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Abstract
Bayesian statistics provides effective techniques for analyzing data and translating the results to inform
decision making. This paper provides an elementary tutorial overview of the WinBUGS software for
performing Bayesian statistical analysis. Background information on the computational methods used
by the software is provided. Two examples drawn from the field of medical decision making are presented
to illustrate the features and functionality of the software.
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The purpose of this paper is to introduce software now available to support Bayesian
statistical analysis. We are not experts with the software, but have found it very useful
and wish to become more proficient in its use. One way to do this is to help create a
community of learners pursuing similar goals with whom we can learn, and this is the
ultimate intent of our presentation. What follows is directed to readers with some previous
knowledge of Bayesian statistics who have been waiting for statistical packages to support
their interest in using a Bayesian approach for data analysis. Introductory and intermediate
texts will be cited to provide additional sources for further instruction, reference, and review.
We also acknowledge valuable insights from a tutorial paper by Scollnik (11) developed
for actuarial modeling.

Bayesian statistical modeling is a powerful technique to analyze data for medical
decision making and healthcare technology assessment. The result of a Bayesian analysis is
a probability distribution over the parameter(s) of interest given observed data and any prior
information. This probability distribution can be used directly to inform decision making
or to compute the probability of hypotheses about values of the parameters. The Bayesian
result can also be used as input for assessing the expected value of additional information
that might be collected to inform the parameter estimates (4).
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In the past, while the Bayesian technique has always been powerful, it has not always
been practical. Initially Bayesian analysis was generally limited to problems involving a
very small set of statistical distributions to describe the prior information and the likelihood
of the observed data. These so-called “conjugate” distributions have the property that when
the prior distribution and the likelihood function for the data are combined with Bayes the-
orem, the posterior distribution is of the same type as the prior but with updated parameters.
If the analysis involved conjugate distributions, and in a limited number of other cases, the
posterior distribution could be derived analytically. However, computational advances have
made it possible to evaluate complex Bayesian models by using numerical approximation
and simulation techniques. This has increased the range of problems and sophistication
of analyses now accessible to Bayesian techniques far beyond those limited to that small
set of statistical distributions accessible previously. One of these computational techniques
applies Markov chain Monte Carlo (MCMC) simulation. The WinBUGS (Windows-based
Bayesian Inference Using Gibbs Sampling) software package has implemented this compu-
tational method for Bayesian statistical modeling and is what we address in this elementary
tutorial.

WinBUGS is a product of the BUGS (Bayesian Inference Using Gibbs Sampling)
project, which is a joint program of the Medical Research Council’s Biostatistics Unit in
Cambridge and the Department of Epidemiology and Public Health of Imperial College at
St. Mary’s Hospital in London. The software is distributed at no charge by the collaborators
of the BUGS Project from their Web page (10). Our discussion will be directed to the
WinBUGS version 1.2 software. We note that the developers of this software warn users
on their Web page that “[c]onsiderable caution is, however, needed in [use of BUGS and
WinBUGS], since the software is not perfect and MCMC is inherently less robust than
analytic statistical methods. There is no in-built protection against misuse.”

As users of the software, we add the caveat that initially the software can be diffi-
cult and frustrating to use. Previous experience with Bayesian statistics and MCMC eases
the learning process, but the learning curve is steep at the beginning. However, once the
WinBUGS modeling process is understood, the software is quite accessible. Allowing for
the truths of these observations, we have found WinBUGS usable and useful. It is our
hope that readers will, with the advised caution, similarly find it a good entr´ee to Bayesian
analysis.

BAYESIAN ANALYSIS AND MCMC

It is beyond our intent to provide a technical introduction to either Bayesian statistical
analysis or MCMC techniques. Introductory and in-depth texts are available, and we refer
readers to a few of these (2;3;5;6;7).

