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ABSTRACT
The number of unmanned aerial vehicles (UAVs, also known as drones) has increased dramat-
ically in the airspace worldwide for tasks such as surveillance, reconnaissance, shipping and
delivery. However, a small number of them, acting maliciously, can raise many security risks.
Recent Artificial Intelligence (AI) capabilities for object detection can be very useful for the
identification and classification of drones flying in the airspace and, in particular, are a good
solution against malicious drones. A number of counter-drone solutions are being developed,
but the cost of drone detection ground systems can also be very high, depending on the num-
ber of sensors deployed and powerful fusion algorithms. We propose a low-cost counter-drone
solution composed uniquely by a guard-drone that should be able to detect, locate and elim-
inate any malicious drone. In this paper, a state-of-the-art object detection algorithm is used
to train the system to detect drones. Three existing object detection models are improved by
transfer learning and tested for real-time drone detection. Training is done with a new dataset
of drone images, constructed automatically from a very realistic flight simulator. While fly-
ing, the guard-drone captures random images of the area, while at the same time, a malicious
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drone is flying too. The drone images are auto-labelled using the location and attitude infor-
mation available in the simulator for both drones. The world coordinates for the malicious
drone position must then be projected into image pixel coordinates. The training and test
results show a minimum accuracy improvement of 22% with respect to state-of-the-art object
detection models, representing promising results that enable a step towards the construction
of a fully autonomous counter-drone system.

Keywords: Counter-Drone; UAV; Drones; Object Detection; YOLO; EfficientNet; deep
learning; Airsim

NOMENCLATURE

UAV Unmanned Aerial Vehicle

AI Artificial Intelligence

DRL Deep Reinforcement Learning

RL Reinforcement Learning

TL Transfer Learning

CNN Convolutional Neural Network

BiFPN Bi-directional Feature Pyramid Network

API Application Programming Interface

YOLO You Only Look Once

LIDAR Light Detection and Ranging

RPN Region Proposal Network

ROI Region of Interest

SVM Support Vector Machines

HOG Histogram of Oriented Gradient

FLD Fisher Linear Discriminant

RGN Relational Graph Network

GPS Global Positioning System

GPU Graphical Processing Unit

TPU Tensor Processing Unit

ϕ Roll Angle in radians

θ Pitch Angle in radians

Ψ Yaw Angle in radians

mAP Mean Average Precision

IoU Intersection Over Union

TP True Positives

FP False Positives

TN True Negatives

FN False Negatives

ms milliseconds

BFLOPS Billions of Floating-Point Operations required per Second
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1.0 INTRODUCTION
Drones are generally used for surveillance, reconnaissance, shipping and delivery. Also, the
number of drones which are commercially available is increasing, along with the risk of
their misuse. Counter-drone systems are an emerging need to detect and eliminate malicious
drones or any kind of UAV that threaten public security or individual privacy. Technologies
for the detection, localisation and identification of small UAVs include infrared sensors, laser
devices, optical surveillance aids and devices, acoustic devices, Light Detection and Ranging
(LiDAR) sensors, equipment operating with image recognition technology, devices capable
of detecting and localising UAV remote control signals and human air observers(1). After a
target drone is detected, elimination methods such as laser guns, water cannons, birds trained
to catch drones and jamming can be applied.

However, drones themselves can also be used to counter malicious drones. In the literature,
researchers have studied different instruments to detect UAVs. Choi et al.(2) proposed a radar
system to detect drones such as quadcopters from long distances. The drone detection system
was also tested experimentally in outdoor environments to verify its ability for long-range
drone detection. In other research by Bernardini et al.(3), an acoustic drone detection method
was presented. A machine-learning-based warning system was developed to detect drones
by using their audio fingerprint. The effectiveness of this sensing approach was supported
by preliminary experimental results. Haag et al.(4) presented LiDAR and radar sensors to
detect small unmanned aerial system platforms. The position and average velocity of the
target could also be determined very accurately by applying motion compensation and target
tracking techniques based on the high update rate and ranging accuracy of LiDARs. A full
counter-drone system using several types of sensors and several levels of prediction and
fusion was also presented by Samaras et al.(5). A Deep Reinforcement Learning (DRL)
solution was proposed by Çetin et al.(6) to counter a drone by using another drone. The
countering drone can autonomously avoid all kinds of obstacles (trees, cars, houses, etc.)
inside a suburban neighbourhood environment, while trying to catch a malicious drone that
is moving randomly. The current research could be considered as part of the object detection
system in that DRL solution.

