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The flow-induced vibration (FIV) of an airfoil freely undergoing two-degrees-of-
freedom (2-DOF) motions of plunging and pitching is numerically investigated as a
function of the reduced velocity and pivot location in a two-dimensional free-stream
flow. This investigation covers a wide parameter space spanning the flow reduced
velocity range of 0 < U∗ = U/( fnc) 6 10 and the pivot location range of 0 6 x 6 1,
where U is the free-stream velocity, fn is the natural frequency of the system set
equal in the plunge and pitch directions, c is the chord length of the foil and x
is the normalised distance of the pivot point from the leading edge. The numerical
simulations were performed by employing an immersed boundary method at a low
Reynolds number (Re = Uc/ν = 400, with ν the kinematic viscosity of the fluid).
Through detailed analyses of the dynamics of the 2-DOF vibrations and wake states,
a variety of FIV response regimes are identified, including four regions showing
synchronisation or near-synchronisation responses (labelled as S-I, S-II, S-III and
S-IV) and four transition regimes (labelled as T-I, T-II, T-III and T-IV) that show
intermittent, switching or chaotic responses, in the x–U∗ space.

Key words: flow–structure interactions, vortex shedding

1. Introduction

Flow-induced vibration (FIV) of structures is of great importance to many
engineering applications. For instance, it can cause undesired vibrations in heat
exchanger tubes and oil transportation pipes; and it threatens the structural fatigue
life and safety of tall buildings and bridges in civil engineering, as well as aircraft
and aero-engines. In contrast to these detrimental effects, on the other hand, FIV
has recently been considered as a potential source of renewable energy through
significant induced body oscillations, e.g. energy extraction through flapping motions
of foils. Thus, its practical significance has led to a great number of studies that
aim to better understand the fluid–structure mechanisms, predict structural vibration
occurrences and characteristics, and develop vibration control approaches. A series
of comprehensive reviews on the subject have been provided in the articles of
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

99
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6191-3514
https://orcid.org/0000-0001-5769-4507
https://orcid.org/0000-0003-3473-2325
mailto:lindu@buaa.edu.cn
https://doi.org/10.1017/jfm.2019.996


885 A36-2 Z. Wang, L. Du, J. Zhao, M. C. Thompson and X. Sun

Griffin, Skop & Koopmann (1973), Bearman (1984), Sarpkaya (2004), Williamson
& Govardhan (2004) and Gabbai & Benaroya (2005) and the books of Blevins
(1990), Naudascher & Rockwell (2005) and Paidoussis, Price & De Langre (2010).
In addition, reviews on flow energy harvesters based on flapping foils have recently
been given by Xiao & Zhu (2014) and Young, Lai & Platzer (2014). Of fundamental
interest to the present study is the dynamic response of a foil undergoing free
two-degrees-of-freedom (2-DOF) plunging and pitching vibrations, noting that the
response varies widely as the location of the pivot point is changed.

In addition to vortex-induced vibration (VIV), which involves synchronisation
(or lock-in) of the body oscillation frequency with the vortex shedding frequency,
another FIV phenomenon known as galloping is driven by the longer-term average
aerodynamic force, and is typically characterised by oscillations with amplitude
increasing with the reduced velocity and dominant frequency much lower than that of
vortex shedding (see Bearman et al. 1987). Under certain conditions of flow velocity
and structural properties (e.g. mass and damping ratios), these two forms of FIV
may dominate individually, or interact strongly with each other, over a range of
reduced velocity, as demonstrated in studies of FIV of a square cylinder by Corless
& Parkinson (1988, 1993), Nemes et al. (2012) and Zhao et al. (2014). Note that the
reduced velocity is defined by U∗ = U/( fnH), where U is the free-stream velocity,
fn is the natural frequency of the system and H is the characteristic length, e.g. the
diameter D for cylinder oscillations, or the chord length c for the case of a vibrating
airfoil, as is the case here.

Compared to bluff bodies, from a fundamental point of view, FIV of flapping
foils has not received as much attention. Inspired by the wings of birds, McKinney &
DeLaurier (1981) performed a pioneering experimental investigation of a windmill that
utilised a sinusoidally driven wing to extract wind energy. Since then, considerable
efforts have been undertaken, with a focus on accessing the energy harvesting
performance of foils with 2-DOF motions of plunging and pitching. In general,
depending on their operational modes, flapping-foil flow energy harvesters are
classified into three categories (see Xiao & Zhu 2014; Young et al. 2014): (i) fully
forced systems that have both plunging and pitching motions fully prescribed (e.g.
Kinsey & Dumas 2008; Platzer et al. 2010; Ashraf, Young & Lai 2011; Zhu 2012);
(ii) semi-passive systems that usually have prescribed pitching but allow free plunging
motions (e.g. Deng et al. 2015); and (iii) fully passive systems that have both
plunging and pitching motions free, fully determined by the fluid–structure interaction
(e.g. Veilleux & Dumas 2017; Wang et al. 2017). Owing to their simplicity of
modelling, the first two categories have been more often investigated. Previous
studies on systems from these two categories have shown that the energy extraction
of foil flapping devices is essentially through the plunging motion; however, the
energy extraction performance is strongly related to the pivot location, the amplitude
and frequency of plunging and pitching oscillations, and also the relative phase angle
between the 2-DOF motions, as demonstrated in Kinsey & Dumas (2008), Peng &
Zhu (2009), Platzer et al. (2010), Zhu (2012) and Xiao & Zhu (2014). On the other
hand, the maximum efficiency of energy extraction is often found to be ∼0.34 (see
Kinsey & Dumas 2008; Deng et al. 2015). Having observed that the efficiency was
maximised when the imposed flapping frequency matched the most unstable frequency
of the wake exhibiting multiple leading-edge vortices (LEVs), Zhu (2011) suggested
the feasibility of high-efficiency extraction of a fully passive system.

More recently, Wang et al. (2017) appear to have been the first to investigate the
structural response and energy extraction of a fully passive flapping foil (NACA0012)
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over a parameter space spanning the reduced velocity range of 0 < U∗ 6 7 and
the normalised pivot location range of 0 6 x 6 1. This investigation was conducted
by means of numerical simulations in a two-dimensional flow at a low Reynolds
number Re = 400. Note that here the Reynolds number is defined by Re = Uc/ν,
with ν being the kinematic viscosity of the fluid. They identified five response
regimes, based on the amplitude responses of plunging and pitching oscillations. It
was clearly shown that the reduced velocity and the pivot location had a significant
impact on the 2-DOF structural responses, leading to complex dynamic nonlinearity;
e.g. significant oscillations could be encountered for U∗&1, but strongly dependent on
x. Additionally, the energy extraction performance study was focused on a harmonic
synchronisation regime, where the harmonic frequencies of the 2-DOF motions and
the fluid forcing were synchronised, with the maximum efficiency of 0.32 observed
at (x, U∗)= (0.37, 2.1). However, no detailed analyses were given for the pitch-over
regime, where the pitching amplitude exceeded π/2 (or 90◦).

The present study follows on from Wang et al. (2017) and characterises the FIV
response regimes over the entire (x, U∗) ∈ ([0–1], (0–10]) parameter space, together
with the associated wake patterns in synchronisation regimes. Furthermore, a rich
variety of dynamic behaviours, including wake–body synchronisation, intermittent
responses and bifurcations, are reported, which would be of interest to gain a deeper
understanding of the fundamental characteristics of a fully passive flapping airfoil.

The rest of this paper is structured as follows. The fluid–structure system modelled
and the numerical methodology are first described. Following this, after providing a
detailed map of the FSI responses identifying the key response regimes, an analysis
of the dynamic response for the reference value of x = 0.5 is provided as the
reduced velocity is increased. This covers the (near-) synchronisation regimes S-I and
S-III, with an examination of the oscillations, forces and the wake patterns in detail.
Subsequently, the responses in regimes S-II and S-IV are discussed, before touching
on the transition regimes T-I to T-IV, which typically show intermittent responses,
and bound the synchronous or semi-regular response regimes. Finally, conclusions are
drawn.