Bayesian analysis is about estimation of parameters. For problems in technology as-
sessment, we are interested in parameters such as the mean cost of a medical intervention,
the probability that a patient will improve with a certain intervention, or the quality of life
associated with a particular health state. These are the sorts of parameters whose values
we estimate by collecting and analyzing relevant data. Bayesian analysis not only provides
an estimate of the parameter, it also yields a probability distribution summarizing uncer-
tainty about the value of the parameters given the observed data. Using these distributions
we can compute probabilities of higher order hypotheses, such as the hypothesis that the
value of one parameter is greater than another (e.g., the probability that an individual will
improve with the experimental treatment is greater than the probability that an individual
will improve with the standard treatment). In traditional, frequentist statistical analysis,
such probabilities cannot be computed directly and thep value for a statistic is often used
implicitly as a proxy (9).
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Bayes’ theorem specifies that the posterior density for a parameter given the observed
data is:

f1(θ | d) = l (d | θ ) f0(θ )

g(d)
,

whereθ is the parameter (or vector of parameters) that we are estimating andd represents the
(vector of) observed data. Bothθ andd are considered to be random variables. The function
l is thelikelihoodof possible values of the data given a fixed value of the parameter;f0 is
theprior, the probability density function over all values ofθ prior to observing the specific
observed data; andg is the unconditional probability of the observed data (g is also known as
themarginal distribution of the dataor the prior predictive distribution). The functionf1 is
theposteriordensity for the parameter conditional on the observed data. In Bayesian short-
hand, the posterior is the prior times the likelihood normalized by the marginal of the data.

If the prior and the likelihood are natural conjugate distributions, then the posterior
is in the same family of distributions as the prior and the problem has an easy analytical
solution. If the prior and the likelihood are not conjugate distributions, it may be more
difficult or even impossible to express the posterior distribution analytically. The function
g(d) is the integral of the product of the prior and likelihood functions with respect toθ .
Luckily this function does not depend onθ and therefore can be treated as a constant when
making inferences aboutθ . Bayes’ theorem tells us that the posterior is proportional to the
likelihood multiplied by the prior, but we do not know the exact constant of proportionality
if we cannot computeg(d).

Using MCMC methods, we do not need to know the constant. Gilks et al. (8) provide
a brief overview of these methods:

MCMC is essentially Monte Carlo integration using Markov chains. Bayesians, and sometimes also
frequentists, need to integrate over possibly high-dimensional probability distributions to make infer-
ence about model parameters or to make predictions. Bayesians need to integrate over the posterior
distribution of the model parameters given the data, and frequentists may need to integrate over the dis-
tribution of observables given parameter values. As described below,Monte Carlointegration draws
samples from the required distribution, and then forms sample averages to approximate expectations.
Markov chainMonte Carlo draws these samples by running a cleverly constructed Markov chain for
a long time. There are many ways of constructing these chains, but all of them, including the Gibbs
sampler. . . , are special cases of the general framework of Metropolis et al. . . . and Hastings. . . . (8,1)

The general mechanics of these methods entail devising a sequence of numbers whereby
thenth term of the sequence is a randomly sampled value from a probability distribution
whose parameters are set using the (n−1)st term of the sequence. Each step in this sampling
process corresponds to a possible value forθ . If the first term is a relatively arbitrary initial
valueθ0, then this process results in a sequence of values,θ0, θ1, θ2, . . . , θn. The number of
terms in the sequence,n, is prespecified by the analyst, and efficient size forn is a subject
of current research. Remarkably, the theorems state that the empirical distribution of the set
of sampled values occurring after a certain point in the sequence, say termk, collectively
converges to the posterior distribution,f1(θ | d), asn grows suitably large, relative tok,
and certain other conditions are satisfied. The firstk terms of the sequence are called the
“burn-in” terms and can be discarded. The remaining sequence then represents a random
sample from the posterior distribution we wish to compute. Analysis of this set of numbers
(e.g., computation of the mean, variance, quantiles, graphing the histogram of sampled
values, etc.) allows us to empirically determine the posterior.

This process, obtaining the sequence of simulated values from the posterior distribution,
is the heart of MCMC and modern Bayesian computation. The conditions that guarantee
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convergence of the sequence to the posterior distribution should not be taken lightly. In
fact, much of the art of MCMC is judging whether the observed sequence of values has
converged to the posterior, and whether the observed sequence is long enough to have
sampled sufficiently from the full range of the posterior. Development of diagnostic statistics
to inform these judgments is another area of active research. But in practice the convergence
conditions are met for many problems with which we are concerned, and picking a value in
the neighborhood of 1,000 fork and some tens of thousands forn seems to do the trick. We
will not deal with the problem of diagnosing convergence in this article; readers are urged
to familiarize themselves with these issues in the cited texts and other references cited at
the BUGS Web site.

