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Abstract – Cretaceous–Miocene adakitic rocks in the southern Lhasa sub-terrane have been intens-
ively investigated, while possible Early Jurassic adakitic rocks in this area have been largely neglected.
Petrological and geochemical studies revealed adakitic affinities of an Early Jurassic quartz diorite in-
trusion with mafic enclaves and three tonalite bodies from the Jiacha area in the southern Lhasa sub-
terrane. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb
dating suggests crystallization ages of 199–179 Ma for these rocks. Both quartz diorites and tonal-
ites have typical adakitic geochemical characteristics such as high Al2O3 (15.14–18.22 wt. %) and Sr
(363–530 ppm) contents, low Y (4.46–15.9 ppm) and Yb (0.51–1.74 ppm) contents and high Sr/Y ra-
tios of 27–106. The adakitic quartz diorites are further characterized by high MgO (2.63–3.46 wt. %),
Mg# (48–54) and εHf(t) (6.6–13.4) values, which were probably produced by partial melting of a sub-
ducted oceanic slab with a mantle contribution. The adakitic tonalites have very low abundances of
compatible elements and relatively low εHf(t) values (3.5–10.3), and are interpreted to have formed by
partial melting of Neoproterozoic mafic lower crust. Upwelling asthenosphere, triggered by rollback
of the subducting Bangong–Nujiang (Meso-Tethys) oceanic plate, provided the necessary heat for slab
and lower crust melting, resulting in the geochemical diversity of the coexisting felsic intrusive rocks.
Contrary to other models, this study further demonstrates that the Bangong–Nujiang oceanic plate
was subducted southward beneath the Lhasa terrane during the Early Jurassic.

Keywords: Adakitic rocks, slab melting, Early Jurassic, Bangong–Nujiang (Meso-Tethys) Ocean,
southern Lhasa sub-terrane

1. Introduction

The origin of adakitic rocks, which are characterized
by SiO2 ≥ 56 wt. %, Al2O3 ≥ 15 wt. %, Sr ≥ 400 ppm,
Sr/Y ≥ 20, Y ≤ 18 ppm and Yb ≤ 1.9 ppm according
to the definition of Defant & Drummond (1990), is
a matter of continuous discussion in the geoscientific
community. Originally adakitic lavas, occurring in
fore-arc environments, were interpreted as typical
melting products of very young (<25 Ma) subduc-
ted oceanic crust (Defant & Drummond, 1990, 1993).
However, in ‘cold’ subduction zones, relatively old
oceanic crust usually follows P–T paths with low geo-
thermal gradients of c. 5–7 °C km−1, thereby prevent-
ing melting at shallow depths (e.g. Peacock, Rush-
mer & Thompson, 1994; Peacock et al. 2005; Kimura,
Kasahara & Takeda, 2009). Therefore, the presence
of adakitic igneous rocks in several fore-arc environ-
ments above former ‘cold’ subduction zones (e.g. Na-
kamura & Iwamori, 2013) led to several alternative
tectonogenetic models such as the subduction of the
leading edges of newly subducted slabs (Sajona et al.
1993; Yogodzinski et al. 2001) or slab-window mar-
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gins (Thorkelson & Breitsprecher, 2005), slab tearing
(Pallares et al. 2007; Calmus et al. 2011), highly ob-
lique convergence (Yogodzinski & Kelemen, 1998),
and flat subduction (Gutscher et al. 2000) to account
for the melting of old oceanic crust beneath fore-arc re-
gions. Furthermore, due to the occurrence of adakitic
igneous rocks, which are not the result of slab melt-
ing, various geodynamic models have been suggested
to explain their petrogenesis (see Castillo, 2006, 2012;
Ribeiro, Maury & Grégoire, 2016): (1) melting of
mafic, fertilized mantle-derived materials underplated
at the base of lower crust (e.g. Atherton & Petford,
1993; Guo, Wilson & Liu, 2007; Zhao et al. 2008); (2)
high-pressure mineral fractionation of mantle-derived
wet basaltic magmas (Castillo, Janney & Solidum,
1999; Garrison & Davidson, 2003; MacPherson, Dre-
her & Thirlwall, 2006; Rodriguez et al. 2007; Petrone
& Ferrari, 2008; Gao et al. 2009); and (3) mixing and
mingling of evolved melts with mantle melts in shal-
lower crustal storage regions, periodically refluxed by
mantle melts (e.g. Castillo, Janney & Solidum, 1999;
Ribeiro, Maury & Grégoire, 2016).

Mesozoic–Cenozoic magmatic rocks are wide-
spread in the southern Lhasa sub-terrane (Fig. 1;
Schärer, Xu & Allegre, 1984; Coulon et al. 1986;
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Figure 1. (Colour online) (a) Tectonic framework of south Tibet, showing major tectonic subdivisions (modified from Zhu et al.
2011a). (b) Geological map of the Gangdese belt (modified from Mo et al. 2013), showing the distributions and ages of Late Triassic–
Early Jurassic intrusive rocks (age data are from Chu et al. 2006; Liu et al. 2006; Qu, Xin & Xu, 2007; Zhang et al. 2007a, b; Ji et al.
2009a, b; Yang et al. 2011; Zhu et al. 2011a; Dong & Zhang, 2013; Guo et al. 2013; Qiu et al. 2015; Meng et al. 2016a, b; Shui et al.
2016; Ma et al. 2017). Abbreviations: JSSZ = Jinshajiang Suture Zone; BNSZ = Bangong–Nujiang Suture Zone; SNMZ = Shiquan
River–Nam Tso Mélange Zone; LMF = Luobadui–Milashan Fault; IYZSZ = Indus–Yarlung Zangbo Suture Zone.

Chung et al. 2003; Mo et al. 2005; Chu et al. 2006;
Wen et al. 2008a, b; Ji et al. 2009a, b, 2012; Zhu et al.
2009, 2011a, 2015; Mo, 2011; Ma et al. 2013, 2014;
Qiu et al. 2015). Among them, Cretaceous–Miocene
(137–10 Ma) adakitic rocks have been recognized and
intensively investigated (e.g. Chung et al. 2003; Hou
et al. 2004; Gao et al. 2007, 2010; Guo, Wilson & Liu,
2007; Wen et al. 2008a; Zhu et al. 2009; Guan et al.
2010, 2012; Zhang et al. 2010; Chen et al. 2011; Ji
et al. 2012; Jiang et al. 2012; Zheng et al. 2012; Ma
et al. 2013, 2014; Meng et al. 2014; Xu et al. 2015).
The Cretaceous adakitic rocks in the southern Lhasa
sub-terrane are believed to be a result of partial melt-
ing of the subducted Neo-Tethyan oceanic plate or of
partial melting of thickened lower crust in response to
the subduction of the Neo-Tethyan oceanic plate (Wen
et al. 2008a; Zhu et al. 2009; Guan et al. 2010; Zhang
et al. 2010; Jiang et al. 2012; Ma et al. 2013; Xu et al.
2015). The Cenozoic adakitic rocks were suggested
to have formed by partial melting of thickened lower
mafic crust, subducted oceanic crust or metasomatized
mantle during the India–Asia collision (Chung et al.
2003; Hou et al. 2004; Gao et al. 2007, 2010; Guo,
Wilson & Liu, 2007; Guan et al. 2012; Ji et al. 2012;
Ma et al. 2014; Meng et al. 2014). Typically, the Ceno-
zoic adakitic rocks were thought to indicate the timing
of the crustal thickening of the Tibetan Plateau as well
as the subduction of the Indian continent beneath the
Lhasa terrane (Chung et al. 2003; Hou et al. 2004;
Guo, Wilson & Liu, 2007; Guan et al. 2012; Ji et al.
2012; Ma et al. 2014; Meng et al. 2014). In contrast,
the presence of Early Jurassic adakitic rocks is poorly
documented in the southern Lhasa sub-terrane.