In this paper, a state-of-the-art object detection algorithm is trained and tested for the detec-
tion of drones in real time. Moreover, the drone detection models are trained using different
kinds of image sets, one of which was created by capturing images from the AirSim simula-
tor and auto-labelled. The results are analysed and compared against those of existing drone
detection models described in literature. The proposed models are adapted to detect new types
of drones by improving the layer parameters of a pre-trained Convolutional Neural Network
(CNN). The remainder of this manuscript is organised as follows. In Section 2, related work is
explained. Section 3 explains the training setup, drone image dataset and auto-labelling pro-
cess, the real-time object detection method and the models used to detect drones and transfer
learning, as well as the mapping from world to image coordinates. In Section 4, the training
and test results are presented. Also, the performance of the proposed models is explained and
analysed in detail, followed by a discussion and the conclusions of this work.

2.0 RELATED WORK
In this section, firstly studies related to state-of-the-art object detection methods are presented,
then drone detection models available in literature are explained.
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2.1 Object detection models
Object detection is one of the core techniques used in computer vision and image process-
ing. There are several fast and powerful real-time object detection systems, such as Fast
r-CNN(7), Faster r-CNN(8), Xception(9), Yolo(10), or EfficientNet(11)(12). These methods have
been updated and represent considerable improvements with respect to former CNN mod-
els. For example, Fast r-CNN(7) is an evolution of the VGG16 network, a region-based CNN,
using the Caffe framework with multitasking, in which training is carried out in a single stage,
thus avoiding any disk storage. Faster r-CNN(8) builds on Fast r-CNN by introducing a Region
Proposal Network (RPN) with the aim of proposing regions of interest at the same time that
feature maps are being generated.

Xception(9) is also an evolution of the VGG16 network that uses inception layers(13). These
are neural network layers that independently look for correlations across channels and at spa-
tial pixels. Xception is based on a linear pipeline of depth-wise separable convolution layers,
efficiently implemented in TensorFlow and forms the base of the Facebook object detector
software.

Yolo(10) is a family of algorithms used in many research studies on object detection.
Proposed by Redmon et al., Yolo, named after the slogan “you look only once”, frames
object detection as a regression problem to spatially separate bounding boxes and associated
class probabilities. Yolo processes images by first resizing the input image, then secondly, a
single convolutional neural network runs on the image. Finally, the resulting detections are
thresholded based on the model’s confidence. Newer versions of Yolo propose the use of
larger neural networks than the precious version and/or show faster execution. Yolo predicts
bounding boxes using dimensional clusters as anchor boxes(14). Yolo offers the advantage of
allowing multi-label predictions; this is, an object can be detected as two (or more) differ-
ent labels at the same time. In this way, a friendly drone and a malicious drone can both be
detected and labelled as drones, while at the same time, if their visual appearance is known,
they could also be labelled as a threat or non-threat.

EfficientNet(11) is a brand-new state-of-the-art object detection model that, together with its
recent evolution, EfficientNet(12), has become very popular in a short time thanks to its accu-
racy and efficiency. One of the key improvements is its novel Bi-directional Feature Pyramid
Network (BiFPN), which allows information to flow in different directions: top down and
bottom up. Secondly, EfficientNet uses a fast, normalised fusion technique, which adds an
additional weight for each input feature, thus identifying the importance of each input fea-
ture. Finally, it introduces a scaling method, which jointly resizes the resolution/depth/width
of the model to better fit with different resource constraints. EfficientNet-B0 is a version of
EfficientNet adapted for small-size objects.

2.2 Object detection models for on-board UAV processing
Object detection methods have also been implemented to detect objects from UAVs with
different target applications such as surveillance and disaster management.

For example, real-time object detection has been performed to detect humans by using
videos captured from a UAV(15), addressing constraints such as computation time, view-
ing scale and altitude. The results are also visualised in a Geographic Information System
platform by geo-localising objects to world coordinates.

In other research, a technique was proposed(16) to detect humans at a high frame rate by
using an autonomous UAV. A map of points of interest is built by geo-locating the positions
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of the detected humans. The video sequences, which are streamed from two video sources,
thermal and colour, are collected on board the UAV and fused to increase the successful
detection rate.

Furthermore, Yang et al.(17) recently proposed a real-time detection and warning system
based on artificial intelligence (AI) to monitor social distancing between people during the
coronavirus disease 2019 (COVID-19) pandamic(18). A fixed monocular camera is used to
detect individuals in a region of interest (ROI), and the distances between them are mea-
sured in real time without data recording. The proposed method was tested across real-world
datasets to measure its generality and performance.

2.3 Drone detection models
In 2017, the European SafeShore project, in parallel with the IEEE AVSS conference,
launched the Drone-vs-Bird Challenge to improve methods for detecting UAVs close to
coastal borders, where they can easily be confused with birds. The challenge aims to correctly
label drones and birds appearing in a video stream. From the papers presented in the first and
second editions, in 2017 and 2019, respectively, it can be concluded that new advances are
being driven by using CNNs with more and more layers, larger training datasets and improved
implementations. In addition, the exploitation of temporal information is a key issue in differ-
entiating drones from birds. The best paper of 2019(19) proposed a 110-layer CNN based on
a semantic segmentation U-Net network originally designed for medical image processing,
adding some dilation layers to improve detection of small objects. Posterior spatial–temporal
filtering allowed an F1-score of 0.73 to be obtained. The set of training and test images used in
those works, although challenging, were taken from the ground with the sky as background.