2. Numerical approach
2.1. Fluid–structure system

The numerical method used in the present study is adopted from Wang et al. (2017).
The fluid–structural system model is based on a NACA0012 foil with 2-DOF in a
constant-speed free-stream flow, as shown in figure 1. The fluid density, dynamic
viscosity and incoming flow velocity are denoted by ρ, µ and U, respectively.
The foil is free to undergo plunging (or heaving) and pitching motions. The
instantaneous plunge displacement is denoted by h(t), with its normalised form
given by h∗(t)= h(t)/c, where c is the foil chord length. The pitch rotation is defined
by θ(t), and is measured in radians in this study. The instantaneous transverse lift
force and pitching moment are denoted by Fh and Mθ , respectively. The normalised
coefficients of Fh and Mθ are given by equations (2.3) and (2.4), respectively. The
structural stiffness in plunge and pitch are designated by kh and kθ , respectively. The
distance from the leading edge to the pivot point is given by xp, with its dimensionless
form x = xp/c. This elastically mounted foil is considered as a linear mass–spring
system, and its plunging and pitching motions are governed by the second-order
damped oscillator equations (2.1) and (2.2), respectively, given by

mḧ+ chḣ+ khh−mb cos θ θ̈ +mb sin θ θ̇ 2
= Fh (2.1)
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FIGURE 1. Schematic of the fluid–structure system considered: a NACA0012 foil allowed
to undergo 2-DOF fully passive plunging and pitching motion.

and

Iθ θ̈ + cθ θ̇ + kθθ −mb cos θ ḧ=Mθ , (2.2)

with the lift and moment coefficients defined by

Ch =
Fh

0.5ρU2c
, (2.3)

Cm =
Mθ

0.5ρU2c2
. (2.4)

Here, m and Iθ denote the mass and moment of inertia of the foil, respectively.
The mass ratio, defined as the ratio between the foil mass and the displaced fluid
mass, is set to 2.0 in the present simulations. In the above, b denotes the distance
between the pivot location and the centre of mass (o). Note that a negative b means
the centre of mass is closer to the leading edge than the pivot location. In this
paper, the mass distribution (or density) of the foil is assumed to be uniform, and
thereby a constant b = −0.04 is adopted. The damping factors in the plunging
and pitching equations of motion are given by ch and cθ , respectively. However,
note that both ch and cθ are set to be zero to examine the undamped case, which
is assumed to lead to maximal oscillations. The reduced velocity is defined by
U∗=U/( fnc), noting that the natural frequencies of the 2-DOF motions are set to be
equal, i.e. fn =

√
kh/m/2π =

√
kθ/Iθ/2π, so that the spring constants in plunge and

pitch follow the constraint relation kh/kθ = Iθ/m. In the present study, Iθ is dependent
on the pivot location, while m is set constant. It should also be noted that herein f
denotes a frequency, and its normalised form is given by f ∗ = f /fn. In the present
study, the variation of U∗ is achieved by changing the spring stiffness. The lift force
and moment, Fh and Mθ , are acquired by solving the governing fluid equations. The
fourth-order Runge–Kutta method is applied to obtain the numerical solutions of the
equations of motion (2.1) and (2.2).

The coupled fluid flow is determined by solving the two-dimensional incompressible
Navier–Stokes equations. A detailed description of the numerical method can be
found in previous studies of Du, Sun & Yang (2016a,b) and Wang et al. (2017). The
continuity and momentum equations are written in dimensionless form given by

∇ ·V = 0,
∂V/∂t+ (V · ∇)V =F−∇p+ (∇ ·∇)V/Re,

}
(2.5)
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where V = (u, v) denotes the two-component flow velocity in the streamwise (u) and
cross-flow (v) directions. The body force is denoted by F. This is used to set the
no-slip boundary condition at the airfoil surface as described below. The kinematic
pressure is denoted by p. The Reynolds number is defined by Re = ρUc/µ, with µ

the dynamic viscosity. The Reynolds number is set to be Re = 400, based on the
chord length, in the present study, in line with previous related studies of Wang et al.
(2017). In their numerical study concerning the energy extraction of a flapping foil
at high Reynolds number (Re = 5 × 105), Veilleux & Dumas (2017) reported the
highest power coefficient (ĈP) and efficiency (η) to be 1.08 and 34 %, respectively.
More recently, Boudreau et al. (2018) achieved similar results of ĈP = 0.86 and
η = 31 % in high-Reynolds-number experiments (Re = 2.1 × 104). These studies
show similar results in the power coefficient and efficiency to those of ĈP = 0.95
and η = 32 % at Re = 400 given by Wang et al. (2017), despite the differences in
Reynolds number between these two studies. Thus, in the present study, we aim to
characterise fundamental features of the FIV of an airfoil undergoing fully passive
plunging and pitching motions in a two-dimensional flow at Re= 400.

To model the interaction between the fluid and the airfoil boundary, F = (Fx, Fy)

is calculated using an immersed boundary method (Peskin 1972, 1977). The no-slip
wall boundary condition can be enforced through a process of negative feedback:

f (xk, yk, t)= α
∫ t

0
[vf (xk, yk, t′)− vs(xk, yk, t′)] dt′ + β[vf (xk, yk, t)− vs(xk, yk, t)]. (2.6)

Here (xk, yk) denotes the coordinates of the kth surface element on the solid boundary;
vf and vs denote the velocity of the fluid and the solid body at the kth surface element,
respectively; and α and β are feedback factors, noting that large values can lead to
a sensitive response of feedback, leading to unexpected divergence in the unsteady
calculation. This is discussed in more detail in Wang et al. (2017) and Du et al.
(2016a,b). In order to solve the flow equations, the body force constructed in the
Lagrangian form is converted to the Eulerian domain using (an approximation to) the
Dirac function,

F(x, y, t)=
∫
Γ

f (xk, yk, t)δ(x− xk)δ(y− yk) ds, (2.7)

where (x, y) represents a point in the Cartesian coordinates and Γ depicts the solid
boundary. A suitable approximation to the Dirac function is constructed numerically
following the method detailed in Peskin (2002). As proposed by Peskin, the singular
Dirac function is replaced by a continuous and segmented function:

Φr =


0, |r|> 2,
(5− 2|r| −

√
−7+ 12|r| − 4r2)/8, 1 6 |r|6 2,

(3− 2|r| +
√

1+ 4|r| − 4r2)/8, 0 6 |r|6 1,
(2.8)

where r = 1x/1h, with 1x the distance between the boundary surface element and
the nearest grid point of the fluid domain, and 1h the cell width of the mesh used.
In the present study, the near-wall mesh size was set uniform along both x and y
directions, with 1hx=1hy= 0.0195c. The maximum length of the boundary segments
was approximately 10 % of the near-wall mesh size.
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Re 60 80 100 150 200

Present study 0.13 0.24 0.33 0.52 0.68
Baranyi & Lewis (2006) 0.13 0.24 0.32 0.51 —
Lu et al. (2011) 0.14 0.25 0.34 0.53 0.69
Zhang et al. (2015) 0.13 0.25 0.34 0.54 0.71

TABLE 1. Comparison of the maximum transverse lift coefficient of a stationary circular
cylinder at different Reynolds numbers against literature values based on two-dimensional
simulations.

Re 60 80 100 150 200

Present study 0.137 0.151 0.163 0.184 0.198
Lu et al. (2011) 0.137 0.154 0.165 0.184 0.196
Zhang et al. (2015) 0.135 0.154 0.166 0.185 0.197
Williamson (1989) 0.136 0.152 0.164 0.149 0.183

TABLE 2. Comparison of the Strouhal numbers of flow past a stationary circular
cylinder at different Reynolds numbers.

