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Multi-particle dispersion is studied using direct numerical simulations of temporally
evolving mixing layers and planar jets for tetrahedra consisting of four fluid particles
which are seeded in the turbulent regions or in the non-turbulent regions near the
turbulent/non-turbulent interface (TNTI). The modified Richardson law for decaying
turbulence is observed for particle pairs. The size dependence of the mean and relative
motions of the entrained tetrahedra indicates that the characteristic length scale of
the entrained lumps of fluid is approximately 10 times the Kolmogorov microscale.
When the tetrahedra move within the TNTI layer they are flattened and elongated by
vortex stretching at a deformation rate that is characterized by the Kolmogorov time
scale. The shape evolutions of the tetrahedra show that in free-shear flows, thin-slab
structures of advected scalars are generated within the TNTI layers.
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1. Introduction

Turbulent flows are often surrounded by non-turbulent (irrotational) fluid, the
interface of which is a well-defined turbulent/non-turbulent interface (TNTI), where
mass, momentum and energy exchanges occur, thereby allowing the growth of the
turbulent region into the non-turbulent fluid. Thus, turbulence is often found to be
localized, such as in the atmospheric boundary layer (Mahrt 1999) and the ocean
mixing layer (Thorpe 1978). A TNTI is also found in canonical free-shear flows,
such as jets, wakes and mixing layers, and these flows have been used frequently for
studying TNTI mechanisms.

Corrsin & Kistler (1955) predicted the existence of a very thin ‘viscous superlayer’
(VSL) at the edge of the turbulence region, where the viscous diffusion of
vorticity causes the spreading of turbulence (Taveira & da Silva 2014). This initial
vorticity is matched between turbulent and non-turbulent flow regions in an adjacent
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‘turbulent sublayer’ (TSL) region, located between the VSL and the turbulent core
region (da Silva et al. 2014). Whereas the vorticity grows by viscous diffusion within
the VSL, its growth is mainly governed by inviscid vortex stretching within the TSL
(Taveira & da Silva 2014). The motions of entrained fluid particles are also different
between the TSL and the VSL (Watanabe et al. 2016).

Lagrangian tracking of the fluid particles during the entrainment is useful for
studying the entrainment process, and has been used in recent experiments and direct
numerical simulations (DNS) (Holzner et al. 2008; Taveira et al. 2013; Watanabe
et al. 2016). Virtually all of these studies only show one-particle statistics during
the entrainment, which provide only information on one-point statistics along the
entrained particle path line. Although the entrainment consists of a continuous
transition of non-turbulent fluid into turbulence, resulting in the entrainment of an
entire fluid volume, the evolution of material volume is not understood well in
relation to the entrainment across the TNTI layer.

In contrast, a multi-particle dispersion analysis enables us to understand in detail
the Lagrangian evolution of material lines, surfaces and volumes (Xu, Ouellette &
Bodenschatz 2008). A fluid volume in three-dimensional space is defined by more
than four different points. Therefore, the evolution of a fluid volume has been studied
by tracking four-particle clusters (tetrahedra) (Pumir, Shraiman & Chertkov 2001; Xu
et al. 2008; Schumacher 2009). The deformation of the fluid volume is related to the
mixing mechanism of advected scalars; thin and long slabs of contaminant are formed
by the deformation of fluid packets (Brethouwer, Hunt & Nieuwstadt 2003), enhancing
molecular diffusion in regions of intense scalar gradient. The investigation of entrained
fluid volumes thus provides much detailed information on the turbulent entrainment
mechanism.

In this paper, new DNS are used to report on multi-particle dispersion statistics in
temporally evolving mixing layers and planar jets. By tracking a number of tetrahedra,
we investigate the kinetic energy evolution and deformation of fluid elements during
the entrainment. The statistics of two-particle pairs are also used for examining the
modified Richardson law proposed for decaying turbulence (Larcheveque & Lesieur
1981). The new results also provide a new challenging test ground for recent subgrid-
scale Lagrangian turbulence models (e.g. Mazzitelli, Toschi & Lanotte 2014).