Furthermore, a long-standing controversy exists as
to whether the Late Triassic–Early Jurassic igneous
rocks are the products of partial melting of underplated
mafic lower crust or of ancient continental crust (Chu
et al. 2006; Zhang et al. 2007a, b; Yang et al. 2011;

Zhu et al. 2011a; Dong & Zhang, 2013; Guo et al.
2013; Meng et al. 2016a, b; Shui et al. 2016; Ma et al.
2017). Therefore, the study of the largely neglected
Early Jurassic adakitic rocks will provide important in-
formation on their petrogenesis and tectonic setting in
the southern Lhasa sub-terrane.

In this paper, we present petrological, geochemical,
zircon U–Pb and Hf isotopic data of the Early Juras-
sic adakitic rocks and associated mafic enclaves from
the Jiacha area in order to constrain their petrogenesis
and discuss the Early Jurassic tectonic evolution of the
southern Lhasa sub-terrane.

2. Geological background and petrography

The Lhasa terrane is bounded by the Bangong–
Nujiang suture zone to the north and the Indus–
Yarlung Tsangpo suture zone to the south, represent-
ing Meso- and Neo-Tethys ocean relics, respectively
(Fig. 1a; Yin & Harrison, 2000). It is generally di-
vided into southern, central and northern sub-terranes,
which are separated by the Luobadui–Milashan Fault
(LMF) and the Shiquanhe–Nam Tso Mélange Zone
(SNMZ) (Fig. 1a; Zhu et al. 2011a). The Bangong–
Nujiang ocean (Meso-Tethys) is believed to have sub-
ducted southward beneath the Lhasa terrane during the
Permian to the Early Cretaceous (e.g. Pan et al. 2004;
Qiu et al. 2004; Zhu et al. 2011a). However, Kapp
et al. (2003, 2007) suggested a northward subduction
beneath the Qiangtang terrane in the Late Jurassic.

The southern Lhasa sub-terrane mainly consists of
juvenile crust with Precambrian basement slivers (e.g.
Mo, 2011; Ji et al. 2009a; Zhu et al. 2011a, b). This
sub-terrane comprises the Gangdese belt, which ex-
tends ∼2500 km from east to west (Fig. 1b; Mo et al.
2005; Chu et al. 2006; Ji et al. 2009a, b; Mo, 2011). It
consists of large-scale intrusive complexes and wide-
spread volcanic rocks, which were mainly generated
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Figure 2. (Colour online) Geological map of the Jiacha area, eastern Gangdese belt.

between 220 Ma and 13 Ma (Fig. 1a; Yin & Harrison,
2000; Chung et al. 2003; Mo et al. 2005, 2011; Chu
et al. 2006; Wen et al. 2008a, b; Zhu et al. 2008,
2009, 2011a; Ji et al. 2009a, b, 2012; Kang et al.
2014; Meng et al. 2016a, b). These igneous rocks show
two age peaks of ∼109–80 Ma and ∼65–41 Ma (Ji
et al. 2009a, b; Zhu et al. 2011a). The Late Triassic
–Early Jurassic intrusions (215–182 Ma) mainly con-
sist of intermediate-silicic rocks (Chu et al. 2006; Liu
et al. 2006; Qu, Xin & Xu, 2007; Zhang et al. 2007a,
b; Ji et al. 2009a, b; Zhu et al. 2011a; Dong & Zhang,
2013; Guo et al. 2013; ; Meng et al. 2016a, b; Ma et al.
2017), with coeval volcanic rocks of the Sangri Group
(Kang et al. 2014) and the Yeba Formation (Zhu et al.
2008; Wei, 2014).

The studied Early Jurassic quartz diorite and tonal-
ite rocks were collected in the Jiacha area in the east-
ern part of the Gangdese belt (Fig. 2). Middle Carbon-
iferous, Late Cretaceous and Palaeogene granitoids are
also exposed in this area (Fig. 2; Ji et al. 2009b, 2012;
Dong & Zhang, 2013). The quartz diorite has an expos-
ure area of c. 60 km2 and is distinctly elongated in an
approximately E–W direction (Fig. 2). The subspher-
ical to irregular mafic enclaves (5–35 cm in diameter)
are randomly distributed in the quartz diorite (Fig. 3a,
b). They have sharp to gradational contacts with the
host quartz diorite. Plagioclase phenocrysts cross-cut
the interface between the mafic enclaves and the host
quartz diorite (Fig. 3b). The tonalites were collected
from three different intrusive bodies, which cross-cut
the quartz diorite in places (Figs 2, 3c, d). A summary
of the sample locations and the petrographical features
is given in Table 1.

The quartz diorite, which displays a weak mylon-
itic foliation in places, is medium-grained and mainly
consists of plagioclase (55–60 vol. %), amphibole (10–
15 vol. %), quartz (∼15 vol. %), biotite (∼10 vol. %),
minor K-feldspar (∼2 vol. %) and accessory mag-
netite, titanite, apatite and zircon (Fig. 4a). Andesitic
plagioclase is 1.0–3.0 mm in length (An = 32–50;
Supplementary Table S1, available at https://doi.org/
10.1017/S0016756817000577) (Fig. 4a). The euhed-
ral to subhedral amphibole is commonly interstitial,

sometimes poikilitic, enclosing plagioclase and oxides,
and partly altered to chlorite and epidote (Fig. 4a).
The mafic enclaves contain 2–3 mm long plagio-
clase phenocrysts (An = 39–68) in a matrix of fine-
to medium-grained plagioclase (40–55 vol. %), am-
phibole (20–30 vol. %), biotite (∼5 vol. %) and quartz
(∼5 vol. %) with minor K-feldspar and needle-like
apatite (Fig. 4b, c).

