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STATE-DEPENDENT FORMATION OF
INFLATION EXPECTATIONS

BOPJUN GWAK
Bank of Korea

The learning-from-experience model of Malmendier and Nagel [(2016) Quarterly Journal
of Economics 131, 53–87] successfully reproduces the heterogeneity in inflation
expectations across age groups. However, inflation expectations presumably depend on
not only age and experience but also inflation regime. Therefore, this paper proposes an
extended learning-from-experience model, in which expectation formation depends on
inflation regime. Estimating the model with US data, I find that when inflation is higher
and more volatile, households place more weight on recent data when making private
forecasts. Moreover, in this regime, households rely more heavily on private forecasts
than on public information.
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1. INTRODUCTION

How households form inflation expectations has long been an important question
in macroeconomics. In the literature, one of the most discussed inflation expec-
tation features is heterogeneity across individual households. Malmendier and
Nagel (2016) propose a model in which households form inflation expectations
via idiosyncratic learning processes based on their private experiences.1 Their
model demonstrates that different age groups hold differing inflation expecta-
tions, as depicted in the left panel of Figure 1, since their lifetime experiences of
inflation differ.2 This model, in general, accurately reproduces the cross-sectional
dispersion in inflation expectations between age groups, particularly for the
1970s and 1980s.

Another notable feature in expected inflation data is its state dependence. As
revealed in the right panel of Figure 1, the co-movement of actual and expected
inflation is stronger when inflation volatility is high. More specifically, the corre-
lation coefficient between the two variables is 0.60 when the standard deviation of
inflation is higher than a certain threshold and 0.34 when it is below this thresh-
old. Given that the average inflation rate is also generally higher in this period,
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Notes: The left panel demonstrates the deviations of inflation expectations from average expectations
across all age groups [Malmendier and Nagel (2016)]. Each point refers to the annual average value.
In the right panel, actual inflation refers to the annualized quarterly increase rate of the consumer
price index. The standard deviation of inflation is calculated by the eight-quarter rolling window.
Data Sources: Michigan Consumer Survey, Robert Shiller’s website.

FIGURE 1. Dispersion in expectations and state dependence.

it is likely that households form their expectations based on the state of inflation;
they seem more affected by current actual inflation in forming expectations when
inflation is higher and more volatile.

State dependence in expectations has been examined in previous studies; how-
ever, most have been conducted on an aggregate level rather than by examining
individual expectations. Empirical studies on cross-sectional dispersion usually
focus on periods with significant changes in inflation level and volatility. It is,
therefore, crucial to also consider the inflation regime when studying the for-
mation of individual households’ expectations. By doing so, the properties of
inflation expectations become clearer in terms of cross section and time series.

To investigate state dependence in conjunction with heterogeneity in expec-
tations, this paper modifies the learning-from-experience model, so that its
parameters are determined by inflation regimes. In the revised model, house-
holds form inflation expectations by combining two information sources: private
forecasts and public information. To make private forecasts, like econometri-
cians, they estimate their own simple inflation models, based on the perceived
law of motion (PLM). Households consider only the inflation data experienced
during their lifetimes to estimate the models; moreover, memories from older
experiences tend to fade over time. At the same time, the extent to which they
consider these older experiences also depends on the inflation regime. When
inflation is high and more volatile, households pay more attention to its recent
movement. Meanwhile, they care less about how inflation evolved in the past.
To incorporate these properties of private forecasts into the model, households
are assumed to have a pair of state-contingent PLMs, the coefficients of which
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are recursively updated with different degrees of learning from each period’s new
data. Households choose one or a combination of the two PLMs to make private
inflation forecasts in relation to the inflation regime.

After households determine their private forecasts, they form inflation expec-
tations by considering public information in addition to the private forecasts.
The allocation between private forecasts and public information is determined
by households’ perceptions of the inflation regime. In this study, households are
assumed to be exogenously endowed with information about the probability of
which inflation regime prevails during each period.

For model estimation, a two-stage procedure is implemented: to begin, the
Markov regime-switching assumption for actual inflation identifies the inflation
regimes, a step that, according to the literature, has been adopted extensively by
researchers.3 In the next stage, by employing the state probability information
derived in the first stage, the state-dependent model of inflation expectations is
estimated using US household survey data. To ensure the robustness of the esti-
mation, the results are analyzed to determine how they change under different
identifications of inflation regime and under a different sample period.

The estimation results reveal several interesting findings. First, when inflation
is higher and more volatile, households place substantially more weight on recent
data than on data from the past when making private forecasts. Second, in the
high-inflation regime, households pay more attention to their private forecasts
than to other public information when forming inflation expectations. This, in
conjunction with cross-sectional properties, suggests that the degree of hetero-
geneity in inflation expectations expands as households place more weight on
their private forecasts. In contrast, dispersion diminishes as each household age
group relies more on public information. Third, public information might be more
associated with households’ common beliefs attained through social learning
rather than with exogenous information sources such as professional forecast-
ers’ opinions. This finding differs from that of Malmendier and Nagel (2016),
who note that both are equivalently related to public information in the model.
Finally, the model improvement by adopting state dependence results mainly from
a period of stable inflation. This indicates that the parameters that characterize
learning from experience and the allocation of private information can be over-
estimated for such a period when one focuses exclusively on the average values
of the parameters. In other words, the role of public information in households’
inflation expectations could be underestimated in a stable inflation regime. These
findings emphasize the importance of state dependence in the model, because it
is not observed in the state-independent framework. Indeed, state dependence is
essential for understanding households’ inflation expectations at the individual
and cohort levels.

This paper builds primarily on Nakov and Nuño (2015), Madeira and Zafar
(2015), and Malmendier and Nagel (2016), who study households’ heterogeneous
expectations and financial decisions under bounded rationality. Dispersion in
expectations comprises a key area of research regarding effective monetary policy
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[Mankiw et al. (2004), Andrade et al. (2016)]. Such studies focus specifically
on age differences and heterogeneity across experiences as major causes of
disagreement in expectations. In terms of state dependence in expectations, this
paper follows the theoretical approaches of Marcet and Nicolini (2003), Milani
(2014), and Adam et al. (2016), whose studies consider a state-dependent learn-
ing gain in agents’ PLM during structural breaks in the economy. However, their
state-dependent learning gain in an aggregate-level differs from the individual-
based and state-contingent PLM employed in this paper. Furthermore, this paper
relates to studies by Morris and Shin (2002), Carrillo and Emran (2012), Areosa
(2015), and Coibion et al. (2018) examining the role of public information
and the allocation of information in setting prices. Following such ideas, the
present paper investigates the relationship between degree of heterogeneity and
information allocation strategy in the context of state dependence.

The remainder of this paper is organized as follows. Section 2 describes the
learning-from-experience model with state dependence and explains how to iden-
tify inflation regimes. Section 3 discusses the estimation results, as well as
providing sensitivity analyses to the identification of inflation regimes and the dif-
ferent sample period. Moreover, this section demonstrates how state dependence
improves the model using a transition matrix. Section 4 concludes.

2. MODEL

This section first describes the state-dependent formation of inflation expectations
as an extended version of the learning-from-experience model. Then, it discusses
how to identify inflation regimes in which households behave asymmetrically.

2.1. State-dependent Inflation Expectations

This paper assumes that households possess bounded rationality and that they
form expectations by following adaptive learning. Households are assumed to
estimate the parameters in their PLMs as would econometricians. Based on many
other studies, an individual’s PLM is assumed to follow the AR(1) process, as
expressed by:

πt+1 =μ
p
t,r,s + ρ

p
t,r,sπt + σ p

η,sηt+1, (1)

where πt is inflation at t, ρp
t,r,s ∈ (−1, 1) is the autocorrelation coefficient,μp

t,r,s ∈R

is the constant, and ηt+1 ∼ iidN(0, 1) is the inflation innovation at t + 1.4 The sub-
scripts t and r denote time and time of birth, respectively. The subscript s ∈ {1, 2}
denotes two possible inflation regimes in which households could stand. The
coefficients are recursively updated by learning from experience on an individual
basis, following

bt,r,s = bt−1,r,s + γt,r,sR
−1
t,r,sxt−1(πt − b′

t−1,r,sxt−1), (2)

Rt,r,s = Rt−1,r,s + γt,r,s(xt−1x′
t−1 − Rt−1,r,s), (3)
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where bt,r,s ≡ [μp
t,r,s, ρ

p
t,r,s]′, xt ≡ [1, πt]′, and Rt,r,s denotes the moment matrix for

xt.5 The parameter γt,r,s denotes a learning gain, which determines the degree of
updating that cohort r applies when faced with an unexpected change in inflation.6

This model differs from an ordinary adaptive learning model in that its param-
eters depend on agents’ age and inflation regime. Households use different sets of
information based on their private experiences to estimate (1). For example, the
30-year-old cohort uses the past 30 years of data to estimate their PLM, while the
60-year-old cohort uses the past 60 years of data. This constitutes learning from
experience.

In addition, households can change the type of learning algorithm, since they
are affected by economic circumstances. This represents state dependence. State-
dependent learning in inflation expectations is often considered in the context of
hyperinflation or during structural breaks in inflation [Marcet and Nicolini (2003),
Milani (2014)]. Since ordinary least squares (OLS) does not generate useful fore-
casts, due to its slow adaption to rapidly changing inflation levels, considering the
recent movement of inflation is preferable in the high-inflation regime.7 During
stable periods, in contrast, households prefer to use more information from the
past, because a larger value of learning gain produces noisier forecasts [Evans
and Honkapohja (1993)].8

To combine the two aforementioned features, in (2) and (3), the learning gain
γt,r,s is assumed to be age-specific and state-dependent, as follows:

γt,r,s =
⎧⎨
⎩

θs

t − r
if t − r ≥ θs

1 if t − r< θs

, (4)

where the condition γt,r,s = 1 (t − r< θs) indicates that data before an individual’s
birth year is ignored. The parameter θs > 0 has a constant value within a certain
inflation regime and determines the shape of the implied function of weight on
past inflation data. If θs = 1, all observations since birth are treated equally, as in
an OLS estimation [Evans and Honkapojha (2001)].9 However, in this paper, each
observation is valued depending on its distance from the current period, because
households’ earlier memories and experiences tend to fade, and thus, they empha-
size the recent movement of inflation. Therefore, parameter θs in (4) must be
greater than unity, so that the downward slope of the weight function can be incor-
porated into the PLM estimation. With this assumption, a younger cohort, which
has a smaller dataset, is more strongly influenced by recent data. This decreasing
gain with θs > 1 resembles constant gain learning, which many studies employ
[Milani (2007), Adam et al. (2016), Berardi and Galimberti (2017)]: both learning
gains generate downward slopes of the weight functions. The primary difference
between the two learning gains is that the decreasing gain with θs > 1 enables the
formulation of weight functions with different slopes for different cohort groups.