2. Direct numerical simulations of temporally evolving planar jets and
mixing layers

2.1. Numerical methods and computational parameters
Direct numerical simulations are performed for temporally evolving mixing layers
and planar jets (Watanabe et al. 2016). The computation domains with a size of
Lx × Ly × Lz are represented by Nx × Ny × Nz grid points. The flows are periodic in
the streamwise (x) and spanwise (z) directions, and spread in the cross-streamwise (y)
direction, where slip boundary conditions are applied. The origin of the coordinate
system is located at the centre of the computational domain. The DNS code is an
incompressible Navier–Stokes solver based on the fractional step method, and was
used in our previous studies (Watanabe & Nagata 2016; Watanabe et al. 2016).
The governing equations are solved by using a fully conservative finite-difference
method for spatial discretization and a third-order Runge–Kutta method for temporal
advancement. Fourth-order and second-order central difference schemes are used in
the periodic and cross-streamwise directions respectively. The Poisson equation for
pressure is solved by using the Bi-CGSTAB method. For the mixing layers, a passive
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Run ML02 ML06 PJ10 PJ20

Flow type Mixing layer Mixing layer Planar jet Planar jet
Re 2000 6000 10 000 20 000
Lx, Ly, Lz 42θM, 54θM, 28θM 42θM, 54θM, 28θM 6H, 11H, 4H 6H, 11H, 4H
Nx,Ny,Nz 1200, 1400, 800 2700, 3000, 1800 1200, 1600, 800 1500, 2400, 1000
Time step dt 0.02θM/UM 0.01θM/UM 0.0025H/UJ 0.002H/UJ

∆x =∆z, ∆y 1.8η, 1.3η 1.8η, 1.4η 1.4η, 1.2η 1.8η, 1.4η
Reλ 202 365 132 201
λ/η 28 38 23 27

TABLE 1. Physical and computational parameters of the DNS. The displayed turbulence
characteristics are from the turbulent core regions when the particles are seeded.

scalar φ, whose evolution is described by the convection–diffusion equation with the
Schmidt number Sc= ν/D= 1, is also simulated as in Watanabe et al. (2015), where
ν is the kinematic viscosity and D is the molecular diffusivity. The grid is equidistant
in the x and z directions, while in the y direction, a fine grid is used near the centre of
the mixing layers and planar jets. In addition to solving the Navier–Stokes equations,
the fluid particles are simultaneously tracked using a third-order Runge–Kutta scheme
for temporal advancement and the trilinear interpolation scheme as in previous
Lagrangian studies (Schumacher 2009; Watanabe et al. 2016).

The simulations are initialized by statistically homogeneous and isotropic velocity
fluctuations, which are superimposed onto the mean streamwise velocity given by
〈U〉 = 0.5UM tanh(2y/θM) in mixing layers and 〈U〉 = 0.5UJ + 0.5UJ tanh[(H −
2|y|)/4θJ] in planar jets. Here, UM is the velocity difference in the mixing layers,
UJ is the jet velocity, H is the width of the jet inlet and θM (θJ) is the initial shear
layer thickness in the mixing layers (planar jets). The angular bracket denotes the
averaged value in an x–z plane. We set θJ = 0.015H. The initial scalar profile in the
mixing layer is given by φ = 0.5 tanh(2y/θM). The Reynolds numbers Re are defined
by UMθM/ν and UJH/ν. The DNS are performed for the planar jets at Re = 10 000
and 20 000 and for the mixing layers at Re = 2000 and 6000. The physical and
computational parameters are listed in table 1 (λ is the Taylor microscale, η is the
Kolmogorov scale and Reλ is the turbulent Reynolds number). As shown in table 1,
the spatial resolutions, ∆i, are small and comparable to the Kolmogorov scale on the
centreline, and are therefore small enough to capture the small-scale fluctuations.