The beauty of WinBUGS (and its predecessor, BUGS) is that the likelihood function and
the prior distribution are specified—even for multiple unknown parameters and functions
of these parameters—in terms of a large gallery of standard probability distributions. The
software will (usually) set up the MCMC process and conduct the sampling process so that
the mechanics are largely transparent to the user. (Like any software package, WinBUGS
is not error free. Occasionally models cannot be processed and confusing error messages
are displayed. Reformulation of one’s model or tips from the user and example manuals
can overcome most problems and, as a last resort, questions can be sent to the BUGS
e-mail discussion list where the generally quick responses are useful.) Because the technical
details of the simulation process are “hidden,” users can focus on model design issues.
While WinBUGS performs the MCMC simulation behind the scenes, we again strongly
recommend users gain familiarity with the MCMC process, and we point to the earlier cited
texts as good sources.

EXAMPLES USING WINBUGS

We introduce the basic mechanics of the WinBUGS software and the graphical modeling
process using two examples. The two examples we describe are frequently encountered in
technology assessment. They can serve as building blocks for more complex problems, and
the basic modeling steps presented are readily generalized. All information needed for the
two examples is provided in the tutorial, but we do refer readers to the WinBUGS User
Manual (12) for some steps.

For the first example, we estimate a probability using the beta-binomial model. This
is a commonly encountered problem in clinical and health services research studies and,
even though it may be solved analytically, it is useful to illustrate the WinBUGS modeling
process. We begin by specifying this model graphically with a WinBUGS “Doodle.” Next,
we describe how to load the observed data and prepare the model for simulation. Finally,
we show how to perform the analysis and review the results.

In our second example, we extend the first model and show how to estimate the expected
value of a chance node in a decision tree and how to derive a posterior distribution describing
uncertainty about this expectation. This second example will show how to use functions of
parameters.

Downloading and Installing WinBUGS

The WinBUGS version 1.2 installation files and documentation are located at the BUGS
Project Web site (10). Documentation includes a user manual, along with 35 complex
examples. When the software is downloaded and the key for unrestricted use is installed,
the user is offered registration for the BUGS e-mail discussion list. We have found this
mailing list to be an educational forum where novice and experienced users ask questions
and exchange ideas on problems with BUGS and WinBUGS software, and more generally
with Bayesian modeling issues.
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Example 1: Estimating a Probability

To illustrate the basic features and functionality of WinBUGS, we will step through the
WinBUGS modeling process for a simple beta-binomial model for estimating a probability.
In this example, the posterior distribution can be calculated analytically; nonetheless, we
will simulate it using WinBUGS.

As the hypothetical setting for the example, suppose we wish to estimate the probability,
θ , that a patient undergoing a particular treatment will experience a certain complication.
We observe 41 patients who each received a particular medical treatment; 16 in the case
sequence experience the complication, and the remaining 25 do not. There are two equivalent
ways to represent these data. First, we could consider this to be one observation of a
binomial random variable with parameters (θ, N), whereN= 41 andθ is our unknown
probability of a complication. The observed value of the variable is 16. Alternatively,
the binomial distribution can be thought of as the sum of independent Bernoulli trials,
each taking the value 0 (no complication) or 1 (complication) with probabilityθ that a
particular trial results in 1. We will use the Bernoulli representation because it illustrates
more features and functionality in WinBUGS—in particular, it shows how to input and
analyze data constituting a sample of independent observations of a random variable. Our
prior uncertainty about the true value ofθ is modeled using a beta distribution. Thus, in our
previous notation, the likelihood function for each data point,l (d | θ ) is a Bernoulli density,
depending onθ , and the prior probability functionf0(θ ) is a beta density.