For state dependence, the weighting factor θs assumes two values, θ1 and θ2.
The parameter θ1 in the high regime is larger than θ2, and the implied weight
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function is steeper, as a result of heightened concerns about the current move-
ment of inflation. More specifically, households are assumed to have two learning
equations for the PLM, corresponding to inflation regimes. Each PLM considers
different sizes of θs and, thus, different weights on past data. Households update
the PLMs based on corresponding learning gains for each period, following (2)
and (3), and they use the equations to make forecasts for the next period. Lastly,
they select one or a combination of the forecasts, given a weight in each period,
to form their final private forecasts.10 Accordingly, it is assumed that households
are informed as to which inflation regime they are more likely to occupy.11 This
assumption can be summarized by:

Eh
t πt+1|r = ξtE

h,1
t πt+1|r + (1 − ξt)E

h,2
t πt+1|r, (5)

where Eh,s
t πt+1|r = b′

t,r,sxt, which represents a one-period ahead forecast based on
a household’s PLM. The parameter ξt is a weight on the forecast made by the
first PLM, which employs the higher learning gain. The superscript h stands for
households’ private forecasts.

The cohort effect and state dependence are reflected similarly in learning gains
and weights on data for Eh

t πt+1|r. However, they are distinct in several regards:
first, in the learning gain θs

t−r , the cohort effect is represented by the denominator
t − r, and the state dependence appears in the numerator θs. As a result, even if the
learning gains are identical, they can imply different learning strategies depending
on inflation regimes and personal experiences. Second, the cohort effect is deter-
ministic given a specific value θs, while state dependence captures changes in θs

in each period. Third, the cohort effect is defined as the heterogeneity resulting
from the difference in personal experiences, which is represented by the length of
data. In contrast, state dependence is reflected in the slopes of the weight func-
tions given a certain length of data.12 Therefore, the state dependence assumption
is essential to incorporate the effect in which all age groups become more con-
cerned about recent inflation at the same time given a specific length of data for
each age group.

In this paper, the regime-switching concept differs from what is suggested by
other studies [see Marcet and Nicolini (2003), Branch and Evans (2007); Milani
(2014)], which assume that the learning gain in each period is time varying
within one PLM equation. The learning gains in such models are endogenously
determined depending on agents’ perceptions of the economic situation.13 The
differences between this paper and previous studies evolve from two assumptions:
(1) the learning mechanism in this paper is heterogeneous in terms of an agent’s
age and experiences, and (2) the information about inflation regime is endowed
exogenously, such that households adopt a state-contingent learning strategy for
each inflation regime. Moreover, the concept of state-dependent expectations in
this paper differs from those presented in the works of Maćkowiak and Wiederholt
(2009) or Coibion and Gorodnichenko (2015), who relate state dependence to
the degree of imperfect information. They explain that information rigidity is
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low in the high-inflation regime, because people allocate more resources to track
macro-level shocks.

After households obtain inflation forecasts based on their private experiences,
they form inflation expectations by adding the private forecasts and public
information, as follows:

Etπt+1|r = βsE
h
t πt+1|r + δ′Dt + σε,sεt,r, (6)

where Eh
t πt+1|r denotes households’ private forecasts, derived by (5), and εt,r ∼

iidN(0, 1) is the noise in expectations.14 The time dummies Dt refer to unobserved
macro-factors, which affect every agent simultaneously. These are assumed to
be public information, such as households’ common beliefs, professional fore-
casters’ opinions, or central bank announcements.15 Hence, the sizes of βs and
δ represent the relative importance of idiosyncratic private and public informa-
tion in forming expectations, respectively. A higher βs implies a higher degree
of agents’ strategic substitutability in forming inflation expectations, such that
households intend to emphasize their idiosyncratic forecasts, whose coefficient
is βs. On the other hand, a lower βs reflects a higher degree of strategic comple-
mentarity, because it is optimal for households to value public information when
the actions of different agents are strategically complementary [Morris and Shin
(2002), Carrillo and Emran (2012), Coibion et al. (2018)].16

In line with the parameter θs in the learning-from-experience component, the
parameters β and σε, which denote the relative weight of private information and
the standard deviation of noise in expectations, respectively, are also assumed to
perform state-dependent switching between two regimes:

βs = ξtβ1 + (1 − ξt)β2, (7)

σε,s = ξtσε,1 + (1 − ξt)σε,2. (8)

Equation (7) implies that households’ allocation of information sources to form
inflation expectations is determined by inflation regimes. If β1 >β2, private
information exerts more influence in the high regime than in the low regime,
and vice versa. Private and public information are only cumulative under
the state-independent framework. However, assuming state dependence and a
time-varying βs can provide insight into the substitution properties between each
type of information for forming expectations. For (8), noisier expectations are
produced in the high regime with σε,1 >σε,2.

2.2. Identification of Inflation Regime

The next stage adds the weight ξt, which is related to how households perceive
the state of inflation. In studies on adaptive learning with regime switching,
most models assume that an endogenous mechanism exists, for a representa-
tive household to identify economic regimes. However, an analysis that uses an

https://doi.org/10.1017/S1365100521000171 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000171


STATE-DEPENDENT FORMATION OF INFLATION EXPECTATIONS 2001

individual-level model cannot incorporate the endogenous mechanism to indi-
vidual expectations, for practical reasons regarding the computation burden.17

Therefore, inflation regime information is considered exogenously endowed by
public sectors, such as governments and central banks.18

To quantify the inflation regime, this paper assumes the weight ξt as the rela-
tive probability that households are in Regime 1, which is obtained from an actual
inflation model. In line with literature that considers the regime-switching infla-
tion model [e.g. Evans and Honkapohja (1993); Amisano and Fagan (2013)], this
paper assumes that inflation follows AR(1) in a manner identical to the PLM,
with state dependence characterized by two-state Markov regime switching, as
follows:

πt =μs + ρsπt−1 + σu,sut, (9)

where μs is the constant, ρs is the autocorrelation coefficient, and ut ∼ iidN(0, 1)
is the inflation innovation. The coefficients and standard deviation switch between
two values over time, as the inflation regime changes:

φs = φ1St + φ2(1 − St), (10)

where φs = [μs, ρs, σu,s] and St = 1 in Regime 1, and St = 0 in Regime 2. Thus,
when the economy is in Regime 1,μs takesμ1; it takesμ2 in Regime 2. This is the
same for ρs and σu,s. The inflation regime St follows a Markov switching process.
In general, St depends on St−1, St−2, · · · , St−r, in which case, the process of St

is named as an r-th order Markov switching process. This paper assumes a two-
state inflation regime that follows the first-order Markov switching. A transition
probability of inflation regime between t − 1 and t is assumed to be

Pr[St = i|St−1 = i] = pii = exp(q̄i)

1 + exp(q̄i)
, (11)

where i ∈ {1, 2}. q̄i is the parameter to be estimated, and the logistic form
represents a constraint for the probability between 0 and 1.19

Having derived the state probability under the assumptions (9)–(11), the time-
varying weight ξt is defined as:

ξt = Pr[St = 1|ψt]L=t, (12)

where Pr[St = i|ψt]L=t is a state probability at t, and ψt ∈ {π0, π1, · · · , πt}. The
probability is a real-time estimate. Thus, only data up to t are available to deter-
mine the state probability at period t. The subscript L = t indicates that the
probability is estimated based on the data up to t.20 For this reason, the state prob-
ability is recursively estimated with the new data obtained in each period.21 In
this sense, it is necessary to distinguish between the state probability at t based on
data up to T , Pr[St = i|ψt]L=T , and the one based on data up to t, Pr[St = i|ψt]L=t.
The state probability Pr[St = i|ψt] represents the latter throughout the rest of the
paper.
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3. ESTIMATION

Now, (9) is estimated for the identification of inflation regimes, and (6) is esti-
mated for inflation expectations from Section 2. This section first describes the
data used for estimation and then presents and interprets the estimation results for
inflation identification and inflation expectations, which form the primary content
of this paper. In addition, this section discusses the results of auxiliary estima-
tions to clarify the properties of unobserved macro-factors. Lastly, the section
provides comparisons between models, using a transition matrix to determine the
extent to which the state-dependent model better matches data than does the state-
independent model. The results are also examined to identify the causes of the
model’s improvement.

3.1. Data

Since 1953, the University of Michigan has conducted the Survey of Consumers
report (MSC), a representative survey of inflation expectations. At first, the sur-
vey was conducted every 3 years; in 1960, it shifted to quarterly production. Since
1978, however, it has been published every month. In terms of sample design, the
survey is based on approximately 500 randomly selected respondents, including a
rotating panel. Hence, any single monthly sample consists of two parts: a subsam-
ple newly selected in that month and a re-interview subsample, who completed the
interview 6 months prior.22 Survey participants are asked two questions regarding
the expected direction and degree of change in prices:

1. During the next 12 months, do you think that prices, in general, will go up, or go
down, or stay where they are now?
2. By about what percent do you expect prices to go (up/down) on the average,
during the next 12 months?

The analysis in this paper utilizes MSC inflation expectations data, which
ranges from 1973 to 2019. In the robustness check, the model is re-estimated
with a somewhat shorter sample period up to 2009 to check the sensitivity of the
estimates to the data in the recent decade. The 1973–2009 period relies on the
dataset used in Malmendier and Nagel (2016), which was released to the public,
to allow comparability with their study.23 For the period 2010–2019, to produce
cohort-level data, all observations are used without truncation to better match the
cohort-level data of the previous years.24 The data are adjusted, following Curtin
(1996), to overcome deficiencies in the original survey data: first, because respon-
dents in the MSC were not asked specific numbers for expectations when they
predicted inflation to decline, the categorical value “down” is assigned to -3%
between 1973 and 1979. Second, since the response “same” was, before 1982,
often misinterpreted as suggesting that the inflation rate remained the same, a
positive value supported by empirical evidence is assumed to adjust the response
“same” to the “up” category.25
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Respondents are aggregated by age group; sample age groups range from 25 to
74 years old. People born in the same year belong to the same age group, regard-
less of birth month. To match the frequency of inflation expectations with the
consumer price index collected from Robert Shiller’s database, monthly inflation
expectations are converted to quarterly data by taking the average of them.26 For
the professional forecasts of auxiliary estimations in Section 3.2.3, the Survey of
Professional Forecasters (SPF) from the Federal Reserve Bank of Philadelphia is
used.