Drone-Net(20) is a deep learning model, available as open source, trained with 2,664 real
drone images. It contains 24 convolutional layers in total, two of which are detection layers
called Yolo layers. The details of the Drone-Net CNN are shown in Fig. B.1 in the Appendix.
This model is considered as the state-of-the-art model for drone detection, and its accuracy
results will be compared with those achieved by the new models presented herein.

Xiaoping et al.(21) proposed a dynamic drone detection method based on two consecutive
inter-frame differences. They combine a Support Vector Machines (SVM) classifier with the
traditional Histogram of Oriented Gradient (HOG) detection algorithm, and add an interme-
diate step based on a Fisher Linear Discriminant (FLD) to reduce the dimensionality of the
HOG features. Using a dataset of 500 images, their results show an accuracy above 90%,
similar to other drone detection algorithms, but with improvements in terms of the detection
time that allow the processing of up to 10 images per second. However, since this method is
based on the difference between consecutive images, it is not suitable for a moving camera.

Hu et al.(22) proposed an object detection method, called DiagonalNet, by using an
improved hourglass CNN as its backbone network and generating confidence diagonal lines as
the detection result. A large dataset (10,974 sample images) was created by processing videos
and photos with different backgrounds and lighting, augmented by rotating and flipping each
image with random angles. The images contain six types of UAVs, including multirotor and
helicopter devices, and are labelled manually. The proposed algorithm detects UAV quickly
(at 31 images per second) and accurately (with mean average precision above 90%). However,
the experiments were all carried out indoors and in close proximity to the target drone.

With the objective of improving swarm cooperative flight and low-altitude security,
Jin et al.(23) proposed a Six-Dimensional (6D) pose estimation algorithm for quadrotors.
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The proposed algorithm, based on the Xception network and pre-trained with ImageNet,
includes a novel Relational Graph Network (RGN) to improve the performance of the drone
pose detection. The pose is obtained by recognising eight key points (nose, rotors, etc.) of a
quadrotor. After training with 340 images, simulation experiments showed a mean average
precision of 0.94 in position and 0.74 in velocity, representing an enhancement of 9.7% com-
pared with the baseline network. Given the real-time capabilities of the algorithm (30 frames
per second), it was also tested with real flights. However, the mean average precision dropped
to 0.65–0.75. Moreover, the accuracy of the 6D pose results decreased for small-sized drones.

Carrio et al.(24) used AirSim to train a CNN detection network with 16 layers by auto-
matically labelling depth maps. Depth maps were obtained by stereo-matching of the
Red–Green–Blue (RGB) image pairs of the virtual ZED stereo camera on the AirSim drone.
The ground-truth labels of the depth maps were generated automatically by colour segmenta-
tion of the visual image. After training with 470 images, the detection system was integrated
on board a small drone and tested while the drone navigated in the environment. The results
showed that the system can simultaneously detect drones of different sizes and shapes with
mean average precision of 0.65–0.75 and localise them with a maximum error of 10% of the
truth distance when flying in linear motion encounters. The solution is limited to a maximum
distance of 8m with relative speeds up to 2.3m/s.

Wyder et al.(25) presented a UAV platform to detect and counter a small UAV in an indoor
environment where Global Positioning System (GPS) is not available. An image dataset is
used to train a Tiny Yolo object detection algorithm. This algorithm, combined with a simple
visual-servoing approach, is also validated in a physical platform. It successfully tracked and
followed a target drone, even with an object detection accuracy limited to 77%.

3.0 CONTRIBUTIONS
The main contribution of the current work is that the drone detection models are constructed
by transfer learning and training a state-of-the-art object detection algorithm. The drone detec-
tion models are trained using different kinds of images of drones to obtain a more robust drone
detector. The source codes are available online(26), and the model configuration is presented
in detail. Images captured from the AirSim simulator are automatically labelled with a bound-
ing box around the drone. One of the advantages is that the time to label each image captured
in the simulator is reduced compared with labelling them manually. Besides, the images can
be used directly for training without needing third-party applications for labelling. It is con-
sidered that the auto-labelling procedure introduced here can save time for many researchers
who work in the object detection field. Finally, the models are also tested, and the overall test
results show that the proposed models achieve acceptable accuracies above 85% to detect only
drones.

4.0 TOOLS AND METHODS
In this section, the tools and methods that are used for developing, training and testing the
neural network models are discussed.

4.1 Tools
The following training tools are used for model creation:
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Figure 1. AirSim training images.

• AirSim simulator

AirSim(27) is a platform for AI research to experiment with deep learning, computer vision
and reinforcement learning algorithms for autonomous vehicles such as cars or drones.
AirSim is built as an Unreal Engine(28) plugin. Unreal Engine provides ultra-realistic ren-
dering and strong graphical features for AirSim. Many environments are available for use in
AirSim. In this work, the suburban neighbourhood is selected to capture images.