The steps in a Bayesian analysis using WinBUGS are: a) create a “Doodle” to specify
the model; b) prepare the model for simulation; and c) perform the analysis and review the
results. The first step is to specify the model in WinBUGS by creating a “Doodle.” A Doodle
is a pictorial representation of the model. It contains the information about the likelihood
functions and prior probabilities that WinBUGS uses in combination with the observed data
to perform MCMC simulations. A Doodle is constructed with the following three graphical
objects:

1. A nodeis used to represent parameters, data, or other variables in the model and is shown on the
screen as an oval object. All nodes have two main attributes: name and type. The three types of
nodes are stochastic, constant, and logical. A stochastic node has additional attributes defining the
associated probability distribution and parameters controlling that distribution. A constant node
represents a numerical constant where the value of the constant is specified with the data rather than
in the Doodle. A logical node is an algebraic function of one or more other nodes in the Doodle. If
a logical node is a function of stochastic nodes, it inherits an induced probability distribution from
this relationship.

2. A plate is used to denote repetition of identical nodes such as data observations. A plate is repre-
sented visually as a stack of rectangular cards, one for each data point. It has attributes that indicate
the index to the data that is used, such as i or j, and the number of repetitions or data points that
the plate represents.

3. A link is used to indicate dependencies between nodes. It is represented in the doodle as a uni-
directional arrow from one node to another, the direction of the arrow defining the dependency
between nodes.

Appendix 1 provides a quick reference for Doodle editing commands; readers are referred
to the WinBUGS User Manual and the Doodle Manual distributed on-line with the software
for more detailed information.

In the Doodle, nodes may be arranged in a hierarchical fashion for clarity. Figure 1
shows the Doodle for our beta-Bernoulli model and outlines the following steps we used to
create it. We start by representing the observed data. We use a plate to indicate that we have
41 identically distributed data observations. When specifying the attributes of the plate, we
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Figure 1. Complete Doodle for the beta-Bernoulli model to estimate a probability. The up-
per portion shows the Doodle for the beta-Bernoulli model for estimating a probability. The
lower portion presents the attributes of the Doodle objects used to create the Doodle. (See
Appendix 1 for specific Doodle object editing commands.) The likelihood function is repre-
sented by the oval-shaped stochastic node placed inside the rectangular plate. We specified
a Bernoulli distribution as the density function for this stochastic node. The probability of
a complicated treatment course is also represented by a stochastic node to which we as-
sign a beta distribution. The two rectangular nodes are the constant parameters of the beta
distribution discussed in the text.

use a placeholder for the number of data points and call itnumptfor number of patients.
By using a placeholder instead of entering the numerical value directly in the Doodle, the
Doodle is made more general. The numerical value of the placeholder will be entered later
in a data statement.

Within the plate, to represent the “i th” data point, we use a stochastic node. The default
node type is stochastic, so this attribute does not need to be edited for the node we just
created. We call this nodeptoutcome[i] where “i” is the index to the data. (Nodes are very
easy to create with a spurious click of the mouse and appear suddenly, seemingly at whim,
in one’s Doodle. In fact, the keystroke for deleting a node, ctrl-backspace or ctrl-delete, is
quite possibly one of the most useful pieces of information presented in this tutorial.) Each
data point is a 1 or 0 toindicate whether a patient had the complication. The likelihood
function for each data point is Bernoulli. We have defined the node as Bernoulli by selecting
the type, “dbern,” from the dropdown menu of distributions that appears when we click on
“density” in the node definition fields at the top of the Doodle window. Distributions are
named “dxxxx” on this menu, where “xxxx” is a short abbreviation of the full name of the
distribution. We will not go through all steps mechanistically in this text, but refer the reader
to Appendix 1 where the steps are depicted. The Bernoulli distribution has one parameter,
the probability that the observation takes the value 1. For our problem, this is the parameter
we wish to estimate:θ , the probability of the complication.

We next use a node to representθ and name itprobofcomp. The Bernoulli likelihood
function for our observed data depends on this parameter. To indicate this dependency,
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we create a “link” between theptoutcome[i] node and theprobofcompnode, where the
direction of the link indicates the dependency (see Appendix 1).

