Ergod. Th. & Dynam. Sys. (2021), 41, 1883-1920 (© The Author(s) 2020. Published by
doi:10.1017/etds.2020.23 Cambridge University Press

Reducibility of a class of nonlinear
quasi-periodic systems with Liouvillean
basic frequencies

DONGFENG ZHANG “ and JUNXIANG XU

School of Mathematics, Southeast University, Nanjing 210096, PR China
(e-mail: zhdf@seu.edu.cn, xujun@seu.edu.cn)

(Received 10 November 2019 and accepted in revised form 3 February 2020)

Abstract. In this paper we consider the following nonlinear quasi-periodic system:
x=(A+€eP(t, e)x +eg(t,e) +h(x,t,€), xeR?

where A is a d x d constant matrix of elliptic type, €g(¢, €) is a small perturbation with €
as a small parameter, h(x, t, €) = O(xz) as x — 0, and P, g and h are all analytic quasi-
periodic in ¢t with basic frequencies w = (1, o), where « is irrational. It is proved that for
most sufficiently small €, the system is reducible to the following form:

% =(A+ Bu()x + hy(x,1,€), xeR?,

where h,(x, t, €)= O(x2) (x > 0) is a high-order term. Therefore, the system has a
quasi-periodic solution with basic frequencies w = (1, «), such that it goes to zero when €
does.
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1. Introduction and main results
Consider the following nonlinear quasi-periodic system:

x=(A+eP(t, e)x +eg(t,e)+h(x,t,e), xeR? (1)

where A is a constant matrix of different purely imaginary and non-zero eigenvalues A =
(M1, ..., Ag), €g(t, €) is a small perturbation with € as a small parameter, 7 = 0 (x?) as
x — 0, and P, g and h are all analytic quasi-periodic in ¢ with basic frequencies w =

(1, ..., ws).
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In [17], Jorba and Sim6 proved that if the eigenvalues A and basic frequencies w satisfy
the non-resonant conditions

y
K, , 2
k. 0] 2 @)
V=T, @) — 2] = ——,
k|
|\/—1<k,w>—xi+xj|z# for all i # J,

for all k € Z°\{0}, 1 <i, j <d, where y > 0, T > s — 1, then for most sufficiently small
€, system (1) can be reduced to a constant system with high-order terms:

¥ =Ax +ho(x,t,€), xeRY

where A, is a constant matrix close to A, and hy(x, t, €) = O(xz) (x — 0) is a high-order
term close to h. Therefore, system (1) has a quasi-periodic solution with basic frequencies
w = (w1, ..., ws), such that it goes to zero when € does.

Furthermore, a natural question, for Liouvillean basic frequencies w = (1, «), where «
is irrational, is whether we can obtain the existence of a quasi-periodic solution for the
nonlinear quasi-periodic system (1), which means that the Diophantine condition (2) can
be eliminated. Moreover, we discuss the reducibility problems for the nonlinear quasi-
periodic system (1) with Liouvillean basic frequencies.

Let us first recall some well-known results and development of reduction theory.
Consider the system

x=Al)x, xeR?, (3)

where A(t) is a d x d matrix which depends on time in a quasi-periodic way with basic
frequencies w = (w1, . . . , wy).

Definition. (Reducibility) System (3) is said to be reducible, if there exists a non-singular
quasi-periodic change of variables x = ®(#)y, such that ®(¢), & ()~ and & (r) are quasi-
periodic and bounded, and such that it transforms the system (3) into a constant system,
that is, a linear system with constant coefficient.

Definition. (Rotations reducibility) System (3) is said to be rotations reducible, if there
exists a quasi-periodic transformation x = ®(¢)y such that system (3) is transformed into
a rotation system, that is, a linear system with so(d, R)-valued coefficients.

Definition. (Non-perturbative reducibility) Non-perturbative reducibility means that the
smallness of the perturbation does not depend on the Diophantine constants (y, t) of w
in (2).

For s =1 (the periodic case), the classical Floquet theory tells us that there exists a
periodic change of variables such that the periodic system (3) can be reducible to a constant
system.

For s > 1 (the quasi-periodic case), the system is not always reducible. The reducibility
of quasi-periodic systems was initiated by Dinaburg and Sinai [7], who proved that the
linear Schrodinger equation

—y"+q(wt)y=Ey, yeR,
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or equivalently the two-dimensional quasi-periodic system

y=x, x=(q(wr)—E)y, “4)

is reducible for most sufficiently large E, when the basic frequencies w satisfy the
Diophantine condition

|k, w)| > IkLI for all 0 # k € 7,
where y > 0, T > s — 1 are constants.

The reducibility of the system (4) implies the existence of an absolutely continuous
spectrum of the Schrodinger operator Ly = —d?y /dt*> + q(wt)y. Due to its importance in
dynamical systems and in the spectral theory of Schrodinger operators, the reducibility of
quasi-periodic systems has been extensively investigated.

Liang and Xu [19] generalized the results of [7] to the high-dimensional case. Johnson
and Sell [15] proved that if the quasi-periodic coefficients matrix A(¢) satisfies the full
spectrum condition, then system (3) is reducible. Jorba and Simé [16] considered the linear
quasi-periodic system

i=(A+€P@, e)x, xeR? (5)
where A is a constant matrix with different non-zero eigenvalues Ay, ..., Ag, P(f) is
a quasi-periodic matrix with frequencies w = (wy, . . ., ws), and € is a small parameter.
They proved that if

=Tk, @) — Aj + ;] > ﬁ forall0 £k eZ' i, j=1,...,d,
and J
@ =aGE | #£0 i#],

€ e=0

where y >0, 7 > s — 1, and A?(e) (i=1,...,d) are eigenvalues of A + €[P(¢)], with

[P(e)] being the average of P(r, €) with respect to ¢, then for most sufficiently small
parameters €, the system (5) is reducible.

Later, Eliasson [9] proved that all quasi-periodic systems are almost reducible provided
that the system satisfies the Diophantine condition and is close to constant. Eliasson [8]
obtained a full measure reducibility result for the quasi-periodic Schrodinger equation.
Krikorian [18] generalized the full measure reducibility result to linear systems with
coefficients in the Lie algebra of the compact semi-simple Lie group. Her and You [13] and
Chavaudret [4] established the full measure reducibility with coefficients in other groups.
For the latest reducibility results of infinite-dimensional systems, we refer to [2, 3, 10] and
the references therein.

In developing the reducibility of quasi-periodic systems and Kolmogorov—Arnold—
Moser (KAM) theory, many scholars are dedicated to weakening the non-degeneracy
condition and the non-resonant condition. Xu [31, 33] obtained the reducibility of linear
quasi-periodic system (5) in the case of multiple eigenvalues and more general non-
degeneracy conditions, that is,
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Zhao [39] proved the reducibility of nonlinear quasi-periodic system (1), when the
eigenvalues of A are allowed to be multiple. Chavaudret [6] studied the reducibility
of resonant cocycles. Moreover, the Diophantine condition (2) can also be weakened.
Riissmann [25] and Zhang and Liang [34] obtained the reducibility of the Schrodinger
equation under Brjuno and Riissmann’s non-resonant condition:

[{k, w) forall 0 # k € Z°,

|Z L
A(lk])

where y > 0, and A is a continuous, increasing, unbounded function A : [1, co) — [1, 00)

such that A(1) =1 and
/Oo In A(2)
dt < o0,
1

t2

A is usually called the Brjuno—Riissmann approximation function. For further KAM theory
about Brjuno and Riissmann’s non-resonant condition, see [5, 21, 22, 24, 35-37].

In particular, for two-dimensional quasi-periodic systems, there have been some
interesting results. Without imposing any non-degeneracy condition, the reducibility
of two-dimensional quasi-periodic systems was obtained in [28, 32]. These particular
phenomena [28, 32] are inherent in two-dimensional systems, but do not hold for
high-dimensional systems. Recently, the reducibility of two-dimensional quasi-periodic
systems with Liouvillean frequencies has been obtained, namely, w = (1, o), where «
is irrational. Avila, Fayad and Krikorian [1] first introduced the CD bridge method and
proved the rotations reducibility of SL(2, R) cocycles with one frequency, irrespective of
any Diophantine condition on the base dynamics. Hou and You [14] considered a quasi-
periodic linear differential system with two frequencies in s/(2, R),

i =A®)x,
b=w=(1,a),

and obtained almost reducibility and rotations reducibility of the above system, provided
that the coefficients are analytic and close to constant. Furthermore, if the rotation number
of the system and the basic frequencies w = (1, o) satisfy the Diophantine condition, the
system is reducible. Wang, You and Zhou [30] proved the existence of response solutions
for quasi-periodically forced harmonic oscillators with forcing frequencies w = (1, «),
where o« is irrational. For other interesting results for two-dimensional systems, see
to [11, 26] and the references therein.

All the above results about Liouvillean frequencies are mainly concerned with two-
dimensional or linear quasi-periodic systems. Naturally, in this paper we are mainly
concerned with reducibility problems for the nonlinear and high -dimensional quasi-
periodic system (1) with Liouvillean basic frequencies w = (1, o), where « is irrational.

Since the quasi-periodic systems in [1, 14] are two-dimensional and linear, we can
naturally introduce the rotation number and make good use of the rotation number
property. But for the high-dimensional system (1) it is difficult to define the rotation
number. The proof of [1] is based on the ‘algebraic conjugacy’ technique developed
in [12]. In the proof of [14], the crucial observation is to analyze the structure of resonant
terms, then to eliminate them by Floquet theory. Unfortunately, it is difficult to generalize
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the methods in [1, 14] to nonlinear and high-dimensional problems. Comparing to [30],
the former is a Hamiltonian system, while our system does not contain any structure,
which may include Hamiltonian, reversible and dissipative systems. In fact, we can apply
our results to quasi-periodically forced harmonic oscillators and obtain the existence of
response solutions in [30].

For high-dimensional quasi-periodic systems, Zhou and Wang [40] used periodic
approximation to study the reducibility of quasi-periodic GL(d, R) cocycles with
Liouvillean frequencies. Zhang, Xu and Xu [38] obtained the reducibility of a three-
dimensional skew-symmetric linear system with Liouvillean basic frequencies. Compared
to [40], the former is discrete and linear, while our system is continuous and nonlinear, so
there are essential obstructions in applying the method of periodic approximation for the
discrete case in [40] to the continuous case.