• Darknet framework

Darknet(29,30) is a framework for training and testing of neural networks, written in C. The
C language provides an efficient solution for general object detection in real time. We use
Yolo-V3(31) with Darknet-53, the original 53-layer CNN shown in Fig. A.1, which achieves
the highest measured floating point operations per second. In addition to the implementation
of the algorithms, the Darknet framework also provides several pre-trained CNN models.

• Local desktop computer and Google Cloud Platform

The proposed models are trained on a desktop with an NVIDIA GeForce GTX 1060 graph-
ical processing unit (GPU) with 6GB RAM graphic co-processor and Intel i7 processor with
16GB of memory. In addition, the Google Cloud Platform provides a colaboratory service(32)

(“Google Colab”), which allows you to write and execute python in an internet browser.
Google Colab allows the execution of codes on Google’s cloud serves, which include power-
ful hardware including GPUs and tensor processing unit (TPUs). Neural networks were also
tested on a Google cloud server with a Tesla T4-16GB GPU.

4.2 Drone image dataset and auto-labelling
Training a CNN requires a large dataset of labelled images. In this work, new drone images
for the training dataset were captured by using the AirSim simulator. AirSim provides a public
Application Programming Interface (API) for receiving parameters related to the drone and
environment. We created a dataset of 2,000 images for training, 1, 280 × 960 in size, captured
in AirSim by using a drone flying randomly in the environment. Then, the captured images are
auto-labelled by mapping the drones position in world coordinates to the image coordinates.
Some of the image samples used in training can be seen in Fig. 1.

The procedure for projecting from 3D world coordinates to the image plane includes a few
steps, which are explained in detail below:

• The pinhole camera model

The pinhole camera model defines the geometric relationship between a 3D point in the
scene and its corresponding 2D projection onto the image plane. This geometric mapping
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Figure 2. Pinhole camera projection visualisation.

Figure 3. Projection summary.

from 3D to 2D is a perspective projection. In the AirSim simulator, a pinhole camera model
is available and mounted onto the drones for capturing images. The pinhole camera models in
AirSim do not include the geometric distortion caused by lenses. Figure 2 shows a schematic
view of the pinhole camera projection. The following paragraphs explain the different
coordinate systems in more detail:

• Forward projection

The order of the forward projection is shown in Fig. 3. Firstly, the world coordinates of the
drone which is found in the image are converted to camera coordinates by using quaternions
and a rotation matrix. The rotations are described as a yaw–pitch–roll sequence, and the rota-
tion matrix can be obtained by using the Euler angles which are available in the simulator as
shown in Equation (1).

Quaternions are applied to the coordinate rotations and to relate them to the Euler angles(33).
The quaternion for a yaw–pitch–roll sequence are presented in Equation (2)

R =
⎡
⎢⎣

cos(θ ) cos(ψ) cos(θ ) sin(ψ) − sin(θ )

− cos(φ) sin(ψ) + sin(φ) sin(θ ) cos(ψ) cos(φ) sin(ψ) + sin(φ) sin(θ ) sin(ψ) sin(φ) cos(θ )

sin(φ) sin(ψ) + cos(φ) sin(θ ) cos(ψ) − sin(φ) cos(ψ) + cos(φ) sin(θ ) sin(ψ) cos(φ) cos(θ )

⎤
⎥⎦ · · · (1)

q =

⎡
⎢⎢⎢⎢⎢⎣

cos(φ2 ) cos( θ2 ) cos(ψ2 ) + sin(φ2 ) sin( θ2 ) sin(ψ2 )

sin(φ2 ) cos( θ2 ) cos(ψ2 ) − cos(φ2 ) sin( θ2 ) sin(ψ2 )

cos(φ2 ) sin( θ2 ) cos(ψ2 ) + sin(φ2 ) cos( θ2 ) sin(ψ2 )

cos(φ2 ) cos( θ2 ) sin(ψ2 ) − sin(φ2 ) sin( θ2 ) cos(ψ2 )

⎤
⎥⎥⎥⎥⎥⎦

· · · (2)

The drone captures an image of the other drone, which is visible in the camera at certain
angles when the field of view of the camera is less than 60◦. Secondly, the image coordinates
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Figure 4. Darknet-53 CNN used as backbone for model 2.

are obtained by using the perspective projection of the camera, which uses the camera matrix
received from the simulator. Finally, the pixel values are calculated by moving the origin to
the upper-left corner of the screen. The mapping geometry is presented in Fig. 2.

4.3 Transfer learning
The main purpose of Transfer Learning (TL) is to improve the learning performance by using
the experience from successfully pre-trained models(34). TL can be used for different goals
and in different situations. For instance, Drone-Net is built by using transfer learning to refine
a Darknet model for detecting drones.