The probability of complication is a random variable so we make the node,probof-
comp, a stochastic node. We specified our prior uncertainty about this probability using a
beta distribution. The beta distribution is a function of two parameters,a > 0 andb > 0; its
mean, our best point estimate ofθ , is a/(a+ b). Suppose we do not have any information
or ideas about the likely values ofθ before observing the data. In this case we use a nonin-
formative beta distribution as our prior probability. Several methods exist for determining
noninformative priors; however, there is no consensus as to the best method (1, 73-74).
Since the beta distribution contains less and less information aboutθ as the two parameters
simultaneously approach zero, we specify the two parameters of the beta distribution as
each having value of 0.01. We could have chosen a different noninformative prior instead,
such as the one that specifies both parameters of the beta distribution as having values of
1 (this beta distribution is the uniform distribution), but this specification has more impact
on the posterior than does a specification with smaller parameters. In the Doodle, we use
placeholders for the numerical values of these parameters. Like the placeholder for the
number of data points, we will specify the values of these two parameters (and hence for
our prior distribution onθ ) in the data statement. Again, by using placeholders instead of
entering the numerical values directly in the Doodle, it is made more general for future
use.

We use two nodes to represent the two placeholders. We assign these nodes, called
priora andpriorb, to be constants in this problem. To indicate that the probability of a
complicated treatment course depends on these two parameters, we create links from the
two constant nodes,priora andpriorb, to probofcomp. The order in which they are linked
when the Doodle is interactively developed by the user determines which constant node
links to which of the two parameters of the beta distribution for theprobofcompnode.

This completes the steps for constructing a simple Doodle for the analysis model.
A helpful feature is that Doodles can be copied, pasted, and edited in other WinBUGS
text windows or other application windows, such as a Microsoft Word document. In Win-
BUGS terminology, documents containing both Doodles and text are called “compound
documents.”

Once the Doodle is saved, the next steps prepare the model for simulation. To prepare
the model for simulation, we have WinBUGS check the model syntax, then we enter the
data, compile the model, and finally specify initial values (the starting values of the MCMC
sequence) for the simulation. Appendix 2 describes these steps and discusses common error
messages. The process to prepare the model is not complex, but the order of the steps is
important.

Data are entered in a very specific format that is derived from the S+statistical language.
We found the example manuals that provide complete data statements for all of the examples
to be helpful guides for learning the syntax. A text file, rather than a Doodle file, is used
to enter data. Figure 2 shows the complete data statement for our model. We specify our
observed data as well as the numerical values of the placeholders, such asnumpt, that we
created in the Doodle. Data are entered in a comma-delimited string in the parentheses.
In the file the start of the data statement is indicated by the heading “data,”. The data
values themselves are entered parenthetically in a comma-delimited list after the word
“list” in the text file. To create the list of data, the format is: variable name= value for a
single-valued variable such as a 1. For multiple-valued variables such asptoutcomethat
describes our observed data, a simple list format can be used. The format for a list is:
variable name= c(value1, value2,. . .). For multiple-valued variables with a lot of data, this
list format is cumbersome. The user manual describes the syntax for entering data in vector
notation as well as the syntax for higher dimensional arrays.
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Figure 2. The data statement (top panel) for the beta-Bernoulli example contains the ob-
served data, shown in list form, as well as data for parameters we created in the model.
The lower panel is the initial value statement for the beta-Bernoulli example. We provide
an initial or starting value to start the Markov chain for each parameter that WinBUGS will
simulate. The syntax of the data statement and the initial value statement is explained in the
WinBUGS User Manual.

After loading the data and compiling the model, we must provide initial values for the
variables that will be simulated. “Initial values” are not “prior” information. An initial value
is the starting value for the Markov chain, the numerical value forθ0 in the sequenceθ0,
θ1, θ2, . . . , θn described earlier. An initial value must be specified for each stochastic node
except those representing observed data (the values of these latter nodes—ptoutcome[i] in
the current example—are specified in the data statement where the data are input). The
choice of initial value generally only affects the rate of convergence of the simulation to the
posterior distribution; the farther away from the range covered by the posterior distribution,
the larger the value ofk for the criticalθk where the sequence begins to converge on the
posterior distribution. Sometimes a choice of initial value that is too far from the feasible
range forθ may crash the program since it may produce a random draw for someθi that is
arithmetically unfortunate for the computer code that WinBUGS has produced, but generally
any value forθ0 in a distantly possible range for the parameter will serve as a feasible initial
value. Figure 2 also shows the completed initial value statement for this model. The format
for the initial value statement is the same as the data statement.