For inflation, an annualized quarter-to-quarter increase rate of the consumer
price index is used. The inflation experienced by a 74-year-old person in 1973 is
traced to 1899, which is the oldest data required. Thus, the inflation data used for
this analysis range from 1899 to 2019.

3.2. Estimation Results

3.2.1. Identified Inflation Regimes. Table 1 reports the estimation results for
inflation regime identification based on the full sample at the final period. Three
candidates are considered for the identification model. Model ID1, in the first
column, assumes regime switching in the constant and error terms. ID2 applies
the regime-switching assumption to the error term only. In the last column, ID3

applies regime switching on all parameters: constant, autocorrelation, and error.
In general, only marginal differences exist between models in terms of the mag-
nitude of coefficients. However, in ID1, the estimated constant μ2 in Regime 2 is
statistically significant and substantially different from μ1 in Regime 1, given the
standard errors of the estimates. Also, information criteria indicate that ID1 better
matches the inflation data than does ID2. Regarding the autocorrelation coeffi-
cient, splitting ρ into ρ1 and ρ2 does not improve the model. ID1 shows a better
performance than ID3 in terms of both information criteria. In addition, the dif-
ference between ρ1 and ρ2 does not seem significant according to the standard
errors of the estimates. Therefore, ID1 is selected as the baseline identification of
the inflation regime, and the model is applied to the recursive estimation.

The estimates for the model ID1 indicate that p11 and p22, which denote the
probabilities that each regime is maintained in the next period, are close to unity.
This means that both regimes continue for a considerably long period and that
the durations of the two regimes are similar.27 The autocorrelation coefficient ρ is
estimated at 0.32, which is low compared to previous studies on the persistence
of inflation without regime switching.28 Considering the estimates in ID2, iden-
tifying the parameter μ separately in each regime could lower the persistence
coefficient. In terms of the constant term and the standard deviation of the error
term, those in Regime 1 are approximately two times larger than those in Regime
2. Given the estimates and statistical significance, Regime 1 is defined as a state
of inflation with a high-inflation level and high-inflation volatility.

Figure 2 depicts the state probability identified by inflation level and volatility,
based on available information from each period (i.e. {Pr[Sj = 1|ψt]L=j}T

j=t0
).29 As
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TABLE 1. Estimation results: identification of inflation regimes

ID1 ID2 ID3

p11 0.963 (0.023) 0.962 (0.025) 0.963 (0.024)
p22 0.983 (0.010) 0.982 (0.011) 0.983 (0.010)
μ1 0.038 (0.007) 0.017 (0.002) 0.034 (0.008)
μ2 0.017 (0.002) 0.018 (0.002)
ρ1 0.321 (0.061) 0.397 (0.059) 0.406 (0.100)
ρ2 0.273 (0.078)
σu1 0.046 (0.004) 0.048 (0.004) 0.046 (0.004)
σu2 0.020 (0.001) 0.020 (0.001) 0.020 (0.001)

ln L 610.3 604.1 610.8
AIC −1206.5 −1196.1 −1205.6
BIC −1181.1 −1174.3 −1176.6

Notes: Models are estimated using maximum likelihood estimation. The estimation results
are based on the final sample period, 2019.4Q. AIC = −2 ln L + 2p, BIC = −2 ln L + p ln n.
ln L, p, and n refer to the log-likelihood, number of parameters, and number of observations,
respectively. The numbers in parentheses refer to standard errors.
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FIGURE 2. State Probability of Inflation.

illustrated, the actual inflation level and its volatility are higher in Regime 1.30

Regime 1 begins during the mid-1970s and lasts until the mid-1980s. It appears
again briefly in the early 1990s, reappears in the mid-2000s, and remains until
the global financial crisis. Regime 2, characterized by low inflation and low
volatility, ranges from the mid-1980s to mid-2000s, consistent with the period
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TABLE 2. Estimation results: inflation expectations

State-independent State-dependent

SD1 SD2 SD3 SD4

θ1 3.319 4.317 3.708 3.824 2.392
(0.240) (0.298) (0.265) (0.299) (0.155)

θ2 1.919 1.911 2.283
(0.129) (0.123) (0.339)

β1 0.616 0.801 0.609 0.634 0.566
(0.036) (0.037) (0.035) (0.037) (0.035)

β2 0.499
(0.036)

σε,1 0.014 0.018 0.019 0.014 0.019
(0.000) (0.000) (0.000) (0.000) (0.000)

σε,2 0.009 0.009 0.009
(0.000) (0.000) (0.000)

ln L 26737.2 27591.7 27480.6 26741.6 27456.9
AIC −53092.3 −54795.3 −54575.1 −53099.2 −54529.8
BIC −51727.0 −53408.5 −53195.5 −51726.7 −53157.3

Notes: Models are estimated using maximum likelihood estimation. The coefficients of time dum-
mies δ′ are unreported. The numbers in parentheses refer to standard errors. AIC = −2 ln L + 2p, BIC
= −2 ln L + p ln n. ln L, p, and n refer to the log-likelihood, number of parameters, and number of
observations, respectively. In all cases, n = 9, 400.

of “great moderation,” as many authors describe it.31 It also appears again after
the global financial crisis and lasts until the recent period. Interestingly, the cross-
sectional dispersion in inflation expectations between young and old age groups
is also high in Regime 1, which is consistent with Mankiw et al. (2004), who note
a strong positive relationship between inflation and disagreement in expectations.

3.2.2. Inflation Expectations. This subsection discusses the estimation results for
the inflation expectations model; the estimates are reported in Table 2. First, the
state-independent model is estimated for the purpose of comparison using the data
from Section 3.1. As the first column suggests, θ is estimated at 3.32, which is
close to the 3.14 identified by Malmendier and Nagel (2016).32 The estimate of
coefficient β is 0.62, which is marginally lower than the 0.67 produced in their
paper. These results reveal two notable findings: first, the estimates are not sensi-
tive to the sample period. This finding is reconfirmed by the sensitivity analysis in
Section 3.3. Second, the state-independent model in this paper properly replicates
the primary implication of the previous study. The parameter θ is significantly
larger than unity and, in turn, strongly supports the properties of learning from
experience in forming inflation expectations; households place different weights
on recent and past data, depending on their age and lifetime experience. In addi-
tion, households form inflation expectations by relying on their idiosyncratic
private information, rather than on public information.
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To estimate the state-dependent inflation expectations in (6), four types of mod-
els are examined, by changing the composition of certain parameters affected by
inflation regimes. The first model, SD1, applies state dependence to all parame-
ters: the weighting factor θs, the coefficient of learning from experience βs, and the
standard deviation σε,s. SD2 excludes the possibility of state dependence in coef-
ficient βs. SD3 introduces state dependence only for the weighting factor θs. The
last model assumes state dependence in the variance of noise in expectations σε,s.

When comparing the models, three interesting features are revealed. First,
when comparing SD4 with the state-independent model, Akaike information crite-
ria (AIC) and Bayesian information criteria (BIC) decline as the state-dependent
variance of noise enters the model, which suggests a substantial model improve-
ment. At the same time, θs decreases from 3.32 to 2.39, which indicates that a high
θs in the state-independent model partly absorbs the heterogeneity in the variance
of noise that would have been explained by σε,s. Second, splitting the weighting
parameter does not directly improve the model. Despite some lower informa-
tion criteria of SD3, compared to the state-independent model, the differences
are less significant. However, once the state-dependent variances of noise are
given, introducing the state-dependent weighting factor θs improves the model.
Lastly, the explanatory power of the model becomes stronger as the number of
state-dependent coefficients increases. As such, SD1 is chosen as the baseline
model.

For the learning-from-experience component, in the baseline model, the
weighting factor θ1 in Regime 1 is estimated at 4.32, which is approximately
two and a half times larger than θ2 in Regime 2. SD2 and SD3 also demonstrate
noticeable differences between θ1 and θ2; however, this gap widens as additional
state-dependent parameters enter the model. The size of parameter θs determines
the weight matrix for weighted least squares (WLS), as discussed in Section 2.1.33

Figure 3 illustrates the implied weights on past data determined by parameter θs

in each regime. The left and right panels depict the slopes of the weight functions
for ages 30 and 60 years, respectively. This paper essentially assumes that older
people utilize larger datasets to estimate their PLMs. Therefore, the slope of the
weight function for 60 years of age is flatter than that of 30 years of age. At the
same time, within the same cohort group, the slope in Regime 1 is steeper than
that of Regime 2. The difference in slope between Regimes 1 and 2 for 30 years
of age is even larger than that between ages 30 and 60 years in Regime 1.34 This
observation indicates that, in forming inflation expectations, the macroeconomic
common experience implied in regime-specific learning gain is no less crucial
than private experiences.

To focus on the state dependence in the weighting parameter θs, a simple exer-
cise is conducted to approximate a constant gain, corresponding to each θs on the
aggregate level. Although each age group applies a different size of decreasing
gain, the average learning gain is constant in terms of a representative house-
hold, if the share of each age group in the population is constant over time. The
approximate constant gains γs are calculated by minimizing the distance between
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age of 30 years, the weight on data 100 quarters earlier converges to zero.

FIGURE 3. Implied weights on past data by age and inflation regime.

implied weight vectors from the baseline model and the constant gain learning
model, as follows:

argmin
γs

T∑
t=1

[
w̄t,s(θs) − wc

t,s(γs)
]2

, (13)

where w̄t,s(θs) refers to the average weight vector across cohort groups, and
wc

t,s(γs) refers to the weight vector from constant gain learning, in terms of a rep-
resentative household. The resulting constant gains from (13), corresponding to
θ1 and θ2, are 0.0249 and 0.0121, respectively.35 The learning gain in the high-
inflation regime is twice as large as that of the low-inflation regime. The constant
gains proposed by other studies closely fall in between the two state-dependent
gains of this model.36

To justify the assumption that households switch their PLMs depending upon
inflation regime, I examine whether households benefit from the state-dependent
learning strategy. This can be demonstrated by comparing forecast performances
measured with the root mean squared error (RMSE) from the PLM for each case,
since households are expected to apply the state-dependent learning strategy to
reduce forecast errors. The RMSE of each cohort group r in the state-dependent
model is calculated as follows:

RMSEr =
[

1

T

T∑
t=1

(
e2

t,r,1 Pr[St = 1|ψt] + e2
t,r,2 Pr[St = 2|ψt]

)]0.5

(14)

where et,r,s = πt − Eh,s
t−1πt|r. Table 3 summarizes the RMSE in each case and indi-

cates the extent of the reduction in the state-dependent PLM. The result reveals
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TABLE 3. Root mean squared error

All 25–39 40–59 60–75

State-dependent (A) 0.0210 0.0204 0.0210 0.0219
State-independent (B) 0.0216 0.0205 0.0217 0.0228
Improvement ((A − B)/B × 100) −2.61 −0.46 −3.27 −3.99

Notes: RMSE in the state-independent model is calculated by
(

1
T

∑T
t=1 e2

t,r

)0.5

that the predicted inflation Eh
t−1πt|r in the state-dependent model is closer to actual

inflation than that in the state-independent model across all age groups. In gen-
eral, a state-dependent learning strategy achieves a reduction in forecast error of
2.6%. The improvement becomes more significant in the older groups.

