geometric means is not particular to the Wi= 6.67
considered so far, we also performed DNS of viscoelastic turbulent channel flow
for Wi ∈ {1.83, 4.50, 8.00}. The algorithmic details are the same, as are all the flow
parameters in table 1 except for Wi and the resulting Reτ . The initial conditions
for the two cases Wi ∈ {1.83, 4.50} were obtained from DNS of natural transition
to turbulence via Tollmien–Schlichting waves reported by Lee & Zaki (2017), and
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FIGURE 9. (Colour online) Streamwise component Cxx of the mean conformation tensor
C, where C ∈ {〈C〉6, 〈C〉∏, 〈C〉log, 〈C〉√ } for varying Wi: (a) Wi = 1.83, (b) Wi = 4.50,
(c) Wi= 6.67, (d) Wi= 8.00. The inset in (a) is a close-up of the shaded area enclosed
with dotted lines shown in the main panel in (a). See figure 3 for line types.

were extracted from the fully turbulent regime. In the case with Wi= 8.00, the initial
condition was obtained by parameter continuation from Wi= 6.67. In each simulation,
the flow was further evolved for sufficiently long time using a positive-definiteness
preserving algorithm (Hameduddin et al. 2018) in order to ensure that the turbulence
is statistically stationary, prior to collecting statistics. As with the Wi = 6.67 case,
these statistics were calculated using 12 snapshots, spaced 10 convective time units
apart from the last 130 convective time units of each of the simulations described
above, and by exploiting statistical homogeneity in the streamwise, spanwise and
temporal directions. Again, reflection symmetry in y was used to assess statistical
convergence. In addition, the arithmetic mean calculated from 12 snapshots was
compared with a continuous arithmetic average over all time steps and minimal
differences were found.

Figure 9 shows the xx component of the various mean conformation tensors at
different Wi for the bottom half of the channel only. The figure confirms the findings
of previous authors that increasing Wi makes the near-wall peak of the xx component
of 〈C〉6 more prominent; there is no peak away from the wall at Wi = 1.83, and
Wi=8.00 has the largest and most prominent peak. However, the xx components of the
log-Euclidean and geometric means both do not exhibit peaks away from the wall at
any of the Wi in figure 9. Since Wi and associated levels of drag-reduction examined
here are already considerably high, we predict that the Wi-dependent phenomena that
leads to the emergence of the peak in the arithmetic mean does not lead to a similar
peak in the log-Euclidean and geometric means.

The various mean conformation tensors at Wi = 6.67 are evaluated in more detail
in figure 10. Here we show the logarithmic volume of the mean conformation tensor,
log det C/2, and the squared geodesic distance from the identity, d2(I,C). As expected,
the volume of the geometric and log-Euclidean means coincide. This volume is several
orders of magnitude smaller than that of the arithmetic mean, and is even smaller than
the volume of the square-root mean. Despite this small volume, which at the outset
may appear to suggest that the resulting fluctuations must have large volume, recall
that the LVR with respect to the geometric and log-Euclidean means was significantly
smaller (in both a mean sense as well as in the probability density) compared to
the LVR with respect to the arithmetic mean. In this sense, the geometric and log-
Euclidean means can very efficiently represent the volume of the conformation tensor.
A similar phenomenon can be seen in the squared geodesic distance from the identity.
Despite being relatively ‘small’ in this sense, the fluctuations are geodesically closer to
the geometric and log-Euclidean means as compared to the arithmetic and square-root
means.
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FIGURE 10. (Colour online) (a) Logarithmic volume, log det C/2 and (b) squared geodesic
distance from the identity, d2(I,C), where C ∈ {〈C〉6, 〈C〉∏, 〈C〉log, 〈C〉√ }. See figure 3 for
line types.

5. Conclusions
We demonstrated that the arithmetic mean is not representative of the ensemble

of conformation tensors in viscoelastic turbulent flows and, therefore, we proposed
alternative means, namely the geometric and log-Euclidean means. Both are based on
a distinct well-behaved Riemannian structure on the set of positive-definite tensors
(Moakher 2005; Arsigny et al. 2006). They were shown to possess useful properties
enabling efficient representation of stretches and volume of the conformation tensor –
a key challenge with the arithmetic mean. Additionally, the geometric mean satisfies
the Ando–Li–Mathias properties that are considered important for any definition
of a geometric mean of positive-definite tensors (Ando et al. 2004) and also
has the physically appealing property of being invariant under arbitrary, constant
deformations of the conformation tensor. The log-Euclidean mean can also be
viewed as a computationally efficient approximation of the geometric one, and is
of particular interest in light of recent efforts to develop numerical schemes that
use the ‘log-conformation’ approach (Knechtges 2015). The present work provides a
geometric justification for analysis of turbulent flows using this approach.

We tested our proposed means in turbulent FENE-P channel flow and demonstrated
that the geometric mean provides a more suitable alternative to the classical arithmetic
mean. It was not only geometrically the closest to the identity, but the fluctuations
were also appreciably closer to it as compared to the arithmetic and square-root means.
The log-Euclidean mean was also shown to be very similar to the geometric one in
much of the channel.

It has been widely reported in the literature on viscoelastic turbulent flows that
a near-wall peak in the streamwise stretch of the arithmetic mean emerges and
intensifies with elasticity. The geometric and log-Euclidean means did not show
such behaviour, thus demonstrating that the apparent peak in polymer deformation
is a consequence of the choice of the mean and not necessarily the increase in
elasticity. By expressing the arithmetic mean in terms of the log-Euclidean mean
and fluctuations about it, such differences between the means can be interpreted as
the direct influence of higher-order statistical moments. Namely, the arithmetic mean
of the conformation tensor is not a physically intuitive fundamental quantity, but is
rather a higher-order statistical quantity constructed via more physically fundamental
elements.

The present work enables progress in turbulence modelling of viscoelastic flows
by exposing the limitations of the arithmetic mean conformation tensor, and putting
forward alternatives that are physically representative and more amenable to modelling.
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The proposed alternative means can also be easily generalized to filters (Bhatia &
Karandikar 2012). Such generalizations can be used to analyse and model subgrid
stresses in large-eddy simulations of viscoelastic flows, and thus represent a potential
opportunity for rapid advancement in computation of viscoelastic turbulence.
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