In our paper we mainly use the CD bridge method and improved KAM iteration with
parameters. One iteration step will be completed by a family of sub-iterations, the sub-
iteration steps will go to co, but we only need to delete the resonance parameters once
in each iteration step (i.e. each family of sub-iterations). For nonlinear quasi-periodic
systems, both zero-order and first-order non-resonant terms need to be eliminated, which
may lead to more complicated iterations. It is pointed out in particular that in order to
maintain the structure of the linear principal part, we need to eliminate all the non-diagonal
terms in solving the homological equation, and we need to keep the system real in order
to obtain real analytic quasi-periodic solutions. In Appendix A, we apply our theorem
to the nonlinear Hill equation with quasi-periodic forcing terms, weakly forced oscillator
and damped equation to study the existence of quasi-periodic solutions with Liouvillean
frequencies. These three kinds of equations correspond to Hamiltonian systems, reversible
systems and dissipative systems, respectively.

Before stating our results, we first give some notation and definitions. We usually denote
by Z and Z the sets of integers and positive integers, respectively. A function f(¢) is

called quasi-periodic with basic frequencies w1, . .., wy if f(t) = F@) = F 6y, ..., ),

where F is 2m-periodic in all its arguments and 6; = w;t for j=1,...,s. Let o =

(w1, - .., ws). Thus, f(t) = F(wt). Denote a strip domain in complex space C* by
Dr)y={0=,...,00)eC/2xZ° :|ImO;| <r, j=1,...,5}.

Furthermore, if F(6) is analytic with respect to 6 on D(r), we say that f(¢) is analytic
quasi-periodic on D(r). Denote by

1
= F(0)de
1= Gy /T F®)

the average of f. Similarly, a function matrix P(f) = (P;j)yxq is called analytic quasi-
periodic on D(r) if all P;;(¢) are analytic quasi-periodic on it. Denote by [P] = ([P;jDaxd
the average of P.

Let ¢p > 0 and denote IT = (0, €g). If f(€) is differentiable with respect to parameters
€ € I in the sense of Whitney, define the norm

|fln = sug(lf(é)l + £/ @D.
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If a function

[, 6= file)e ™"

keZs
is analytic quasi-periodic in ¢ on D(r), and differentiable with respect to € € I1, we define
k
Il =) [ felme",
keZs

where [k| = k1| + - - - + |ks| fork = (k1. . . ., k). Denote A, (I) = { f : || fllr,n < +00},
which is a Banach algebra under norm || - || 1.
For any K > 0, we define the truncating operators

Tef= Y, filee®r,

keZ?,|k|<K
Ref= Y. file)eor
keZ?,|k|>K
For a function matrix P (¢, €) = (P;;(, €))axa, similarly define a norm by

d

1Pl = max > [Pl
1<i<d “ 1
j:

We have || P1P2lr,m < [ Pllr il P2l
Let o € (0, 1) be irrational and denote by p, /g, the nth convergence of «. Define

In
B(a) =lim sup —— qn“

n—00 qn

(6)

Then B (o) measures how Liouvillean « is. Notice that («) has an equivalent definition:

1

B(a) =limsup — In ————. @)
[k|— 00 Ikl leZ”’k” -1
Assumption A. (Non-resonant conditions) Suppose that A = (A1, ..., Ag) and o = (1, &)

satisfy the conditions

W1k, w) — | > —

Al 22—,
(k] + 1)*
IW=1{k, ®) — A + forall i # j,

)\j|Z;
(Ikl + DT
forallk e Z>, 1 <i, j <d,wherey > 0,7 > 2.

Assumption B. (Non-degeneracy conditions) Let us denote by x(z,€) the unique
analytic quasi-periodic solution of x = Ax + €g(t, €) (the existence of x(¢, €) is shown
by [17, Lemma 2.10]) and define A(e) =A+e€[P(e)]+[Dih(x(t,€),t,€)]. Let k?(e)
(i=1,...,d) be the eigenvalues of A such that |(d)»?(e))/de|ez()| >26>0 and
[d({(e) = 1(€))/dele=o] = 28 > 0.

THEOREM 1. Consider the nonlinear system

x=(A+eP(t, e)x +egt,e)+h(x,t,€), xeR?,
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where A is a d x d constant matrix of elliptic type, €g(t, €) is a small perturbation with

€ as a small parameter, h(x, t, €) is analytic with respect to x on the ball B, (0) such that

h(,t,€)=0, Dyh(0,¢t,€) =0, | Dysh(x,t,€)| <G, and P, g and h are all analytic
quasi-periodic in t with basic frequencies w = (1, ), where « is irrational. Suppose that
the Assumptions A and B are satisfied.

(D) Then there exist a sufficiently small €y, which depends on r, y and t, but not on
o, and a Cantor set I, C (0, €p) with positive Lebesgue measure such that for any
€ € I, there exists a real analytic quasi-periodic and near-identity transformation

u(wt)

x=e y + v(wt), which changes system (1) to

= (A+ B.(1)y +hi(y,1,€), yeR?,

where hy(y, t, €) = O(y?) (y — 0) is a high-order term. Therefore, the system (1)
has a quasi-periodic solution x = v(wt) with basic frequencies w = (1, ), such that
it goes to zero when € does. Moreover; if €q is small enough the relative measure of
(0, €p)\I1, in (0, €g) is less than CE&S/IS, where the constant c is independent of €.

(II) Furthermore, if B(a) =0, then for the same €y and € € 1, in (I), system (1) is
reducible to

=AYy +h*(y,1,€), yeR?

where A* is a constant matrix close to A, and h*(y, t, €) = O(y?) (y — 0).
If 0 < B(a) <r, then there exists a sufficiently small €y = eo(r, y, T, B(®)) and a
Cantor set Tl C (0, €g) with positive Lebesgue measure, such that for any € € I, the
system (1) is reducible to

y=A%y +h*(y,t,€), y€ RY,

where A* is a constant matrix close to A, h*(y, t, €) = O(y2) (y — 0).

Remark. From Theorem 1, for all @ € R\Q, system (1) has a quasi-periodic solution with
basic frequencies w = (1, «), such that it goes to zero when € does.

Remark. When f(«) = 0, the smallness of €y does not depend on «, therefore, we not
only weaken the Diophantine condition (2) to Liouvillean frequencies, but also improve
the results in [17] to be non-perturbative in the case of two-dimensional basic frequencies.
In this sense, when g = h = 0, our theorem generalizes partial conclusions of [14] to high
dimensions.

2. Outline of the proof
We now give an outline of the proof of Theorem 1. The details are given in the next

sections.
Since A is a constant matrix of elliptic type and det A # 0, that is, A has different purely
imaginary and non-zero eigenvalues A = (A1, ..., A4), we suppose that A is in the real

Jordan form (9). An essential idea of the proof is to construct a simplifying transformation,
consisting of infinitely many successive iteration steps, to eliminate both zero-order and
first-order terms, so that the transformed system has zero as an equilibrium. In the process
of eliminating lower-order terms, the corresponding small divisors are /—1(k, ) — A;
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and v/—1(k, ) — Aj + A ;- Since the basic frequencies are Liouvillean, the main difficulty
is that we cannot kill the terms whose small divisor is (k, w), that is, the terms on the
diagonal. Therefore, the terms on the diagonal will be retained in eliminating the first-
order terms. We overcome this problem by putting the terms on the diagonal into the
linear principal part. Thus the linear principal part in our work will be variable coefficients,
which yields that the homological equation is an equation with variable coefficients. We
overcome this problem by the diagonally dominant method to obtain an approximate
solution to the homological equation. It is pointed out in particular that in order to maintain
the structure of the linear principal part, we need to eliminate all the non-diagonal terms
including k = 0 and k # 0.

Therefore, the proof of Theorem 1 is divided into two parts. First, we prove that system
(1) can be reduced to a system with non-constant coefficients, which has a diagonal form:

= (A+ B.(1)y +hi(y, t,€), yeR9,

o Uf(r) Vi@ Uz Vi@
B, (1) = diag ((—Vl*(t) Uf‘(t)) s (—Vé"(r) U;f(t)

and hy(y, t, €)= O(yz) (y — 0) is a high-order term. It follows that system (1) has a
quasi-periodic solution with basic frequencies w = (1, ) such that it goes to zero when €
does. The first part of the proof can be achieved by infinite KAM iteration steps. Second,
we eliminate the non-resonant terms containing ¢ on the diagonal and transform the above
system into a system with constant coefficients,

where

y=A*y +h*(y,1,€), yeR?,

where A* is a constant matrix close to A, and h*(y, t, €) = O(yz) (y — 0). This process
can be obtained by only one step if 0 < () <.

Remark. If A has a general real Jordan form

. 0w 0 u;
A:d1ag ((—M] 0),...,(_'“& 0d>,lij+1,...,lij+l>y

where u; eR,i=1,..., d+ l, 2d +1 = d, then B, (t) has the corresponding real Jordan
form

L Ur@t) Vi) Uz () Vi) . .
B.(t) = diag ((—vl*(z) U;*(t))""’ (_‘;l;([) Ufzk(’) LU @, UL )

3. Preliminary lemmas

The aim of this section is to give the concept of the CD bridge, which first appeared in [1],
and present some important lemmas, which are mainly used to solve the homological
equation and estimate the measure of parameters.
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3.1. Continued fraction expansion. Leta € (0, 1) be irrational. Define ag = 0, ¢g = «,
and inductively for k > 1,

1
-1 -1
ar =l 1, k=0 _ | —ar= {—}
k—1 k—1 a1
where [-] denotes the integer part and {-} denotes the fractional part.
We define pp =0, p1 =1, g0 =0, g1 = aj, and inductively,
Pk = Qg Pk—1 + Pk—2,
Gk = Ak qk—1 + gk—2.

Then the sequence (g;,) is the sequence of denominators of the best rational approximations
for «, since it satisfies

foralll1 <k <gu, lkalr> llgn—1e|T,

and

—— <llgna|lT <
qn + qn+1 qn+1

where we use the norm
x|l = inf |x — p|.
pEL

3.2. CD bridge. For any o € R\Q, we fix a particular subsequence (g ) in the
sequence of the denominators of «, which will be denoted by (Qy) for simplicity. Denote
the sequence (qn,+1) by (Q%), and denote (Pny) by (Pr).