Furthermore, the coefficient βs indicates a considerable difference between
regimes. Specifically, SD1 produces β1 at 0.80 and β2 at 0.50, while in the
state-independent model, the value is 0.62. Because β1 >β2, the private forecasts
based on personal experiences are more important when inflation and its volatility
are high, as illustrated in the left panel of Figure 4. The contribution rate, which
represents the relative share of the private forecasts from dummy variables,
amounts to 0.71 in the high regime and 0.53 in the low regime. In contrast, public
information, which is captured by time dummies and influences every cohort
group simultaneously, accounts for 0.29 and 0.47, respectively. This indicates
that households form inflation expectations that depend heavily upon their private
forecasts in the high regime. During stable periods, however, households allocate
more attention to public information, such as households’ common beliefs,
professional forecasters’ opinions, or central bank announcements, than they do
during the high regime.

These results relate to the findings of Madeira and Zafar (2015), who suggest
that public information is more relevant for longer horizon forecasts, which are
based on long-term movements. In other words, households utilize more public
information when they concentrate on the long-term movement of inflation, as in
Regime 2 in this paper. Moreover, the higher contribution of public information
in Regime 2 could indicate agents’ coordination motives arising from a strategic
complementarity in forming expectations, as mentioned in Section 2.1 [Morris
and Shin (2002), Carrillo and Emran (2012), Coibion et al. (2018)]. Households
seem to become more strategically complementary and place more weight on
public information in Regime 2, and hence the cross-sectional dispersion of
expectations diminishes, accordingly as demonstrated in Figure 2.

This information allocation is more noticeable when compared to that in the
state-independent model. The right panel of Figure 4 reveals that, in the state-
independent model, the contributions rate changes in the opposite direction from
that in the state-dependent model across inflation regimes. Since the contribution
rate implies a degree of reliance on an information source in forming expectations,
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FIGURE 4. Contribution rates of private forecasts and common factors.

ignoring state dependence in expectations can be misleading when attempting to
understand how households allocate the information source, depending on the
state of inflation.

3.2.3. Common Macro-factors. This subsection considers in detail the properties
of common factors, represented by δ′Dt. Thus far in this paper, the common factor
has been generally defined as public information other than private forecasts. In
terms of public information, however, some studies focus on exogenous sources,
such as news media or a public sector that affect households’ expectations [Caroll
(2003), Coibion et al. (2019)]; others highlight the role of households’ social
learning [Arifovic et al. (2013)]. To clarify the properties of macro-factors in this
model, an auxiliary equation is estimated:

Etπt+1|r = βsE
h
t πt+1|r + (1 − βs)ft + σε,sεt,r. (15)

The common factor ft is now assumed to be a certain variable, instead of a time
dummy. To see the relative share of expectations, the coefficient of ft is restricted
to be 1 − βs. Following Malmendier and Nagel (2016), this paper examines two
explanations for the common factors: forecasts of professional forecasters and a
common belief through social learning processes. For estimation, SPF data are
applied for the first case, and average private forecasts across all cohorts (i.e.
ft = Ēt

h
πt+1 = 1

50

∑
r Eh

t πt+1|r) are applied for the second case. With this model,
they find that both the forecasts of professional forecasters and social learning are
equivalently potential candidates for the common factor, based on similar estima-
tion results between the two cases. This paper checks whether this conclusion still
holds in the context of state dependence.

Table 4 reports the estimation results. To begin, the estimates of the state-
independent models, in both cases, closely approximate the estimates in Table 2;
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TABLE 4. Estimation results: common macro-factors

SPF Ēt
h
πt+1

State-independent State-dependent State-independent State-dependent

θ1 3.531 4.631 4.317 3.780 4.591 4.317
(0.085) (0.155) ( – ) (0.075) (0.126) ( – )

θ2 1.320 1.919 1.148 1.919
(0.035) ( – ) (0.038) ( – )

β1 0.785 0.792 0.779 0.634 0.736 0.712
(0.015) (0.026) (0.026) (0.045) (0.070) (0.069)

β2 0.798 0.814 0.307 0.534
(0.012) (0.013) (0.049) (0.061)

σε,1 0.018 0.023 0.023 0.018 0.023 0.023
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

σε,2 0.011 0.011 0.011 0.011
(0.000) (0.000) (0.000) (0.000)

ln L 24676.3 25798.3 25708.2 24603.7 25715.7 25601.1
AIC −49346.5 −52290.7 −51408.5 −49201.4 −51419.4 −51194.2
BIC −49325.1 −52233.5 −51379.9 −49180.0 −51376.5 −51165.6

Notes: The first three columns present the estimation results of (15) with the SPF. The next three columns provide

the results with the average private forecasts Ēh
t πt+1 in place of time dummies. The last column in each category

indicates the result with the fixed θs from the estimates in the baseline model. The numbers in parentheses refer to
standard errors. AIC = −2 ln L + 2p, BIC = −2 ln L + p ln n. ln L, p, and n refer to the log-likelihood, number of
parameters, and number of observations, respectively. In all cases, n = 9, 400.

this indicates that both SPF and common beliefs capture the time dummies fairly
well in the state-independent model. However, when assuming state dependence,
substantial differences exist between the two cases. In the case of social learn-
ing, the results are similar to those of the baseline model: the gap between θ1 and
θ2 is only slightly wider, and the coefficients βs are close to those of the base-
line model. Moreover, 1 − βs varies in line with the result that public information
draws more attention in Regime 2. In contrast, for SPF, even though state depen-
dence in the weighting factor θs is recognized, β2 is even larger than β1. This
result suggests that households are affected by professional forecasters’ opinions
to a greater extent in Regime 2 than in Regime 1, unlike the baseline estimation
with time dummies.

To ensure the validity of this result, the models are estimated again, with the
parameter θs fixed at 4.32 and 1.92, the values from the baseline model. The esti-
mation results presented in the third column of each case are generally consistent
with the previous unrestricted estimation. First, the parameters βs with social
learning are estimated and proved to be similar to those of the baseline model.
Accordingly, 1 − β2 is larger than 1 − β1, which indicates that inflation expecta-
tions are more sensitive to common beliefs in the stable inflation regime than in
the high regime. In contrast, 1 − β1 in the model with SPF remains larger than
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1 − β2; this implies that households care more about public information in the
high regime, which is contrary to the primary result presented in Section 3.2.2.
The SPF does not confirm what time dummies capture in the model.37 This finding
highlights the discrepancy between households’ common beliefs and professional
forecasters’ opinions about future inflation.38

3.3. Sensitivity Analysis

For the robustness of the estimation, sensitivity analyses are conducted with
two cases: first, state probability is recalculated with different initial periods for
regime identification. Second, the estimation sample excludes the period 2010–
2019, which is not analyzed in Malmendier and Nagel (2016). In this way, the
sensitivity of the estimates is determined in terms of arbitrary initial periods and
data from the previous decade.

3.3.1. Different Initial Periods for Identification of Inflation Regimes. First, this
section considers how the primary results change depending on the initial period
for identifying inflation regime and state probability. Given that the baseline
regime identification in Section 3.2.1 defines the initial period at 1950, inflation
regimes are redefined with earlier and later initial periods, ranging from 1940 to
1955. The baseline inflation expectations model, SD1, is then re-estimated with
the state probability from each identification period.

Figure 5 demonstrates the identified inflation regime from each initial period.
Identifications (A) and (D) are based on fixed initial periods at 1940 and 1955,
respectively. (E) is based on the initial period of 1950, the same as the baseline
identification, which is denoted by the bright blue area in each panel. However,
(E) uses a rolling fixed window for estimation, while the baseline identification
uses a recursively accumulating window. Lastly, the lower-right panel presents the
state probability calculated ex post in the full sample period. The identified infla-
tion regimes, as illustrated, are generally similar. In fact, (E) demonstrates that
the regimes are almost identical, except for 1985 and 1990, regardless of whether
the estimation uses recursive or rolling windows. When identified with the initial
period of 1940, the high regime, from 1973 to 1985, is somewhat underestimated,
compared to other cases; otherwise, the identified regimes mostly overlap.

To clarify the similarity between identifications, the concordance index is cal-
culated, as suggested by Harding and Pagan (2002), to demonstrate how closely
the regimes identified by the models coincide:

CI = 1

T

T∑
t=1

[
Sb

t Si
t + (1 − Sb

t )(1 − Si
t)
]

, (16)

where Sj
t = 1 in Regime 1, and Sj

t = 0 in Regime 2. Sb
t and Si

t denote the inflation
regimes under the baseline identification and the identification with each initial
period, respectively. Regime 1 is defined as the period in which the state prob-
ability ξt exceeds 0.5. The concordance index ranges between 0 and 1. When
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FIGURE 5. Comparison of identified state probabilities.

Sb
t and Si

t are perfectly synchronized, CI = 1; when unsynchronized, CI = 0. The
resulting indexes are presented in Table 5. The concordance indexes are relatively
low when the identification includes 1940s’ data. However, the indexes remain
close to unity, which indicates consistency in regime identification.

In terms of the estimation for inflation expectations, the results are presented
in Table 5. The results in column (B) and (C) are based on the baseline identifi-
cation and identification with the initial period of 1940, respectively. The results
in column (A) and (B), with earlier initial periods, reveal that the gaps in θs and
βs between regimes are larger than in the baseline identification. The remaining
estimations provide similar results: θ1 and θ2 amount to approximately 4.5 and
1.5, and β1 and β2 remain close to 0.8 and 0.4, respectively. In most cases, the
gap between the estimates for the two regimes supports the relevance of state
dependence in PLM, as well as the allocation of information in expectations.
Nevertheless, baseline identification (C) still produces the best performance, in
terms of AIC and BIC.