2.2. Numerical validation
2.2.1. Flow past a stationary cylinder at low Reynolds number

The numerical method is first validated for flow past a stationary cylinder at low
Reynolds numbers (60 6 Re 6 200), by comparing against previous numerical and
experimental studies (Williamson 1989; Baranyi & Lewis 2006; Lu et al. 2011;
Zhang et al. 2015). Table 1 shows the comparison of the maximum lift coefficient,
defined by Ch = Fh/(

1
2ρU2D). It can be seen that the present predictions agree well

with previous two-dimensional numerical studies. Table 2 compares the results for the
Strouhal number, defined by St = fStD/U, with fSt the vortex shedding frequency. In
this comparison, excellent agreement is found between the present work and previous
numerical studies of Lu et al. (2011) and Zhang et al. (2015), while small differences
exist at Re= 150 and 200 between the numerical results and the experimental work
of Williamson (1989), probably attributable to the transition to three-dimensional flow
in this Re range.

2.2.2. Flow past a NACA0015 airfoil undergoing forced vibrations
To further validate the numerical method, Wang et al. (2017) have also presented

a study on the flow past a NACA0015 foil undergoing forced vibrations at Re =
1100, showing a good agreement with that of Kinsey & Dumas (2008). Thus, the
validation studies on both a stationary and a vibrating foil have indicated that the
present numerical method is capable of simulating flow past a foil undergoing 2-DOF
vibrations. More details of the validations can be found in Wang et al. (2017).

2.3. Computation settings for a fully passive foil
In this study, the FSI problem was investigated over the reduced velocity range of
0<U∗6 10 and the normalised pivot location range of 06 x6 1. The centre of mass
of the foil was fixed at x= 0.4603 from the leading edge. The resolutions of x and U∗
were set to be 0.05 and 0.31, respectively. This resulted in a total of 21 pivot locations
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evenly distributed from 0 to 1. For each pivot location, simulations were performed
for 32 reduced velocities evenly distributed from 0.39 to 10. Hence, the x–U∗ map
consisted of 672 cases in total. For each case, the flow was initialised as a uniform
field using the incoming flow parameters, and the airfoil was set to be stationary at
its neutral positions (i.e. h= 0 and θ = 0) and was then released when the simulation
started. The simulation time step, 1t, was set to be 0.00025. In general, the total
simulation time was set to be τtotal=1000, with the normalised time being τ = fnt. This
was sufficient for most cases, as stable oscillations could be achieved within less than
5 % of the simulation time. However, for cases exhibiting irregular, intermittent and
chaotic responses (e.g. in transition regimes), simulations were performed for τtotal =

5000 for further analyses.
In order to identify the boundaries between different response regimes (see figures 2

and 21), the dynamic response (i.e. time traces of the foil oscillations and fluid forces)
as well as the wake mode were carefully examined for each (x, U∗) location by
comparing with its adjacent cases. If two adjacent cases exhibited different response
types, the boundary line was drawn through the middle of these two cases in the
x–U∗ map.

3. Results and discussion
3.1. Overview of the vibration responses

Figure 2 shows the contour maps of the maximum oscillation amplitude and the
time-averaged displacement from the neutral position at zero flow speed for both the
plunging and pitching oscillations as a function of the normalised pivot location (x)
and reduced velocity (U∗). Note that A∗h and A∗θ represent the maximum oscillation
amplitudes in plunge and pitch at a given U∗, respectively, while h

∗

and θ̄ represent
the time-averaged plunging and pitching displacements, respectively. There are various
regimes identified based on the dynamic characteristics of the plunging and pitching
vibrations in the x–U∗ parameter space, including one negligible vibration regime
(labelled as NV), four regimes exhibiting synchronisation or near-synchronisation
behaviours (labelled as S-I, S-II, S-III and S-IV) and four transition regimes (T-I,
T-II, T-III and T-IV). In general, when the dominant vortex shedding frequency (as
reflected by the frequency of the fluid forces) is synchronised with the dominant
frequencies of the plunging and pitching oscillations in the S-series regimes, regular
and periodic dynamics with constant wake patterns result. However, it should be noted
that synchronisation is not observed over the whole regime S-I, and thus regime S-I is
treated as a near-synchronisation regime. Given the same initial conditions (e.g. the
displacement and velocity here are initialised to zero in both plunge and pitch),
both plunging and pitching oscillations exhibit one equilibrium position in all S-series
regimes. However, in the T-series regimes, the 2-DOF oscillations are found to switch
intermittently between two equilibrium positions, which are symmetrical to their initial
neutral positions. Moreover, complicated dynamics (e.g. chaos) is often observed in
the T-series regimes. These regimes are embedded between two FIV response modes
(i.e. between two synchronisation regimes or between a synchronisation regime
and an NV regime), and thus the item ‘transition’ is employed to describe such a
characteristic.

As can be seen, significant body oscillations are encountered in all the S-series and
T-series regimes, which account for a wide area of parameter space above a certain
pivot location and reduced velocity (i.e. x > 0.25 and U∗ > 1) on the x–U∗ maps.
While the 2-DOF oscillations appear to be dominated by an aeroelastic instability
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FIGURE 2. Contours of the normalised maximum plunging and pitching amplitude
responses (A∗h and A∗θ ), together with the absolute values of the time-averaged
displacements (|h

∗

| and |θ̄ |), plotted in the x–U∗ space. The plunging displacement is
normalised by the chord length c, while the pitching displacement is given in radians.
Various response regimes are characterised by negligible vibration (NV), vibrations with
synchronisation behaviours (S-I, S-II, S-III and S-IV), and transition responses (T-I, T-II,
T-III and T-IV), as illustrated by different dashed lines. The circles highlight representative
locations of transition response, which will be further discussed in § 3.5.

in regime S-I, where the oscillation amplitudes tend to increase with U∗ for any
given x, they only show slight variations in the maximum amplitude responses with
U∗ in any of the other regimes of S-II to S-IV (e.g. see the amplitude responses
at x = 0.5 from regimes S-I and S-III in figure 3 in § 3.2). The oscillations in the
S-series regimes (S-I to S-IV) are strongly associated with the vortex shedding, but
with different dynamic characteristics (e.g. frequency responses) and wake patterns.
Overall, synchronisation behaviours with highly periodic oscillations are encountered
over the entire area of each regime S-II to S-IV, but only in part of regime S-I due
to complex interaction between the vortex instability and the aeroelastic instability.
On the other hand, the T-series regimes exhibit distinctly different behaviours from
the S-series regimes. In the S-series regimes, both plunging and pitching oscillations
see a stable equilibrium position, while there normally exist two equilibrium positions
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FIGURE 3. The maximum (black squares, the foil is released from the initial position
for each U∗; blue triangles, increasing U∗ sequence; and yellow crosses, decreasing U∗
sequence) and r.m.s. (red dots, the foil is released from the initial position) values of
(a) the plunging amplitude, (b) the pitching amplitude, (c) the transverse lift coefficient,
and (d) the pitching moment coefficient plotted as functions of reduced velocity at the
fixed pivot point x= 0.50.

switching with time but symmetrical to their neutral positions in the T-series regimes.
Consequently, very violent and unstable body oscillations are encountered in the
T-series regimes, with switching behaviours between two synchronisation states or
intermittent chaotic responses. This type of response has never been reported in FIV
of bluff bodies with a single DOF.

Note that, in order to ensure the validity, the results in this paper were obtained on
a refined mesh compared with that used in Wang et al. (2017) because responses with
much larger oscillation amplitudes are encountered in the x–U∗ parameter space in this
paper, which were not highlighted in Wang et al. (2017). Basically, the present results
on the refined mesh are consistent with those in Wang et al. (2017). Differences can
be observed for the position of the boundary of the NV regime at x 6 0.40. A study
with further mesh refinement (not shown here) has been performed to confirm the
position of the boundary of the NV regime as well as the amplitude response as a
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function of U∗ at x= 0.35, 0.50 and 0.85, respectively, and the results are consistent
with those shown in figure 2.