Definition. (CD bridge, [1]) Let 0 < A < B <. We say that the pair of denominators
(41, gn) forms a CD(A, B, C) bridge, if:

(1) gip1 <gforalli=1,....,n—1;

@ qf <qn=<qf.

LEMMA 2. [1] For any A > 1, there exists a subsequence (Qy) such that Qo = 1 and for
each k>0, Qpy1 < QkA4 and either Qk > QkA, or the pairs (Qk_l, Q) and the pairs
(Qk, O+1) are both CD(A, A, A3) bridges.

LEMMA 3. [1] Forany O <r, <r,t >2,0 < ¢ < 1, there exists C1 = C((r4, T, C) such
that if f € A,(I1), then the equation

008t €) =—=Tg,,, f(t,€) +[f] )

has a solution with

lglri—mm1 < C1(re T. DI f — [f]||r,n<$4 + ‘,i/A).

LEMMA 4. [30] For any 0 <y < 1, T > 2, there exists co = cp(t) such that if Q(¢)
satisfies 0 < |Q2(e) |1 < 2, and the non-resonant condition

V=T, ) — Q)] > m forall |k| < K,
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K= Y max & _?,/‘A ,
4.10° or

then for any |k| < K, we have

where

IW=1(k, w) — Qe)] > er(r)y /100"

3.3. Homological equation. Before describing the following lemmas, we first give
some definitions and notation. Denote by diagP the elements on the diagonal line or
diagonal block of matrix P. Since A is a constant matrix of elliptic type and det A # 0, we
suppose that A is in the real Jordan form

. 0 wuy 0 uy ~
A= d 2d =
diag ((—m 0)’ ’(—Mg 0)) 4=d ®

and define
. Ui(t) Vi) Uzt Vi)
B(1) = diag ((_V] o (t)) e (_VJ o m)) (10)
and
. ar(t) 01(t) ag(t) v;(t)
bit) = diag ((—01(0 ﬁl(t)> A <—ﬁg(f) ﬁd-m)) ’
where uj € R, U;(t), Vi(t), uj(t)and 0;(t) (j =1, ..., d) are all real functions.
Let
s= e (o) (LU 5)
“avet\\vmvE) o vEvET) )
Then

A :SilAS:d]ag(_ N _1“17 N _ll“l/lv sy TNV _]//Ljs \ _]M(Z)v

B(t)=S"'B(1)S
=diag(U; — v -1V, U1 + V=1V, ..., UJ—V—IV‘;, UJ-FV-]VJ)

and
b(t) = S 'b(1)S = diag(ity — V=191, @y + /=101, ..., 45— /=13, i1+ ~/—197).

In what follows, for simplicity of notation we write A = Sdiag(Aq, ..., Azd)S_l, B(t) =
Sdiag(E1(1), ..., E,5(1)S™" and b(r) = Sdiag(A1 (1), ..., A,;(1)S™", where Apj_
and Ay; are conjugate complex numbers, E;;-1(¢) and E; () are conjugate complex
functions, and Aj;_1(¢) and A;(¢) are conjugate complex functions, j =1, ..., d. The
constant matrix S only affects the estimation constant, so we do not explicitly write this
constant in the following estimates.

Remark. If A has a general real Jordan form, similar approaches can be applied. Noting

that real eigenvalues do not produce the problem of small divisors, we only consider the
case of purely imaginary eigenvalues here.
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For v > 2, we define

A4
.A =7+ 3, M= 7,
and let (Q,,) be the selected subsequence of « in Lemma 2 with this given A. For r, y > 0,
we define . a
__°c — o—corr(Qn/ QM+,
= J2A%7 L=e ’
n

where 0 < ¢, ¢g < 1 are constants, ¢y = (5/45 -107%), and the definition of ¢ is given
in (51).

LEMMA 5. Let us consider the equation
X=(A+B@)+b@)x +eg(t), xeR’ (11)

where A is a constant matrix of elliptic type and det A #0, A, B(t) and b(t) have the
concrete form as above, and g(t) = (g;(t))1<i<a With gi(t) being an analytic quasi-
periodic function given by g;(t) = cp gl{‘e”k’“’”.

Let T >2,0<r,<r,0<c¢ < 1. There exist C3 = C3(t) and & = ¢€1(t, ry, C) such
that for o,7 with 0 <o <ry <7 <r(l —n), if B(t) e A.(IT) with Rg,,, B)=0,
b(1), g(t) € Az(I),

0. - On it
||B||r,n-(—A"4+ %“)sew(—;ﬁg,ﬁw ) (12)
Qn Qn
At+2
1Dll7,m < ~=—5r> (13)
TG0,

and the eigenvalues of A + [ B] satisfy
V=T, @) — G + B > —L——
V=T @) = 0+ 18D = G

then equation (11) has an approximate solution x (t, €) with estimate

Ixll7.m < £717290C5(0)y A2 0187 ¢ g7 1.

n

forall k| < K,1<i<d,

Moreover, the error term g, = Sh, with h,= (hi¢)i<i<d, hie = e—éi(t)RK (eéi(t)
(S7g(0)i) and dE;(t)/dt = —E;(t) + [E;), satisfies

—1/240 —K
lgellz—o.m < L7/ K g7 1.

Proof. Making the change of variables x = Sz and defining 4 (r) = S~ g(z), equation (11)
becomes
2= (A+ B()+ b))z +€h(t), (14)

where A =diag(r1, ..., Ayy),  B(t) =diag(E1(t), ..., E,5(t)) and b(t)=
diag(A1(#), ..., A,;(r)), where Azj—; and Ay are conjugate complex numbers,
82j-1(¢) and E;;(¢) are conjugate complex functions, and Ajz; 1(t) and Aj;(¢) are
conjugate complex functions, j =1, ..., d.
Since z = (zj)1<i<q and h(t) = (h;(t))1<i<d, equation (14) can be written in the form
of components:
zi = + Ei () + Ai()zi + €h;(t). (15)
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Let d&;(t)/dt = —5i(t) + [Eil, Z(t) =50z (t)(y > 0) and h;(1) = S Ohy(1).
Equation (15) is equivalent to
Zi =i + (Bl + Ai(0)Zi + ehi(0). (16)

Instead of solving equation (16), we first solve the truncation equation

Tkzi = Tk (i + [Ei] + Ay (0)Z; + €hi (). (17)
If we write
Zi — Z Zkel(k !/J) hi — Z h{'(el (k,a))t’
keZ?,|k|<K keZ?,|k|<K

and compare the Fourier coefficients of equation (17), we have
V=T, @) = G + [EDZE = D AN =ik, (18)
k1| <K
View (18) as a matrix equation
(D+F)W=P,

where

D =diag(. .., V—1{k, ®) — Qi(€), .. DIk,
Qi(e) = (A + [EiD),
F = (=) ol <k
W=k, P=eldf«-
k|7

If we denote I'; = diag(..., e . Jlk|<K > then

(D +T;FT;HIyW =T P.
Since y
[—1{k, w) — Q(e)| > ———— forall k| <K, 1<i<d,
| (k, w) i(e) > k[ D orall k| < I
then by Lemma 4, we have
1 |0€2;(€)/0€]|
ID~"n = max < +
[k|<K eel’I v/ —1{k, w) — Q;(€)] [vV—=1(k, ) — Q;(€)|?
< C3(r)y~A+2) Q:E:] /2,

where
0 D,‘j (6)

de

ID|lr = max sup Z(wij(en + ‘
I eell ;

and D;; is the (i, j)th variable of the matrix D.
Meanwhile, since the (ki, k»)th variable of F;FF;1 is —e(|k1|_|k2|);(Aflfk2), we
obtain that

I'; FF7 < max e(|k1|*\k2|)7A]fl—k2
I Il = ki |<K Z | i I

< max |AR T pelki =Rl < 2y .
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Thus if [|b]|7,n < y4*+2/(2C3(r) Q1%7)), then
ID™' T FT; in < I D™ Il T F T3l < 3,
which implies D + I'; F Ff_l has a bounded inverse:

(D +TFT; ) Nin =11 + D™'T:FT; ) ' D7 i
1

L= ID~'T7FT; in

< C3(_L,)y—(.Ar+2)Q18r

—1
=ID"Im

It follows that
IZilrn= Y IZne = M:Win

|k|<K
<D+ T:FT; Y NnlTsPln
< C3(0)y " A2 018 €|l 17 1. (19)

Letz; (1) = e’é"(t)i,-(t). By Lemma 3,

= e - 0 1
1Eill-(1—p,1 < C1(rs, T, O E; — [bi]llr,rI(QL + On /A

Then, by assumption (12), if &1 < (co(z, ¢)r)/(960C (ry, T, €)), We get

_E At plA
”e =i ”r(1 )10 <e”Ht”r(l ), I <e2ClHHtHrl'I(Qn/Qn +Q

1/ mU/4

< 201817 (@n/ QR+ 0T p=1/480,

Therefore, by estimate (19) and the definition of z; (¢),

lzillz.m < £7Y80)Z 7. < £71290C3(0)y A2 0187 ¢y |7 1.

Moreover, the error term hj, = e~ S OR g (e O p; (1)) satisfies
—1/240 —K
IhiellF—on < L7125 |1y 7,11

As x =Sz and g(¢) = Sh(t), by the norm definition of vector function, the result
follows. U

Remark. When solving equation (11), the concrete form of non-resonant conditions is
14

ko) £ (u; +[ViD| > ———— forall|k| <K,1<i<d.
I(k, @) £ (u; + [ '])|_(|k|+1)3f orall [k| < i
LEMMA 6. Consider the equation
=(A+ B(t) +b(®))W — W(A + B(t) + b(1)) + P, (20)

where A is a constant matrix of elliptic type and det A #0, A, B(t) and b(t) have the
concrete form as above, and P is an analytic quasi-periodic matrix and has the form

e _ 1 ur () vi(r) uz(t) vz()
diagP = diag ((vl(t) —ul(t)> e <v[;(t) —uJ(t) ,

https://doi.org/10.1017/etds.2020.23 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2020.23

1896 D. Zhang and J. Xu

where u;(t), vi(t) (j=1,..., d) are all real functions, that is, diag(S~! P¢) §) = (.