The small tonalite body intruding the quartz di-
orite (Fig. 2) is fine-grained and mainly consists of
plagioclase (∼60 vol. %), quartz (∼30 vol. %), biotite
(∼3 %) and minor K-feldspar (Fig. 4d). Plagioclase
exhibits typical oscillatory zoning (Fig. 4d). Samples
GD14-50-1 and GD14-50-2 are collected from a ton-
alite body near Sangri, to the west of the Jiacha area
(Figs 1, 2). They are medium-grained, weakly mylonit-
ized and mainly consist of plagioclase (55–60 vol. %),
quartz (25–30 vol. %), biotite (∼5 vol. %), amphibole
(∼5 vol. %) and minor K-feldspar (Fig. 4e). The ton-
alite body near Xiangmucun is medium-grained and
consists of plagioclase (An = 30–50; 50–60 vol. %),
quartz (20–25 vol. %), biotite (3–10 vol. %) and minor
amphibole and K-feldspar, with accessory zircon and
apatite (Figs 2, 3d, 4f).

3. Analytical methods

The chemical composition of plagioclase was determ-
ined using a JEOL JXA 8800R microprobe with a
20 kV accelerating voltage and a 20 nA beam cur-
rent at the Institute of Mineral Resources, Chinese
Academy of Geological Sciences (CAGS), Beijing.
The representative microprobe analytical results are
listed in Supplementary Table S1.

Zircon grains were extracted using standard density
and magnetic separation techniques. Cathodolumines-
cence (CL) images of analysed zircon grains were ob-
tained using an FEI NOVA NanoSEM 450 scanning
electron microscope equipped with a Matan Mono
CL4 cathodoluminescence system at the Institute of
Geology, CAGS. Zircon U–Pb dating was carried out
using a laser ablation inductively coupled plasma mass
spectrometer (LA-ICP-MS; Perkin Elmer Elan DRC
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Figure 3. (Colour online) Field photos of the Jiacha Early Jurassic adakitic intrusions. (a) The quartz diorite contains elongated mafic
enclaves. (b) Ellipsoidal, spindle-shaped mafic enclaves in the host quartz diorite. Note that some crystals cross-cut the boundary
between host rock and enclave. Plagioclase phenocrysts are indicated with red arrows. (c) The tonalite intrudes the quartz diorite. (d)
The tonalite outcrop lies in the Xiangmucun area, east of Jiacha.

Table 1. Ages, lithologies and major mineral assemblages of the Jiacha Early Jurassic adakitic rocks.

Sample Age (Ma) Lithology Major mineral assemblage GPS position

GD14-89-1 198 ± 4 Quartz diorite Pl + Amp + Qtz + Bi N29° 12′ 57′′; E92° 41′ 34′′

GD14-93-1 199 ± 4 Pl + Amp + Qtz + Bi N29° 10′ 13′′; E92° 40′ 07′′

GD14-90-3 198 ± 3 Mafic enclave in quartz diorite Pl + Amp + Bi + Qtz N29° 12′ 19′′; E92° 41′ 13′′

GD15-L09-2 196 ± 3 Pl + Amp + Bi + Qtz N29° 10′ 56′′; E92° 40′ 54′′

GD15-L08-1 198 ± 2 Tonalite intruding the quartz diorite Pl + Qtz + Kfs + Bi N29° 10′ 37′′; E92° 40′ 32′′

GD14-50-1 179 ± 2 Tonalite near the Sangri Pl + Qtz + Kfs + Bi + Amp N29° 15′ 05′′; E92° 13′ 31′′

GD14-99-2 184 ± 4 Tonalite near the Xiangmucun Pl + Qtz + Kfs + Bi + Amp N29° 09′ 05′′; E92° 50′ 35′′

GD14-102-2 184 ± 4 Pl + Qtz + Kfs + Bi + Amp N29° 07′ 43′′; E92° 50′ 18′′

Abbreviations: Amp =amphibole; Bi = biotite; Kfs = K-feldspar; Pl = plagioclase; Qtz = quartz.

II) equipped with a Microlas system (GeoLas 200 M,
193 nm ArFexcimer laser) at the Key Laboratory of
Crust–Mantle Materials and Environments of CAS at
the University of Science and Technology of China.

Zircon 91500 and SRM610 were used as external
standards for the U–Pb isotope ratios and the trace ele-
ment analysis, respectively. Details of the instrument
parameters and analysis procedures are given in Liu
et al. (2007). The spot diameter of the laser ablation
pits is 32 μm. Details of the instrument parameters and
analysis procedures are given in Liu et al. (2007) and
Gu et al. (2013). The LaDating (version 1.5) software
was used for processing the U/Pb data. The quantit-
ative calibration for the Pb isotope dating was per-
formed by ComPbcorr#3_18 (Andersen, 2002). The
age calculations and concordia diagrams (data-point
error ellipses are 68.3 % conf.) were performed using
Isoplot/Ex_ver3 (Ludwig, 2003).

Zircon Lu–Hf isotopic analyses were carried out
in situ using a Neptune Plus multi-collector induct-
ively coupled plasma mass spectrometer (MC-ICP-

MS) in combination with a Geolas 2005 excimer
ArF laser ablation system at the State Key Laborat-
ory of Geological Processes and Mineral Resources,
China University of Geosciences (Wuhan). The en-
ergy density of the laser ablation was 5.3 J cm−2 and
the ablation spot was 44 μm in diameter. Zircons
91500, GJ-1, Mud Tank and Temora were analysed
as reference standards. Detailed operating conditions
for the laser ablation system and the MC-ICP-MS
instrument and analytical procedures are similar to
those described by Hu et al. (2012). Off-line selec-
tion and integration of analysis signals, and mass bias
calibrations were performed using ICPMSDataCal
(Liu et al. 2010). The measured 176Lu/177Hf ratios
and the 176Lu decay constant of 1.867 × 10−11 a−1

(Söderlund et al. 2004) were used to calculate ini-
tial 176Hf/177Hf ratios. The Chondritic values of
176Lu/177Hf = 0.0336 and 176Hf/177Hf = 0.282785 re-
ported by Bouvier, Vervoort & Patchett, (2008) were
used to calculate the εHf values. The depleted mantle
Hf model ages (TDM) were calculated using the
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Figure 4. (Colour online) Photomicrographs of the Jiacha Early
Jurassic adakitic intrusions. (a) The quartz diorite consists
mainly of plagioclase, amphibole and quartz. (b) The mafic en-
clave of quartz diorite consists of plagioclase phenocrysts and
fine-grained plagioclase, amphibole and biotite. (c) Amphibole
from mafic enclave contains plagioclase, quartz and biotite in-
clusions; also showing the needle-like apatite. (d) The tonal-
ite mainly consists of plagioclase and quartz (GD15-L08-1).
(e) The tonalite mainly consists of plagioclase, quartz, biotite,
amphibole and minor K-feldspar (GD14-50-1). (f) The tonalite
from Xiangmucun mainly consists of plagioclase, quartz, minor
K-feldspar, biotite and some amphibole (GD14-102-1). (a, b, d,
e, f) Crossed polarized light. (c) Plane polarized light. Abbrevi-
ations: Amp = amphibole; Pl = plagioclase; Bi = biotite; Ap =
apatite; Qtz = quartz.

measured 176Lu/177Hf ratios based on the assumption
that the depleted mantle reservoir has a linear iso-
topic growth from 176Hf/177Hf = 0.279718 at 4.55 Ma
to 0.283250 at present, with 176Lu/177Hf = 0.0384
(Griffin et al. 2000). Two-stage model ages (TDM2)
were calculated by assuming that the parental magma
was produced from an average continental crust
(176Lu/177Hf = 0.015) (Griffin et al. 2002).