To better demonstrate the characteristics of the S-series and the T-series regimes,
the rest of this section is organised as follows. Firstly, § 3.2 presents the dynamic
response, including the oscillation amplitude response, fluid forcing coefficients and
the frequency power spectral density (PSD) contours, as a function of U∗ at a fixed
pivot location x = 0.5. This fixed x value allows us to examine the two S-series
regimes S-I and S-III, as well as the transition regime T-II. In §§ 3.3 and 3.4, the
dynamics in the other two S-series regimes S-II and S-IV are analysed, respectively.
Then, intermittent and switching behaviours sampled from different transition regimes
are briefly discussed in § 3.5. A map of wake patterns for the S-series regimes is
given in § 3.6. Finally, conclusions are drawn in § 4.

3.2. Dynamic response as a function of U∗ at x= 0.5: regimes S-I and S-III
Figure 3 shows the maximum and root-mean-square (r.m.s.) values of the plunging
and pitching oscillation amplitudes, together with the coefficients of the transverse
lift (Ch) and the torsional moment (Cm), as functions of U∗ at x= 0.50, for different
initial conditions. As previously noted, the results in figure 2 were obtained with the
foil released initially from the neutral position with zero displacement and velocity
in both plunge and pitch. To examine the dependence of the results on the initial
conditions of the flow, the amplitude responses and the fluid force coefficients varying
with increasing and decreasing U∗ are compared in figure 3. Overall, this comparison
shows that there is no hysteresis observed in the amplitude responses varying with
U∗ in regimes S-I and S-III. However, the results at U∗ = 4.42 (the right boundary
of regime T-II) indicate that the amplitude responses are sensitive to the initial flow
condition in regime T-II. Further tests show that bifurcations in the time-averaged
displacements occur for different initial release positions in plunge, which will be
further discussed in § 3.7. As can be seen in figure 3(a,b), significant structural
vibrations are encountered for U∗> 1.0, with regimes S-I, T-II and S-III occurring in
sequence as U∗ is increased. In regime S-I, both the plunging and pitching oscillations
in general appear to be dominated by aerodynamic instabilities, with their amplitude
responses tending to increase with U∗. However, from the frequency PSD contours
shown in figure 4(a,b), it can be seen that there exist different responses as U∗ varies.
For 1 < U∗ < 1.6, in addition to the dominant frequency component at f ∗ ≈ 0.16,
there exists some broadband content with an identifiable component at f ∗≈ 0.48. This
indicates that the oscillations are not clearly periodic, as demonstrated by sample
time traces at U∗ = 1.32 shown in figure 5(a).

Correspondingly, observation of instantaneous wake states in figure 6 shows that,
during one half-cycle, one vortex from the leading edge and two other vortices
from the trailing edge are shed into the wake, and the following half-cycle repeats
this pattern consisting of a set of triple (T) vortices. Following the nomenclature
of Williamson & Roshko (1988) and Morse & Williamson (2009), this wake
mode is named 2T. However, this wake pattern does not dominate the near wake
all the time, and it can be replaced by a T+P pattern, which consists of one
triple plus one pair (P) of vortices per cycle, over some cycles. Nevertheless, it
is difficult to find any rules governing the switch of wake patterns, because the
switching of these wake patterns appears to be stochastic (or random) without any
evident periodicity observed. The stochastic switching in the wake and coupled
dynamics contributes to the broadband content in the frequency spectra at the
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FIGURE 4. Normalised logarithmic-scale frequency PSD contours of (a) the plunging
motion, (b) the pitching motion, (c) the transverse lift and (d) the torsional moment plotted
as functions of the reduced velocity at the fixed pivot point x = 0.50. Note that the
construction method for the frequency PSD contour plots can be found in Zhao et al.
(2014) and Wong et al. (2017, 2018).

initial stage of oscillations (i.e. 1 < U∗ < 1.6). Moreover, it is found that the two
frequency components of f ∗ ≈ 0.16 and 0.48 are associated with the vortex shedding
from the leading and the trailing edges, respectively, with the oscillation signals
predominantly influenced by the leading-edge vortex shedding. Detailed evolution
of the vortex shedding can be seen in supplementary movie 1 (available online
at https://doi.org/10.1017/jfm.2019.996). On the other hand, a dimensionless scalar
function Γ2, proposed by Graftieaux, Michard & Grosjean (2001), is employed here
to identify the vortex boundary. For a velocity field, the value of Γ2 is calculated for
all mesh points and the inner core of a vortex is defined by 2/π (≈0.64) < |Γ2|< 1.
Figure 7 shows the corresponding results of vortex identification based on Γ2 for the
vorticity fields shown in figure 6. As can be seen, the wake patterns identified by the
two methods are consistent. Hence, in the present paper, we use vorticity to identify
wake patterns.
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FIGURE 5. Sample time traces of the fluctuating components at (a) U∗= 1.32 (early S-I),
(b) U∗ = 1.63 (S-I), (c) U∗ = 2.87 (S-I), (d) U∗ = 3.49 (S-I), (e) U∗ = 4.11 (T-II) and
( f ) U∗ = 5.04 (S-III) at fixed x= 0.5.

As U∗ is increased to the range of 1.6 < U∗ < 1.8, the components of f ∗ ≈ 0.16
and 0.48 become much clearer in the frequency responses. This suggests that the
structural vibrations become highly periodic, as demonstrated by sample time traces
at U∗ = 1.63 shown in figure 5(b). Correspondingly, as shown in figure 8, a stable
2P mode is observed in this U∗ range, which consists of one pair of opposite-signed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

99
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.996


Flow-induced vibrations of an airfoil 885 A36-13

(ai)

(aii)

(aiii)

(bi)

(bii)

(biii)
T

T

FIGURE 6. A 2T wake pattern observed at (x, U∗) = (0.50, 1.32) in regime S-I. Each
column represents half an oscillation cycle. For detailed evolution, see supplementary
movie 1. The arrows with dashed and solid lines indicate the direction of plunging and
pitching motions, respectively.

vortices that are formed from the leading and the trailing edges, respectively, and are
shed into the wake during half an oscillation cycle. This vortex shedding mode is
thereby named as 2P (Williamson & Roshko 1988), comprising two pairs of vortices
shed per cycle. As U∗ is further increased to the range of 1.8<U∗< 3, there appear
more harmonic components in the frequency responses. However, desynchronisation
behaviours are observed intermittently for a short time period; for instance, as can
be seen from sample time traces at U∗ = 2.87 in figure 5(c), at τ = 75, the pitching
oscillation shifts to a non-zero position, while the 2-DOF oscillations in general are
fairly periodic over long times. Figure 9 shows the dominant wake pattern at U∗ =
2.87. Similar to the case of U∗ = 1.32 (figure 6), for most of the time, a 2T wake
pattern is observed; however, it is replaced by other wake patterns, such as T+P and
multiple-P (or denoted by mP, consisting of multiple pairs of vortices shed per cycle),
for some cycles. While these states are not shown in figure 9, they can be seen in
the supplementary movies. At U∗= 2.87, the vortex triplet contains two vortices from
the leading edge and one from the trailing edge, which is different from the case
of U∗ = 1.32, having one formed from the leading and two from the trailing edges,
respectively. The results indicate that these 2T patterns may be unstable, and could
switch intermittently to other wake patterns.

Interestingly, there exists a notable ‘kink’ region in the A∗h response over
3.18 6 U∗ < 4, where the 2-DOF oscillations, again, become highly periodic (see
sample time traces of the dynamics in figure 5d) and the harmonic components
become clearer, as shown in figure 4. The wake pattern sampled at U∗ = 3.49
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FIGURE 7. Vortex boundary identification for the wake pattern shown in figure 6. The
inner core of the vortex is defined by 2/π < |Γ2| < 1, with 2/π ≈ 0.64. Three contour
lines of 0.45, 0.64 and 0.85, which are in red, black and green colours, respectively, are
plotted to reveal the boundaries of vortices.