Let 1t >2,0<r,<r,0<¢ < 1. There exist C3=C3(t) and €1 = ¢€1(t, ry, C) such
that for any o, 7 with 0 <o <ry <7 <r(1 —n), if B(t) € A,(IT) with Ry, ,, B(t) =0,
b(1), P9 (1) € Az (TD),

Atr+2
Ibll7.n < @1)
' 2C3erz§f1
On | =i On | AyMi
||B||r,n-< 2+ 00 e + 0T, (22)
Qn Qn

and the eigenvalues of A + [ B] satisfy

W=k, @) — O + [E]) + (A +[E; Y

DI = EE

then the homological equation (20) has an approximate solution W (t, €) with the estimate

IW iz < £7Y20C3(x)y = A2 gl8t | pro; .

forall |k| <K,i#j,

Moreover, the error term Pe("re) satisfies
1P g < L7290 KT APz 1+ 20617 n I W 710,
where Pe(nre) = SH,S™', and the definition of H, is given in (29).
Proof. Making the change of variables of W = SZS~! and H = S~ P §, equation
(20) becomes
Z=(A+ B0 +b0)Z - Z(A+ B(1) + b)) + H, (23)

where we continue to use the notation of Lemma 5, A = diag(Ag, ..., Ay7), f?(t) =
diag(&q, ..., Ezzi,) and b(r) = diag(Ay, ..., A,7), where Ap; 1 and A;; are conjugate
complex numbers, E3;_1 and Ej; are conjugate complex functions, and Az;_ and Aj;
are conjugate complex functions, j =1, ..., d.

Note that diagH = diag(S~! P9 8) =0. Let Z = (Zij)1<i,j<a» H = (Hij)1<i,j<d-
Equation (23) can be written in the form of components:

dZ;; . .
—L = (M + B+ A1) — (j + () + A1) Zij + Hyj foralli # j. (24)

dt
Let dBi(t) dB; (1)
;i ( - - AU - =
TZ_Di(t)‘F[Di], d]t =—8;() +[&/]
and

Zij(t) = BB z50),  Hj(t) =B OB Hy(r),
for 1 <i, j <d. Equation (24) is transformed into

dZ;; . .
d—t’—«xi+[Ei]+Ai<z>)—<xj+[E,~]+A,~<r)))zl-j=H,-j foralli # j. (25)

Instead of solving equation (25), we first solve the approximation equation

dZzZ;; 5 3 o
Tk (d_t] — (A +[Ei]+ Ai(@) — (A +[Ej] + Aj(t)))Zij) =TiH;; foralli # j.
(26)
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Reducibility of a class of nonlinear quasi-periodic systems 1897

If we write
Zy= Y 2SO gi= Y Ak
keZ?,k|<K keZ?,k|<K
and compare the Fourier coefficients of equation (26), then for |k| < K, we have
V=T, @) = (i + B + O+ [E;ZE — Y (af ™ — ak=hyzi — gt

kil <K
27

View (27) as a matrix equation
(D+F)W=P,

where

D =diag(. .., V—1{k, w) — Qi (€), . . k<K
Qij(e) = (4 +[EiD — (A; +[E;D),
F= (—(Af-”_k2 - AI;l_kz))|k1|,|k2|<K»
W= (Zhk. P=EE .

oKIF

If we denote I'; = diag(. . ., .. Jk|<K » then

(D + TFFT; HIyW =T3P,

Since

14 . .
—1{k, w) — Qjj >———— forall k| < K, ,
V=T ) = QO] 2 s forall I < K0 2 )

then by Lemma 4, we have
_ 1 [0€2;;(€)/d¢€|
ID™"|ln = max sup( +
k<K een\ |v—1(k, ) — Qij(e)|  [v/—1{k, w) — Q;j(€)|?
< C3(nyy ATl 2,

where

aD;ji(e)
1Dl = max sup Z(|D,-j(e)| + ‘—’
I eell ; de

and D;; is the (i, j)th variable of the matrix D.
Meanwhile, since the (k;, k»)th variable of 1‘;FF;1 is —e(|k1|_|k2|)f(Af.“_k2 - A’;‘_kz),
we obtain that

I FT Y m < max elkil=laDF (Aki=ka _ Ak1=ka
ITFFT; i < max, > (A} 1IN

k1—k k1—k k1 —ko |F
< max Y (AT + AT TR e Rl < 2)b)j7 .
lki|<K
k2| <K

Thus if [[b]7, 0 < y472/(2C3(1) Q,5)), then

IDT'TFT; in < 1D~ M nliT7 FT5ln < 3.
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which implies that D + I'; F F;] has a bounded inverse:

(D +T:FT; ) Nin =11 + D™'TFT; ) ' D7 i
1
I —1
1 — [ID7IT;FT I
< C3(.L_)y—(.AT+2)Q18‘L'

<D™

It follows that

1Zijllzn =Y 1Z5Ine® = ITsWiin

|k|<K
<I(D+T;Fr Y~ nlT:Pln
<D+ FT Y~ inll Hijll7, - (28)

Let Z;j (1) = e~ (Bi (’)_B/'(’))Zij (¢). First, by Lemma 3, we have

I _ 0 A
I1Billr—p.n < Ci(rs, T, OIIE; — [Di]llr,n<Qj4 + 0,

Therefore, by assumption (22), if &1 < (co(z, ¢)r)/(960C(r, T, C)), we get

—Ri—Pj illr(1— jllr(1— 2 Bl _nA I/A
e BB, _py 1 < eWBillra-nn 1B lra-n.m) < (2CHIBI-n(n/ 05 +0n

1y ml/4

< 2C1817(Qa/ Q0T p=1/480,

By estimate (28) and the definition of matrix norm, we have
1Zijllz.n < £7*80) Zij i m < C3()y = AT 0I81 £7V240) 1 7

and
I1Z )70 < Ca(x)y " AT QI87 =120 g .

Moreover, one can verify that the error term H, = (H;je)axa, With
Hije = e~ BOBIOR e (BOBO (1) + (A (1) = A;0) Zi),  (29)
satisfies the estimate
1Hellz—on < £7/20e X (1H |17, 1 + 21117, 01 Z 17, r0).-

AsW=SZS"!and Pe(”re) = SH,S~!, the result follows. O

Remark. When solving equation (20), the concrete forms of non-resonant conditions are

[k, w) + (ui +[ViD) + (nj +[V; for all k| < K,

14
DI = e
and

14 .,
Ik, @) + (i + [ViD) — (uj + [V;DI = ESE forall [k| < K, i # j.
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Reducibility of a class of nonlinear quasi-periodic systems 1899

3.4. A lemma on measure estimates. Finally, we give a lemma which will be used to
estimate the measure of parameters.

LEMMA 7. Let D be a d xd diagonal matrix with different non-zero eigenvalues
Al, ..., Ag. Let P(e) = (P;j(€))axa be a matrix such that P;ij(e) = O(¢) and Pjj =
0@G, j=1,...,d). Let )»(J).(e) (j=1,...,d) be the eigenvalues of D + P(€). Then
M}(e) —1j = 0().

Proof. By [16, Lemma 7], there exists a regular matrix I + S(¢) with §;; =0, j =
1, ..., d, such that

(I +S) ™" (D+ P()U + S(e) = D + D(e),
where D(e) is a diagonal matrix. The above equation is equivalent to
DS(e) — S(e)D =—P(e) — P(e)S(e) + ﬁ(e) + S(e)[)(e).

Note that D and D are diagonal matrices, and Pj; =0, §;; =0. We divide the matrix
elements of the above equation into diagonal parts and non-diagonal parts. For i # j,

(Ai = Aj)Sij(e) =—P;j(e) — (P(e)S(€))ij + (S(G)b(é))ij-

From the Gerschgorin circle theorem, A?(e) —Xj = 0O(e). In addition, P;j(e) = O(e)
(@#jand A; — 1 #0,50 S;j(e) = O(e). Fori = j,

29(6) = 1j = (P(€)S(€))j — (S(€)D(€)) j; = O(€?). O

4. Proof of Theorem 1

4.1. KAM step. Suppose that we are now in the nth step, and in what follows the
quantities without subscripts refer to those of the nth step, while the quantities with
subscripts ‘4’ are those of the (n + 1)th step. Thus we consider the system

x=(A+ Bt &)+ PP, e)x+ePgt,e)+hix,1,€), xeRY, (30)

where A and B(z) have real Jordan form as in (9) and (10), and P, g and & are all
analytic quasi-periodic with respect to t on D(r) and differentiable in the parameters
€ € I1, satisfying

max{|| Pllrm, Igll-m} =M,

and with h(x, 7, €) analytic with respect to x on the ball B, (0), where «, is a sequence
with kg = « and lim,,_, 5 K, > O.

For simplicity, we still write A = Sdiag(Aq, ..., )LZJ)S_1 and B(t) = Sdiag(&q, ...,
Ezg’)S_l, where A2;_1 and A;; are conjugate complex numbers and E;; 1 and E;; are
conjugate complex functions, j =1, ..., d.

For v > 2, we define
4

A=t 43, MZAT, 3D
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and let (Q,) be the selected subsequence of @ in Lemma 2 with this given A. Forr, y > 0,

we define
- ) ) /
__c _ —coyr(@n/0M+0Y M
= 1/2A4° L=e ’
n

) , 5 M Gl
ry = r(l _ n) , £+ — e_COVr+(Qn+l/Qn+1+Qn+1 )’

14 Qn+1 ~3/A
g+:£+g, K=|:410_[ max{ T ,Qn+]}i|,

n+1

where [-] denotes the integer part, 0 < ¢ < 1 is a constant which will be defined in (51),
and ¢ = ¢/4° - 107 is a constant depending on 7, ¢.

We summarize one KAM iteration step in the following lemma. The key point
is to guarantee the non-resonant condition in the KAM iteration by adjusting some
parameters [16, 17, 19, 29, 31].