The whole-rock major- and trace-element compos-
itions were analysed at the National Research Centre
for Geoanalysis, CAGS. The whole-rock major ele-
ments were performed using X-ray fluorescence (XRF,
PW4400) with an analytical uncertainty of <2 %.
Trace-element abundances were measured by induct-
ively coupled plasma mass spectrometry (ICP-MS,
PE300D), which gives a precision better than 10 % for
most of the elements analysed.

4. Results

4.a. Whole-rock major and trace elements

Whole-rock major and trace elements of the Jiacha
Early Jurassic igneous rocks are listed in Supple-
mentary Table S2. All samples are sub-alkaline

in the total alkali–silica (TAS) diagram (Fig. 5a).
The quartz diorite samples have variable SiO2 (58–
63 wt. %) and high Al2O3 (>16 %), MgO (2.63–
3.46 wt. %), Na2O/K2O (>2) and Mg# (48–54) val-
ues. They are metaluminous with A/CNK [molar
Al2O3/(CaO + Na2O + K2O)] ratios of 0.87–0.93 and
plot in the medium-K calc-alkaline series field on the
K2O vs SiO2 diagram (Fig. 5b, c). In the PRIMA-
normalized spidergram (Fig. 6a) these rocks show a
strong enrichment of large-ion lithophile elements
(LILEs) and pronounced negative Nb, Ta and Ti an-
omalies. Furthermore, they display slightly negative
Eu anomalies (Eu/Eu* = 0.83–0.92) and have inclined
chondrite-normalized rare earth element (REE) pat-
terns (Fig. 6b), while (La/Yb)N ranges from 3.90 to
7.93. In addition, they have relatively low heavy rare
earth element (HREE) (Yb = 1.09–1.74 ppm) and Y
concentrations (10.4–15.9 ppm), as well as high Sr
contents (412–504 ppm) and Sr/Y ratios (29.2–45.1).
Therefore these rocks have an adakitic character ac-
cording to the definition of Defant & Drummond
(1990, 1993), which is also revealed by using the Sr/Y
vs Y discrimination diagram (Fig. 5d).

The mafic enclaves in the quartz diorites have
SiO2 contents of 52–53 wt. %, MgO contents of
4.82–5.72 wt. % and an Mg# of 51–58. In the
PRIMA-normalized spidergram (Fig. 6a), they ex-
hibit a relative enrichment in LILEs (e.g. Rb, K
and Pb). Their REE patterns are mildly fraction-
ated with (La/Yb)N of 3.3–3.7 and slightly negative
Eu anomalies (Eu/Eu* = 0.81–0.90) in the chondrite-
normalized spidergram (Fig. 6b). The REE concen-
trations are rather high (Yb = 2.56–2.62 ppm and
Y = 21.5–28.0 ppm) compared to those of the host
quartz diorites, and plot in the island-arc field on the
Sr/Y vs Y discrimination diagram (Fig. 5d).

The tonalite samples have high SiO2 (64–70 wt. %)
and total alkali (K2O + Na2O = 5.04–6.07 wt. %) con-
centrations and low MgO (0.93–2.25 wt. %) and P2O5

(0.07–0.15 wt. %) contents compared to those of the
quartz diorite samples. According to the K2O vs SiO2

diagram, the samples belong to the medium-K series
(Fig. 5b) and are metaluminous to slightly peralumin-
ous, with A/CNK ratios of 0.93–1.08 (Fig. 5c). The
samples show strong enrichments of LILEs and pro-
nounced negative Nb–Ta–Ti anomalies in the PRIMA-
normalized spidergrams (Fig. 6c). They further display
fractionated REE patterns with negative to positive
Eu anomalies (Eu/Eu* = 0.84–1.43) in the chondrite-
normalized spidergram (Fig. 6d). The Sr contents
(363–530 ppm), the Sr/Y ratios (27.3–105) as well as
the Y (4.46–13.3 ppm) and Yb (95–1.39 ppm) con-
tents are in accordance with the adakite definition as
also revealed by the Sr/Y vs Y discrimination diagram
(Fig. 5d).

4.b. Zircon U–Pb geochronology

To constrain the timing of the magmatic crystalliza-
tion events, six samples were selected for LA-ICP-MS
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Figure 5. (Colour online) (a) Total alkalis vs silica diagram (after Middlemost, 1994); (b) K2O vs SiO2 diagram (after Rollinson,
1993); (c) A/NK vs A/CNK diagram (after Maniar & Piccoli, 1989); (d) Sr/Y vs Y discrimination diagram showing data for adakites
and island-arc andesite–dacite–rhyolite rocks (after Defant & Drummond, 1990, 1993). Data sources: Late Cretaceous–Miocene (83–
10 Ma) lower crust-derived adakites in the Lhasa terrane (Chung et al. 2003; Hou et al. 2004; Gao et al. 2007, 2010; Guo, Wilson
& Liu, 2007; Wen et al. 2008a; Guan et al. 2012; Ma et al. 2014; Meng et al. 2014). Cretaceous (137–86 Ma) subducted oceanic
crust-derived adakites in the Lhasa terrane (Zhu et al. 2009; Guan et al. 2010; Zhang et al. 2010; Jiang et al. 2012; Ma et al.
2013).

zircon U–Pb dating. The results are summarized in
Table 1 and the data are given in Supplementary Table
S3. Zircon grains from the quartz diorite and tonal-
ite samples are euhedral, with crystal lengths of 100–
250 μm. They exhibit oscillatory zoning in CL im-
ages (Fig. 7a–d), which are typical of magmatic zir-
con (Hoskin & Schaltegger, 2003). Zircon grains from
the mafic enclaves are relatively small (50–100 μm in
length) and display broad oscillatory zoning in the CL
images (Fig. 7e, f).

