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In this paper, back-propagation (BP) neural networks (NN) are applied to the GPS satellite

Geometric Dilution of Precision (GDOP) approximation. The methods using BPNN are

general enough to be applicable regardless of the number of satellite signals being processed

by the receiver. BPNN is employed to learn the functional relationships firstly, between the

entries of a measurement matrix and the eigenvalues and thus generate GDOP, and secondly,

between the entries of a measurement matrix and the GDOP, both without inverting a

matrix. Consequently, two sets of entries and two sets of output variables, respectively, are

used that in total yield four types of mapping architectures. Simulation results from these

four architectures are presented. The performance and computational benefit of neural

network-based GDOP approximation are explored.
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.1. INTRODUCTION. The navigation accuracy of GPS is normally de-
termined by two causes : the errors in each signal observable, and the geometry

formed by the observables employed for positioning or navigation. The GPS

measurements are normally corrupted by several error sources, such as ionospheric

delay, tropospheric delay, satellite clock and receiver clock offsets, receiver noise and

multi-path. The Geometric Dilution of Precision, usually referred to as the GDOP,

is a geometrically determined factor that describes the effect of geometry on the

relationship between measurement error and position determination error. It is used

to provide an indication of the quality of the solution. Some receiver hardware may

be restricted to processing a limited number of visible satellites. Therefore, it is

sometimes necessary to select the satellite subset that offers the best or most

acceptable solution. The optimal satellite subset is usually chosen by minimizing the

GDOP.

Neural networks are trainable, dynamic systems that can estimate input-output

functions. They have been applied to a wide variety of problems because they are

model-free estimators, i.e. without a mathematical model. The back-propagation

neural network (BPNN) has been the most popular learning algorithm throughout all

neural applications. BPNN is a neural system with a back-propagation algorithm that

can learn input-output functions from a series of samples. It is a gradient-based

algorithm, in the sense that the weight update is performed along the direction of the

gradient of an appropriate error function. The BPNN is simple and requires a

minimal amount of storage.
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GDOP calculation using neural networks was first proposed by Simon and El-

Sherief (1995), who employed the BP and optimal interpolative (OI) net for

implementing the function approximation and classification, respectively. In their

research, the BPNN was used to learn the functional relationships between the entries

of a measurement matrix and the eigenvalues of its inverse, and thus generate GDOP.

The methods using BP are general enough to be applicable regardless of the number

of satellite signals being processed by the receiver. In this paper, the architecture of

a neural network for GDOP function approximation will be re-examined and

improved. In addition to the architecture implemented by Simon and El-Sherief

(1995), three other input-output relationships will be employed. Simulation results

will be given; the computational benefit for different types of mapping will be

compared and discussed.

2. GPS MEASUREMENTS AND GDOP. The GPS measurements, errors,

and the GDOP are briefly reviewed in this section. Consider the vectors depicted in

Figure 1 relating the Earth’s centre, the satellites and the user’s position. The vector

Figure 1. Definition of vectors.

s represents the vector from the Earth’s centre to a satellite, u represents the vector

from the Earth’s centre to the user’s position, and r represents the vector from the

user to satellite, we can write the vector relation:

r¯ s®u. (1)

The distance srs is computed by measuring the propagation time from the

transmitting satellite to the user}receiver. The GPS pseudorange ρ
i
is defined for the

i-th satellite by:
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denotes the line-of-sight vector from the user to the satellites. Equation (3) can be

written in a matrix formulation:
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which can be represented as:

z¯Hx­v. (6)

The dimension of the geometry matrix H is n¬4 with n& 4.

The least squares solution to Equation (6) is given by

x# ¯ (HTH)−<HTz, (7)

and the quality of navigation solution for a linearised pseudorange equation is

represented by taking the difference between the estimated and true positions :

xh ¯ (HTH)−<HTv, (8)

where: v has zero mean, and so does x4 . The covariance between the errors in the

components of the estimated position is :

E ²xh xh T´¯ (HTH)−<HTE ²vvT´H(HTH)−<,

where: E ²[´ is the expected value operator. If all components of v are pairwise

uncorrelated and have variance σ=, then E ²vvT´¯σ=I, and consequently :

E ²xh xh T´¯σ=(HTH)−<. (9)

The GDOP factor is defined as:

GDOP¯otrace(HTH)−<¯Atrace[adj(HTH)]

det(HTH)
. (10)

It is seen from Equation (9) that the GDOP factor gives a simple interpretation of

how much one unit of measurement error contributes to the derived position solution

error for a given situation. It determines the magnification factor of the measurement

noise that is translated into the derived solution.