3.3.2. Different Sample Period for Inflation Expectations. To test the sensitiv-
ity of the estimates for recent years, (6) is re-estimated with data of the period
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TABLE 5. Estimation results of inflation expectations with different initial
periods

(A) (B) (C) (D) (E) Ex post

θ1 6.558 7.195 4.317 4.492 5.521 4.274
(0.418) (0.365) (0.298) (0.307) (0.299) (0.278)

θ2 2.546 2.485 1.919 1.924 1.558 1.935
(0.152) (0.150) (0.129) (0.123) (0.136) (0.130)

β1 1.015 1.069 0.801 0.854 0.920 0.824
(0.040) (0.038) (0.037) (0.038) (0.038) (0.037)

β2 0.647 0.646 0.499 0.497 0.420 0.540
(0.036) (0.035) (0.036) (0.037) (0.040) (0.036)

σε,1 0.017 0.017 0.018 0.018 0.015 0.018
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

σε,2 0.010 0.011 0.009 0.009 0.010 0.009
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln L 27363.3 27324.0 27591.7 27502.2 27142.3 27533.7
AIC −54260.0 −54260.0 −54795.3 −54616.4 −53896.6 −54679.3
BIC −52873.2 −52873.2 −53408.5 −53229.6 −52509.8 −53292.5

CI 0.84 0.80 1.00 0.95 0.88 0.91

Notes: The initial period in (A), (B), (C), and (D) is 1940.1Q, 1945.1Q, 1950.1Q, and 1955.1Q, respectively.
(E) applies a rolling fixed window, starting from 1950.1Q. The last column uses the state probability calculated
in the full sample period. The numbers in parentheses refer to standard errors. AIC = −2 ln L + 2p, BIC =
−2 ln L + p ln n. ln L, p, and n refer to the log-likelihood, number of parameters, and number of observations,
respectively. In all cases, n = 9, 400. CI denotes the concordance index between the identified inflation regimes
of the baseline identification (C) and the identification with each initial period.

1973–2009. The identified inflation regimes, in this case, are identical to the
baseline model, since the regime identification is carried out in an accumula-
tive way following (12), and hence inflation regimes do not depend on the end
of the sample period. The estimation results as of the end of 2009 are presented
in Table E1 of Appendix E. As the sample excludes data from the most recent
10-year period, the μ1 in Regime 1 slightly decreases, and the autocorrelation
coefficient ρ1 increases. Yet, the estimates are, in general, similar to the case with
data up to 2019. Moreover, the baseline identification IDs

1 remains preferable in
terms of information criteria as revealed in Table E1. As for the inflation regime,
the majority of the excluded period belongs to Regime 2, except for 2011, in
which inflation sharply increases briefly.

Table 6 presents the estimation results of inflation expectations. In the state-
independent model, θ amounts to 3.18, which is smaller than the estimates with
data up to 2019, whereas β is marginally larger. In the model SDs

1, θs and βs are
estimated as slightly smaller than in the baseline estimation. The ratios of the
parameters between the regimes (i.e. θ1/θ2 and β1/β2) change from 2.43 and 1.63
to 2.25 and 1.61, respectively, by extending the sample period. Nevertheless, dif-
ferences in the magnitude of estimates, order of information criteria, and degree
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TABLE 6. Estimation results: inflation expectations (1973–2009)

State-independent State-dependent

SDs
1 SDs

2 SDs
3 SDs

4

θ1 3.176 4.100 3.953 4.012 2.276
(0.272) (0.315) (0.282) (0.343) (0.184)

θ2 1.690 1.667 1.811
(0.162) (0.120) (0.262)

β1 0.620 0.782 0.710 0.674 0.612
(0.041) (0.045) (0.047) (0.046) (0.044)

β2 0.479
(0.050)

σε,1 0.015 0.018 0.019 0.015 0.019
(0.000) (0.000) (0.000) (0.000) (0.000)

σε,2 0.010 0.010 0.010
(0.000) (0.000) (0.000)

ln L 20424.2 20837.8 20759.2 20431.8 20724.5
AIC −40546.5 −41367.5 −41212.5 −40559.6 −41144.9
BIC −39503.2 −40303.5 −40155.4 −39509.4 −40094.7

Notes: Models are estimated using maximum likelihood estimation. The coefficients of time dum-
mies δ′ are unreported. The numbers in parentheses refer to standard errors. AIC = −2 ln L + 2p, BIC
= −2 ln L + p ln n. ln L, p, and n refer to the log-likelihood, number of parameters, and number of
observations, respectively. In all cases, n = 7, 400.

of state dependence are insignificant. Given that the change in sample size for this
analysis is significant, the estimates in Section 3.2.2 are robust.39

3.4. Comparison of Models with a Transition Matrix

To determine whether assuming state dependence improves the explanatory
power of the model, the transition matrices of inflation expectations between the
data and models are compared. A transition matrix is known to adequately sum-
marize the properties of longitudinal survey data in terms of persistence and mean
reversion [Patton and Timmermann (2010), Vellekoop and Wiederholt (2019)].
To construct the transition matrix for the data, the cohort-level longitudinal
survey is produced by identifying individuals who update their expectations
between t and t+2, given that the frequency of the rotating panel is 6 months, as
discussed in Section 3.1.40 For the models, inflation expectations are simulated by
combining the estimates and actual inflation data, based on (1) to (8).41 Inflation
expectations are divided into six groups, from 1% or less up to 6% or more.

The transition matrix indicates the conditional probability of inflation expecta-
tions between the two periods. In Tables 7–9, the first rows represent the relative
frequency of answers at t + 2, given that the answer in the current quarter (t)
is 1%. For example, the (1,1) elements of the tables represent the proportion of
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TABLE 7. Transition matrix, data

1% or less 2% 3% 4% 5% 6% or more

1% or less 13.0 32.5 31.2 16.4 3.1 3.8
2% 8.7 23.8 35.6 21.8 6.6 3.4
3% 3.9 20.1 36.6 24.0 11.1 4.4
4% 3.3 16.3 34.5 28.5 11.6 5.7
5% 4.3 12.9 31.8 25.1 16.1 9.8
6% or more 1.3 12.9 30.7 27.6 17.2 10.3

Notes: The element (i, j) indicates the proportion of cohort groups who answer i% of inflation
expectations at time t and j% at time t + 2.

TABLE 8. Transition matrix, model, state-dependent

1% or less 2% 3% 4% 5% 6% or more

1% or less 5.3 15.9 28.7 25.1 13.0 12.0
2% 3.8 12.7 28.8 28.5 15.0 11.1
3% 3.6 11.5 26.5 28.5 16.0 13.9
4% 3.3 10.6 25.5 27.7 16.4 16.4
5% 3.0 9.7 23.8 27.4 16.8 19.2
6% or more 2.7 6.3 17.9 24.0 18.1 30.9

Notes: The element (i, j) indicates the proportion of cohort groups who answer i% of inflation
expectations at time t and j% at time t + 2.

TABLE 9. Transition matrix, model, state-independent

1% or less 2% 3% 4% 5% 6% or more

1% or less 8.8 15.0 22.3 25.4 16.2 12.3
2% 8.0 13.2 20.9 24.0 17.5 16.4
3% 7.3 13.0 20.9 23.1 17.8 17.9
4% 7.3 12.8 20.3 22.0 17.9 19.7
5% 7.2 12.3 19.5 21.1 17.6 22.4
6% or more 6.3 10.3 18.1 20.9 16.5 27.8

Notes: The element (i, j) indicates the proportion of cohort groups who answer i% of inflation
expectations at time t and j% at time t + 2.

cohort groups that answer 1% or less at t and again at t + 2. Therefore, the diag-
onal elements represent how many cohorts at t maintain their answers at t + 2,
which implies the persistence of the expectations. The elements in the middle
columns indicate the extent to which the cohorts reverts to average expecta-
tions, which implies mean-reversion. More specifically, in Table 7, the diagonal
elements are generally larger than the off-diagonal elements. In addition, the prob-
ability of transition to 2% or 3% at t + 2 is relatively high, regardless of the
answer at t.
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TABLE 10. Distance between data and models in
the transition matrix

All Regime 1 Regime 2

State-dependent (A) 36.8 43.3 40.3
State-independent (B) 47.2 43.7 52.6
A/B 0.78 0.99 0.77

Notes: The first column demonstrates the distance between transition
matrices from data and models measured by the Euclidean norm across
all periods. The second and third columns are the distances of each infla-
tion regime. Regime 1 refers to the period when the state probability
Pr[St = i|ψt] exceeds 0.5.

A comparison of Table 7 with Tables 8 and 9 reveals that the models gener-
ally approximately replicate the properties of micro-level inflation expectations
in terms of mean reversion and persistence. However, there are some differ-
ences: first, the models suggest lower persistence for the answer 1% or less to
3%. Second, in terms of mean reversion, the probability of households answer-
ing 4% at t + 2 is higher than 2% in the model, in contrast to the actual data.
Considering that the transition matrices based on the aggregated survey across
all households are generally consistent with those from the models shown in
Table F2, these results indicate that the statistical properties of cohort-level data
are significantly different between the aggregated sample and the selected sam-
ple.42 To simplify the comparison, the distances between the transition matrices
in the data and the models measured by the Euclidean norm are calculated, as
displayed in Table 10. The first column presents the distance for all inflation
regimes: the models that assume state-dependent better match the data than those
that are state-independent. The baseline model SD1 reduces approximately 22%
(= 47.2−36.8

47.2 ) of the distance compared to the state-independent model.
To consider the transition matrix in more detail, it is broken down by infla-

tion regime into two parts.43 As expected, the data indicate higher probabilities
of transition to higher expectations under Regime 1, as represented in Table F3
in Appendix F. For example, approximately 67% of households answer 6% or
more at t + 2 under Regime 1; this figure is only 24.4% under Regime 2. Table 10
demonstrates that the transition matrix derived from the state-dependent model is
considerably closer to the data than the state-independent model in terms of the
distance between the two matrices, especially in Regime 2. However, the model
only slightly reduces the distance in Regime 1 by introducing state dependence;
this suggests that the improvement in the explanatory power of state depen-
dence derives primarily from Regime 2. In addition, this result indicates that the
state-independent model overestimates the size of θ and, thus, by ignoring state
dependence, exaggerates the role of learning from experience in expectations for
the stable period.
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4. CONCLUSION

This paper proposes a model of inflation expectations that incorporates state-
dependent learning from experience and information allocation. More specif-
ically, and as part of the analysis, an inflation model is designed to identify
inflation regimes over the analysis period. In doing so, state probability determin-
ing whether a certain period belongs to one of the inflation regimes is calculated.
The model of inflation expectations is then estimated by combining state proba-
bility and US survey data.