Twenty-two analyses on 22 zircon grains from
quartz diorite sample GD14-89-1 yield a weighted
mean 206Pb/238U age of 198 ± 4 Ma (MSWD = 1.5).
A further 32 analyses were undertaken on 32 zircon
grains from another quartz diorite sample GD14-93-
1, which tightly plot on the concordia (Fig. 6b) and
give a weighted mean 206Pb/238U age of 199 ± 4 Ma
(MSWD = 2.0) (Fig. 8a, b). All analyses show variable
Th (41–253 ppm) and U (95–365 ppm) contents with
Th/U ratios of 0.37–0.86 that are typical for magmatic
zircon (Supplementary Table S3).

Twenty-seven spots on 17 zircon grains yield
a weighted mean 206Pb/238U age of 198 ± 3 Ma
(MSWD = 0.8) for the mafic enclave sample GD14-

90-3, and 18 spot analyses on 18 zircon grains from
sample GD15-L09-2 give a weighted mean 206Pb/238U
age of 196 ± 3 Ma (MSWD = 2.4), both of which are,
within error, identical and are interpreted to represent
the crystallization age of the mafic enclave (Fig. 8c,
d). All analyses have Th = 40–376 ppm and U = 76–
356 ppm with high Th/U ratios of 0.47–1.06 in accord-
ance with magmatic zircon (Supplementary Table S3).

Seventeen U–Pb spots on 17 zircon grains from
tonalite sample GD15-L08-1 and 14 U-Pb spots on
14 zircon grains from tonalite sample GD14-50-1
yield weighted mean 206Pb/238U ages of 198 ± 2 Ma
(MSWD = 2.6) and 179 ± 2 Ma (MSWD = 1.2), re-
spectively (Fig. 8e, f), which are interpreted as the
crystallization ages of the tonalites. All analyses have
variable Th (38–587 ppm) and U (82–562 ppm) con-
tents and high Th/U ratios of 0.42–1.04 in accordance
with magmatic zircon (Supplementary Table S3).

A previous study showed that the Xiangmucun ton-
alite body has a crystallization age of 184 ± 4 Ma
(Table 1; Shui et al. 2016). Therefore, the adakitic
quartz diorites and tonalites from the Jiacha area of the
southern Lhasa sub-terrane were formed in the Early
Jurassic (202–179 Ma).

https://doi.org/10.1017/S0016756817000577 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756817000577


138 S H U I A N D OT H E R S

Subducted oceanic
crust-derived adakites
in the Lhasa terrane

Lower crust-derived adakites
in the Lhasa terrane

Subducted oceanic
crust-derived adakites
in the Lhasa terrane

Lower crust-derived adakites
in the Lhasa terrane

S
am

pl
e/

P
ri

m
iti

ve
 m

an
tle

0.1

1

10

100

1000

RbBaTh U K TaNb LaCePb Pr
Sr

P Nd Zr
Hf

SmEu Ti Dy Y HoYbLu

(a)
mafic enclave
quartz diorite

S
am

pl
e/

P
ri

m
iti

ve
 m

an
tle

0.1

1

10

100

1000

RbBaTh U K TaNb LaCePb Pr
Sr

P Nd Zr
Hf

SmEu Ti Dy Y HoYbLu

tonalite ( )b

S
am

pl
e/

C
ho

nd
ri

te

(b)

1

10

100

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

S
am

pl
e/

C
ho

nd
ri

te

(d)

1

10

100

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

c

Figure 6. (Colour online) Spider diagrams (a, c) (Sun & McDonough, 1989) and chondrite-normalized REE pattern (b, d) for the
Jiacha Early Jurassic adakitic intrusions (Taylor & McLennan, 1985). Adakite fields are shown for comparison. Data sources: Late
Cretaceous–Miocene (83–10 Ma) lower crust-derived adakites in the Lhasa terrane (Gao et al. 2007; Wen et al. 2008a; Guan et al.
2012; Zheng et al. 2012; Ma et al. 2014; Meng et al. 2014); Cretaceous (137–86 Ma) subducted oceanic crust-derived adakites in the
Lhasa terrane (Zhu et al. 2009; Zhang et al. 2010; Jiang et al. 2012; Ma et al. 2013).

Figure 7. CL images of zircon grains of the Jiacha Early Jurassic adakitic intrusions. Solid and dashed circles indicate the locations
of U–Pb dating and Hf isotope analyses, respectively.
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Figure 8. (Colour online) U–Pb concordia diagrams of the
Jiacha Early Jurassic adakitic intrusions.

4.c. Zircon Lu–Hf isotope compositions

Zircon grains from two quartz diorite samples (GD14-
89-1 and GD14-93-1), two tonalite samples (GD15-
L08-1 and GD14-50-1) from different intrusive bod-
ies (Fig. 2) and one mafic enclave sample (GD14-90-
3) were analysed for their Lu–Hf isotope compositions.
All zircon Hf isotopic spot analyses were performed on
the same zircon grains, which were used for the U–Pb
dating. The results are given in Supplementary Table
S4 and illustrated in Figures 9 and 10.

Fifteen Hf isotopic spot analyses on zircon grains
from the quartz diorite sample GD14-89-1 yield
initial 176Hf/177Hf ratios ranging from 0.282976 to
0.283039, with corresponding εHf(t) values of 11.1–
13.4 (Figs 9a, 10) and two-stage Hf model ages of
503–359 Ma. Fifteen Hf isotopic spot analyses on the
zircon grains from the other sample (GD14-93-1) yield
initial 176Hf/177Hf ratios of 0.282846–0.282955, with
relatively low εHf(t) values of 6.6–10.5 (Figs 9b, 10)
and high two-stage Hf model ages ranging from 798 to
548 Ma.

Fifteen Hf isotopic spot analyses on zircon grains
from the mafic enclave sample (GD14-90-3) yield a
narrow range of εHf(t) values of 10.0–13.0 with cor-
responding two-stage Hf crustal model ages of 577–
385 Ma (Figs 9c, 10).

Fourteen Hf isotopic analyses on zircon grains
from the tonalite sample GD15-L08-1 show initial
176Hf/177Hf ratios of 0.282867–0.282952 and corres-
ponding εHf(t) values of 7.3–10.3, while two-stage Hf
model ages range from 750 to 555 Ma (Figs 9d, 10).
Fifteen Hf isotopic analyses on zircon grains from the

Figure 9. (Colour online) Histograms of zircon εHf(t) values
of the Jiacha Early Jurassic adakitic intrusions. The data of
samples GD14-99-2 and GD14-102-1 are from Shui et al.
(2016).

tonalite sample GD14-50-1 show a narrow εHf(t) value
range of 3.5–5.5 and two-stage Hf crustal model ages
of 977–850 Ma (Figs 9e, 10).