Existing methods for GDOP calculation generally include:

(a) Matrix inversion by computer ;

(b) Closed-form algorithm; and

(c) Maximum volume of a tetrahedron.

The most straightforward approach for obtaining GDOP is to use matrix inversion

or the closed-form solution to all combinations and select the minimum one.

https://doi.org/10.1017/S0373463301001606 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463301001606


100 DAH-JING JWO AND KUO-PIN CHIN VOL. 55

However, the matrix inversion and closed-form algorithm by computer present a

significant computational burden to the navigation computer especially when the

number of satellites is large. Four satellites will generally be required to provide

sufficient information for an acceptable three-dimensional position fix. For the case

of processing four satellite signals, it has been shown that GDOP is approximately

inversely proportional to the volume of the tetrahedron formed by four satellites.

Therefore, it is optimum to select satellites such that the volume is as large as possible,

which is sometimes called the maximum volume method. The disadvantage of this

method is that it does not guarantee an optimum selection of satellites.

3. THE BACK-PROPAGATION NEURAL NETWORKS. Artificial

neural networks (ANNs), or simply neural networks (NNs), have been applied to a

wide variety of problems. They have been studied for more than three decades since

Rosenblatt (1962) first applied single-layer perceptrons to pattern classification

learning in the late 1950s. A NN is a network structure consisting of a number of

nodes connected through directional links. Each node represents a process unit, and

the links between nodes specify the casual relationship between the connected nodes.

The learning rule specifies how these parameters should be updated to minimize a

prescribed error measure, which is a mathematical expression that measures the

discrepancy between the network’s actual output and a desired output.

The importance of a NN includes the way a neuron is implemented and how their

interconnection}topology are made. The procedure of finding a gradient vector in a

network structure is generally referred to as back-propagation (BP) since the gradient

is calculated in the direction opposite to the flow of the output of each node. The

BPNN has been most popular throughout all neural applications. It is a feed forward

type (multi-layer perceptron) supervised learning network. A feed forward network

maps a set of input vectors to a set of output vectors. The basic principle of the BP

is to use the gradient steepest descent method to minimize the cost function. Standard

BP can be used for batch training or sequential training. In sequential-style training,

the weight updating is performed after the presentation of each training pattern, while

in batch-style training, the weight updating is performed after the presentation of

all training patterns. The training of neural networks is traditionally based on

minimization of the cost function. Suppose a set of training samples is available, the

problem can be characterized as choosing the weights (or coupling strengths) of a

given network such that the following total squared error is minimized:

E¯
1

2
3
n

k=<

(d
k
®y

k
)=, (11)

where: n is the number of output variables.

Most units in NN transform their net input by using a scalar-to-scalar node

transfer function called ‘activation function’. The activation functions of the hidden

layer and the output layer are typically sigmoid functions :

f (u)¯
1

(1­e−u)
, (12)

where: u ` (®¢, ¢), and f (u) ` (0, 1). This function is smooth and continuous, and

differentiable :
f d(u)¯ u(1®u). (13)
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Sigmoid hidden and output units usually use a ‘bias ’ or ‘ threshold’ term in

computing the net input to the unit. A bias term can be treated as a connection weight

from a special unit with a constant activation value. The BP topology employed in

this paper is made of three layers, including one input layer, one hidden layer, and one

output layer, as shown in Figure 2. More detailed discussion on NN can be found

Figure 2. The topology of a three-layer back-propagation neural network.

in many literatures ; such as: Widrow and Lehr (1990), Poggio and Girosi (1990),

Chester (1993) and Haykin (1999). The training procedure is summarized as follows.
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(j) Update w
ij

and θ
j
: w

ij
¯w

ij
­∆w

ij
, θ
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¯ θ
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­∆θ
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(k) Calculate the cost function: E¯ <

=
3n

k=<
(d

k
®y

k
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(l) Repeat steps 3–11 until the network is convergent (i.e. the cost function reaches

a sufficiently small threshold).

where the notations are defined as follows:

η : learning rate,

α : momentum,

x
i
: value of the ith input neuron,

h
j
: output of the jth hidden neuron,

d
k
: desired output of the kth output neuron,

y
k
: actual output of the kth output neuron,

w
ij
: interconnection weight between the ith input neuron and the jth hidden neuron,

w
jk

: interconnection weight between the jth hidden neuron and the kth output

neuron,

θ
j
: bias}threshold values of the jth hidden neuron,

θ
k
: bias}threshold values of the kth output neuron.