LEMMA 8. (Step lemma) We consider the nonlinear quasi-periodic system (30). Let T >
2,0<ry<r,0<c¢ < 1. There exist eg = eo(T, 1y, C), &1 = &1(T, s, ¢), J = J(1) and
Ty = To(z, r«, €) such that for B(t) € A.(I1) with R, ,B(t) =0, and P(t) € A,(ID),
if
Oni1 =Ty -y~ A2,
Qn =1/A Qn =1/ M4
”B”r,l'[(@‘FQn <ery WvLQn , (32)

max{[le” Pll,m, l€’gll.n} <’ M =€ <oy’ L,
and the eigenvalues of A + [ B] satisfy

. =. —y
VTl @) = Gi+[ED12 G e

. =. . = . —y
V=T @) = (T8 + 0+ (8] 2

Iy foralli # j,

for any k| < K, 1 <i, j <d, then there exists a quasi-periodic transformation ®, such
that ® reduces the system (30) to

Xy =(A+Bit.e)+ P Pt )xy +efrgy(te) +hy(xy.te), xyeR

. Ut vt Ur@ Vi@
By(t)=d t OV o) )
(1) =dig ((—vi(t) U o) V0 UF ()
which is defined in D(ry) x Iy, satisfies Rg, ,By+(t) =0, By = (%)L,B with L being
the steps of KAM iteration, and

where

max{[|€?* Pyl m,, l€P gl m, ) <&t (33)
IBy — By, m, <2815, (34)
+, 114+

Moreover, the following estimate holds:
g14/15

[P —idl|r m, < (35)
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In the case where B(t, €) =0 in (30), the same conclusions are true if one replaces (32)
by

. 1

max{[l€? P|,n, llefgll.m} < € < mm{eoy’, W}
no

Remark. From the following proof, the quasi-periodic transformation & is the finite
combination of these transformations: ¢;:x; = 1 Wi Xi+1 + xi, where x; is the
approximation solution of x;(t) = (A 4+ B(t) + b; (¢))x; (¢t) + ebi gi(t) and W;(¢, €) is an
analytic quasi-periodic matrix.

Remark. We can also write B (1) = Sdiag(Ef (1), .. ., E;(r))sﬂ, where E;H (¢) and

EELj(t) are conjugate complex functions, j =1, ..., d.

Proof. Before giving the proof, we first collect some useful estimates. Let
o=E&, Fo=r(1—n),
and define inductively the sequences

5 516/15 5(16/15)™
En=EXP ="

Letmg=min{m € Z; : K ~,}1/15 < 1}, and define

n
om+3’

Im=1 2mé,

15K7

m < my,

m = my,

and ;m—l =Tm—1 —F00m—1, 'm = 'm—1 — 3F00m—1.
Once we have these parameters, there exist J = J (1), &9 = &o(t, r«, ¢) and Ty =
To(t, ry, ¢) such that if

Eo<eoy’@L,  Qni1 = Toy™ M2,

then we have the useful estimates

B 1 )/.A‘E-‘rZ 30

&y < mi , , 36
O‘mm{Q,ﬁ){ (mcm) } G0)

e Kiom < £ & < (Foon)", 37)

where C3(7) is the constant in Lemmas 5 and 6.
In what follows we first check the above estimates. For estimate (36), let J(7) =
(O 51/ M1/ . = .
[1207.47]. By L= e=c0rr(Qn/ 07" +0n ) and the choice of (Q,) : Qpy1 < QnA4, if &g
is sufficiently small, we have

J
(copr QM1 T (o) Q.3 T Q3

and
5 J(@) 30(Ar+2) p AT Y
Eo<eoy’ L <e <(t——
O=ror =Y - (1603<r>>
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For the first estimate of (37), if m > m, by the definition of o,,, the estimate apparently
holds. If m < mg, by the definition of moK and o;,, we have

i I\, 1/2 _spa @ r
Komro > <£~—> <4_ 107> Q.51 WW
n

m

1INy N2 e 2 1
>(— — > 2 In —
—\é, 4.107) 2m83 =15 \ &,

for sufficiently small ¢g. For the second estimate of (37), if m > my, then

2 11 2 1 . ~
F()O’m =—In—— > “In ~_6’ll/15 ZE,L/IS
15 ¢,K 1 3

If m < myg, then

1 47/3(16/15)™
51/15  z1/15(16/15)" _ z1/18(16/15)™
&P =§, <&, (—>
Qn+1
= };r?i:i 112A4
2 Qn/

=To0m

for sufficiently small gg.
We now prove Lemma 8 by induction. For simplicity, we omit the dependence on €.

Consider
dx _

dt
where A and B(t) have real Jordan form as in (9) and (10), B(¢) € A, (IT) with
R, B()=0,and P(1), g(t) € A,(IT) with

(A+B@t)+ePP()x +€Pg(t) + h(x, 1), xeR?,

max{||e? P11, |€?gll,.1} < .

Assume that for j=1,...,v we can find the transformation ¢;_1:x;_1=

eéﬁj_l Wj,

'xj 4+ xj_1, where x;_| is the approximation solution of x;_| = (A + B(t) +

bi_1(®)xj—1+ ePi-1g j—1(t), and W;_; is an analytic quasi-periodic matrix, such that the

system

dxj'_]
dt

can be transformed into

= (A+ B@t)+bj_1(t) + P 1 Pi_1()xj—1 + €Pi-lg;_1(t) + hj—1(xj—1, 1),

i (A+B@)+bj(t) + €’ Pj(t))x; +€ig;t)+hjxj, 1),

satisfying R, ,,b; =0, and

max{lle” g;ll7,.m. I1€” Pz, n} < ),

514/15
1bj —bj-illzn =&, I Dxx;hjllz; <G,

1117,y < 2C3(r)y " AT QIT L7108,

1P W1 ll7,_, . < 2Gj1(Ca(r)y ~ATHD QI8 L71/24028,

(38)
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For j =v + 1, we want to find a transformation ¢,, such that it can reduce the system

d;tv = (A + B(t) + by(t) + € Py(1)xy + P g, (1) + Iy (xy, 1), (39)

to the desired form

dxyy1
dt
and satisfies the corresponding estimates.
First, we apply the change of variables x,, (t) = y, (t) + x,,(¢) to system (39), obtaining

= (A+ B(t) + byr1(t) + €1 P 1 () xys1 + €Pr4 g1 (6) + hyy1 (xug1, 1),

dy,
dyt = (A+ B(t) + by (1) + € P, () yy + € Py (D)2, (1) + by (3o (1) + x0(0), 1)
dx, (1)
+ (A + B(t) + by(0)xu(t) + P gy (1) — =

We wish to find x, (¢) from the homological equation

dx (1) B
5, — A+ BO+ by (1))xy (1) + €7 gy (2). (40)
By the inductive hypothesis (38), it follows that R ¢, ,,b, = 0 and
= 514/15
1bull7,, m < by — by—1ll7, m + Z 1bj —bj-1ll7;,m =2& /15,
j=1
Then, by (36), we have
Ar+2
514/15 14
Ibullz, < 28" < —F—ar,
2C3(0) 0%,

which implies that condition (13) is satisfied.
On the other hand, by the assumptions of Lemma 8, B(¢) satisfies (12), Rg,., B(t) =0,

and
14

e
Then for any |k| < K, we can apply Lemma 5 to get an approximate solution x,, of (40)
with the error term € (g, (7). That is to say, instead of solving (40), we first solve the
approximation equation
dxy (1)
dt
By Lemma 5, we have

IV —=1(k, w) — (A +[&;] for all [k| < K.

= (A + B() + by ())xu (1) + € (g,(1) — (80 (1))e)-

514/15

_ _ ~ &
Ix 17,1 < C3(x)y ~ATH QI8r £=1/2408, < 5 (41)

Moreover, the error term (g, (2)). satisfies

1€gv)e ll7,—foor,.11 < L7207 K0% g [, 1.
Thus system (39) becomes

d R R R
% = (A+ B(t) + by (1) + € By (1) yy + €41 8,() + hy (0. 1), (42)

https://doi.org/10.1017/etds.2020.23 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2020.23

1904 D. Zhang and J. Xu

where
Py(t)=Py(t) + € P Dihy(xy (), 1), Bog1 = 128y,
gu() =€ VPP ()xy (1) + €I (g (1)) + € PRy (0 (1), 1),
By s 1) = oy (3o + %0 (), 1)) = 1y (30 (1), 1) = Dyhy (x (1), Dy,

and the analyticity strip has been reduced to 7, = 7, — Foo,.
The terms of this equation must be bounded. Using Lemma 5, we have

€™ Pyllz, < ll€™ Pullz, + Gullxyl,

<P |IPls, + G L7003 (1) y AT Q18T g1,
~14/15

S 2Gv£—1/240C3 (T))/_(AT+2) QIST 5 < 32

Then let us bound ||+, ll7,, again by means of Lemma 5:

~ G
lePr1 gl < € 1P lIs Ixull7, + €1 (g0)ells, + 7”(||x_v lI7,)?

S£—1/24OC3(T)V—(.At+2)Q18r 55 4 £1/240,-Kivon &

s10/15 5

(,C 11240, (T)y—(Ar+2)Q18r £ < _
2 2

Finally, we bound Dy, yvhv(y,,, t):
1Dy, B llz, < 1Dy, o (o + 20(0), D)l7, < G,
where y, € By, (0). & = &y = |l -
For system (42), we first truncate P, (¢) as the form
P, =Tk P, +RiP,
= (Tk Py.ij)axd + (R Py.ij)axd

kw)
TKPvz]—Z l)lj , RKPUU_Z vz]
|k| <K |k|>K

where

Then we further divide €? 13U (t) into three parts:

5/3”131) :GﬂV(T[}ﬁv +T[§ﬁv+RKﬁv)s

5 HONH (1) 05(r)
ATLB, = di (”1(” ’fl(t)>,...,
Tk = dine ( —0} () Y (r) it fk

P X b X
uy (1) = T(Pvll + Py, ()= T(PU]Z — Py21),

where

with

.y e e ey

P Bo

A~ A € A~

5 () = T(PUZJ—I,ZJ—I + Pojog) 050 = T(Puzﬁ—l,zd = Pisi-1)
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and TI? P,=TxP, — Tlé P,, that is,
N HONHO! ub(t) vi()
diag7x P, = diag ((v‘f(t) —uvw) v(‘%(t) —u“%(t) ,

Wi (t) = 5(Poi1 — Po2), v () = 5 (P12 + Poay),

with

v _ 1.5 _ . p . .
ws(t) = 5(Pog_12i-1 = Pogsa)s viH)= 2( vad—1.2d 1 Pv2d 2d-1)-
Moreover, these truncation functions satisfy the estimates
1T Polls,.in + 1 T2 Polls,m < 21 + G, L7203 (r)y = A2 o187 ) m,

and

p 5 (kIR —27
IRk Pollfrm= D, |PylnellCr=200)
lk|=K

—2KF D c4/15, b
< e K0P lla n < EVPIPI, o

For simplicity, we define by(t) = P ’T,% P, and 1315’"6) =T 1% P,, with

. sre) ul (1) vy () us(t) vi)
diagP, = diag ((v}’(t) —u‘l’(t)) e (UE([) —uz.(t) .