Shui et al. (2016) obtained Hf isotopic composi-
tions for two samples (GD14-99-2 and GD14-102-1)
from the Xiangmucun tonalite in a previous study. One
sample GD14-99-2 has zircon εHf(t) values of 8.0–9.8
and two-stage Hf model age of 695–575 Ma (Figs 9f,
10), while the other sample GD14-102-1 yields similar
zircon εHf(t) values of 7.9–9.3 and two-stage Hf model
ages of 700–610 Ma (Figs 9g, 10).

5. Discussion

5.a. Magma mixing process: the mafic enclaves in the
quartz diorite

Mafic enclaves are quite common in granitoids and
can provide important information on the origin of
the host rocks and related geodynamic processes (e.g.
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Figure 10. (Colour online) Plot of zircon εHf(t) values vs U–Pb ages of the Jiacha Early Jurassic adakitic intrusions. Data sources:
Granitoids in southern Lhasa terrane (Zhang et al. 2007a; Ji et al. 2009a, b; Yang et al. 2011; Zhu et al. 2011a; Dong & Zhang, 2013;
Guo et al. 2013; Meng et al. 2016a); mafic rocks in southern Lhasa terrane (Meng et al. 2016b). The new continental crust (NC) evol-
utionary line is defined by isotopic growth from 176Hf/177Hf = 0.279703 at 4.55 Ga to 0.283145 at present, with 176Lu/177Hf = 0.0375
(Dhuime, Hawkesworth & Cawood, 2011).

Vernon, 1984; Chappell, White & Wyborn, 1987; Bar-
barin, 2005; Mo et al. 2005; Yang et al. 2007; Gao
et al. 2009; Shellnutt, Jahn & Dostal, 2010; Wang et al.
2012; Meng et al. 2014; Lu et al. 2016). Several pos-
sibilities were proposed for the formation of the en-
claves, including xenoliths from the country rock (e.g.
Xu et al. 2006), cumulates of early-formed co-genetic
crystals (e.g. Gao et al. 2009; Shellnutt, Jahn & Dostal,
2010; Niu et al. 2013; Chen et al. 2015), refractory
and residual phase assemblages of the sources of the
granitoids (e.g. Chappell, White & Wyborn, 1987),
and products of magma mixing and mingling (Vernon,
1984; Barbarin, 2005; Mo et al. 2005; Yang et al. 2007;
Meng et al. 2014; Lu et al. 2016). In the last model, the
mafic enclaves are believed to have formed by a mafic
magma intruding a felsic magma chamber, where they
mixed and mingled (Vernon, 1984; Barbarin, 2005;
Yang et al. 2007).

Here, oval or irregular-shaped mafic enclaves are
abundant in the host quartz diorite (Fig. 3a–c) and
both types have, within error, identical U–Pb zircon
magmatic crystallization ages (Fig. 8a–d). The mafic
enclaves contain euhedral acicular apatites enclosed
within the larger plagioclase grains (Fig. 4c), corres-
ponding with a typical rapid quenching texture (Sparks
& Marshall, 1986). Some plagioclase phenocrysts in
the mafic enclaves seem to be transferred from the
host magma (Figs 3b, 4a, b), which is thought to be
due to the low rheological contrast between the two
magmas that allows crystal transfer from a more felsic
host magma into a more mafic magma (Waight, Maas
& Nicholls, 2000; Perugini et al. 2003). Amphiboles
in such mafic enclaves are commonly characterized by
inclusions of quartz, biotite, Fe–Ti oxides and needle-
like apatite, also indicating magma mixing (Foley et al.

2013; Lu et al. 2016) (Fig. 4b, c). Therefore, the mafic
enclaves in the Jiacha quartz diorites are thought to
represent globules of mafic magmas that were injected
and mixed with the colder, partially crystallized host
magma (e.g. Wang et al. 2012).

The mafic enclaves are medium-K calc-alkaline
rocks that are relatively enriched in LILE and de-
pleted in HFSE with negative Nb, Ta and Ti anom-
alies (Figs 5a, b, 6b). The depleted Hf isotopic values
(εHf(t) = 10.0–13.0) of the mafic enclaves are similar
to those of contemporaneous gabbroic rocks (215 Ma)
in the southern Lhasa sub-terrane (Fig. 10), which
were interpreted to have formed in the metasomatized
mantle wedge (Meng et al. 2016b). The mafic enclaves
exhibit Nb/Ta ratios ranging from 15.1 to 20.2 that are
similar to or slightly higher than those (15.5–17.4) of
the primitive and depleted mantle and chondrite (Barth
et al. 2000). This indicates that the primitive magma
of the mafic enclaves originated from metasomatized
mantle peridotites.

5.b. Adakitic quartz diorites: partial melting of subducted
oceanic crust

As noted above, the Jiacha quartz diorite has adakitic
affinities, e.g. high Al2O3 (16.60–18.22 wt. %), Sr
(412–504 ppm), Sr/Y (29.2–45.1), low Y (10.4–
15.9 ppm) and Yb (1.09–1.74 ppm) and slightly negat-
ive Eu anomalies (Figs 5d, 6a, b). Adakitic rocks may
be generated by a variety of mechanisms (see above).
We propose that the studied Jiacha adakitic quartz di-
orite probably formed by partial melting of subduct-
ing oceanic crust based on the following reasons: (1)
The Jiacha adakitic quartz diorite has low K2O/Na2O
(0.28–0.35) and high CaO/Al2O3 (0.33–0.39) values,
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Figure 11. (Colour online) Discrimination diagrams for the
Jiacha Early Jurassic adakitic rocks. (a) MgO vs SiO2 diagram
(after Huang et al. 2009, and references therein). Data for meta-
basalt and eclogite experimental melts (1–4 GPa) are from Rapp
et al. (1999) and references therein; (b) Mg# vs SiO2 diagram
(after Wang et al. 2012, and references therein). Mantle AFC
curves are after Rapp et al. (1999) (curve 1); the proportion
of assimilated peridotite is also shown. The crustal AFC curve
is after Stern & Kilian (1996) (curve 2); (c) Ni vs SiO2 dia-
gram (after Huang et al. 2009, and references therein); (d) Cr vs
SiO2 diagram (after Huang et al. 2009, and references therein);
(e) Ni vs Cr diagram. Data sources: Late Cretaceous–Miocene
(83–10 Ma) lower crust-derived adakites in the Lhasa terrane
(Chung et al. 2003; Hou et al. 2004; Gao et al. 2007, 2010; Guo,
Wilson & Liu, 2007; Wen et al. 2008a; Guan et al. 2012; Ma
et al. 2014; Meng et al. 2014). Cretaceous (137–86 Ma) sub-
ducted oceanic crust-derived adakites in the Lhasa terrane (Zhu
et al. 2009; Guan et al. 2010; Zhang et al. 2010; Jiang et al.
2012; Ma et al. 2013); (f) Th/La vs Th diagram. The data for
upper continental crust are from Plank (2005) and references
therein. The data for marine sediments are from Plank & Lang-
muir (1998) and for MORB are from Niu & Batiza (1997).