4.4 Proposed models
In this section, the new models proposed to improve the current results of Drone-Net are
presented.

• Model 1 uses the same CNN architecture as Drone-Net, shown in Fig. B.1 in the Appendix.
From the pre-trained Yolo network, up to 16 convolutional layers are transferred. After
transferring these convolutional layers, the network is trained with 2,000 new images
obtained from the AirSim simulator and another 1,000 images taken from the Drone-Net
training set. The main purpose is to use the pre-trained weights from Drone-Net with the
hope that the new model can detect real drones as well as drones from AirSim images.

• Model 2 is built by using the pre-trained weights from Darknet-53 for the neural net-
work model based on the Yolo-v3(31) architecture. The neural network model is based on
the Yolo-v3(31) architecture. In this model, the Darknet-53 model is implemented and the
default Yolo-v3 network is modified to detect only the drone class. The Yolo-v3 network
shown in Fig. 4 contains 107 layers: 75 convolutional layers, 23 shortcut layers, 4 routes,
2 upsamples and 3 Yolo detection layers. The predictions in Fig. 4 show that Yolo-v3
detects objects in three different layers. The model summary can be seen in Fig. C.1 of the
Appendix. In this model, up to 74 convolutional layers from Darknet-53 model are trans-
ferred, then the training is extended with the 3,000 images: 2,000 images from the AirSim
simulator as before, plus another 1,000 images taken from the Drone-Net training set.
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Table 1
Backbone models used in training

Model No. of CNN layers No. of classes

Drone-Net(20) 24 1
Darknet-53(31) 107 80
EfficientNet-B0(11) 145 80

Table 2
Model details for training (all 6,000 iterations)

Backbone
Model (no. of pre-trained layers) Training datasets No. of images

Model 1 Drone-Net (16) AirSim + Drone-Net 3,000
Model 2 Darknet-53 (74) AirSim + Drone-Net 3,000
Model 3 EfficientNet-B0 (132) AirSim + Drone-Net 3,000

• Model 3 is constructed and optimised by using the EfficientNet-B0 object detection algo-
rithm to detect a drone. EfficientNet-B0 contains 145 layers and 2 detection layers. Up
to 132 convolutional layers from Efficient-D0 model are transferred. The EfficientNet-B0
model summary used in training can be seen in Fig. 15 in the Appendix. The training
set includes the 3,000 images: 2,000 images from the AirSim simulator and 1,000 images
taken from the Drone-Net training set. The models proposed here have backbone networks
such as Drone-Net, Darknet-53 and EfficientNet-B0. The details of these backbones are
presented in Table 1. In addition, in Table 2, the model details are explained. For instance,
model 1 uses up to 16 Drone-Net backbone network convolutional layers, and model 2
has a backbone network from Darknet-53 with up to 74 convolutional layers. Model 3 has
more layers in total than the other models thanks to the EfficientNet-B0 model, which has
145 layers in total, and it uses up to 132 convolutional layers from EfficientNet-B0.

5.0 RESULTS
In this section, the models described in Section 4 are trained and tested. First, the training
metrics are given, then the test results are presented.

5.1 Training results
Training was accomplished in 6,000 steps for all models. During training, the mean Average
Precision (mAP) value is calculated and the best weights (those that give the highest mAP
value) is saved. The mAP is the mean value of the average precision (AP) for each class,
being the average precision, i.e., the area under the precision–recall curve(30). The training
results for all the models are summarised in Table 3, showing the mean average precision
(mAP) metric and the training time for each model. The mAP is calculated for an Intersection
Over Union (IoU) threshold of 0.5 and presented as mAP@0.5.
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Table 3
Training results of models after 6,000 steps

Model Best mAP@0.5% Training time (h)

Model 1 83.63 2.5
Model 2 84.93 14
Model 3 89.77 18

Figure 5. Loss and mAP (%) for training model 1.

These results show that model 3 achieves the highest mAP value of 89.77%, while model
1 reached the lowest mAP value of 83.63%. Model 2 has an intermediate mAP@0.5 value
of 84.93% and also required a training time intermediate between model 1 and model 3. The
training time can be affected by batch size and subdivisions, which is set in the configuration
of each models for training. Model 1 had the shortest training time thanks to the size of its
neural network, which has a total of 24 convolutional layers.

Training plots for each model are also presented in Figs 5, 6 and 7, where the red line
represents the calculated mAP values and the blue line shows the loss value during training.
Note that the loss value drops dramatically after 600 iterations for all the models. In Fig. 5,
the model 1 mAP value starts at 71% and fluctuates around 80%. After 3,420 iterations, the
best mAP value of 83.63% is recorded. In the meantime, the average loss value remains stable
at the minimum of around 0.5, which is the highest among all the models.
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Figure 6. Loss and mAP (%) for training model 2.