(figure 10) shows that multiple pairs of vortices are shed per cycle, which is referred
to as a multiple P (mP) mode. As can be seen from these results, the dynamic
response in this kink region is similar to those of the ‘odd’ kink regions observed
by Zhao et al. (2014) for the transverse FIV of a square cylinder. In those cases the
cylinder vibration is influenced by the strong combined effects of VIV and galloping,
leading to fluid–structure synchronisation, with the dominant galloping frequency and
the vortex shedding frequency being of odd-integer ratios (i.e. 1 : 3 and 1 : 5), where
more vortices are shed during one oscillation cycle. For example, a 3(2S) mode is
associated with the 1 : 3 synchronisation region, which comprises a 2S pattern shed
three times per cycle. In the present study, the high-order harmonics are thereby
related to the vortex shedding, while the dominant frequencies of the structural
oscillations are related to the aerodynamic instability that can lead to the increases
in A∗h and A∗θ with U∗.

As U∗ is increased to 4.11, both the A∗h and A∗θ responses reach their local peak
values (A∗h,max ' 1.63 and A∗θ,max ' 2.57) for x fixed at 0.50. At this point, however,
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FIGURE 8. A 2P wake pattern observed at (x, U∗) = (0.50, 1.63) in regime S-I. Each
column represents half an oscillation cycle. For detailed evolution, see supplementary
movie 2. The arrows with dashed and solid lines indicate the direction of plunging and
pitching motions, respectively.

the foil sees the onset of the transition regime T-II, where the 2-DOF oscillations
become unstable, with their equilibrium positions switching randomly. As illustrated
by sample time traces in figure 5(e), both the plunging and pitching motions find
their equilibrium positions switching intermittently between two values that are
symmetrical to their initial neutral positions. This transition regime is observed over
the range of 4.11 6 U∗ . 4.42, where both the A∗h and A∗θ responses drop rapidly
while the frequency responses exhibit broadband components indicating the loss of
synchronisation. More discussion on other transition regimes is given in § 3.5.

For higher U∗ values beyond regime T-II, a synchronisation regime referred to
as S-III is observed, where highly periodic oscillations persist with almost constant
amplitudes (A∗h,max' 0.80 and A∗θ,max' 1.30). However, as shown in figure 2, while the
time-mean displacement in pitch remains fairly constant at |θ̄ | ' 1.6, the time-mean
displacement in plunge |h

∗

| varies with x and U∗ in this regime, which is found to be
close to 0 at x= 0.55 but trends to increase with U∗ for any fixed x value deviating
from x= 0.55.

On the other hand, sample time traces at U∗ = 5.04 in figure 5( f ), as a
representative of regime S-III, show that, with the oscillation amplitudes remaining
almost constant in this regime, the dynamics is highly periodic but the time-varying
profiles are asymmetric in magnitude, which is indicative of the existence of an
asymmetric wake pattern in this regime. The frequency responses in figure 4 show that
both f ∗h and f ∗θ are dominated by their fundamental components, while the responses
of f ∗Ch

and f ∗Cm
are dominated by their third harmonics. The frequency responses

indicate that this regime is associated with a 1 : 3 subharmonic synchronisation.
Interestingly, as shown in figure 11, a stable P+S wake pattern comprising one
pair of opposite-signed vortices plus a single vortex shed per cycle is periodically
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FIGURE 9. A 2T wake pattern observed at (x, U∗) = (0.50, 2.87) in regime S-I. Each
column represents half an oscillation cycle. For detailed evolution, see supplementary
movie 3. The arrows with dashed and solid lines indicate the direction of plunging and
pitching motions, respectively.

observed – the vortices in a pair consist of one negative vortex (clockwise in blue)
forming from the leading edge and one positive vortex (anticlockwise in red) forming
from the trailing edge which are first shed and then the single negative vortex is
immediately formed and shed from the leading edge. Associated with this wake
mode, three spikes (two pointing positive and the other pointing negative) can be
identified in one oscillation cycle in the time-varying profiles of the fluid forces in
figure 5( f ), suggesting that this wake mode contributes to the formation of the third
harmonic dominating f ∗Ch

and f ∗Cm
. This is similar to the higher branch of a transversely

vibrating square cylinder at an incidence angle of 20◦ reported by Zhao et al. (2014),
where the cylinder vibration was associated with a 1 : 2 subharmonic synchronisation.
Unsurprisingly, this asymmetric wake in regime S-III can cause asymmetric fluid
loading on the foil, resulting in non-zero values of h

∗

and θ̄ in the regime. Here,
|θ̄ | is observed to be close to 1.6, which means that the foil is almost perpendicular
to the incoming flow direction at its maximum pitching position. In contrast, the
equilibrium position in plunge is much less affected.

In their experimental study, Duarte, Dellinger & Dellinger (2019) reported four
types of FIV response of a foil as a function of the pitching axis location and
the pitching stiffness at a high Reynolds number (Re = 6 × 104). As the pitching
stiffness was reduced from a high value to zero for the pitching axis fixed at x= 0.46
(see their figure 5) the foil displayed: (i) type-I response, where very low-amplitude
plunging and pitching oscillations were initially encountered and then damped quickly;
(ii) type-II response, where the foil exhibited high-amplitude periodic plunging and
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FIGURE 10. A multiple P (mP) wake pattern observed at (x, U∗) = (0.50, 3.49) in
regime S-I. Each column represents half an oscillation cycle. For detailed evolution, see
supplementary movie 4. The arrows with dashed and solid lines indicate the direction of
plunging and pitching motions, respectively.

pitching oscillations about the zero neutral positions; (iii) type-III response, where
both plunging and pitching oscillations exhibited intermittent switching between
two equilibrium positions that were symmetric to the zero neutral positions; and
(iv) type-IV response, where the foil oscillated about a stable non-zero equilibrium
position in both plunge and pitch. Clearly, these experimental results present some
interesting FIV responses that are very similar to those observed at a similar pivot
location of x = 0.5 in the present study, despite the notable difference in Reynolds
number; the four types of response identified in Duarte et al. (2019) appear to
correspond to the regimes of NV, S-I, T-II and S-III, respectively. This suggests that
the FIV response regimes are strongly related to the nonlinear coupling between the
2-DOF of plunging and pitching motions, while the Reynolds-number effect seems
to be unlikely to play a key role affecting the type of FIV response.

3.3. Regime S-II
Regime S-II covers a narrow region around x = 0.35 and U∗ > 5.35, as shown
in figure 2. In this regime, the 2-DOF oscillations display mild stable maximum
amplitudes; however, in contrast to regime S-III, large variations in |h

∗

| are observed
(e.g. from |h

∗

| ≈ 2 at U∗= 5.35 to |h
∗

| ≈ 5 at U∗= 10, x= 0.35), while |θ̄ | in general
varies slightly with x and U∗ in this regime (e.g. |θ̄ | = 0.19 at U∗ = 5.35 decreasing
gradually to |θ̄ | = 0.05 at U∗ = 10, x= 0.35).

To better demonstrate the FIV characteristics in regime S-II, figure 12 shows the
dynamic response as a function of U∗ at x = 0.35, and the corresponding frequency
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FIGURE 11. A P+S wake pattern observed at (x, U∗) = (0.50, 9.07) in regime S-III.
Each column represents half an oscillation cycle. For detailed evolution, see supplementary
movie 5. The arrows with dashed and solid lines indicate the direction of plunging and
pitching motions, respectively.

PSD contours are shown in figure 13. It can be seen from figure 12 that the foil
exhibits gradual increases from minima of both A∗h and A∗θ in regime S-I over
2.3 < U∗ < 3.05, prior to an abrupt change to regime T-II over 3.05 < U∗ < 3.95
with sharp jumps in A∗h,max and A∗θ,max to approximately four times those observed
in regime S-I. Unexpectedly, however, an abrupt region of negligible vibration is
encountered over 3.95 < U∗ < 5.35 and then the foil response jumps to regime
S-II with fairly stable oscillation amplitudes of A∗h,max ≈ 1.70 and A∗θ,max ≈ 1.25 for
U∗ > 5.35. Correspondingly, Ch and Cm in general exhibit variations similar to A∗h
and A∗θ .