4. GDOP APPROXIMATION USING BPNN. To reduce the training

time, all input and output variables are normalized in the range [0, 1]. In Simon and

El-Sherief ’s paper (1995a), the Hecht-Nielson’s approach for the effectiveness of BP

in learning complex, multi-dimensional functions were employed. The Hecht-

Nielson’s approach was based on Kolmogorov’s Theorem and extended to neural

networks. The theorem states that any functional 2m!2n mapping can be exactly

represented by a three-layer NN with (2m­1) middle-layer neurons, assuming that

the input components are normalized to lie in the range [0, 1] :

fn : [0, 1]mZ2m!2n. (14)

Since HTH is a 4¬4 matrix, it has four eigenvalues, λ
i
(i¯ 1 … 4). It is seen that the

four eigenvalues of (HTH)−< will be λ−<
i

. Based on the fact that the trace of a matrix

is equal to the sum of its eigenvalues, Equation (10) can be represented as

GDOP¯otrace(HTH)−<¯ (λ−<

<
­λ−<

=
­λ−<

>
­λ−<

?
)</=. (15)

Very accurate results can be obtained when using BP to perform the function

approximation of Equation (15) after a long training time.

Four types of mapping will be performed, depending on the input-output

relationships, which is shown in Figure 3. These three-layer networks have the

Figure 3. Input-output relationships for four types of mapping using BPNN.
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‘m®N
hid

®n ’ structures. Based on the Kolmogorov’s Theorem, the number of

middle-layer neurons N
hid

¯ 2m­1 is selected. The four types of mapping are

described as follows:

4.1. Type 1: Four Inputs Mapped to Four Outputs. The first type of mapping

employs the following property (Simon and El-Sherief, 1995a) :
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The λ
!

−< here is viewed as a functional 2?!2? mapping from f
!

to λ
!

−< :λ
!

−<¯ fn( f
!
).

The network has the (4-9-4) structure with the following input-output pairs :
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>
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The mapping from f
!

to λ
!

−< is highly nonlinear and cannot be determined analytically

but can be precisely approximated by the BPNN.

4.2. Type 2: Ten Inputs Mapped to Four Outputs. The second type of mapping

is trained to approximate the matrix eigenvalue inverses directly from the matrix

elements. Because HTH is a 4¬4 symmetric matrix, there are only ten elements (e.g.,

upper triangle elements) required for mapping:

HTH¯
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where: g
k
¯ (HTH)

i,j
, 1% i% j% 4, for k¯ 1 … 10. The λ

!
−< here is a functional

2<;!2? mapping from HTH to λ
!

−< : λ
!

−<¯ fn(HTH). The network now has the

(10-21-4) structure with the following input-output pairs :

Input : (x
<
, x

=
, … , x

<;
)T ¯ ((HTH)

<,<
, (HTH)

<,=
, … , (HTH)

?,?
)T
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4.3. Type 3: Four Inputs Mapped to One Output. In the above two types of

mapping, the output variables used for training are the eigenvalue inverses. In this

case, the network is designed to perform a 2?!2< mapping from f
!

directly to

GDOP, i.e. GDOP¯ fn( f
!

). Consequently, the network has the simpler (4-9-1)

structure:

Input : (x
<
, x

=
, x

>
, x

?
)T ¯ ( f

<
, f

=
, f

>
, f

?
)T

Output : y¯GDOP

4.4. Type 4: Ten Inputs Mapped to One Output. The network has the (10-21-1)
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Figure 4. GDOP approximation using (a) the 4-9-4 BPNN; (b) the 10-21-1 BPNN, and

(c) comparison of GDOP residuals for four types of mapping.
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structure, which directly maps HTH to GDOP, i.e. GDOP¯ fn(HTH). This is a

functional 2<;!2< mapping:

Input : (x
<
, x

=
, … , x

<;
)T ¯ ((HTH)

<,<
, (HTH)

<,=
, … , (HTH)