Once the model is compiled and initialized, we are ready to perform the analysis and
review the results. Appendix 3 provides a road map for these steps. We specify to WinBUGS
which nodes we wish to assemble results for, how many simulated values to discard at the
beginning of the sequence so we are relatively sure the sequence has converged by this point
(our guess atk for θk), and how many simulations to perform (i.e., a value forn in θn). The
only drawback we see to specifying quite large values fork andn is computing time. The
largern-k, the smoother the simulated posterior distribution appears. For our beta-Bernoulli
model, WinBUGS simulates a posterior distribution for the probability,probofcomp. For
this very simple model,k= 1,000 andn= 11,000 requires at most a few seconds time
on a 266-MHz computer and produces a very nice result. (In WinBUGS, the beginning
iteration number to include in the results,k+ 1 or 1,001, is entered rather than the number
to exclude,k.) In general, the number of iterations necessary for the simulation to converge
to the posterior distribution will depend on the complexity of the model and the adequacy of
the initial values; WinBUGS provides several diagnostic tools to assess convergence. The
WinBUGS User Manual describes these tools, and the suggested references provide more
detailed discussions of issues in convergence of MCMC simulations.

We have setprobofcompas a variable for which WinBUGS will store sequentially
sampled values in the MCMC process. This is done under “samples” on the WinBUGS
“Inference” menu. WinBUGS allows us to exclude the “burn-in” iterations on the presump-
tion that the simulation algorithm converges to the posterior density by this point. The
number we specified, 1,000, was chosen more or less arbitrarily since convergence should
be very quick in this simple example, and 1,000 is a typical number in the literature. In
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Figure 3. Posterior density plot for the beta-Bernoulli model to estimate the probability of a
complicated treatment as estimated by WinBUGS. This plot shows the empirical posterior
density for the probability of a complicated treatment. The plot was created from a simulation
run of 11,000 iterations, excluding the first 1,000 as burn-in. As more iterations are performed,
the distribution would become smoother.

Figure 4. Sample statistics for the probability of a complicated treatment as estimated by
WinBUGS. This facsimile of the WinBUGS statistics window summarizes output for the
probability of a complicated treatment based on 11,000 iterations of the MCMC simulation
(excluding the first 1,000). The default statistics WinBUGS computes are the mean, standard
deviation, median, and 2.5th and 97.5th percentiles. Other percentiles may be selected by
the user.

more complicated problems, a larger burn-in sequence, along with attention to some of the
convergence diagnostics, is wise. Figure 3 shows a plot after 11,000 iterations (the plot
excludes the first 1,000 as burn-in) of the simulated posterior density forprobofcomp. From
the plot, we see the range of possible values forprobofcompand which values are more
likely than others. WinBUGS’ “trace” and “history” functions also offer serial plots of the
actual sequence of simulatedprobofcompvalues for the purpose of diagnosing convergence
and mixing of the sequence.

Figure 4 shows sample statistics from the simulated posterior distribution. WinBUGS
calculates these from the stored sequence of simulated values ofprobofcomp. The default
statistics are the mean, standard deviation, median, and the 2.5 and 97.5 percentiles. Addi-
tional statistics are available. WinBUGS will save the entire sequence of simulated values
in a text file (termed a coda file) that can be further analyzed using other statistical analysis
programs or spreadsheet programs. In theprobofcompexample, we conclude the point es-
timate isprobofcomp= 0.3919 (the mean value), there is a 0.5 probability thatprobofcomp
is greater than 0.3898 (the median), and that a 95% credible interval for the value ofprobof-
compis 0.2508 to 0.5464. Since all simulated values (past the 1,000 discarded as burn-in
for the sequence) can be saved, we can sort these and use them to derive a full empirical dis-
tribution function forprobofcomp, which can be used for hypothesis testing, for stochastic
sensitivity analysis in further calculations involvingprobofcomp, or for other analyses.