In turn, the analysis reveals several interesting findings. First, when inflation
and its volatility are high, households adopt learning strategies that more heavily
emphasize recent data, because this allows them to better track actual inflation.
Second, under the high-inflation regime, households rely upon information from
their private experiences, rather than on public information, to form inflation
expectations. Furthermore, the public information captured by time dummies
seems to be associated with households’ common beliefs through social learn-
ing during the analysis period. Finally, the state-dependent model is superior to
the state-independent model in explaining actual data, in terms of the information
criteria and transition matrix. In fact, the latter reveals that the improvement of
the model results from a stable inflation regime. This finding indicates that under
such a stable regime, the coefficients that characterize learning from experience
and allocation to private information can be overestimated. In other words, the
role of public information in forming inflation expectations during stable periods
can be underestimated, when state dependence is not considered.

NOTES

1. The adaptive learning models are developed to overcome the limitation of rational expectations
assumption which presupposes economic agents to have a great deal of knowledge about the economy
[Bray and Savin (1986), Marcet and Sargent (1989), Sargent (1993), Evans and Honkapojha (2001)].

2. It differs from Mankiw et al. (2004), who explain the dispersion in expectations with the sticky
information theory, or Capistrán and Timmermann (2009), who do so with agents’ heterogeneous loss
function, which minimizes forecast error.

3. See Evans and Honkapohja (1993), Ayuso et al. (2003), and Amisano and Fagan (2013).
4. Households’ PLMs are assumed to be simple. It is reasonable to think that households cannot

directly observe exogenous shocks. Therefore, a complex form of ARMA(p,q) would not be suitable.
Also, one can consider a higher lag order with p> 1, but I leave it for further study.

5. The form of recursive least squares (RLS) is typical. For further detail, see Evans and
Honkapojha (2001) or Carceles-Poveda and Giannitsarou (2007).

6. In estimation, I use weighted least squares (WLS) equivalent to RLS. For example, bt,r,s of a 30-
year-old person at period t is calculated by least squares using a corresponding weight matrix �t,30,s.
For more details, see Appendix A. In this way, one does not need to consider how to initialize the RLS
algorithm. Even if the RLS is used, the weight on the initial periods for any cohort group converges
to zero, and hence, the initialization does not have a critical issue in the model.

7. The OLS learning gives less and less importance to recent events as time passes. Thus, it would
take longer for agents to realize that hyperinflation is starting [Marcet and Nicolini (2003)].

8. Pesaran and Timmermann (2007) also suggest that a typical trade-off exists between the bias
and variance of forecast errors, regarding the number of observations. In a structural break, parameters
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estimated based on the full sample are biased; those based on the recent sample are unbiased but
inefficient due to higher variance.

9. Since the denominator t − r denotes the agent’s age, the gain γt,r,s evolves 1, 1
2
, 1

3
, and so on,

as time passes under θs = 1. Therefore, the weight on each data becomes equal for the agent. This is
demonstrated in terms of WLS in Appendix A.

10. Model averaging is often employed to improve forecast performance in situations where the
true data generating process is unknown [Timmermann (2006)]. This assumption is similar to those
of Berardi (2009) and Busetti et al. (2017), who assume that there are two groups of people who
independently form their expectations. In this case, the aggregate expectations in the economy are
determined by a weighted average of those two expectations.

11. The issue of regime information is discussed in Section 2.2.
12. For example, the agent aged 30 years with θ2 = 2 and the agent aged 60 years with θ1 = 4 apply

the same learning gain for the data in current period t. Nevertheless, the agent aged 30 years only uses
30 years of data, while the agent aged 60 years uses 60 years of data.

13. A common example is that households choose a decreasing gain γt = 1/t if their forecasts are
more precise than in the past, and they move to a constant gain γt = γ̄ if forecast errors in the previous
period are larger than usual.

14. Since inflation data is annualized at a quarterly rate, and the survey asks for inflation expecta-
tions over a 1-year (four quarters) horizon, the multi-period forecasts are used to match the forecast
horizon.

15. Carrillo and Emran (2012) demonstrate the importance of public information in households’
price expectations with microdata. If public information is assumed to be a central bank announce-
ment, the coefficient δ′ can be interpreted as the degree of central bank credibility [Dale et al. (2011),
Muto (2011), Goy et al. (2020)].

16. Coibion et al. (2018) also find that the degree of agents’ strategic complementarity is positively
correlated with their preference for public signals over private signals.

17. It is likely that ξt is estimated within (6) analogously to Mertens and Nason (2020), instead
by using the two-step estimation. However, in this case, it is difficult for the identified regimes to be
characterized and for ξt to be determined by inflation level and volatility. Alternatively, one might
apply a simple endogenous regime identification mechanism from the perspective of a representative
household. For example, I can define the high-inflation regime to be when the level or the volatility of
inflation in the recent period is higher than a certain threshold as follows:

ξt = St =
{

1 if mJ
t > ν

m
t or dJ

t > ν
d
t

0 if mJ
t ≤ νm

t or dJ
t ≤ νd

t ,

where mJ
t and dJ

t are the mean, mJ
t = 1

J

∑J
j=1 πt−j+1, and the standard deviation, dJ

t =√
1
J

∑J
j=1(πt−j+1 − mJ

t )2, of inflation in the recent period. The thresholds can be assumed to be the

mean and the standard deviation of the long-term period, for example, νm
t = mL

t and νd
t = dL

t , respec-
tively, where L> J. The identified regimes and the estimation results for this case are provided in
Appendix C.

18. Since it is assumed that households receive public information to form inflation expectations,
state information can also be a part of the public information.

19. The form of transition probability could be time varying, or dependent on a certain variable. The
estimation of the regime-switching model in this paper is typical. For further details, see Appendix B
and Kim and Nelson (1999a).

20. In estimation, this implies that data up to t are used for maximizing the likelihood function.
21. The initial period is fixed at 1950 for the recursive estimation in the baseline analysis. The

results under various initial periods are discussed in Section 3.3.1.
22. As of 2019, the former accounts for 64.9%, and the latter accounts for 35.1%.
23. https://voices.uchicago.edu/stefannagel/code-and-data
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24. The truncation of inflation expectations in the range between -5% and +30%, in line with com-
mon practice, does not make significant changes in the primary results. In this case, the discarded
observations account for 0.4% of all observations.

25. To avoid this bias, starting with the March 1982 survey, an additional question is provided for
those who answered “same” in the first place: “Do you mean that prices will go up at the same rate
as now, or that prices, in general, will not go up during the next 12 months?”

26. http://www.econ.yale.edu/∼shiller/data.htm
27. The expected duration of regime i can be calculated by E(D) = 1

1−pii
. For further details, see

Kim and Nelson (1999a).
28. Fuhrer (2010) and Beechey and Österholm (2012) find that the autocorrelation coefficient is

lower than 0.4 only after the mid-2000s. Otherwise, it mostly moves between 0.4 and 0.8.
29. This state probability shows estimates for every end point in recursive estimation. Therefore,

the filtered probability of this paper is identical to the probability by the Kalman smoother.
30. As the left panel of Figure C1 reveals, Regime 1 is characterized by a high-inflation level and

volatility during the 1970s and 1980s, and by high volatility during the mid-2000s.
31. Kim and Nelson (1999b) identify the starting point of the great moderation as 1984. Other

studies define the period similarly: 1984–2007 [Giannone et al. (2010)], 1983–2006 [Malmendier and
Nagel (2016)], and 1985–2006 [Milani (2014)].

32. They use the data from 1953 to 2009 in their estimation. For the period 1953–1970, they
generate percentage responses from the categorical responses using an econometric methodology.

33. The implied weights are the diagonal elements of the weight matrix. See Appendix A for details.
34. Following (A.7) in Appendix A, the ratio of weights on the current period (t) data between two

regimes is calculated by ωt,r,1 (t)
ωt,r,2 (t)

= θ1
θ2

, and that between ages follows
ωt,r1 ,s(t)

ωt,r2 ,s(t)
= t−r2

t−r1
. In this particular

case, θ1
θ2

= 4.32
1.92

> t−r2
t−r1

= 60
30

.
35. When a demographical change, the change in population size of each age group, is considered,

the aggregate constant gains on average change to 0.0258 and 0.0118, respectively. For this estimation,
the population data provided by US Census Bureau are used. Appendix D illustrates the approximated
aggregate constant gains for each period.

36. Milani (2007) and Malmendier and Nagel (2016) estimate the constant gain at 0.0183 and
0.018, respectively. Orphanides and Williams (2005) assume it to be 0.02, and Berardi and Galimberti
(2017) calibrate it to match MSC data between 0.01 and 0.02.

37. In the estimation with the data from 1973 to 2009, SPF better matches the macro-factors in
the model than the common beliefs through social learning. This result implies that households might
be less affected by professional forecasters’ opinions and more affected by common beliefs through
social learning during the last decade. Further studies are required to clearly determine the properties
of the common factors.

38. Coibion et al. (2020) find that professional forecasters and financial markets track macroeco-
nomic developments closely and respond to policy shocks relatively quickly, whereas households are
inattentive to inflation dynamics in developed countries.

39. The change in sample size is equivalent to 21% of the original sample size.
40. First, the household samples between the two periods are matched. They are then aggregated

by cohort group and quarter. Transition probabilities t to t + 2 are calculated for each period. Lastly,
the final transition matrix is derived by taking the average across the sample period. For transition
matrices, the sample period 1980–2019 is applied considering the availability of the data.

41. With the actual inflation data, the state probability, and the estimates of θs, private forecasts for
each cohort group r, Eh

t πt+1|r , can be produced by (2)–(3) or the WLS in Appendix A. Each cohort
group applies a different learning gain γt,r,s = θs

t−r
to produce private forecasts. Next, βs is applied, and

the estimates of δ′ and the randomly drawn error terms σε,sεt,r are added for each period to generate
cohort-level inflation expectations. The inflation expectations below 1.5% are assigned to 1%, those in
the interval [1.5%, 2.5) to 2%, and so on. This procedure also applies to the state-independent model.
Each model is simulated 100 times.
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42. Please note that the transition matrices from the models are based on the estimates from cohort-
level data including all households. The transition matrices and the distances between the aggregated
data and the models are presented in Tables F1–F2.