which are similar to those of adakitic rocks generated
by partial melting of subducted oceanic crust (with
K2O/Na2O < 0.71 and CaO/Al2O3 > 0.2), including
the Cretaceous adakites from the southern Lhasa sub-
terrane (Fig. 5b, c; Stern & Kilian, 1996; Li et al.
2016). Furthermore, the Jiacha adakitic quartz dior-
ite samples mostly plot in the field of adakitic rocks
derived from melting of subducting oceanic crust in
the Ni, Cr, Mg# and MgO discrimination diagrams
(Fig. 11 a–e). The high MgO and Mg# values may in-
dicate the interaction of a slab-derived adakitic melt
and a mantle-derived magma which is also supported
by the presence of the mafic enclaves (Sen & Dunn,
1994; Rapp et al. 1999). As shown in the SiO2 vs Mg#

diagram (Fig. 11b), mantle AFC modelling (DePaolo,
1981) indicates that the Jiacha adakitic melts most

likely mixed with a small amount (<10 %) of mantle-
derived magma (Hofmann, 1988); (2) The HREE and
Y contents, and the Sr/Y, (La/Yb)N and (Dy/Yb)N ra-
tios of the quartz diorite are generally consistent with
those of the Cretaceous adakites derived from subduc-
ted oceanic crust in the southern Lhasa sub-terrane
(Fig. 6a, b). Their relatively low (La/Yb)N ratios may
also have resulted from interaction with a mantle-
derived magma. Furthermore, their Th and Th/La val-
ues are similar to those of the Cretaceous slab-derived
adakites in the southern Lhasa sub-terrane (Fig. 11f;
Zhu et al. 2009; Zhang et al. 2010; Jiang et al. 2012;
Ma et al. 2013); and (3) The εHf(t) values of the
Jiacha adakitic quartz diorite display positive zircon
εHf(t) values (6.6–13.4) (Fig. 9), which are similar to
those of Indian Ocean MORB (Chauvel & Blichert-
Toft, 2001). Furthermore at least half of the values
plot near the ‘new continental crust’ evolutionary line
(Dhuime, Hawkesworth & Cawood, 2011) (Fig. 10),
implying significant involvement of newly formed ju-
venile crustal material.

In summary, the Jiacha adakitic quartz diorite was
probably derived by partial melting of subducting
oceanic crust. The slab-derived melts were mixed
with mantle-derived magma during ascent, which in-
creased their MgO and compatible elements contents.
It is noteworthy that sample GD14-93-01 shows lower
εHf(t) values (6.6–10.5) than the other quartz diorite
sample (εHf(t) = 11.1–13.4) (Figs 9, 10). This indicates
that crustal-derived magma may also have contributed
to the generation of the adakitic quartz diorites, which
is also consistent with their low Ni and Cr contents rel-
ative to the typical slab-derived melts (Fig. 11c, d) and
is similar to a modified slab-derived magma modified
by crustal components (Kelemen, Hart & Bernstein,
1998).

5.c. Adakitic tonalites: partial melting of thickened lower
crust

Although the adakitic quartz diorite and tonalites coex-
ist in the southern Lhasa sub-terrane, there is a dispar-
ity in their geochemical characters, indicating differ-
ent magma sources (Figs 5, 6, 11). The adakitic tonal-
ites have high SiO2, K2O and low A/NK ratios, MgO
(0.93–2.25 wt. %) and Mg# (44–53) values are sim-
ilar to those of experimentally derived metabasaltic
and eclogitic melts at high pressures of 1.0–4.0 GPa
and adakitic rocks derived from thickened lower crust
(Fig. 5b, c; Fig. 11a, b). Melting experiments have re-
vealed that pristine melts of basaltic rocks yield low
MgO and Mg# values (e.g. Rapp & Watson, 1995),
which are similar to those of adakitic rocks derived
from partial melting of thickened lower crust (Castillo,
2012). In the Ni vs Cr and Cr vs SiO2 diagrams
(Fig. 11c–e), all tonalite samples plot in the field of
Late Cretaceous–Miocene adakitic rocks derived by
partial melting of thickened lower crust from the south-
ern Lhasa sub-terrane, which is in accordance with
the very low concentrations of compatible elements
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(Cr = 2.71–13.0 ppm, Ni = 3.12–9.60 ppm; Fig. 11e).
Therefore, we suggest that the Jiacha adakitic tonalites
were probably derived by partial melting of thickened
lower crust.

The concave-upward Dy–Ho–Er–Tm-depleted pat-
terns (Fig. 6d) observed in the Jiacha adakitic tonal-
ites indicate that they were probably formed by partial
melting of basaltic lower crust under variable water fu-
gacities, generating a garnet-bearing and amphibole-
rich residue (Petford & Atherton, 1996; Guan et al.
2012; Shui et al. 2016). However, garnet is strongly
enriched in HREE, while amphibole is relatively en-
riched in MREE (Green, 1994). The Jiacha adakitic
tonalite samples show stronger depletions of MREE
than HREE, suggesting that amphibole is the major re-
sidual phase rather than garnet.

The adakitic tonalites have lower εHf(t) (3.5–10.3)
values relative to those of the adakitic quartz diorite
(Fig. 9). All samples plot in the evolutionary zone of
the Neoproterozoic crust below the ‘new continental
crust’ evolutionary line (Dhuime, Hawkesworth &
Cawood, 2011) (Fig. 10), implying that the Jiacha
adakitic tonalites were probably formed by reworking
of Neoproterozoic mafic lower crust (Figs 9, 10).
However, the tonalites from the different bodies have
inconsistent Hf isotopic compositions, with some
high εHf(t) values close to those of the quartz diorites
(Figs 9, 10), indicating that the Neoproterozoic mafic
lower crust cannot have acted alone as their single
melt source but rather represent mixing products
of highly differentiated crustal and mantle-derived
melts. Therefore, the heterogeneous zircon Hf iso-
topic compositions of the adakitic quartz diorites and
tonalites of the southern Lhasa sub-terrane indicate
extensive melt interaction involving slab-, mantle-
and ancient crustal-derived melts. The Jiacha adakitic
tonalites were probably derived by partial melting of
Neoproterozoic mafic lower crust in the stability field
of garnet and amphibole with variable contributions of
mantle- or slab-derived magma.