Example 2: Estimating an Expected Value in a Decision Tree

Using the beta-Bernoulli model of Example 1 as a building block, we now use WinBUGS
to simulate a posterior distribution for the expected value at a chance node in a decision
tree. The WinBUGS modeling steps for this model are the same as the previous example.
This example can be extended to evaluate a more complicated decision tree in WinBUGS.

As in the previous example, suppose we have observed the results of a medical treatment
in 41 patients. Further, we observe the total costs of care consumed by each patient in the
12 months following the treatment and are interested in estimating the expected cost of
treatment. Figure 5 shows the chance node from a decision tree diagramming this example.
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Figure 5. Chance node from a decision tree for the cost of medical treatment. The expected
cost of a medical treatment is represented here as a chance node fragment from a decision
tree. A patient receiving the treatment can experience either a complicated or uncomplicated
treatment course.

Figure 6. This Doodle models the estimation of the expected cost of treatment. In essence,
it is three separate models joined together with logical nodes. The left portion is the model
for estimating a probability, also shown in Figure 1. The right portion estimates expected
costs for complicated and uncomplicated treatment courses separately.

(Although potentially confusing, we use the conventional terminology for a branching point
in a decision tree, a “node,” as well as the syntax adopted in WinBUGS for a parameter in
a Doodle, also known as a “node.” Our meaning should be clear from context.)

To compute the expected cost of treatment, we need the probability of a complicated
treatment course,probofcomp, the expected cost of a complicated treatment course,cost-
comp, and the expected cost of an uncomplicated treatment course,costnocomp. As in
the previous example, we use the treatment outcome data to estimate the probability of a
complicated treatment course. In addition, we use the cost data to separately estimate the
expected cost of treatment for both patient groups (i.e., those experiencing complicated and
uncomplicated treatment courses). Figure 6 shows the completed Doodle for this problem
and outlines the steps used to create it. The left portion of the Doodle in Figure 6 is the
previous Doodle we constructed for estimating the probability of a complicated course of
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treatment. The right portion of the Doodle contains two plates for modeling the cost data for
patients who experienced complicated and uncomplicated treatment courses and estimating
the expected cost for each patient group.

We model the likelihood of the observed cost data for patients experiencing an uncom-
plicated treatment course with a gamma density. The gamma density is useful as a model of
random quantities whose values are greater than zero and which have a skewed distribution
with long tail to the right which is typical of cost data. WinBUGS has implemented the
gamma density as a function of two parameters,a > 0 andb > 0 with a meana/b, and
variancea/b2. Other software programs such as Microsoft Excel and Minitab (Minitab Inc.,
State College, PA) parameterize this distribution in such a way that the mean isaband vari-
anceab2; users of software packages employing the gamma distribution should be cautions
when determining how it is parameterized. Since the two parameters,a andb, each must be
greater than zero, our prior uncertainty about these two parameters of the gamma density
is modeled using gamma densities as well. WinBUGS provides values of 0.001 for both
parameters to specify a noninformative gamma density. (Noninformative parameter values
are also provided as defaults for several other densities, such as the normal density.) We will
use these default values for our prior uncertainty about the two parameters; these will be
updated in light of the observed cost data. If we had stronger opinions or other data about the
likely costs, we would use prior values reflecting these opinions and data. We label the node
for the observed cost data among patients without the complication asnocompcost, indexed
by j , and the two parameters of the gamma likelihood function,nocompaandnocompb.

To estimate the expected cost for patients who experienced an uncomplicated treatment
course, we use a logical node that we labelcostnocomp. The expected (i.e., mean) cost is
the mean of the gamma density used to model the likelihood of the cost data. The mean of
the gamma density is the ratio of its two parameters, so we set the value of the logical node
equal to the rationocompa/nocompb. To indicate the dependency between the logical node,
costnocomp, and the two parameters of the gamma density representing the likelihood
function, we link the nodecostnocompto the nodesnocompaandnocompb. WinBUGS
represents links to logical nodes by double-lined arrows instead of the single-lined arrow
that joins stochastic nodes. The expected cost for patients who experienced a complicated
treatment course,costcomp, is modeled similarly.