43. See Appendix F for the tables related to the inflation regime.

REFERENCES

Adam, K., A. Marcet, and J.P. Nicolini (2016) Stock market volatility and learning. Journal of Finance
71(1), 33–82.

Amisano, G. and G. Fagan (2013) Money growth and inflation: a regime switching approach. Journal
of International Money and Finance 33, 118–145.

Andrade, P., R. Crump, S. Eusepi, and E. Moench (2016) Fundamental disagreement. Journal of
Monetary Economics 83, 106–128.

Areosa, W.D. (2015) What Drives Inflation Expectations in Brazil? Public Versus Private Information.
BIS Working Papers No. 544.

Arifovic, J., J. Bullard, and O. Kostyshyna (2013) Social learning and monetary policy rules.
Economic Journal 123(567), 38–76.

Ayuso, J., G.L. Kaminsky, and D. Lopez-Salido (2003) Inflation regimes and stabilisation policies:
Spain 1962–2001. Investigaciones Economicas 27(3), 615–631.

Beechey, M. and P. Österholm (2012) The rise and fall of U.S. inflation persistence. International
Journal of Central Banking 8(3), 55–86.

Berardi, M. (2009) Monetary policy with heterogeneous and misspecified expectations. Journal of
Money, Credit, and Banking 41(1), 79–100.

Berardi, M. and J.K. Galimberti (2017) Empirical calibration of adaptive learning. Journal of
Economic Behavior and Organization 144, 219–237.

Branch, W.A. and G.W. Evans (2007) Model uncertainty and endogenous volatility. Review of
Economic Dynamics 10(2), 207–237.

Bray, M. and N. Savin (1986) Rational expectations equilibria, learning, and model selection.
Econometrica 54(5), 1129–1160.

Busetti, F., D. Monache, A. Gerali, and A. Locarno (2017) Trust, but Verify. De-anchoring of Inflation
Expectations under Learning and Heterogeneity. ECB Working Paper Series No. 1994.

Capistrán, C. and A. Timmermann (2009) Disagreement and biases in inflation expectations. Journal
of Money, Credit, and Banking 41(2–3), 365–396.

Carceles-Poveda, E. and C. Giannitsarou (2007) Adaptive learning in practice. Journal of Economic
Dynamics and Control 31(8), 2659–2697.

Caroll, C. (2003) Macroeconomic expectations of households and professional forecasters. The
Quarterly Journal of Economics 118(1), 269–298.

Carrillo, P.E. and M.S. Emran (2012) Public information and inflation expectations: microeconometric
evidence from a natural experiment. The Review of Economics and Statistics 94(4), 860–877.

Coibion, O. and Y. Gorodnichenko (2015) Information rigidity and the expectations formation
process: a simple framework and new facts. American Economic Review 105(8), 2644–2678.

Coibion, O., Y. Gorodnichenko, and S. Kumar (2018) How do firms form their expectations? New
survey evidence. American Economic Review 108(9), 2671–2713.

Coibion, O., Y. Gorodnichenko, S. Kumar, and M. Pedemonte (2020) Inflation expectations as a policy
tool? Journal of International Economics 124, 103297.

Coibion, O., Y. Gorodnichenko, and M. Weber (2019) Monetary policy communications and their
effects on household inflation expectations. NBER Working Paper No.25482.

Curtin, R (1996) Procedure to Estimate Price Expectations. Mimeo, University of Michigan Survey
Research Center.

https://doi.org/10.1017/S1365100521000171 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000171


STATE-DEPENDENT FORMATION OF INFLATION EXPECTATIONS 2021

Dale, S., A. Orphanides, and P. Österholm (2011) Imperfect central bank communication: information
versus distraction. International Journal of Central Banking 7(2), 3–39.

Evans, G.W. and S. Honkapohja (1993) Adaptive forecasts, hysteresis, and endogenous fluctuations.
Federal Reserve Bank of San Francisco Economic Review 1, 3–13.

Evans, G.W. and S. Honkapohja (2001) Learning and Expectations in Macroeconomics. Princeton
University Press.

Evans, M. and P. Wachtel (1993) Inflation regimes and the sources of inflation uncertainty. Journal of
Money, Credit, and Banking 25(3), 475–511.

Fuhrer, J. (2010) Inflation persistence. Handbook of Monetary Economics 3, 423–486.
Giannone, D., L. Reichlin, and M. Lenza (2010) Explaining the great moderation: it is not the shocks.

Journal of European Economic Association 6(2–3), 621–633.
Goy, G., C. Hommes, and K. Mavromatis (2020) Forward guidance and the role of central

bank credibility under heterogeneous beliefs. Journal of Economic Behavior and Organization,
forthcoming.

Harding, D. and A. Pagan (2002) Dissecting the cycle: a methodological investigation. Journal of
Monetary Economics 49, 365–381.

Kim, C.J. and C. Nelson (1999a) State-Space Models with Regime Switching. Cambridge MA: MIT
Press.

Kim, C.J. and C. Nelson (1999b) Has the U.S. economy become more stable? A Bayesian approach
based on a Markov-switching model of the business cycle. The Review of Economics and Statistics
81(4), 608–616.
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APPENDIX A: WEIGHT MATRIX FOR WLS

To formulate households’ individual forecasts Eh
t πt+1|r in (6), WLS is considered in this

paper. This is because WLS is more convenient to employ than RLS in (2) and (3), and
equivalent to it:

bt,r,s = (X′�t,r,sX)−1X′�t,r,sY , (A.1)

where bt,r,s is the estimates of least squares weighted by�t,r,s. The weight�t,r,s represents a
diagonal matrix consisting of weight components ωt,r,s imposed on each data. The diagonal
element ωt,r,s can be formulated recursively using the relationship between γt and γt+1. This
can be demonstrated by following Malmendier and Nagel (2016).

For simplicity, (2) and (3) can be rewritten by suppressing subscripts as follows:

bt =bt−1 + γtR
−1
t xt−1(πt − x′

t−1bt−1) (A.2)

Rt =Rt−1 + γt(xt−1x′
t−1 − Rt−1) = (1 − γt)Rt−1 + γtxt−1x′

t−1 (A.3)

Multiplying Rt on both side in (A.2) yields

Rtbt =Rtbt−1 + γtxt−1(πt − x′
t−1bt−1)

=(Rt − γtxt−1x′
t−1)bt−1 + γtxt−1πt

=(1 − γt)Rt−1bt−1 + γtxt−1πt

=(1 − γt)[(1 − γt−1)Rt−2bt−2 + γt−1xt−2πt−1] + γtxt−1πt

=(1 − γt)(1 − γt−1)Rt−2bt−2 + (1 − γt)γt−1xt−2πt−1 + γtxt−1πt

= (1 − γt)(1 − γt−1) · · · (1 − γr)Rr−1br−1︸ ︷︷ ︸
=0

+ (1 − γt)(1 − γt−1) · · · (1 − γt−(t−r)+1)γt−(t−r)xt−(t−r)−1πt−(t−r) + · · ·
+ (1 − γt)γt−1xt−2πt−1 + γtxt−1πt. (A.4)

(A.3) can be expressed by:

Rt =Rt−1 + γt(xt−1x′
t−1 − Rt−1)

=(1 − γt)Rt−1 + γtxt−1x′
t−1

=(1 − γt)(1 − γt−1)Rt−2 + (1 − γt)γt−1xt−2x′
t−2 + γtxt−1x′

t−1

= (1 − γt)(1 − γt−1) · · · (1 − γr)Rr−1︸ ︷︷ ︸
=0

+ (1 − γt)(1 − γt−1) · · · (1 − γt−(t−r)+1)γt−(t−r)xt−(t−r)−1x′
t−(t−r)−1 + · · ·

+ (1 − γt)γt−1xt−2x′
t−2 + γtxt−1x′

t−1. (A.5)

(A.4) and (A.5) can be rewritten in matrix forms by Rtbt = X′�Y and Rt = X′�X, respec-
tively, where X = [xt−1, xt−2, · · · , xt−(t−r)−1]′ and Y = [πt, πt−1, · · · , πt−(t−r)]′. As a result,
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the coefficient bt is calculated by R−1
t Rtbt = (X′�X)−1(X′�Y), which is equivalent to the

WLS estimation with the weight matrix �. The weight matrix can thus be expressed by:

�=

⎡
⎢⎢⎢⎣
ωt(0) 0 . . . 0

0 ωt(1) . . . 0
...

...
. . .

...
0 0 . . . ωt(t − r)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
γt 0 . . . 0

0 (1 − γt)γt−1 . . .
...

...
...

. . .
...

0 0 . . . (1 − γt)(1 − γt−1) · · · (1 − γt−(t−r)+1)γt−(t−r)

⎤
⎥⎥⎥⎥⎦ . (A.6)

From (A.6), a general relationship between ωt(k) and ωt(k − 1) is derived as follows:

ωt(k) =ωt(k − 1)
1 − γt−k+1

γt−k+1
γt−k. (A.7)

Given that γt = θ

t−r , the slope of ωt between k − 1 and k, 1−γt−k+1
γt−k+1

γt−k, is simplified by
t−r−k+1−θ

t−r−k and, thus, depends on the value of θ : the weights are identical, ωt(k) =ωt(k − 1),
when θ = 1; the weights are decreasing, ωt(k)<ωt(k − 1), when θ > 1.

APPENDIX B: LIKELIHOOD FUNCTION FOR
INFLATION REGIME IDENTIFICATION

For the estimation of (9)–(11), the log-likelihood function is evaluated by the following
steps.

In the first step, given Pr[St−1 = j|ψt−1], the state probability at t Pr[St = j|ψt−1] based
on information up to t − 1 is predicted by considering transition probabilities as follows:

Pr[St = j|ψt−1] =
1∑

i=0

Pr[St = j|St−1 = i] Pr[St−1 = i|ψt−1]. (B.1)

As new inflation data are obtained at period t, the probability density function is evaluated
using the predicted state probabilities:

f (πt|ψt−1) =
1∑

St=0

f (πt, St|ψt−1)

=
1∑

St=0

f (πt|St,ψt−1)f (St|ψt−1)

= 1√
2πσ 2

u,2

exp

[
− (πt −μ2 − ρ2πt−1)2

2σ 2
u,2

]
× Pr[St = 0|ψt−1]

+ 1√
2πσ 2

u,1

exp

[
− (πt −μ1 − ρ1πt−1)2

2σ 2
u,1

]
× Pr[St = 1|ψt−1]. (B.2)
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FIGURE C1. Alternative identification of inflation regimes

In the next step, the state probabilities are updated by combining the probability density
functions and the predicted state probabilities:

Pr[St = j|ψt] =
1∑

i=0

Pr[St = j|St−1 = i] Pr[St−1 = i|ψt−1]

= f (πt|St = j,ψt−1) Pr[St = j|ψt−1]∑1
j=0 f (πt|St = j,ψt−1) Pr[St = j|ψt−1]

. (B.3)

This two-step procedure recursively iterates from t = 1 to T . The state probability Pr[S0 =
j|ψ0] to initialize the iteration is usually taken from the steady-state probabilities of St:
Pr[S0 = 0|ψ0] = 1−p11

1−p11−p22
and Pr[S0 = 1|ψ0] = 1−p22

1−p11−p22
.