2.2. Lagrangian particle tracking
Once the mixing layers and planar jets have reached a self-similar state, we seed
40 000 tetrahedra consisting of four particles each and start to track 4 × 40 000
particles. Two cases are considered in this study: (i) tetrahedra seeded inside the
turbulent region and (ii) tetrahedra seeded in the non-turbulent region near the TNTI.
The turbulent region is detected as the region with |ω| > ωth (da Silva et al. 2014),
where |ω| is the magnitude of the vorticity vector, which is defined as the curl of the
velocity field ωi = εijk∂uk/∂xj. The threshold ωth is determined so that the isosurface
|ω| =ωth is located near the outer edge of the TNTI layer using a well-known feature
of the dependence of the turbulent volume on ωth (Taveira et al. 2013). It has been
shown that the interface boundary location computed using this procedure, as well
as the resulting conditional statistics, is insensitive to the particular value of the ωth
thus obtained. In the present DNS, ωth is 4 % of the mean vorticity magnitude on
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the centreline (Watanabe et al. 2015). This isosurface is referred to as the irrotational
boundary hereafter (Watanabe et al. 2015). The tetrahedra are seeded with the method
used by Schumacher (2009) where an initial tetrahedron consists of four particles
located at x1 = x0, x2 = x0 + r0ex, x3 = x0 + r0ey and x4 = x0 + r0ez (x3 = x0 − r0ey
is used when y0 < 0), where ei is the unit vector in the i direction. Here, x0 is
randomly chosen from the turbulent region in the case (i) and from the non-turbulent
region near the TNTI in the case (ii). When the tetrahedra are seeded inside the
turbulent region, all particles of the tetrahedra are located inside the turbulent region,
whereas in case (ii), all particle locations x1, x2, x3 and x4 are in the non-turbulent
region. The simulations are performed for tetrahedra with initial side lengths of
r0 = 2η, 4η, 8η, 16η, 32η and 48η. We calculate two-particle statistics from the pairs
of (x1, x2), (x1, x3) and (x1, x4), while the tetrahedra are used for four-particle
statistics.

The Lagrangian multi-particle statistics are computed as a function of time τ from
the above DNS results. In the case (i), τ is defined as the time after the particles are
released. The case (ii) uses the time elapsed after one of the particles making pairs
or tetrahedra crosses the irrotational boundary. We denote the ensemble average of
pairs or tetrahedra by 〈∗〉τ . The Lagrangian studies of the entrainment showed that
the entrained fluid particles stay in the VSL for 0 6 τ . 7τη, and it takes more than
20τη for the particles to cross the entire TNTI layer (Watanabe et al. 2016), where
τη = (ν/ε)1/2 is the Kolmogorov time scale (ε is the mean kinetic energy dissipation
rate). In the present paper, the Lagrangian statistics are presented for large enough
τ to observe the entrained particle movements in the entire TNTI layers. It has
been confirmed that the small-scale characteristics of the entrainment are qualitatively
similar in mixing layers and planar jets (Watanabe et al. 2016). Therefore, we discuss
differences between the two flow types when the results are related to large-scale
quantities.

3. Results and discussion

3.1. Two-particle dispersion
The relative location of two particles is described by the separation vector R(τ ) =
x2(τ )− x1(τ ). The classical Richardson scaling 〈R2〉τ ∼ τ 3 is only valid in statistically
stationary flows. In non-stationary decaying turbulence, a modified Richardson law is
obtained for the separation vector as (Larcheveque & Lesieur 1981)

d〈R2(τ )〉τ
dτ

∼ ε1/3(τ )〈R2(τ )〉2/3τ (η� |R| � L), (3.1)

where L is the integral scale and ε(t) is the time-dependent mean kinetic energy
dissipation rate. The classical scaling for the energy dissipation rate, ε ∼ u′3/L (u′
is the root mean square velocity), supports the power-law decay ε(t) ∼ t−n in the
self-similar regime of temporally evolving free-shear flows, where n = 1 in mixing
layers and n=2 in planar jets. The present DNS also confirmed these decay exponents.
Integration of (3.1) with ε(t)∼ t−n yields

〈R2(τ )〉τ = gmε(τ )τ
3, (3.2)

where gm is defined as the modified Richardson constant.
Figure 1(a,b) shows 〈(R2− r2

0)/ε〉1/3τ /(r2
0/ε0)

1/3 divided by τ/τη for particles released
in the turbulent region and in the non-turbulent regions near the TNTI in PJ20, where
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FIGURE 1. (a,b) Plots of 〈(R2 − r2
0)/ε〉1/3τ normalized by (r2

0/ε0)
1/3 (ε0 is the kinetic

energy dissipation rate at the centreline at the time when the particles are released) and
compensated by τ/τη in PJ20 for two-particle pairs released (a) in the turbulent region
and (b) in the non-turbulent region near the TNTI, with initial separations equal to r0/η=
2, 4, . . . , 48, where the Richardson-like scaling appears as a plateau. Here, r2

0/ε0 and τη
used in the normalization are taken at the jet centreline at the time when the particles are
released. The insets show 〈R2/ε〉1/3τ against τ , where the Richardson-like scaling appears
as a straight line. The symbols denote the time (r2

0/ε0)
1/3. (c,d) The modified Richardson

constant gm plotted against r0/η for two-particle pairs released (c) in the turbulent region
and (d) in the non-turbulent region near the TNTI. The Richardson constant g in forced
homogeneous isotropic turbulence (HIT) (Ishihara & Kaneda 2002) is also shown for
comparison.