Moreover, Fig. 6 shows the training progress for model 2. In this training, the mAP value
starts at 43% and jumps to the 76% level. After 3,600 iterations, the best mAP@0.5 value of
84.93% is calculated. At the end of the training, the mAP value is calculated, but we saved
the weights of the model for the first highest mAP value to avoid over-fitting.

Finally, the training progress for model 3 is presented in Fig. 7. As when training the other
models, the mAP values were calculated during training and the best weights saved. In this
training, the best weights were obtained at around 4,000 iterations. The model 3 mAP value
reaches the highest value of 89.77% with respect to the two models described above. The
mAP value of model 3 starts at a higher value of 68%, and the loss settles down to 0.25 in
6,000 iterations.

5.2 Test results
Once the models were trained, we fed them with new unseen images for the test evaluation.
The state-of-the-art object detection models, shown as the backbone models in Table 1, and
the three proposed models were tested with those different groups of images. The details
regarding the number of test images from each group are presented in Table 4. Four sources
of images were proposed with a balanced distribution of 20 images from each. Some of the
images are shown in Fig. 8.

Note in Fig. 8 that the first two images (a, b) are from the AirSim simulator, images (c)
and (d) are obtained from the Drone-Net test set while images (e) and (f) are random but
challenging drone images, with noisy background, found in the Internet. Finally, the models
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Table 4
Example test images

Image source No. of images

AirSim test images 20
Drone-Net test images 20
Web drone images 20
No-drone images 20

Figure 7. Loss and mAP (%) for training model 3.

were also tested with images, such as (g) and (h), which do not include any drones, to capture
potential errors in prediction. Note that, unlike the other two sets, the AirSim images are
drone images taken from another flying drone, not from the ground as in the other cases.

The following evaluation metrics were used to measure the test performance of the neural
networks and compare the results obtained by each model:

• Accuracy: (TP + TN)/total predictions
• Precision: TP/(TP + FP)
• Recall: TP/(TP + FN)
• F1-score: 2 × (precision × recall)/(precision + recall)

based on the number of True Positives (TP), False Positives (FP) (or detection errors), False
Negatives (FN) (or omissions) and True Negatives (TN).
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Table 5
Overall test results

Model TP TN FP FN Accuracy (%) F1-score

Drone-Net 37 18 7 18 69 0.75
Darknet-53 14 20 7 39 43 0.38
EfficientNet-B0 18 20 5 37 48 0.46
Model 1 52 16 6 6 85 0.90
Model 2 54 19 2 5 91 0.94
Model 3 53 16 5 6 86 0.91

Airsim #1 Airsim #2 DroneNet #1 DroneNet #2

Web #1 Web #2 NoDrone #1 NoDrone #2

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Test images from four different sets.

While the accuracy measures the goodness of the models, the precision and recall measure
the errors in terms of the false detection rate and omissions, respectively. The F1-score, which
is calculated as the harmonic mean of the precision and recall, is a measure of the robustness
of a model.

The overall test results including the whole test set (80 images) are presented in Table 5.
The test results for each set of test images are also analysed in detail, and the results presented
in Tables 7, 8, 9 and 10.

The results presented in Table 5 show that Darknet-53 and EfficientNet-B0 were less accu-
rate and, as expected, their F1-scores were very low compared with Drone-Net, which is
a state-of-the-art drone detection model. The Darknet-53 and EfficientNet-B0 models were
already trained by using the COCO(35) image set to detect up to 80 classes. These classes
are different kinds of objects such as humans, cars, trees, birds, dogs, bags, trains, etc., while
all kinds of air vehicle are labelled under a single class of aeroplanes. A detailed look at the
number of TP predictions in Table 5 shows that Darknet-53 and EfficientNet-B0 miss most of
the drone detections. For this reason, both models also have a high number of FN predictions
and thus a low F1-score compared with Drone-Net. As a direct conclusion for counter-drone
systems, it is not feasible to use such generic models directly to detect only drones. For this
reason, the new models proposed here provide an improved way to detect only drones with
acceptable accuracy. For example, model 1, model 2 and model 3 achieved high accuracies,
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Table 6
Comparison of real-time performance of the models

Model Inference time (ms) BFLOPS

Model 1 4.838 5.448
Model 2 40.756 65.304
Model 3 38.222 3.670

Table 7
AirSim image test results

Model TP TN FP FN Accuracy (%) F1-score

Model 1 14 0 1 5 70 0.82
Model 2 16 0 0 4 80 0.89
Model 3 14 0 0 6 70 0.83

Table 8
Web image test results

Model TP TN FP FN Accuracy (%) F1-score

Model 1 18 0 1 1 90 0.95
Model 2 18 0 1 1 90 0.95
Model 3 19 0 1 0 95 0.98

reaching 85%, 91% and 86%, respectively. Equivalently, the models have high F1-scores of
90%, 94% and 91%, respectively, with model 2 achieving the highest scores compared with
the other models. This is very important because counter-drone systems are expected to detect
drones precisely. In other words, the number of false detections is expected to be zero or as
low as possible, thus avoiding failures in the detection of unexpected intruder drones. As seen
in Table 5, model 2 achieved the lowest false detections compared with the other models.