The frequency responses shown in figure 13 indicate that regime S-II is associated
with an ‘even’ harmonic synchronisation, where, while f ∗h and f ∗θ are dominated
by their fundamental frequencies, f ∗Ch

is dominated by its second harmonic and
f ∗Cm

, exhibiting a number of harmonics of similar power intensities, appears to be
dominated by its fourth harmonic. This is different from the responses in regimes
S-I and S-III, where the fluid forcing components are dominated by their ‘odd’
harmonics. Moreover, unlike regime S-III, the frequencies in this regime tend to
increase very slightly with U∗. To further demonstrate the dynamics in regime S-II,
figure 14(a) presents sample time traces at (x, U∗) = (0.35, 9.07), showing that the
dynamics is highly periodic but with asymmetric time-varying profiles.

To demonstrate the wake mode in regime S-II, figure 15 shows the wake evolution
spotted at (x,U∗)= (0.35, 9.07). As can be seen, during the foil’s plunging upstroke
from its bottom position in figure 15(a), one pair of opposite-signed and uneven-sized
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FIGURE 12. The maximum (black squares) and the r.m.s. (red dots) values of (a) the
plunging amplitude, (b) the pitching amplitude, (c) the transverse lift coefficient, and
(d) the pitching moment coefficient plotted as functions of reduced velocity at the fixed
pivot point x= 0.35.

vortices are being formed and then shed off from the trailing edge into the wake
when the foil approaches its top position. In the second half-cycle, during the
foil’s plunging downstroke in figure 15(b), the two opposite-signed shear layers
become elongated, forming ripples that interact with each other. However, these
shear layers are of different strengths: the stronger one (the clockwise one in blue)
breaks up into a coalescence (C) of same-signed small vortices, while the weaker one
(anticlockwise in red) diffuses in the wake. Following the nomenclature by Williamson
& Roshko (1988), this vortex shedding mode is thus named P+C. Previous studies
(e.g. Bourguet & Lo Jacono 2014; Zhao et al. 2014; Zhao, Hourigan & Thompson
2018a; Zhao et al. 2018b) have demonstrated that a wake mode with multiple vortices
shed per cycle can result in harmonic frequency components in fluid forcing signals,
leading to large-scale body oscillations when harmonic wake–body synchronisation
occurs. In the present case, it is found that the fundamental frequency (the first
harmonic) of f ∗h , f ∗θ , f ∗Ch

and f ∗Cm
(see figure 13) is associated with P vortices. It should

be noted that P vortices are shed when the foil abruptly changes its rotary direction,
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FIGURE 13. Frequency PSD contours of the dynamic response as a function of U∗ at the
fixed pivot location x= 0.35 in regime S-II.

causing violent fluctuations in both Ch and Cm, as shown in figure 14(a). After each
sharp fluctuation, both Ch and Cm vary more gently during the shedding process of
C vortices. Thus, higher harmonics with considerable power in both f ∗Ch

and f ∗Cm
in

regime S-II can be attributed mainly to the violent fluctuations that occur over a short
time period.

3.4. Regime S-IV

Regime S-IV, which occurs for x > 0.65 and U∗ > 4 in the parameter space, is
characterised by mild oscillation amplitudes (A∗h and A∗θ ) and very large time-mean
displacements (|h

∗

| and |θ̄ |). Note that the highest value of |θ̄ | is observed to be
close to π, almost half of a rotation.

To gain a deeper understanding of the resultant large |θ̄ | values, an analysis of the
governing dynamic equations of the foil is performed. By taking the time-average
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FIGURE 14. Sample time traces of the fluctuating components of the plunge oscillations
(h∗), pitch oscillations (θ ), transverse lift coefficient (Ch) and pitch moment coefficient
(Cm) at different locations selected from the four synchronisation regimes: (a) (x, U∗)=
(0.35, 9.07) in regime S-II and (b) (x,U∗)= (0.85, 9.07) in regime S-IV.

operation for both sides of (2.2), it can be written as

Iθ ¯̈θ + cθ ¯̇θ + kθ θ̄ −mb cos θ ḧ=Mθ . (3.1)

With both ¯̈θ and ¯̇θ equal to zero, equation (3.1) becomes

kθ θ̄ −mb cos θ ḧ=Mθ . (3.2)

When the pivot is located at the centre of mass (i.e. b= 0), kθ θ̄ =Mθ , suggesting that
both θ̄ = 0 and θ̄ 6= 0 are possible. However, when significant plunging and pitching
oscillations are encountered, if b 6= 0, the product of mb cos θ ḧ will not be equal to
zero, due to the coupling effect between the plunging and pitching motions. This will
result in θ̄ 6= 0, implying that the foil will undergo pitching oscillations about an offset
equilibrium position. In the study of Wang et al. (2017), the inertial effect arising
from the coupling between the plunging and pitching motions was investigated, and it
was shown that the maximum value of mb cos θ ḧ can become of the same magnitude
as the hydrodynamic moment Mθ . The present results also show that the eccentricity
plays an important role in the vibration dynamics. This can be demonstrated by the
resultant large |h

∗

| and |θ̄ | values, as shown in figure 2(aii) and 2(bii), respectively,
when the pivot location is close to the trailing edge (i.e. x > 0.65).

Furthermore, figures 16 and 17 present the dynamic and frequency responses,
respectively, as a function of U∗ at a fixed pivot location x= 0.85. As can be seen,
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FIGURE 15. A P+C wake pattern observed at (x, U∗) = (0.35, 9.07) in regime S-II.
Each column represents half an oscillation cycle. For detailed evolution, see supplementary
movie 6. The arrows with dashed and solid lines indicate the direction of plunging and
pitching motions, respectively.

the foil exhibits initial oscillations for 1.05 . U∗ . 2.1 (regime S-I), substantially
larger oscillations for 2.1 < U∗ . 3.6 (regime T-III), and mild oscillations for
U∗ > 3.6 (regime S-IV). It should be noted that, after the transition regime T-III,
A∗h increases gradually to reach a stable value of A∗h,max ≈ 1.1 at U∗ ≈ 6.5, while A∗θ
decreases slightly with increasing U∗. Sample time traces of the dynamic response
at (x, U∗) = (0.85, 9.07) from regime S-IV are shown in figure 14(b), which are
observed to be highly periodic, confirming the harmonic synchronisation.

On the other hand, although the oscillation frequency responses in regime S-IV are
mainly contributed by the first two harmonics, the frequency response of the fluid
forces also exhibits significant intensities in higher harmonics. A careful examination
indicated that the wake mode evolves initially from a P+C pattern (not shown here,
as it is similar to that in regime S-II) for U∗< 6.5 to an mP+C pattern for U∗> 6.5,
where the oscillations exhibit stable amplitudes. Figure 18 shows the mP+C pattern
observed at (x, U∗)= (0.85, 9.07). Both the vortex groups of mP and C comprise a
number of small vortices, which would result in the higher harmonics in the fluid
forces. During one oscillation cycle, a coalescence of small vortices plus two extra
pairs of vortices (multiple P) are shed from the two shear layers elongated downstream
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FIGURE 16. The maximum (black squares) and the r.m.s. (red dots) values of (a) the
plunging amplitude, (b) the pitching amplitude, (c) the transverse lift coefficient, and
(d) the pitching moment coefficient plotted as functions of reduced velocity at the fixed
pivot point x= 0.85.

of the trailing edge. It should be noted that P vortices in the P+C pattern are formed
from the leading edge. As it is known that the leading-edge vortices always play more
significant roles in the fluid forces (due to increased flow speedup as the fluid passes
the leading edge, as well as the interaction of the foil body and the leading-edge
vortices), it is not surprising that the dynamic fluctuations in regime S-II (figure 14a)
are observed to be much sharper than those in regime S-IV (figure 14b). Moreover,
within the coalescence of small vortices, the clockwise and anticlockwise vortices are
of the same strength in regime S-IV, while vortices in coalescence in regime S-II are
of unequal strength. These differences in the wake patterns in regimes S-II and S-IV
could also be reflected by their corresponding frequency responses. For instance, a
comparison between figures 13 and 17 shows that the higher harmonics (e.g. the
third to the fifth) in f ∗Ch

and f ∗Cm
exhibit similar or even greater intensities than the

fundamental frequency in regime S-II, while the fundamental frequency remains as
the dominant component in both f ∗Ch

and f ∗Cm
in regime S-IV.
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FIGURE 17. Normalised frequency PSD contours of the dynamic response as a function
of U∗ at x= 0.85. For more details, see the caption of figure 4.