?,?
)T

Output : y¯GDOP

Simulation was conducted to investigate and compare the performance for the four

types of mapping. The receiver is simulated to be located at the top of the building

of this Institute, which has an approximate position of North 25±15 degrees, East

121±78 degrees, at an altitude of 62 metres ([®3042329±2 4911080±2 2694074±3]T m in

WGS-84 ECEF coordinates) in a 24-satellite constellation. A 24-hour duration was

simulated. The GDOP was computed every one minute, and then collected in two files

every other minute, one for training and the other for testing purpose. The BPNN is

made of three layers (one input layer, one hidden layer, and one output layer). For

comparing training performance, all the four types of mapping are trained with 20000

learning iterations. The learning rate and momentum are selected as 0±5 and 0±6,

respectively. The input variables, i.e. f
i
and HTH, were normalized to the range [0, 1] ;

and the output variables, i.e. λ−<
i

and GDOP, were normalized to the range [0±2, 0±8].

Results showed that, after 20000 learning iterations, the one-output architectures,

i.e. (4-9-1) and (10-21-1) types, provided better GDOP mapping accuracy than the

four-output architectures, i.e. (4-9-4) and (10-21-4) types. The (4-9-4) type provided

relatively poor accuracy while the other three types provided mapping accuracies on

about the same order of magnitude. Figure 4 provides the approximate GDOP

obtained by the four types of mapping. When using the Multilayer Functional-Link

Network (MLFN), which was formed by adding additional inputs using logarithmic

and exponential functions, the improved accuracy was not significant.

Since the original outputs of four-output structures (4-9-4) and (10-21-4) are

eigenvalue inverses, the mapping accuracies for the eigenvalue inverse are now

explored. For the four-output cases, the (10-21-4) architecture predicts the eigenvalue

inverses with much better accuracy than does the (4-9-4) architecture. The (4-9-4) type

of mapping, after 20000 learning iterations, does not approximate the eigenvalue

inverses with very good accuracy, while the eigenvalue inverses obtained by the ten-

input (10-21-4) architectures are predicted with very good accuracy. The four

eigenvalue inverses approximated by (4-9-4) and (10-21-4) types of mapping are

shown in Figure 5. With regard to the ten-input architectures, (10-21-4) and (10-21-

1), because ten input variables are required for these two architectures, the number

of hidden neurons is increased from 9 to 21, respectively. This makes the minimum

dimensions of w
ij

from 4¬9 to 10¬21, respectively (based on Kolmogorov’s

Theorem). However, the ten-input architectures avoid the intermediate step of

computing f
i
as in Equation (16). In addition, when the one-output architecture (10-

21-1) is employed, the above w
jk

dimension immediately decreases from 21¬4 to

21¬1, respectively. Also, when using the (4-9-1) architecture instead of the (4-9-4)

architecture, the dimension of w
jk

decreases from 9¬4 to 9¬1. A brief summary of

the mapping performance is shown in Table 1.

5. CONCLUSION. The BPNN-based GDOP approximation was successfully

conducted. Four types of functional mapping were performed and their performances

explored. While it is recognized that the BPNN has been most popular throughout
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Figure 5. For legend see opposite.

all neural applications, it is also well known to have some drawbacks such as slow

learning. To improve the BPNN, one can adjust the learning rates to improve the

training time. Much of the NN research literature is devoted to attempts to speed up

BP. Instead of presenting better BPNN algorithms, the objective of this paper was

mainly on the discussion of mapping performance among four types of network

architectures for approximating the GDOP function, hence only the standard back-

propagation algorithm was employed. Moreover, the results obtained in this paper

can also be used for other applications, such as, for determining the matrix

eigenvalues.
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Figure 5. Approximation of eigenvalue inverses : (a) λ−<

<
; (b) λ−<

=
; (c) λ−<

>
; and (d) λ−<

?
, using

the 4-9-4 and 10-21-4 types of BPNN.

Table 1. Performances of four types of mapping after 20000 iterations of training.

Architecture 4-9-4 10-21-4 4-9-1 10-21-1

GDOP mapping accuracy good very good very good very good

Error mean ®0±0553 ®0±0084 ®0±0022 ®0±0127

Error standard deviation 0±0526 0±0251 0±0236 0±0174

λ
!

−<mapping accuracy not as good very good N}A N}A

Intermediate step (i.e. calculation

of f
!

) required?

yes no yes no
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