The real-time performance of the proposed models is compared in Table 6. Evaluation met-
rics such as the inference time in milliseconds (ms) and Billions of Floating-Point Operations
required per Second (BFLOPS) are used to compare each models. The models are tested on
a 16-GB Tesla T4 GPU, which is commonly used among researchers. Model 1 achieved the
fastest inference time of 4.838ms. Model 3 performed slightly faster than model 2, although
model 3 has the highest number of layers, but the lowest BFLOPS value of 3.670.

To better understand how the models perform predictions, we carried out a deeper analysis
of the results for each test dataset. The results of the AirSim images are presented separately
in Table 7, revealing that the performance of the models was satisfactory for detecting AirSim
images. Model 1 and model 3 showed accuracy of 70%, while model 2 achieved a higher rate
of correct detection of 80%. Model 1 showed only one FP detection, while model 2 and model
3 showed none. The F1-score was also calculated for all the models. Model 2 showed the high-
est F1-score of 0.89, compared with 0.82 and 0.83 for model 1 and model 3, respectively.

Table 8 presents partial results for brand-new images taken from the Internet. Note that
model 1, model 2 and model 3 showed very good rates of detection of 90%, 90% and 95%,
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Table 9
Drone-Net image test results

Model TP TN FP FN Accuracy (%) F1-score

Model 1 20 0 0 0 100 1
Model 2 20 0 0 0 100 1
Model 3 20 0 0 0 100 1

Table 10
No-drone image test results

Model TP TN FP FN Accuracy (%) F1-score

Model 1 0 16 4 0 80 NA
Model 2 0 19 1 0 95 NA
Model 3 0 16 4 0 80 NA

Drone-Net Model-1 Model-2 Model-3

(a) (b) (c) (d)

Figure 9. AirSim image test detection results.

respectively. Additionally, model 1, model 2 and model 3 achieved higher and promising
F1-scores of 0.95, 0.95 and 0.98, respectively.

When looking at the partial results for the models tested with Drone-Net images, model 1,
model 2 and model 3 detected the images with higher accuracy of 100%, as seen in Table 9.
Also, the models showed higher F1-scores of 1.

Finally, the partial model test results for the images which do not include drones are pre-
sented in Table 10. It is expected that the models will not detect any object, including in
images which include shapes similar to drones. All the models showed higher accuracy (above
80%), although model 1 and model 3 had few FP detections. The F1-score is undefined given
that the number of TP is zero.

Figure 9 shows the same AirSim test image to compare the detection results of the four
models able to predict only the class drone. The Drone-Net model prediction shown in
Fig. 9(a) fails to detect drones in the AirSim test images. However, model 1, which has the
same configuration as the Drone-Net model but is trained with AirSim images, successfully
detected a drone (Fig. 9(b)). The model 2 and model 3 detection tests shown in Fig. 9(c) and
(d) reveal that both correctly detected drones.

Figure 10 shows the test results of the models for a challenging image from the web image
set. All the new models successfully detected the drone in the image. However, the state-
of-the-art drone detection model Drone-Net failed to detect the drone against such a noisy
background. In addition, the bounding box sizes can have different sizes. For example, in
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Drone-Net Model-1 Model-2 Model-3

(a) (b) (c) (d)

Figure 10. Web source image test detection results.

(a) (b) (c) (d)

Figure 11. Inaccurate bounding boxes in auto-labelling.

Fig. 10(c), the bounding box is larger than expected, which can just cover the predicted drone.
However, this is not the case in general in all the test images. Such different sizes of the
bounding boxes may be the result of background noise and the scale of the drone dimensions.

6.0 DISCUSSION
In this section, further analysis is discussed.

6.1 Inaccurate bounding boxes of the auto-labelling process
In auto-labelling, it was observed that there were inaccurate bounding boxes, and they had to
be removed from the training set. Almost 10% of the auto-labelled images were detected to be
inaccurate. In Fig. 11, some of the inaccurately labelled images are presented. For instance,
in Fig. 11(a), there is a bounding box at the top left of the image with no drone shown within.
The position of the drone at the moment of the image capture was very close to the other
drone, and the mapping from world to image coordinates was not correct. We believe that
this issue was caused by the processing time between capturing the image and obtaining its
world position from the simulator. The processing time does not cause problems when the
drones are far from each other, but when they are too close, their relative speed is high and
the retrieved drone location is already obsolete. However, if the drone stays stationary, this
problem disappears and none of the bounding boxes are inaccurate. Other erroneous and
disregarded bounding boxes, not centred correctly in the images, are shown in Fig. 11(b), (c)
and (d), all of which correspond to a drone at the border or outside of the captured image.