ε0 is the kinetic energy dissipation rate at the centreline at the time when the particles
are released. Richardson-like scaling is expected to be observed for times larger than
(r2

0/ε0)
1/3 (Bourgoin et al. 2006). According to studies on the relative dispersion in

stationary turbulence (Ott & Mann 2000; Ishihara & Kaneda 2002), equation (3.2) is
also examined by using the plot of 〈R2/ε〉1/3τ against τ in the insets. Although the
separation distance hardly changes before the particles cross the irrotational boundary
(τ 6 0), the modified Richardson law (3.2) is satisfied in the turbulent core regions.
The other jet and mixing layer simulations in the present study also yielded similar
results. The modified Richardson constant is obtained by applying the least-squares
method to 〈R2/ε〉1/3τ , and is plotted as a function of the initial separation r0 in
figure 1(c,d). For the particles released in the turbulent region, gm increases slightly
with increasing r0 for small r0, as in forced homogeneous isotropic turbulence. For
r0/η > 32, gm hardly depends on the initial separation, and gm ≈ 0.65–0.75, with
small variations with the Reynolds number and flow configuration. This value of gm
is very close to the Richardson constant in statistically stationary turbulence. For the
entrained particle pairs, gm shows a variation depending on the flow, and gm decreases
as Reλ increases. It is found that the cases PJ20 and ML02, where Reλ ≈ 200, give
similar values of gm.

3.2. Motions of tetrahedra
We consider the motions of tetrahedra, which consist of four particles with the
location x(n) and the velocity u(n) (n = 1, . . . , 4). The kinetic energy of the motion
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FIGURE 2. Averaged kinetic energy of mean (Em) and relative (Er) motions of tetrahedra
during entrainment in planar jets: (a) PJ10 and (b) PJ20. (c) Averaged kinetic energy
(E= Em + Er) in PJ20.

of a tetrahedron (Pumir et al. 2001) is defined by E = (u · u)/2, where the overbar
denotes the averaged value of the four particles of a tetrahedron. Since the velocity
of the particle relative to the centre-of-mass motion is given by u′(n) = u(n) − u,
the kinetic energy of the particle motion can be rewritten as E = Em + Er, where
Em = (u · u)/2 and Er = (u′ · u′)/2 are the kinetic energies of the mean and relative
motions respectively. Figure 2(a,b) shows the averaged energies of the mean and
relative motions of tetrahedra during the entrainment in the planar jets. For both
values of Re, the kinetic energy of the tetrahedra evolves similarly with time. Once
a part of the tetrahedron crosses the irrotational boundary, both 〈Em〉τ and 〈Er〉τ
increase rapidly, while they show a slower increase in the non-turbulent region.
For a tetrahedron with a larger initial size, the relative motions have larger kinetic
energy. However, when the total kinetic energy 〈E〉τ is plotted as in figure 2(c), the
dependence on the initial size is hardly seen during the entrainment. Thus, in the
planar jets, although the tetrahedra gain kinetic energy almost independent of their
initial size, their size affects the ratio between the mean and relative kinetic energy.
The relative particle motions are mainly associated with the small scales of motion,
and are therefore relatively flow-independent. Thus, the growth rate of the energy in
the relative motions during entrainment is similar in jets and mixing layers. However,
the energy of the mean motions is flow-dependent because of the different mean
velocity profiles; in the temporal mixing layers, 〈Em〉τ rapidly decreases during the
entrainment.