Let
=g (_ymrmr) o (LU= m)
— LA e\\evmv=t) o \vmvEt) )
Then S~'5,(1)S = diag(A?, A}, ..., A;d ¥ AZJ) and diag(S~! A" ) = 0, where

AV =@ (1) — /=100 (1), Ag HOERASTH G}

a5 () — J_ HOB A

We rewrite system (42) as

(1) + V=105

2d1

dYV

—r =@+ BO+b )+ P (TEP, + Rk Po))yy + €P418,(t) + hy(yu, 1), (45)

where by (t) = by (1) + by (2).

Let y, (1) = e WO x| where W, = W, (wt, €) is an analytic quasi-periodic matrix.
Denote Av(t) = A+ B(t) + by+1(¢). Then we apply the change of variables y,(¢) =
e’ Moy, | to system (45). We have

dxyy1 A A A A~ dW N
(;:_ = (Av + e'g“ (AVWU — WVAV + T[?Pv — d—tv>>xv+1 + P\ﬁ—HXV"rl’

—ePv W, A —Pw, o eP
+€ﬂu+le € l)V[/ng(t) + e € VW\,hv(e€ le}xu-i-l’ t)7
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where
Bl ="M T+ P WA W 4 e W — 1 — Pw,)
+ Eﬁv (Tlgﬁv _ WUAAU)(EG}SU Wy, I) + Eﬂv (e_éﬂv W, _ I)T[%ﬁueeﬁ” w,
_eBy
y . ’ de="W — T+ bW
+e€ﬁ W"éﬂ"(RKPU)eieﬂ w, + (6‘ — + v)
—_eBvw,
de "
_ v—1T). 46
+ 7 (e ) (46)
The point is to find W, such that
aw " A N
L AW, + W,A, =T2P, (47)

dt
where diag(S_l'Tlg P,S)=0.
Thanks to the definition of b, and (43), we get ||by41 — byllp, o < (ePr M)W/ =
EY From (38), it follows that

v
514/15
Ubws1llz,.m < Wbwst = bulls,m + D bj = bj—illsm < 26577

j=1

(48)

Then, by (36), we have

yAr+2

2C3(1) 0,5,

514/15
byrills, n < 26,7 <

which implies that condition (21) is satisfied. What is more, since K < Q2, it is obvious
that R, ., (by+1 — by) =0, which implies R, ,by+1 =0by Rp, ,by =0.

On the other hand, by the assumptions of Lemma 8, B(¢) satisfies condition (22),
R, B=0,and
)| > %

(Ik| + 1)>®

Then for any |k| < K, i # j, we can apply Lemma 6 to get an approximate solution W,, of
(47) with the error term (7, 1% ﬁv)e. That is to say, instead of solving (47), we first solve the
approximation equation

aw,
dt

WV =1k, w) — (& +[E;]) + 1 +[E]] forall |k| < K, i # j.

_AAVWV + WUAU ZTI?ISV - (T[%ISU)@

By Lemma 6, we have
IWllz, i < 2C3(2)y ~ AT Q18T £=17240) B
Moreover, the error term (7}? ﬁv)e satisfies
(TR Po)ellz, oo 11 < 2L 1290 KT00 (|1 By |12+ 2016yt l7, - W7,

Then system (42) becomes

dxyq1

_ By A~
- =(A+BO+b®) + €158 P ()1 + 1P Wog (1)

+ e W@ Woxy 1, 1), (49)
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_ _—16/158, ( p’ Bo (T2 B .
v = e)-
where Py =€ (P, I (T% Pv)e)- Thus system (49) can be rewritten as

dvarl
dt
where

= (A+ B(t) + bys1(t) + P Py (0)xp41 + €Pr+igy 1 (1) + hyy1 (Xug1, 1),

byi1(t) =by(t) + by(t), by(t) =P TEP,,
Pv+1 — 6—16/15/311 (ﬁlj-’rl 4 Eﬁu (T[%ﬁv)e)a

Bow, A 16
(D), Bur =Bﬁ‘)’

i ~ B
€ VWVhU(EG VW,

gvi1t)=e"

hv+l(xv+l’ t) =e€ xv+]7 t)a

and the analyticity strip has been reduced to 7,4 1.
Now we estimate the new perturbation terms ef»+1 P, | and ef+1g, 1. Suppose that
||e/3V Pyll7,m < P M, = E:’v, and 5’0 is sufficiently small such that
514/15

_ _ A 1
I Wolls, i < 2C3 @)y~ AR QI L7VAOR B p < Z— <50 (50)

Thenby eV =T+ W + W2/2! +-- -+ W"/n! +- - -, we have

+efrw, 1
1 Ml n < T <2
L—lePWylls, m

Similarly, we have

514/15
By _ _ s &
e ™ — 7, < 4C3 )y AT QR L7108, < 2
grns

Bv — — 5
e — 15 P Wy, n < 8CE D)y AP Q) £7VINEL <

By Cauchy’s estimates and in view of
Fy — Fyg1 = 270y,
it follows that

d(ePrw,)
dt

- | Wollz, - 2C3(T)y—(Ar+2)Qﬁrl/:—l/mogv 3 533/15

)

2rpoy 2rgoy - 16
B 4C3(T)y—(A7:+2) Qlli_tlﬁ—l/2405v _ 61%3/15
2rgoy - 16

Fyg1,11

’

Fyg1,11

de—€" Wy
H dt

and

de=<"Wr — [ + P w,)
dt

- ch(r)y—Z(Ar+2) Qig_rll:—l/]ZOgg B 536/15

Fyg1,11

2Fp0y - 8

Altogether, combining the definition (46) of 13; the estimate of (Tlg 13,,)e and all the

above estimates, we obtain

—16/15 D/ 2 D
I Posillz, o <€ /PP (1B sy, o+ 1€P (TR P71
<€—16/15ﬂ.,g~16/15 — M16/15
< 1 16/15,

+10
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Then
16/15 16/15 c16/15 &
l€Prt Pyyilly,, m < €O/ 1Pvpgl615 Z EIO/5 = &y
Similarly,
A 516/15 S
lePtguitliz,m < 2P+ 1gulls, m < E0P =€
and

v

P IWullz, .

(1+ P Wy ll5,, )2
= +1>
1— P [Wyls,,, '

14 2
L ) e e ™ 1I7,,,)

= v

where x,+1 € By, (0), kyst = io/(1+26P | Wyll5,,,) and & =&k, — |xy]7,. The
convergence of the sequences of analytic radius {«,} and second-order derivatives, {G} is
given in §4.2.

Notice that there exists L > mg such that & < L,& =& and -1 > &;. Once
we reach the Lth step, we stop the above iteration. Let ® =¢go---o¢dr_1, x4 =xp,
By (t) = B(t) + br(1), where by (1) = Y7 €/ T P;(t) has the form as in (44), By =
(%)Lﬂ, Py(t)=Pr(t),g+(@) = gL (1), h4(t) = hp (). Then the transformation x = ®x
reduces the system (30) to

dxs _ B+ B+
— =(A+ By () + € Py (0))x+ + €77 g1 (t) + hy(xy, 1).

dt
Moreover, since K < Qp+2, it follows that Rg, ., B4+ () = 0.
Since ® =gpo---o0ps_1, where ¢ :xi = e Wixi +xi(i=0,...,L—1), we

obtain xg = ®x;, that is,
xo =" Wox; 4 xo
— "I Wo 1w X+ ¢ Wox1 + xo
L—1
= W W -eGﬁLleL*le + Z oW .. -eeﬁi*lw’”xi + Xo.
i=1

Then estimates (41) and (50) yield that

[P —idll,, <

L—1 L-1

. T et o,
| |e€lW,_IdH+ ”eEOWO.._eél 1W1—1x_l||+||@”
i—0 i=1

L—1
L—1 _B:w. i1 Bjw.
< fleZimo W — 1) + 3 fei=0 < Wixi|| + 1 xo
i=1

L—1 514/15
<2 IeP Wil +4lxll < =
i=0

In addition, it follows from (48) that estimate (34) holds. Thus, we get all the estimates
(33)-(35).
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Recall that
ry =ro(l —n).
By the definition of o,,, we know oy, = %Gm if m > mg. Then, by the selection of
LeZy (e & <&i,&-1>&+= £+50) we have

L—-1 mo—1
D_0i= i+ Z o)
j=0 j=0 Jj=mo

0 21n & 16\ 16\
~4 Ki \15\15 15
n 32InL, 32In& 2Iné& (16)’"0
15)

<
4 15 Kry 15 K7y Ky

L—-1 ~
n 321n£+ n c( 1 1 n
i =y~ Syt om= T A ) =y
,Z_o 4715 Ky 4 8\ oM T gA) =3

=16/15

If mo = 0, that is to say K&, < 1, we have

— 32mImLy 32hé& 2Iné
Zajs—— — -+ —
15 Kry 15 Kry Kry

2Ly 2
15 K7y 15 K7y

Suppose that £ > £. Then

L—1
Zaj<—ﬁln€+ <7
— - 15 Krp T 3

which implies 7, = 7y — 37 Zf;& 0j >rq.

Remark. 1If 50 < L4, which means that 50 is small enough, we do not need to do
the above iteration and let ® = id, where id is an identity mapping. Since & < L4 =

/M / 1yml/4
e—COVr+(Qn0+I/Qn0+1 Qn0+l and £n+l . e—COVn";H—](Q)10+n+l/Qn+|+Q,,0+,,+1) is a series of

monotonically decreasing numbers, there exists Liyj(k > 1) such that - - < Lo <
Lit1 < & < Lx. Then we let &g = & = - - - = &_; =id, and apply the above iteration
to find ®; from the (k + 1)th step, since E:'O > L+1. Therefore, without loss of generality
we suppose that £ > £ . O

4.2. Iteration and convergence. LetQ <r, <r, 7 > 2,y > 0,and A and M be defined
as in (31). Since r/ry > 1, there exists ¢y = %(r/r* + 1) such that r > ¢or,. Let

A
1 1 4-10"J(t)In2
EZ_ 1_.,_ <17 T1= # )
12 Co Cry

A2 \ (51)
T:max{T()(E) , le_A, 4A }
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These constants £o(T, 7y, €), €1(T, r«, ¢), J(t), To(t, r«, ¢) are defined as in Lemma 8.