Figure 7 shows the data and initial value statements for this model. In this model, we
provide initial values for the nodes that WinBUGS is simulating. The logical nodes such as
costcompandcostnocompdo not need to be initialized because the posterior distributions
for these nodes are induced from other simulated posterior distributions.

Figure 7. The data and initial value statements for the model estimating the expected cost
of treatment are shown. Initial values are provided for all stochastic nodes for which posterior
distributions are simulated, except for the logical nodes.
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Figure 8. WinBUGS plots of the posterior densities for four of the stochastic nodes in Figure
6. The top left plot is the empirical density for the probability of a complicated treatment
and is equivalent to the plot in Figure 4. The remaining three plots show the empirical
posterior distributions for the expected cost associated with an uncomplicated treatment
course, the expected cost associated with a complicated treatment course, and the expected
cost averaged over treatment courses. Each plot is calculated from 11,000 iterations of the
MCMC simulation and excludes the first 1,000 iterations as burn-in.

Figure 9. Sample statistics for the parameters estimated in the expected cost model. Fac-
simile of WinBUGS output window summarizing sample statistics for the problem specified
in Figures 6 and 7.

Figures 8 and 9 show the plot of the simulated posterior distribution for the expected
cost at the chance node in the decision tree, and the sample statistics for this random quantity,
respectively. Similar to the previous example, we ran the simulation for 11,000 iterations
and excluded the first 1,000 as “burn-in.” WinBUGS provides results for the other nodes in
the Doodle of Figure 6, and these are shown as well in Figure 9.

CONCLUSION

The WinBUGS software is a useful and powerful tool for Bayesian analysis. It allows users
to evaluate complex models without implementing the technical details of MCMC for each
new problem. Then users are able to focus on model design and validation. The Doodle
representation provides an intuitive method for graphically conceptualizing models and
translating them to the software. The full sequence of simulated values for each node in a
Doodle are easily portable to other software, such as Excel or Minitab, for further analysis
by saving the WinBUGS “coda” output as a text file.

This tutorial was an introduction to the WinBUGS software. We presented two examples
common to medical decision making. The first example, the beta-Bernoulli, estimated
the probability of a complicated treatment course. The second example built on the beta-
Bernoulli and evaluated the expected cost of a treatment as it might be represented in a
decision tree or a cost-effectiveness analysis for technology assessment.

When one considers technology assessment problems more generally, these pieces,
estimating proportions, costs, and expectations formed from them, are commonly encoun-
tered. Other common parameters in technology assessments are quality-of-life weights for
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health states and the various statistics representing survival or recurrence times. All of these
may be addressed individually as well as combined to compute more involved outputs of
technology assessment, such as cost per quality-adjusted life-year saved or net health ben-
efits (13). Bayesian analysis of these outputs is a natural manner in which to represent the
uncertainties inherent in technology assessment models. Software such as WinBUGS and
its successors can be of great assistance in helping to diffuse the Bayesian approach as a
common and useful tool for technology assessment. The collaborators behind WinBUGS at
MRC Cambridge Biostatistics Unit and at Imperial College are providing a commendable
service to the field of Bayesian analysis as well as the applied fields that need it, such as
healthcare technology assessment.

But, as the developers warn, the availability of the software does not absolve users of
the need to learn about issues in Bayesian modeling and problems encountered in MCMC
methods (particularly the problem of convergence of the MCMC simulation to the desired
posterior distribution). Learning to use the software as it grows through its developmental
stages and also learning or relearning Bayesian analysis can seem daunting. We hope that
this introduction encourages others to take on these tasks to gain entry to powerful new
tools for technology assessment.
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APPENDIX 1

Doodle Quick Reference

INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 17:1, 2001 111

https://doi.org/10.1017/S0266462301104095 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462301104095


Fryback, Stout, and Rosenberg

APPENDIX 2

Quick Reference Sheet for Preparing the Model
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APPENDIX 3

Quick Reference Sheet for Performing the Analysis and Reviewing
the Results
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