6.2 FP detections
In this section, FP detections by the models are discussed and analysed. These are error cases
where another object is mistakenly labelled as a drone. The FP images can be seen in Fig. E.1
in the Appendix.
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At the start of this research, we tested Drone-Net to detect drones in some images and
found that most of them were FP, especially when dealing with AirSim images. Figure E.1(a),
(b), (c), (d) and (e) shows AirSim test images detected as FP. These figures show that Drone-
Net is not accurate enough to detect a drone in these images. The detections were bounded to
objects such as trees or wires, or covering the whole image. In Fig. E.1, Drone-Net detects a
drone, but it also detects the commercial aircraft as drone. Drone-Net also detects two of the
images from the no-drone test image set as FP. Figure E.1(g) and (h) shows that objects such
as humans and road signs are also detected as FP by Drone-Net.

Model 1 also detected FP images. For example, in Fig. E.1(i), a large part of the image
was detected as a drone, similar to the Drone-Net model. However, most of the FP detections
occurred for no-drone test images. Figure E.1(j), (k), (l), and (m) shows that drone-like shapes
could be detected as a drone.

In addition, model 2 detected two FP images, one of them from the no-drone test image
set. A noisy image from the no-drone image set was tested, and model 2 detected smoke as
a drone. This FP image seen in Fig. E.1(o) can be caused by the shape of the smoke, which
appears like a drone in the image.

As observed above for the other models, model 3 also detected objects which are not
drones. A drone is detected in a few of the test images from the no-drone test set seen in
Fig. E.1(q), (r), (s), and (t). However, there are no drones in these images.

Some of the common FP detections among the models are shown in Fig. E.1(n), (p), and
(u). In these figures, it is seen that a drone is detected in one of the test images from the web.
However, another object, a commercial aircraft, is detected as a drone, which is a FP instead
of the drone to the bottom left of the aircraft.

7.0 CONCLUSIONS
Drone detection is a critical element of counter-drone systems, which also include other sub-
systems such as drone type classifiers (malicious or friendly) and neutralisation subsystems,
such as jamming, laser guns or shotguns. We believe that AI will protect the skies from incom-
ing malicious drone threats. This paper shows that drones can be detected with high accuracy
by using powerful available real-time object detection algorithms.

The proposed models are trained by using different kinds of images of drones and com-
pared with three state-of-the-art CNN models for object/drone detection that are available in
the public domain and also used as baseline models for transfer learning to the new mod-
els. The best models are found to be model 2 and model 3. The results show that drones in
AirSim images can be detected with high precision by using pre-trained convolutional layers
and training with AirSim and Drone-Net images. Additionally, it is observed that model 1
produces promising results compared with the state-of-the-art Drone-Net drone detection
model.

Both state-of-the-art object detection algorithms, i.e., Darknet-53 (model 2) and
EfficientNet-B0 (model 3), showed similar results. However, in real-world applications
such as counter-drone systems, the object detection method must be operated with limited
resources. EfficientNet-B0 provides state-of-the-art accuracy with a neural network that is
nine times smaller and consumes significantly less computation power compared with other
state-of-the-art object detectors. In future work, the EfficientNet-B0 drone detection model
tested here could be integrated as part of our counter-drone system in which, using DRL
methods, a guardian drone could detect and counter malicious drones while respecting and
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avoiding obstacles and legal drones. The accuracy of object detection and the fast response
time are very important challenges to track and catch drones. Finally, in the future, the inaccu-
rate bounding boxes of the auto-labelling process must be investigated to obtain more robust
drone detection models. One possible solution is to update the simulator when possible, since
the updated simulator API might fix the issue relating to the processing time between the
image capture and the receipt of the drone flight data from the simulator. A second solution
would be to optimise the Yolo object detection function to make the bounding boxes centre
correctly.
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APPENDIX

A.0 Darknet-53

Figure A.1. Darknet-53(31).

https://doi.org/10.1017/aer.2021.43 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.43


1892 THE AERONAUTICAL JOURNAL OCTOBER 2021

B.0 Drone-Net & Model 1 NN summary

Figure B.1. Drone-net and model 1 neural network model summary.
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C.0 Model 2 NN Summary

Figure C.1. Model 2 neural network summary.
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D.0 Model 3 NN summary

Figure D.1. Model 3 neural network summary.
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Figure D.1. Continued.
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E.0 FP detections

Drone-Net FP-1

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u)

Drone-Net FP-2 Drone-Net FP-3 Drone-Net FP-4

Drone-Net FP-5 Drone-Net FP-6 Drone-Net FP-7 Drone-Net FP-8

Model-1 FP-1 Model-1 FP-2 Model-1 FP-3 Model-1 FP-4

Model-1 FP-5 Model-1 FP-6 Model-2 FP-1 Model-2 FP-2

Model-3 FP-1 Model-3 FP-2 Model-3 FP-3 Model-3 FP-4

Model-3 FP-5

Figure E.1. FP images.
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