Due to the choice of Lemma 2, there exists some ng € Z such that Q,, < TA4,
whereas Qno > T. Since Oy, < TA4, we can take e sufficiently small, depending on r, ry,
y and 7, but not on «, such that

J 2 J 2
. 4 g1y 1 . 4 ery 1
cmnfeo(5) (5) - g | =mn(3) - (%) g}

For any given £ > 0 satisfying (52), we define some sequences inductively:

&=E& ro=r, =y,

. _ M 'l/./\/ll/4
Yn = ;/7’ £11+1 =e LOVnVnH(Q»10+n+1/Qn0+,l+1+Q,10+n+1 ), gn—H = cn—HSn’
~ A—1/2A%
nn:CQnoJin PR 7R | =r,(1 _nn)zy
Yn Qn0+n ~3/A
K, = [ max{—, Ot .
4.107 ;OJrn on

Suppose that on IT,, the non-resonant conditions (53) for |k| < K, hold. Define
/ - Vn+1
R$+1()/n+1) = {6 eIl |v—1k, w) — (A; + [D?H]ﬂ < (|k|:-—+1)3” Vik| < Ky },

Yn+1

Ry (as1) = {e €M, : |V=1(k, ) — G + [E] ') + (; + 1] < T

V|k|<Kn+1,i¢j},

and
Rt (V) = Ry ) | Ry ).

Then for any € € 1,41 = I1,,\R,+1(¥x+1), the corresponding non-resonant conditions of

the (n + 1)th step hold.
First, we claim that r,, > r, for all n. In fact, by our selection Q41 > Qno >T > 4A4,

we have

o0 [o/0]

4
[Ta-2m=1-4> m=1-8:0,'[7" >1-8z
k=1 k=1

which implies that for any n > 0,

n o0
Fh=r 1_[(1 — )2 > r(l = 2n0) 1_[(1 —2mk) > r(1 —12¢) > ry.
k=0 k=1

Second, by the choice of parameters we can verify that B,,, Qn0+n, P, satisfy that

A -A/2
Qn0+n > Toyn / s

0 +n—1 ~1/A 0 +n—1 =1/ M4
1Bally, ., (A— + 0,0 ) e ==+ 0,0 )
no+n—1 no+n—1

max{[|e? P, ||, 11, 1€# gnllrym, ) < €My = &, < g0y, La.
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In what follows we check the above estimates by induction. By Q,,41 > QnA and Q,,O >
Toy, —A2 , we have

—AJ2) A A2

Ongin = 058 = (Toy, > Toyn

By Qni1 = O Qi1 > 07 and & < (e1y/2)%, it follows that

0 + —1 1/A Q + —1 1/A
||Bn||rn,n,,( W Q) ey (SR 4 00,

n0+n 1 ”0+"—1
Qn0+n—1 = l/./\/ll/4
= 813’"(M— T Qytnt |-
no+n—1

Since Qp, > le_A, one can check that £; < 1/2/(, Then the definition £, and the
estimate £ < eo(y/2)” yield that

En=LyLy1--L1&0 = Ly —=&

n ( 1)]

1 y I
EE"ZWT)J&)(E) _803/,1['

After setting the parameters, we will perform infinite KAM iteration and prove its
convergence. For the first step, let By =0, Bo=1, Pp = P, go =g and ho = h. By our
selection Qno >T > Toy_A/z, and (52),

J
y 1
max{e€ol| Pollry, 1y, €0llg0llry, 1o} =< €0Mo = Ep < mm{fo( ) Qm, }

Meanwhile, we can check that (36) and (37) hold. Thus we apply Lemma 8 and get a
transformation ®¢ : D(r1) x I11 — D(rg) x I1p such that system (1) is transformed into

T =A+Bi+ PrPi)x1 + €Prgi(t) + hi(x1, 1),
satisfying

4/15

||Bl||r1 I <28 =&y,

and
max{[|€® Pi[l,.11,, I€P g1llr.mm,} < E0L < g0y’ L.

Note that the above estimates mean that all the conditions of Lemma 8 for the next step
hold.
Inductively, there exists a subset I1,, C IT with

n —_n Vn
m, — {6 €T IW=T{k, @) — (i + [E]) + Oy + [E1D] = CEER

VoI, @) — i + B = — k| < Ky i £ ), 53
| (k, ) — (A [’])|_(|k|+1)3f k| ny bl #J (53)
and for € € I, there exists a transformation ®,,_; such that it reduces the system of the
previous step to a desired form and satisfies

14/15

. —1
|®n—1 —idly,, n, < n4
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Let ®" = ®go- - -0 ®,_1. Then, for any € € I1,, the transformation x = ®"x,, reduces
system (1) to the form

dx, _
dt
where A has the real Jordan form (9), and B, (¢) has the form

o Up(e) Vi) Ui(e) Vi)
Bnt) = diag ((—vl"m Uf(r)) e (—v;a) vr) )

with U]'.’ @), V]’? NOG=1,...,d being real functions,

(A + By(t) + €P Py (1)) x + €Pr gy (6) + Iy (0, 1),

14/15
max{[[€? P, .11, 1€/ gnllyym1,} < €P" My =En, 1By — Bu_illry.m, <2607

f— n—1

and h, (x,, t) is analytic with respect to x,, on the ball B, (0), satisfying

(14 Pt | Wi l,)?
Dy, x,hnlly, < Gn =G n
1D, hinllr, < Gn = Gn—i 1 — bt |W,_1]l,,

Consider now the convergence of ®". By Lemma 8, we observe that
gl4/1s

n

4

1®n —idlly, .M <
and

gl4/15
DDy — IDrpy. 11,y < '11—6

where D denotes the Jacobian with respect to x. By induction we have D®" =
D®g - - - D®,,_1, with the Jacobians evaluated at different points, and

14/15
ID®"|| = DD - - DOl < [[( 14+ 2 ) < o0,
16
k>0
which is uniformly bounded on D, x IT,,.
Then
1
" — @y, 1, = 19" 0 @y — ",
< 1D®" (I, .n, 1®n —idlls, 1.1,
14/15
< En
-2
and
gy 14/15
+1_ - k
1" —idlly, 1,y < g S =57

By the methods in [17], we can prove the convergence of the radius «;, of the ball where
h, is analytic with respect to x,, and the second-order derivative G,, of h, with respect
to x,.

It has been shown that
B [ B i l5allr,
1+ 2eP | W, L4 26P | Wl 1+ 2P Wl

Kn+1
||rn+l
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We now define

B 1 B (B
L+ 2P | Wolly,, o 1+ 2eP Wl

dn

where [0, a, converges,

(o)
lnl_[an

n=0

o o0
<> nay| <2 P Wyl < oo,
n=0 n=0

and Y .7 b, converges.
Suppose that [ 1,2 a, =a € (0, 1) and )", b, = b. By induction

n n—1 n
Knt1 = <l_[ ai>K0 - Z[( H aj)h} — by
i=0 i=0 j=i+1
>akp — b.

Therefore, the sequence {«,} is monotonically decreasing and has a lower bound, so it is
convergent, and ko, > ako — b, which is positive if € is taken small enough.
Consider now the value G,,. From Lemma 8, we know that

(1 + €l | Wylly,. )?
1—ebn|Wylly, .,

Gn+1 =GUn

’

and, by means of the inequality 1/(1 —x) <1+ 2x,if0<x < %, we get

Gn1 < (L4 2P| Wy . )Gy

n
<[Ta+2¢%1w;lr,.)*Go
j=0

< (1 +4€Po Woll,)*Go < 2Go.

Therefore, the sequence {G,} is monotonically increasing and has an upper bound, so it is
convergent.

Let I, =(,>; p, ®*=limyoo ®", By =lim,.00 B, and hy =lim,_ o0 hy.
Because lim,,_, o ePn P, =0 and lim,,_, o € gn = 0, the transformation x = ®*y reduces
system (1) into

d
= (A+ By +h(y 10, yeR’,
where A has the real Jordan form as in (9), B, () has the form
* * Ux(@t) Vi@
B.(t) = diag (Ulf) Vl,f”) B AN (54)
~Vi @) Uy (1) —VE(0) U(1)
U]’.‘(t), V]?k(t) (j=1,...,d) are all real functions, and h.(y, t, €) = O(y%) as y — 0.
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4.3. Measure estimates. We now estimate the Lebesgue measure of the set IT\IL,.
Recall that IT, = ﬂ;’lozo IT,, where T1 D 1o D II; D--- is a decreasing sequence of
closed sets defined inductively during the iteration process by

oo
My =T\ [J Ra(r). Mo =T n=0,1.....
n=0

where

Ra(yn) = Ry (v) | RE(vn),

Vn

1 _ . _ _ . =n
Rn(yn>—{ee(0, €0) V=T, 0) = G +[E]D] < Gt

Vik| < Kn}»
and
R2(yn) = {e € (0. €0) 1 [V/=T{k, ) — (i + [EJ]) + (hj + [E"D)]

Vn
< —’
(Ik| 4 13"
Let ¢! = A; + [E7], (pl"] =0 +[E'D — () + [E;?]), i # j. By Lemma 7 and KAM
iteration, A; + [E?] - A?(e) = O(€?). Then it follows from non-degeneracy condition B
and [E7] — [E?] = O(€?) that

V|k|<K,,,i7éj}.

n 0 (291 = 29 " — Y
dg; ol = d(2(e) + (i + 1BV = 2%(e) + ([EM - [ ,]))|6:0 L2820,
de de
Similarly,

>25>0 foralli#j.