The equations governing the kinetic energy of the mean and relative motions of a
tetrahedron are written as

dEm

dt
=−uj

∂p
∂xj
+ 2ν

∂uiSij

∂xj
− 2νSij Sij =Dpm +Dvm + εm, (3.3)

dEr

dt
=−u′j

∂p′

∂xj
+ 2ν

∂u′iS
′
ij

∂xj
− 2νS′ijS

′
ij =Dpr +Dvr + εr, (3.4)

where p is the pressure divided by the constant density and Sij is the strain tensor.
The first, second and third terms are the pressure diffusion, viscous diffusion and
dissipation terms respectively. Figure 3(a) compares 〈dEm/dt〉τ and 〈dEr/dt〉τ among
different initial sizes of the tetrahedra released in the non-turbulent region for PJ20.
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FIGURE 3. (a) Averaged growth rates of the kinetic energies of the mean and relative
motions of tetrahedra during entrainment in a planar jet (PJ20). (b) Dependence of
〈dEr/dt〉τ at τ = 0 on the initial size of the tetrahedra. (c) The PDF of dEr/dt for PJ20
at τ = 14τη.

The tetrahedra gain more energy in relative motions for larger initial sizes. For
r0/η > 16, 〈dEr/dt〉τ has a peak value around τ ≈ 10τη, at which more than one
particle is passing the TNTI layer (Watanabe et al. 2016), and the relative motions
grow rapidly during the entrainment process. For small tetrahedra, the growth rate of
the relative motions is kept low in the TNTI layer. This is highlighted in figure 3(b),
where 〈dEr/dt〉τ at τ = 0 is plotted against r0 for all DNS. Moreover, it is found
that 〈dEr/dt〉τ is significantly decreased as r0 becomes small for r0 . 10η. Indeed,
figure 3(c) shows the probability density functions (PDFs) of dEr/dt during the
entrainment of tetrahedra in PJ20. These PDFs display a large peak at dEr/dt= 0 for
r0 . 10η, and this peak significantly decreases from r0= 8η to 32η. Since these PDFs
are positively skewed and the relative motion grows during the entrainment process,
the statistics of dEr/dt imply that the four-particle cluster being entrained crosses the
TNTI layer nearly along with the motion of the mass centre when the length scale
of the volume defined by the particles is less than ∼10η.

Figure 4(a) shows the average of each term in (3.3) for two initial sizes of the
tetrahedra. The tetrahedra being entrained gain the kinetic energy of the mean motions
by the pressure diffusion. Even in the non-turbulent region, the kinetic energy of the
mean motions is increased by the pressure diffusion. The growth rate of the energy
of the mean motions becomes large when the tetrahedra are passing the TNTI
(τ ≈ 10τη), which is consistent with a mean velocity jump observed in the TNTI
layer (Westerweel et al. 2009). Unlike what is observed in planar jets, the energy
of the mean motions in mixing layers is reduced during the entrainment because of
differences in the mean velocity profiles (not shown). However, we observed that
the pressure diffusion dominates the mean motion in both mixing layers and jets.
Figure 4(b,c) shows the average of each term in (3.4). For small tetrahedra with
r0 = 2η, the initial growth of the relative motions is caused by the viscous diffusion,
Dvr. For larger tetrahedra, the pressure diffusion has a non-negligible contribution to
the energy of relative motion even in the non-turbulent region. The pressure effects
on the large tetrahedra cause rapid growth of the energy of relative motions during
the entrainment.

The decomposition u(n) = u + u′(n) can be considered as a scale decomposition:
the large-scale velocity u by a low-pass filtering and the small-scale velocity u′
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FIGURE 4. (a) Averaged budget of kinetic energy for the mean motion (3.3) for the initial
sizes r0/η = 2 and 32 in PJ20. (b,c) Averaged budget of kinetic energy for the relative
motion (3.4) for (b) r0/η= 2 and (c) r0/η= 32. The inset in (b) shows the profiles around
τ = 0.

by a high-pass filtering (Pumir et al. 2001). Then, the r0 dependence of dEr/dt
implies the scale dependence of the kinetic energy transfer. Since the volume of the
tetrahedra hardly changes at τ . 0, the initial length r0 can be used as the length
of the scale decomposition, and Er represents the kinetic energy contained in the
scales smaller than r0. Thus, the kinetic energy at small scales (Er with small r0)
grows by the viscous diffusion, while as r0 increases the pressure diffusion becomes
dominant. In the Eulerian kinetic energy budget, the pressure diffusion was also
found to be important in the energy transfer near the TNTI (Taveira & da Silva
2013). Furthermore, the mean and relative motions of tetrahedra provide the scale
dependence of this energy transfer in the fluid motions. The r0 dependence of Dpr
indicates that most energy transferred by the pressure diffusion is contained in
scales larger than ∼10η. This is likely to be caused by the presence of coherent
eddy motions near the interface, with length scales of the order of ∼10η, since
these structures display a pressure minimum that is long lived and thus able to
imprint long-lasting effects on the nearby particle dynamics. The tetrahedra in the
non-turbulent regions have non-trivial mean kinetic energy, whereas relative motions
are absent especially for small tetrahedra. This can be related to the large-scale
irrotational motions, which were also observed in the Eulerian statistics in planar jets
(da Silva & Pereira 2008).