5.d. Tectonic implications for the Bangong–Nujiang Ocean
(Meso-Tethys) subduction

Recently, voluminous Late Triassic–Early Jurassic in-
trusive rocks (226–150 Ma) including mafic rocks and
normal calc-alkaline granitoids were discovered in the
southern Lhasa sub-terrane (e.g. Chu et al. 2006; Qu,
Xin & Xu, 2007; Zhang et al. 2007a; Ji et al. 2009a,
b; Yang et al. 2011; Zhu et al. 2011a; Dong & Zhang,
2013; Guo et al. 2013; Qiu et al. 2015; Meng et al.
2016a, b; Shui et al. 2016; Ma et al. 2017) (Fig. 1b).
The mafic rocks were interpreted to be products of par-
tial melting of a heterogeneous mantle source (Kang
et al. 2014; Meng et al. 2016b). Normally calc-alkaline
granitoids are metaluminous to peraluminous, with
concave-upward MREE-depleted REE patterns, and
their magmas are thought to have dominantly formed
by partial melting of juvenile lower crust with vari-
able ancient continental crustal material contributions

(Chu et al. 2006; Zhang et al. 2007a; Ji et al. 2009a, b;
Zhu et al. 2011a; Guo et al. 2013; Meng et al. 2016a).
These Late Triassic–Early Jurassic magmatic rocks are
interpreted to have formed in an arc tectonic setting
(Zhang et al. 2007a; Zhu et al. 2008; Ji et al. 2009a,
b; Kang et al. 2014; Meng et al. 2016a, b; Wang et al.
2016). However, two contrasting tectonic models have
mainly been proposed for the formation of the Late
Triassic–Early Jurassic arc setting: (1) northward sub-
duction of the Neo-Tethyan oceanic plate (e.g. Chu
et al. 2006; Zhang et al. 2007a, b; Zhu et al. 2008;
Guo et al. 2013; Kang et al. 2014; Meng et al. 2016a,
b; Wang et al. 2016; Ma et al. 2017) or (2) southward
subduction of the Bangong–Nujiang (Meso-Tethys)
oceanic plate (e.g. Zhu et al. 2011a; Song et al. 2014;
Wei, 2014; however, see Kapp et al. 2003, 2007 for
a different view). The separation of the Lhasa Ter-
rane from northern Australia, resulting from the Neo-
Tethyan back-arc spreading, began during mid- to late
Triassic times (Metcalfe, 1996, 2009, 2011; Zhu et al.
2011a, b). Furthermore most of the well-studied ophi-
olites in the Yarlung Zangpo suture zone are 130–
120 Ma, suggesting that the initial subduction of the
Neo-Tethyan oceanic plate beneath the southern mar-
gin of the Lhasa block started in the Cretaceous (at
c. 130–120 Ma; Zhu et al. 2011a; Dai et al. 2013;
Zhong et al. 2016). Zhu et al. (2011a) argued that the
Late Triassic–Early Jurassic magmatism of the Lhasa
terrane has resulted from the southward Bangong–
Nujiang oceanic plate subduction beneath the Lhasa
terrane based on a synthesis of Mesozoic–Early Pa-
laeogene magmatic rocks across southern Tibet. The
southward-directed Bangong–Nujiang (Meso-Tethys)
oceanic plate subduction may have been triggered
by the Lhasa–northern Australia collision (Sengör
et al. 1988; Zhu et al. 2011a, b). Therefore, the
Late Triassic–Early Jurassic magmatic rocks in the
Lhasa terranes are believed to be related to the south-
ward subduction of the Bangong–Nujiang oceanic
plate.

In general, the generation of adakitic magmas from
subducting oceanic crust >25 Ma requires an addi-
tional heat supply (Defant & Drummond, 1990; Castil-
lio, 2006, 2012). According to experimental results
and thermal modelling, partial melting of subducted
oceanic crust only occurs in hot subduction zone set-
tings under a restricted set of circumstances (800–
1000 °C at depths of 70–80 km: Peacock, Rushmer &
Thompson, 1994; Sen & Dunn, 1994; van Keken et al.
2011). Thus, a simple normal-angle (cold) subduc-
tion model cannot easily explain shallow slab-melting
(such as the studied Early Jurassic quartz diorite in the
southern Lhasa sub-terrane). This is because at shal-
low depths of normal subduction zones (i.e. beneath
the fore-arc wedge) the dominant fluid-producing pro-
cess is dehydration instead of melting of the subduc-
ted oceanic crust (for an extensive review see Klemd,
2013). Here we suggest that asthenospheric upwelling
during the Neo-Tethys back-arc spreading – probably
a result of slab rollback of the subducted Meso-Tethys
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Figure 12. (Colour online) Conceptual diagram illustrating the tectonic and magma genesis of the Lhasa terrane in the Early Jurassic.
Slab rollback of the subducted Bangong–Nujiang oceanic plate resulted in hot asthenospheric mantle upwelling and decompression
melting as well as initiation of back-arc basin (Neo-Tethys). The asthenospheric upwelling was responsible for high-temperature
conditions over a wide area in the fore-arc wedge. The unusually high-temperature conditions in the mantle wedge caused the partial
melting of the subducted slab, responsible for formation of the Jiacha adakitic quartz diorites. Synchronously, mantle-derived basaltic
magmas were injected into the Jiacha adakitic quartz diorites to form mafic enclaves. Furthermore, the basaltic magma generated
by partial melting of the metasomatized mantle wedge underplated the lower crust, resulting in the thickening and reworking of the
ancient crust of the southern Lhasa sub-terrane. The adakitic tonalites were produced by partial melting of the thickened lower crust
as a result of continued basaltic magma underplating.

oceanic crust – provided the high thermal regime ne-
cessary for partial melting of the oceanic crust and was
thus responsible for the formation of the Jiacha Early
Jurassic adakitic rocks (Fig. 12) (Zhu et al. 2011a;
Song et al. 2014; Wei, 2014). The slab rollback is
thought to have triggered the invasion of deep as-
thenosphere into the mantle wedge and the develop-
ment of an extensional environment in the overlying
lithosphere mantle. The high thermal anomaly resulted
in the partial melting of the subducted oceanic crust,
forming the adakitic quartz diorites. Synchronously,
mantle-derived basaltic magmas injected the adakitic
quartz diorite to form mafic enclaves. Furthermore,
the basaltic magma generated by partial melting of the
metasomatized mantle wedge underplated the lower
crust, resulting in the thickening and reworking of the
ancient crust of the southern Lhasa sub-terrane. Sub-
sequently the adakitic tonalites were produced by par-
tial melting of the thickened lower crust as a result of
continued basaltic magma underplating (Fig. 12).

6. Conclusions

(1) LA-ICP-MS zircon U–Pb dating suggests em-
placement ages of 199–179 Ma for newly discovered
Early Jurassic adakitic rocks from the Jiacha area in
the southern Lhasa sub-terrane.

(2) The adakitic quartz diorites are products of
partial melting of the subducted Bangong–Nujiang
(Meso-Tethys) oceanic crust, while the adakitic tonal-
ites were derived from Neoproterozoic lower crust.

(3) The formation of the Early Jurassic adakitic
rocks and Neo-Tethys back-arc spreading probably res-
ulted from slab rollback of the subducted Bangong–
Nujiang oceanic plate.
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