‘ |€0

Let f (€) =~ —1{k, w) — (p and fz(e) = —1{k, ) — (pl"] i # j. Then there exists a
sufficiently small €g such that for € € (0, €p), the above iteration is convergent, and

df'| _|de} df?
—|=|—"|=6, |—=|= > 4. 55
‘de ‘de - de - (55)

For € € (0, €p), by (34), we have

d(plf’j
de

| Bn — Boll < 1By — Bu—1ll + - - -+ | B1 — Boll
<25.14/15 +28]4/15

54554/15 _ %A?I 14/15

where By =0, M= 8| Pol|'4/13. Hence,

|F2@)] = [V=1tk, @) — & + 4] — [[E]1] — [[E7]]
>N
R

Y0 o 14/15'

>__‘°
T

—2||Bn — Boll
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If 1/(k|+ 1) = 2"’ yo. then | /()] = yo/2(1k] + 1) > yu /(K| + 1) that is,
R,%()/n) = {. Suppose that 1/(|k| + 1) < 21\26&4/15/)/0. By (55), it follows that
d2y !
meas(R2(y,)) < 3 z Z (k| + 1)37
1/(kI+1)7 <281 1y
- d2)/n 4M26§8/15 Z !
B Yo feze (I DT
28/15
ce;
— 2" ’

where c is a constant depending on yg. Similarly, meas(R,ll (vn)) < 6638/ 15 /2",
Noting that

(0, €\, = (0, eo)\<ﬂ nn> = [J«0, ep\1,).
n=0

n=0
we have
o0 o
meas((0, €)\I) < Y meas((0, e)\[1,) < Y meas(Ry(y)) < ceq '
n=0 n=0
and
. meas((0, €9)\IT)
lim =0.
€o—0 €0

Therefore, I1 is a non-empty subset of (0, €p).

4.4. Elimination of the non-resonant terms on the diagonal. By infinite KAM iteration
steps, system (1) can be reduced to the following system with non-constant coefficients:

$=(A+ Bu())x + ho(x,t,€), xeR? (56)

where A and B, (z) have real Jordan form as in (9) and (54), and h.(x, t, €) = 0(x?)
as x — 0. For simplicity, we continue to write A = Sdiag(\q, ..., )LZJ)S_I, B.(t) =
Sdiag(ET(t), e, E;J(I))S_l, where A2;_1 and A2; are conjugate complex numbers, and
E;Fl (t) and E;I. (t) are conjugate complex functions, j =1, ..., d.

We will now eliminate all the non-resonant terms containing ¢ on the diagonal. First,
making the change of variables x = Sz, system (56) becomes

2=(A+ B.()z+ hi(z, t, €), (57)

where A =diag(A1, ..., Ayg), Bi(t) =diag(E¥(1), ..., EX.(1)) and hi(z,t, €)=
S~ hi(Sz, t, €).
Second, notice that 8(«) has an equivalent definition (6) and (7); this implies that the

equation

*..
2d

dH(t)

dt = B*(t) - [B*]
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has an analytic solution if 0 < B(«) < ry. Let z = e"® 7. where

=¥ (k i(k,w)t
2 IF); 0 L 0
ik, w)

0#£keZ?

H(t) = e

( ) E;J(k)€i<k’w>t

0 e 0 —_
2 ik, )

0£keZ?

Then the above system (57) becomes
dH(t dz - - -
e dt( o+ M=t = (At Bu(1)eVzn + ha(e V2,1, 0),

which can be reduced to
dz.

—r =@+ BDz+ e TR V201 0). (58)
Third, making the change of variables z, = S~!x*, system (58) becomes

d *

;t — (A4 BHx* +h*(x*, 1,€), x*eR,

where B* = S[B,]S~! is a real constant matrix, and h*(x*, 7, €) = Se O §~ 1, (S ®
S~1x*, t, €) is a real and high-order term. Thus, Theorem 1 is proved in full.

5. Applications

By way of applications of Theorem 1, we apply our theorem to the nonlinear Hill
equation with quasi-periodic forcing terms, weakly forced oscillator and damped equation
to study the existence of a quasi-periodic solution with basic frequencies as its frequencies.
This kind of solution is also known as a response solution. These three kinds of
equations correspond to Hamiltonian systems, reversible systems and dissipative systems,
respectively.

Example 1. Consider the nonlinear Hill equation with quasi-periodic forcing terms
P+ @ +ea)x=ep), n=1, (59)

where a; is a positive constant, and a(¢) and p(¢) are real analytic and quasi-periodic in ¢
with basic frequencies w = (1, «), where « is irrational.

When a(t) and p(¢) are continuous and 1-periodic, Liu [20] considered the nonlinear
Hill equation with periodic forcing terms

¥4+ x4 (@ +ea(t)x = p@t), n>1, (60)

and used Moser’s twist theorem to obtain the following results: there exist a large constant
oy > 0 and a small constant €y > 0 such that for every irrational number « > o, satisfying
p 1
a—=|>—>—=
ql  2lg**+

for all integers p and g # 0 with some § > 0, there is a quasi-periodic solution of (60)
having frequencies (1, o) when 0 < € < €.
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The natural question is whether there are quasi-periodic response solutions for nonlinear
Hill equation (59). Let x = ,/a;y. Then equation (59) can be rewritten in the form

z=(A+€eP(t,e)z+eg(t,e)+h(z,t,€), z¢€ R?,

0 0
_(* _ 0 Jar _ 1
Z_<y>’ A‘(—Ja? 0)’ ho= ~ae00)

0 0
g(t) = (\/%P(ﬂ) > h(z, 1) = (_ﬁx2n+l> .

By Theorem 1, for most sufficiently small €, for all @ € R\Q, system (59) has a quasi-
periodic solution with basic frequencies w = (1, &), such that it goes to zero when € does.

where

Example 2. Moser [23]) Consider a weakly forced oscillator
¥+A2x =ef(x, %, 0), (61)

where f(—t,x, —x) = f(t, x, Xx) is quasi-periodic in ¢ of basic frequencies w =
(w1, . .., ws), and real analytic with respect to x, x and .

Moser [23] has obtained some well-known results: if w satisfies

Ik, @) + jol = fork € Z°\{0}, jo=0, 1,2,

14
|k*
there exists an analytic function a(e) such that for a = a(e) the above forced oscillator
possesses a quasi-periodic solution of frequencies w = (wy, . . . , wy).

Our aim is to find a quasi-periodic solution of Liouvillean frequencies w =
(1, ) for small €. Let x =Xy and f(x,x,t)=f(0,0,1)+ (3f/9x)(0,0, t)x +
(0f/9x)(0, 0, )% + O(x2) + O(4?). Then equation (61) can be rewritten in the form

i=(A+eP(t,)z+eglt,e) +hiz, t,€), zeR?
where
0 0

X 0 A
y A0 Aax(o,o,t)kay(o,o,t)
0 0
W=\ r0.0n) h(Z”)z(mzZ))‘

Then by Theorem 1, for most sufficiently small €, system (61) has a quasi-periodic solution
with Liouvillean frequencies w = (1, «), such that it goes to zero when € does.
Example 3. Consider the differential equation

X+ aix +axx —|—x2=6f(x,)'c,t), (62)

where f(x, x,t) is real analytic in all variables and quasi-periodic in ¢ with basic
frequencies w = (wy, . ..ws). The usual choice of a; > 0 corresponds to a damped
equation. In these equations the damping dominates the forcing term.
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For equation (62), Stoker [27] has proved some well-known results: if the basic
frequencies w satisfy the Diophantine condition (2), a; # 0 and €/a; is sufficiently small,
then there exist quasi-periodic solutions possessing the same basic frequencies.

We are mainly concerned with the existence of quasi-periodic solutions with
Liouvillean frequencies w = (1, o). Let x = y. Then equation (62) can be rewritten in

the form
<)‘C)_<O 1)<x)+(:>+< : )
y —ap —aj y —x2 ef(x,y, 1))

By Theorem 1, if af — 4as # 0 and a;y # 0 (different and non-zero eigenvalues), for most
sufficiently small € (elliptic case) or for all sufficiently small € (hyperbolic case), system
(62) has quasi-periodic solutions with Liouvillean frequencies.
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is supported by NSFC (grant nos 11001048, 11571072) and the Fundamental Research
Funds for the Central Universities (grant no. 2242017k41046), The second author is
supported by NSFC (grant no. 11871146).

A. Appendix
The proof of Lemma 3 first appeared in [1], and we include the full proof for the
convenience of readers.

Proof. The idea is to select an appropriate subsequence according to the definition of the
CD bridge for which we will have a unified and nice control on the solution of homological
equation (8).

Recall that A =1t + 3, (Q,) is the selected subsequence of « in Lemma 2 with this
given A, and n = ¢/ Q,l/ 2“44, where 0 < ¢ < 1. The solution of equation (8) can be written
as

g(t, €)= Z i€ PALLE

0<11=0,sr &> @)

Now we consider two cases to estimate the norm of g(z, €).
In the case of Oy < 07, (Qn—1. On). (Qn, Qu41) are both CD(A, A, A3) bridges.
Let qu = Qn—17 qv+1 = Qn+]. Then

Si(e)
ehosn=( X + X +er X )29
O<lkl<qu  qu=<lkl<qut1 qu<lkl<qyi1 ’

< 26]14 Z |fk(€)|e|k|r(1—n) + 2qu+1 Z |fk(€)|e\k\r(l—n)

0<|k|l<qu Gu=lkl<qu+1
e 2 ) L@l

qu=lkl<qy+1

< (2qu +2) qj+1e—’"qf) I =L .

j=u

oMklr(1=n)
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By the definition of CD bridge, we have 0, < Qr/ﬁl < qu’.43 for j € [u, v], which implies

1/2A% 245 gitl
_ . - +
qj+le nd; SC(T)‘Ij+1 <:l—> Sc(r*a T, C) jA4 .
crg;j q;

Moreover, again by the definition of CD bridge, we know that for any j € [u, v], gj11 <
qfl and q,;‘\ < Qn. Then we have

v
~ qj+1
lglra-pn < et .8 | g+ Y 2 | I1f = Lflra-p.n
Jj=u 1j

<C10 T OO = L Hraa—p.n-

In the case of Qn > QnA, let g, = O and gy+1 = Qn+1. By the construction of the
sequences (Qy), we know that Q,, > QnA and forany j € [u + 1, v], gj41 < q;“. Then by
the similar argument as in case 1, we have

v
- qij+1
lgllra—p,m <c(rs, T, C) <qu + Z 1;4 )Ilf —[fllra=p,n
j=u4j
NS 0
<Ci(rs, 7, C)( n/A+ Q;&)Hf =LA l-a=p,m-
n

O
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