3.3. Shape evolution of tetrahedra
The shape of tetrahedra is well described by the position of the particles relative to
the centre position r(n)= x(n)− x. The volumetric tensor (Robert et al. 1998) is defined
by Rij = rirj, and has three eigenvalues denoted by R1, R2 and R3, ranging from the
largest to the smallest (R1 >R2 >R3); the corresponding eigenvectors are e1, e2 and e3.
Three parameters can be defined by the eigenvalues of the volumetric tensor (Robert
et al. 1998). One is the characteristic size of the tetrahedron: L = 2

√
R1. The shape

is described by the other two parameters: elongation E and planarity P, defined by
E= 1−√R2/R1 and P= 1−√R3/R2. When four particles lie nearly on a straight line,
R2 ≈ R3 ≈ 0, resulting in E≈ 1, and the direction of elongation is given by e1. When
a tetrahedron is squashed in one direction and four particles lie nearly on a plane,
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FIGURE 5. (a) Mean normalized eigenvalues of the moment-of-inertia tensor during
entrainment in a mixing layer (ML06) and a planar jet (PJ10). (b) Averaged shape
evolutions of tetrahedra with r0 = 2η across the TNTI on the E–P map. Examples of
potatoes (P = 0.52, E = 0.6) and knife blades (P = 0.84, E = 0.82) are also shown in
the figure. Tetrahedron shapes are characterized by elongation E and planarity P (Robert
et al. 1998). Symbols mark the specific times of τ/τη = 0, 5, 10, 20 and 40. (c) The
PDFs of the cosines of the angles between the vorticity vector (ω) and the elongation and
planarity-normal directions (e1, e3). The PDF is shown for the tetrahedra being entrained
with r0/η= 2 at τ/τη = 2, 4 and 14 in ML02.

R2� R3 and P ≈ 1, and the normal of the planarity is given by e3. The volumetric
tensor is also related to the moment-of-inertia tensor, and the normalized eigenvalues
of the moment-of-inertia tensor are obtained by Ii = Ri/(R1 + R2 + R3).

Figure 5(a) shows 〈Ii〉τ during the entrainment in PJ10 and ML06, which have
the smallest and the largest Reλ in the present DNS datasets respectively. Once the
tetrahedra cross the irrotational boundary, they rapidly deform while passing the
TNTI layers. The time scale of the deformation is very similar for r0/η = 2 and 8
in both PJ10 and ML06, and scales with the Kolmogorov time scale τη = (ν/ε)1/2,
indicating that the local strain rate, of order (ε/ν)1/2, dominates the deformation.
The mean values of Ii for large τ become close to those observed in other flows
(Schumacher 2009). Figure 5(b) shows the mean trajectory on the E–P map after a
part of a tetrahedron crosses the irrotational boundary. Once the tetrahedron moves
within the TNTI layer, the shape changes into a knife-blade shape, which is both
elongated and flattened, and a tetrahedron with r0/η = 2 reaches a quasi-stationary
shape (E, P)= (0.62, 0.80) at τ = 20τη, at which the particles are located in the TSL
(Watanabe et al. 2016). This shape evolution is very similar in planar jets and mixing
layers.

Figure 5(c) shows the PDFs of |cos θ1ω| and |cos θ3ω|, where θiω is the angle between
ei and ω at one of the four particle locations (x1). The PDF shows that the direction of
elongation (e1) tends to align with ω, and the tetrahedron is flattened in the direction
perpendicular to ω. This indicates that the vortical structures are circulated around by
the entrained tetrahedra which are elongated in the direction of ω. The elongation in
the vorticity direction can be related to the strain field stretching the vorticity vector.
As shown from the deformation time scale, the entrained fluid volume is deformed
by the local strain S′∼ (ε/ν)1/2, which acts on the small-scale eddy structures, whose
radius sizes are 4–5η (da Silva, Dos Reis & Pereira 2011). Thus, the elongation of
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FIGURE 6. Visualization of (a) the spanwise vorticity squared, ω2
z , and (b) the scalar φ

near the TNTI in ML06. The irrotational boundary, |ω| = ωth, is shown by a thin line.
The vortical structures with large ωz are marked in (a), while the entrained fluid around
the spanwise vortical structures is marked in (b).

the fluid volume during the entrainment is related to the small-scale eddies, which are
sustained by the strain S′ within the TSL.