Lastly, the log-likelihood function is derived by summing up the probability density
functions across the sample period as follows:

ln L =
T∑

t=1

ln

[
1∑

St=0

f (πt|St,ψt−1) Pr[St|ψt−1]

]
(B.4)

APPENDIX C: ALTERNATIVE REGIME
IDENTIFICATION AND ESTIMATION RESULTS

As another example of regime identification, an exercise with a simple endogenous identifi-
cation mechanism is conducted, by following Footnote 17 in Section 2.2. For this exercise,
J and L are set at 20 (5 years) and 80 (20 years), respectively, as suggested by Milani
(2014). Figure C1 illustrates the resulting inflation regimes. Regime 1, consisting of high-
volatility and high-level periods, lasts until the mid-1980s and reappears in the early 2000s.
The first high regime in the 1970s and 1980s is characterized by high volatility as well as
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TABLE C1. Inflation expectations estimation: alternative
identification

State-dependent

State-independent AL1 AL2 AL3 AL4

θ1 3.319 4.326 4.092 4.118 3.204
(0.240) (0.355) (0.332) (0.319) (0.240)

θ2 1.946 2.351 2.376
(0.295) (0.243) (0.256)

β1 0.616 0.710 0.642 0.652 0.606
(0.036) (0.049) (0.040) (0.040) (0.037)

β2 0.427
(0.079)

σε,1 0.014 0.015 0.015 0.014 0.015
(0.000) (0.000) (0.000) (0.000) (0.000)

σε,2 0.013 0.013 0.013
(0.000) (0.000) (0.000)

ln L 26737.2 26773.2 26769.3 26746.0 26760.4
AIC -53092.3 -53158.5 -53152.5 -53108.0 -53136.8
BIC -51727.0 -51771.7 -51772.9 -51735.5 -51764.3

Notes: Models are estimated by maximum likelihood estimation. The coefficients of time dummies
δ′ are not reported herein. The numbers in parentheses refer to standard errors. AIC = −2 ln L + 2p,
BIC = −2 ln L + p ln n. ln L, p, and n refer to the log-likelihood, number of parameters, and number
of observations, respectively. In all cases, n = 9, 400.

a high level of inflation. In contrast, the second high regime in the 2000s is dominated by
high-inflation volatility.

The right panel demonstrates that the regimes identified by the endogenous mechanism
are generally consistent with the baseline identification. Despite slight differences in the
early 2000s and 2010s, these two regimes mostly overlap. The concordance index appears
to be 0.88 in this case.

Table C1 reports the estimation results for (6) with the regimes identified above. Most
notably, the smaller information criteria, compared to the baseline model in Table 2, indi-
cate that the regime identification with the Markov switching assumption is more suitable
for explaining data. Nevertheless, it is similarly found that the state-dependent models
are more accurate than the state-independent model in matching data with this regime
identification. In addition, the weighting factor θs and coefficient βs are estimated to be
similar to those in the baseline model in terms of the size and gap between regimes
in AL1. However, when compared to AL2, the state-dependent properties in the alloca-
tion of private and public information are not clearly detected with this inflation regime
information.
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APPENDIX D: AGGREGATE LEARNING GAIN
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gains are due to the time-varying state probability, as well as demographical changes. To incorporate
demographical changes, (13) is applied for each period.

FIGURE D1. Approximated aggregate gain

APPENDIX E: IDENTIFICATION OF INFLATION
REGIMES FOR PERIOD 1973–2009

TABLE E1. Estimation results: identification of inflation
regimes

IDs
1 IDs

2 IDs
3

p11 0.975 (0.020) 0.975 (0.021) 0.975 (0.019)
p22 0.980 (0.012) 0.980 (0.012) 0.981 (0.012)
μ1 0.035 (0.006) 0.017 (0.002) 0.032 (0.007)
μ2 0.017 (0.002) 0.018 (0.003)
ρ1 0.358 (0.063) 0.423 (0.063) 0.410 (0.098)
ρ2 0.321 (0.082)
σu,1 0.046 (0.004) 0.048 (0.004) 0.046 (0.004)
σu,2 0.019 (0.001) 0.019 (0.001) 0.019 (0.001)

ln L 519.5 515.0 519.8
AIC -1025.0 -1017.9 -1023.5
BIC -1000.7 -997.0 -995.7

Notes: Models are estimated using maximum likelihood estimation. The estima-
tion results are based on the final period, T = 2009.4Q. AIC = −2 ln L + 2p, BIC
= −2 ln L + p ln n. ln L, p, and n refer to the log-likelihood, number of parame-
ters, and number of observations, respectively. The numbers in parentheses refer
to standard errors.
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APPENDIX F: TRANSITION MATRICES

TABLE F1. Distance between data and models in
the transition matrix (all households)

All Regime 1 Regime 2

State-dependent (A) 15.2 24.5 22.9
State-independent (B) 30.8 25.7 38.8
A/B 0.49 0.96 0.59

Notes: The first column demonstrates the distance between transition
matrices from data and models measured by the Euclidean norm across
all periods. The second and third columns are the distances of each infla-
tion regime. Regime 1 refers to the period when the state probability
Pr[St = i|ψt] exceeds 0.5.

TABLE F2. Transition matrix, t to t + 2, data (all households)

Data 1% or less 2% 3% 4% 5% 6% or more

1% or less 5.2 18.2 26.0 24.4 15.1 11.1
2% 3.1 15.4 35.7 26.3 13.9 5.6
3% 3.7 12.1 33.2 28.6 12.9 9.4
4% 2.2 10.1 33.8 28.3 15.0 10.6
5% 2.7 11.3 31.7 27.1 15.0 12.2
6% or more 1.8 12.1 22.9 28.0 17.0 18.2

Regime 1 1% or less 2% 3% 4% 5% 6% or more

1% or less 7.8 15.9 19.7 16.7 18.4 21.4
2% 3.9 10.2 24.4 32.3 22.3 6.9
3% 3.7 8.7 28.2 31.5 15.5 12.4
4% 3.6 6.7 25.4 29.4 18.5 16.4
5% 2.4 5.9 25.7 27.4 18.8 19.8
6% or more 1.9 9.5 19.0 21.4 19.7 28.5

Regime 2 1% or less 2% 3% 4% 5% 6% or more

1% or less 4.1 19.2 28.8 27.9 13.6 6.5
2% 2.8 17.3 39.9 24.1 10.7 5.2
3% 3.7 13.5 35.4 27.4 11.8 8.1
4% 1.6 11.6 37.8 27.8 13.3 7.9
5% 2.8 14.2 35.0 27.0 13.0 8.0
6% or more 1.7 14.0 25.6 32.6 15.1 11.1
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TABLE F3. Transition matrix, t to t + 2, data

Regime 1 1% or less 2% 3% 4% 5% 6% or more Regime 2 1% or less 2% 3% 4% 5% 6% or more

1% or less 7.1 24.8 32.1 18.4 6.6 11.0 1% or less 15.2 35.3 30.8 15.7 1.8 1.1
2% 8.1 18.4 29.8 26.1 11.2 6.3 2% 8.9 26.0 38.0 20.1 4.7 2.2
3% 2.2 12.0 29.1 29.2 18.5 9.1 3% 4.6 23.5 39.8 21.8 7.9 2.4
4% 1.4 12.2 27.3 31.6 17.7 9.8 4% 4.2 18.1 37.7 27.1 9.0 3.9
5% 2.1 8.0 25.9 30.6 17.0 16.4 5% 5.4 15.4 34.7 22.4 15.6 6.5
6% or more 1.2 7.7 31.2 27.6 18.3 13.9 6% or more 1.3 15.7 30.4 27.6 16.6 8.3

TABLE F4. Transition matrix, t to t + 2, model, state-dependent

Regime 1 1% or less 2% 3% 4% 5% 6% or more Regime 2 1% or less 2% 3% 4% 5% 6% or more

1% or less 7.2 11.3 21.5 24.3 18.3 17.5 1% or less 4.5 20.8 38.1 26.4 8.2 2.1
2% 5.9 10.0 20.0 26.1 19.8 18.1 2% 3.3 15.3 34.6 31.4 12.4 3.1
3% 5.7 9.8 20.7 26.2 19.4 18.2 3% 2.9 13.6 32.8 32.0 14.4 4.4
4% 5.5 9.4 19.9 25.7 19.6 19.9 4% 2.8 13.1 32.1 32.3 15.0 4.7
5% 5.2 9.4 18.7 25.0 19.1 22.7 5% 2.5 11.9 31.0 33.3 15.9 5.3
6% or more 4.8 8.1 17.3 23.5 17.8 28.6 6% or more 1.7 7.8 25.4 35.0 21.8 8.4

TABLE F5. Transition matrix, t to t + 2, model, state-independent

Regime 1 1% or less 2% 3% 4% 5% 6% or more Regime 2 1% or less 2% 3% 4% 5% 6% or more

1% or less 7.8 11.2 21.6 24.4 18.7 16.2 1% or less 10.1 16.1 23.8 22.3 17.5 10.2
2% 5.3 10.8 20.5 26.1 20.1 17.2 2% 9.2 15.1 22.7 24.4 17.2 11.4
3% 6.1 12.0 19.2 26.1 19.9 16.8 3% 9.0 15.0 22.9 24.0 17.1 12.1
4% 5.3 11.9 20.0 23.1 21.0 18.7 4% 9.0 14.2 23.0 24.9 16.9 12.0
5% 5.9 10.8 19.8 23.4 18.4 21.5 5% 8.7 15.0 21.9 24.8 17.6 12.0
6% or more 4.5 10.3 17.1 20.6 18.4 29.1 6% or more 7.7 15.5 20.8 24.3 17.9 13.8
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