3.5. Transition regimes
It has previously been discussed in § 3.2 that, at (x,U∗)= (0.50, 4.11), an intermittent
transition response is observed. As can be seen from the sample time traces in
figure 5(e) for this intermittent transition response, there exist two equilibrium
positions in both plunging and pitching oscillations as time evolves, which are almost
symmetrical about their initial neutral positions (h∗ = 0 and θ = 0). The switching of
the equilibrium positions appears to occur stochastically. Such a phenomenon has not
been observed in single-DOF FIV of bluff bodies (e.g. circular and square cylinders).
Here, to illustrate the dynamic behaviours in the four transition regimes, sample time
traces selected from different representative locations are shown in figure 19, noting
that the selected locations are denoted by the circles in the x–U∗ space in figure 2.

As demonstrated in figure 19, complex chaotic plunging and pitching oscillations
are encountered in the four T-series regimes. For (x, U∗) = (0.35, 8.14) as a
representative case from regime T-I shown in figure 19(a), the foil plunges and
pitches asymmetrically with varying amplitudes. For (x, U∗) = (0.40, 2.56) from
regime T-II in figure 19(b), while the plunging oscillation appears to be aperiodic,
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FIGURE 18. An mP+C wake pattern observed at (x,U∗)= (0.85, 9.07) in regime S-IV.
For detailed evolution, see supplementary movie 7. The arrows with dashed and solid lines
indicate the direction of plunging and pitching motions, respectively.

the pitching oscillation amplitude varies in a somewhat periodic pattern. For
(x, U∗) = (0.70, 3.49) from regime T-III in figure 19(c), asymmetric plunging and
pitching oscillations are encountered, with their equilibrium positions switching
randomly. For (x, U∗) = (0.65, 6.59) from regime T-IV in figure 19(d), while its
pitching oscillation appears to have a very stable amplitude about two equilibrium
positions that switch periodically, the foil oscillates with very unstable and irregular
plunging amplitudes. It is unsurprising that the nonlinear coupling between plunging
and pitching motions may cause chaotic responses. Nevertheless, chaotic responses in
these transition regimes may be attributable to mode competition or mode interaction
between two states, as chaos is observed in similar situations in a variety of
fluid–structure systems (see Crawford & Knobloch 1991; Leontini & Thompson
2013; Zhao et al. 2018c).

Further qualitative evidence for complex chaos is presented in figure 20, which
shows Lissajous plots of pitch against plunge for the above four representative
locations in the T-series regimes, together with a comparison with four different
locations from the S-series regimes. Following the method proposed by Rosenstein,
Collins & Luca (1993), the largest Lyapunov exponent, λm, is computed for the four
chaotic representative cases. All chaotic cases exhibit a positive λm (meaning that
two adjacent trajectories diverge from each other), which is indicative of a chaotic
response. On the other hand, for the highly periodic responses shown in figure 19(a),
the corresponding λm is found to be zero, thus not given in the figure. As can be
seen in figure 20(a), all cases from the S-series regimes display a repeating closed
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FIGURE 19. Sample time traces showing the dynamics and switching behaviours in
the plunging and pitching equilibrium positions at (a) (x, U∗) = (0.30), (b) (x, U∗) =
(0.40, 2.56), (c) (x, U∗) = (0.70, 3.49) and (d) (x, U∗) = (0.65, 6.59), respectively, from
regimes T-I to T-IV, as denoted by circles in figure 2.

loop, which is indicative of a synchronisation response. On the other hand, however,
all plots for the T-series regimes show that their curves are not repeating, together
with the largest Lyapunov exponent being positive, which is indicative of a chaotic
response; these plots seem to be symmetric to some extent, implying that the chaotic
response is driven by mode competition between two states.

3.6. A map of wake patterns
As sample wake patterns for the S-series regimes have previously been discussed
along with their dynamic responses, this section presents a summary map of wake
patterns for the S-series regimes in figure 21. Since the dynamics in the transition
regimes is often highly irregular, we here only focus on the wake patterns in
the S-series regimes. Note that, along with previously presented wake patterns,
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FIGURE 20. Lissajous plots of pitch against plunge for different locations selected from
the (a) S-series and (b) T-series regimes. Note that (ai)–(aiv) plot data at (x, U∗) =
(0.50, 1.63), (0.35, 9.07), (0.50, 5.04) and (0.85, 9.07), respectively, from regimes S-I to
S-IV; (bi)–(biv) plot data at (x, U∗) = (0.30, 8.14), (0.40, 2.56), (0.70, 3.49) and
(0.65, 6.59), respectively, from regimes T-I to T-IV; and λm denotes the largest Lyapunov
exponent of the response.

supplementary movies have also been provided to demonstrate the evolution of wake
patterns to help better understand wake patterns in different regimes.
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In regime S-I, the wake sees a rich variety of patterns. At low reduced velocity
(U∗ < 2.5) in regime S-I, the wake patterns are observed to vary from 2S to 2T
and 2(P+ 2S), as the pivot position is varied in the range of 0.30 < x < 1. As U∗
is increased for a fixed x value in regime S-I, the oscillations become more violent
and the wake tends to see more vortices shed per cycle. Note that the 2(P+ 2S)
wake pattern is observed for x > 0.60, which comprises one pair plus two single
same-signed vortices shed per half-cycle. However, the 2(P+ 2S) pattern could be
either stable or unstable. For instance, a stable 2(P+ 2S) mode is associated with
a synchronisation response over the range of 0.60 6 x 6 0.70, U∗ 6 1.2 in regime
S-I (see supplementary movie 8 for the observation at (x, U∗)= (0.65, 1.01)), while
an unstable 2(P+ 2S) mode is found elsewhere in the region labelled by 2(P+ 2S). It
should also be noted that, during the shedding of the unstable 2(P+ 2S) pattern, the
group of P+ 2S shed during the oscillation half-cycle could evolve to a group of T
vortices, where a single S vortex disappears, or to multiple P, where the two S vortices
appear to be of opposite signs (see supplementary movie 9 for the wake pattern at
(x, U∗)= (0.85, 1.32)). The unstable 2(P+ 2S) mode tends to appear when x > 0.75
in regime S-I. As has previously been discussed in § 3.2, the 2T wake patterns in
the present study also appear to be unstable, which can switch to P or mP modes for
some cycles. Such wake mode switching behaviours are observed to be associated with
irregular dynamic responses, resulting in broadband noise in the frequency spectra.

It should be noted that 2S patterns occur in the vicinity of x ≈ 0.4 and U∗ ≈
2 in regime S-I as shown in figure 21. It is found that there are two different 2S
patterns observed: (i) both the two single vortices are shed from the trailing edge; and
(ii) one is shed from the leading edge and the other from the trailing edge. The former
formation is associated with synchronisation response with relatively low oscillation
amplitudes, while in the latter leading-edge vortices can cause violent fluctuations
in the fluid forces, and thus enhance the nonlinear interaction between the 2-DOF
motions leading to irregular dynamics with larger oscillations or desynchronisation.
A comparison of these two 2S modes can be seen in supplementary movies 10 and
11 for a stable pattern at (x,U∗)= (0.4, 1.32) and an unstable pattern at (0.4, 1.63),
respectively.