The growth rate of the energy of the relative motions clearly changes around
r0 ≈ 10η, as shown in figure 3. Considering the small energy in the relative motions
for r0 6 10η during the entrainment (figure 2), we can anticipate that a lump of
non-turbulent fluid with a size of approximately 10η is entrained undergoing the
deformation by the local strain acting on the small-scale eddy in the TSL, resulting in
the thin-slab structures of the entrained fluid. Figure 6 confirms this shape evolution
of the small entrained fluid volume. Along a fluid particle, φ changes only by
molecular diffusion. Therefore, the entrained fluid near the TNTI has φ close to
non-turbulent values (Watanabe et al. 2015). In figure 6(a), we can see that the
spanwise vortical structures with large ωz have a core radius of approximately 5η,
like the intense vorticity structures studied by da Silva et al. (2011). In figure 6(b),
thin-slab structures of the entrained fluid with φ ≈ −0.5 (white) are found around
the vortical structures with large ωz, and are flattened so that the planarity normal is
perpendicular to the vorticity vector (z) direction. This result agrees with the previous
Lagrangian statistics, showing that the entrained fluid circumvents the strong-vorticity
regions near the TNTI (Watanabe et al. 2016). In figure 6(b), the size of the entrained
thin-slab structures is comparable to the vortical structures (∼5–10η), as expected
from the small kinetic energy of the relative motion of entrained tetrahedra with
r0 6 10η. Thus, some of the thin-slab structures observed in free-shear flows are
formed during the entrainment process. It should be noted that this generation
process of thin-slab structures inside fully developed turbulence (Brethouwer et al.
2003) is also possible in the thin shear layer between intense and weak turbulent
regions, which was observed in high-Re turbulent flows (Ishihara, Kaneda & Hunt
2013).

4. Conclusions

Multi-particle dispersion is investigated in the self-similar regimes of temporally
evolving mixing layers and planar jets. Tetrahedra consisting of four particles are
seeded in the turbulent and non-turbulent regions near the TNTI. The modified
Richardson law proposed for decaying isotropic turbulence (Larcheveque & Lesieur
1981) is also observed within the turbulent regions of the mixing layers and planar
jets, although with a modified Richardson constant gm ≈ 0.65–0.75 for two-particle
pairs released in the turbulent region. For particle pairs being entrained, gm is largely
Re-dependent in both flows.
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When four-particle clusters are entrained, both the mean and the relative motions
of the particles in relation to the centre of mass, as well as their geometry, rapidly
change within the TNTI layers. Interestingly, the size of the entrained lumps of fluid
largely impacts on the associated kinetic energy evolution within the TNTI. While
the typical size of the entrained lumps of fluid is ∼10η, the kinetic energy of the
relative motions increases faster for larger tetrahedra. The mean kinetic energy of the
entraining particle cluster is mainly caused by pressure–velocity interactions associated
with the large scales, while the relative motion of smaller tetrahedra is mainly caused
by small-scale viscous effects at the initial stage of the entrainment. Moreover, when
the length scale of the tetrahedra is smaller than approximately 10η, the entraining
particles tend to move along with the mean motion trajectories. Once a part of the
tetrahedron moves into the TNTI layer, it starts to rapidly deform until it becomes of
an elongated and flattened shape, and the associated time scale of this deformation is
of the order of the Kolmogorov time scale. During the entrainment, the fluid elements
are elongated in the vorticity direction near the TNTI.

These results describe the entrainment as follows: (i) a fluid volume with a size of
approximately 10η is entrained as a lump of fluid, (ii) the lump of fluid is deformed
by local strain acting on small-scale eddies within the TSL and (iii) it deforms into
thin-slab structures consisting of the original entrained fluid packet. The present results
provide insightful new information that could be used in the development of subgrid-
scale Lagrangian turbulence models (e.g. Mazzitelli et al. 2014).
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