In FIV phenomena, the synchronisation behaviours are always of significant interest,
as they are normally associated with highly periodic dynamics as well as stable wake
modes. In the present study, synchronisations are encountered partially in regime S-I,
where a mix of wake modes can be observed, including 2S, 2P, mP, P+S and
2(P+ 2S) patterns, as discussed above. The wake pattern at (x, U∗)= (0.65, 1.63) is
provided in supplementary movie 12, as an example for the P+S mode in regime
S-I. Moreover, the synchronisation behaviours are also encountered in regimes S-II,
S-III and S-IV. In regime S-II, the wake exhibits a P+C pattern consisting of one pair
and a coalescence of vortices shed per cycle, in the region with mild oscillations as
shown in figure 2. Regime S-III, where asymmetric profiles are seen in time variations
in both the transverse lift and the pitching moment (figure 14c), is dominated by an
asymmetric P+S pattern. In regime S-IV, a P+C pattern, similar to that in regime
S-II, is observed at low U∗ values, while it evolves to be an mP+C pattern at high
U∗ values in regime S-IV.

3.7. Bifurcations
Since the 2-DOF foil oscillations display strong nonlinear dynamics, bifurcation
behaviours may also be expected, where the foil oscillations could be affected
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FIGURE 21. A map of wake patterns for the S-series regimes in the x–U∗ parameter space.
Wake patterns for the T-series regimes are not given, since they are irregular, random
or chaotic in these regimes. The wake patterns labelled in blue colour text indicate that
mode switching behaviours may occur during oscillation cycles. Regimes S-I to S-IV are
represented by areas filled with vertical strips, chequerboard patterns, knitting patterns and
dots, respectively, while the transition regimes are filled with wavy curves. Solid lines
denote regime boundaries, and dashed lines denote wake mode boundaries.

by the initial conditions. Cleaver, Wang & Gursul (2012) reported significant
two-branch bifurcations in the time-averaged lift of a NACA0012 airfoil undergoing
small-amplitude plunging oscillations at low Reynolds numbers and angles of attack.
In the present study, the airfoil is found to oscillate about a non-zero equilibrium
position in both plunge and pitch, implying that the airfoil oscillations could also
exhibit bifurcations if the initial conditions differ. For the previously presented results,
the airfoil was initially set to be stationary at its neutral position (h∗0 = 0) and
then released at τ = 0. In this section, in order to reveal bifurcations, the vibration
responses will be examined as a function of U∗ for two non-zero initial release
positions in plunge (h∗0 = 0.5 and −0.5) at a fixed pivot point of x= 0.5, while other
initial conditions (e.g. the airfoil is initially set stationary with zero angle of attack)
remain the same.

Figure 22 shows the responses of the maximum amplitudes (A∗h and A∗θ ) and the
time-averaged displacements (h

∗

and θ̄ ) for the three different initial release positions
of h∗0 = −0.5, 0 and 0.5. As can be seen in figure 22(a,b), A∗h and A∗θ of all h∗0
cases appear to be identical for most of the reduced velocities tested, except for two
locations (U∗ = 4.11 and 4.42) around the boundary of regimes T-II and S-III. As
noted in § 3.2, the dynamics in the vicinity of this boundary was sensitive to the
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FIGURE 22. The maximum oscillation amplitudes in (a) plunge and (b) pitch, together
with the time-averaged displacements in (c) plunge and (d) pitch, plotted as a function of
the reduced velocity for three different initial release positions (h∗0 =−0.5, 0 and 0.5) in
plunge at x= 0.5. Note that h∗0 denotes the normalised initial position (normalised by the
chord length) released from the neutral position in plunge.

initial conditions. Similarly, a very high amplitude is observed here in both plunge
and pitch at U∗ = 4.73 for the non-zero initial release positions. On the other hand,
the variations of h

∗

and θ̄ in figure 22(c,d) reveal that bifurcations occur from this
boundary, where both h

∗

and θ̄ diverge into two branches forming from U∗ = 4.11
in regime T-II and then becoming mirror-symmetric about the neutral positions for
U∗ > 5.04 in regime S-III.

From the above results, it can be seen that bifurcations originate from the boundary
between a transition regime (T-II) and a synchronisation regime (S-III) for different
initial release positions. It should be noted that the bifurcations observed occur over
a range of U∗ exhibiting non-zero time-averaged displacements for h∗0 = 0 in regime
S-III. This suggests that such bifurcations are likely to occur in other regions where
non-zero time-averaged displacements are observed for h∗0 = 0 in regimes S-II and
S-IV in figure 2.
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4. Conclusions
The FIV response of a foil undergoing 2-DOF plunging and pitching motions in a

two-dimensional flow has been numerically studied at Re=400 over a parameter space
spanning a reduced velocity range 0 < U∗ 6 10 and non-dimensional pivot location
range 0 6 x 6 1.

There are four regimes exhibiting synchronisation or near-synchronisation responses
in x–U∗ parameter space either totally or partially, referred to as S-I, S-II, S-III and
S-IV. Regime S-I shows an increasing amplitude response with increasing U∗ similar
to a galloping-type response driven by aerodynamic instabilities, and it is encountered
as U∗ is increased from the initial NV (non-vibrating) regime. For a fixed pivot
location (e.g. x= 0.50 in the present paper), the oscillation amplitude increases almost
linearly in regime S-I, with more vortices shed during one oscillation cycle (e.g. 2P
mode at U∗ = 1.63 and an mP mode at U∗ = 3.49). For a fixed x, synchronisation
responses are observed over specific ranges of reduced velocity, e.g. 1.636U∗6 1.94
and 3.18 6 U∗ 6 3.80 for x= 0.5, while in between those ranges the vortex shedding
is less periodic but still of high amplitude.

Regime S-II is observed to occur for pivot position x ' 0.35, when the reduced
velocity becomes larger than 5.3. For this state, A∗θ ' 1.25, while A∗h tends to increase
with U∗. In this regime, both odd and even harmonics are observed, with fluid forces
dominated by high-order harmonics, indicative of a high vortex shedding frequency.
Regime S-II is also characterised by the P+C wake mode, with P corresponding to
a violent fluctuation of the fluid forces.

Regime S-III is encountered when the pivot point is located near the centre of
mass (0.40 6 x 6 0.60) and the reduced velocity becomes sufficiently large. In this
regime, the oscillation amplitudes in both plunge and pitch remain almost constant,
with A∗h ' 0.8 and A∗θ ' 1.3, and the mean displacement in pitch is found to be
approximately 1.6. This regime is dominated by an ‘odd’ harmonic resonance, and
displays an asymmetric P+S wake mode.

Regime S-IV exists over the largest area in the considered parameter space, for
x > 0.65 and U∗ > 4.0. Here the foil oscillates with large mean displacement in both
plunge and pitch, with the maximum of |θ̄ | close to π. Wake patterns similar to those
in regime S-II are observed in this range, which is characterised by a P+C wake
mode at lower U∗ and an mP+C mode at higher U∗. The multiple pairs of vortices
originate from the shear layer separating from the trailing edge, while vortices in a
pair (P) in regime S-II originate from the leading edge. Moreover, in regime S-IV the
fluid forces are synchronised with the foil oscillations.

Four transition regimes are also seen and briefly discussed, which exhibit complex
chaotic responses. In these regimes, the foil can see its equilibrium oscillation
positions change either regularly or irregularly. The existence of this type of response
should be checked through experiments.

The findings have shown that the FIV response characteristics of a foil with 2-DOF
are strongly dependent on the pivot location and the reduced velocity. A rich variety of
FIV phenomena and vortex shedding modes are present. Again, this warrants further
work to investigate the FIV responses through extended experiments.
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