
J. Fluid Mech. (2008), vol. 607, pp. 209–234. c© 2008 Cambridge University Press

doi:10.1017/S0022112008002036 Printed in the United Kingdom

209

Hysteretic and chaotic dynamics of viscous drops
in creeping flows with rotation

Y. -N. Y O U N G1, J. B �L A W Z D Z I E W I C Z2,
V. C R I S T I N I3 AND R. H. G O O D M A N1

1Department of Mathematical Sciences, New Jersey Institute of Technology, Newark,
NJ 07102-1982, USA

2Department of Mechanical Engineering, Yale University, PO Box 20-8286, New Haven,
CT, 06520-8286, USA

3School of Health Information Sciences and Biomedical Engineering, The University of Texas Health
Science Center, Houston, TX 77030, USA

(Received 3 November 2007 and in revised form 1 April 2008)

We have shown that high-viscosity drops in two-dimensional linear creeping flows
with a non-zero vorticity component may have two stable stationary states. One state
corresponds to a nearly spherical, compact drop stabilized primarily by rotation,
and the other to an elongated drop stabilized primarily by capillary forces. Here
we explore consequences of the drop bistability for the dynamics of highly viscous
drops. Using both boundary-integral simulations and small-deformation theory we
show that a quasi-static change of the flow vorticity gives rise to a hysteretic response
of the drop shape, with rapid changes between the compact and elongated solutions
at critical values of the vorticity. In flows with sinusoidal temporal variation of the
vorticity we find chaotic drop dynamics in response to the periodic forcing. A cascade
of period-doubling bifurcations is found to be directly responsible for the transition to
chaos. In random flows we obtain a bimodal drop-length distribution. Some analogies
with the dynamics of macromolecules and vesicles are pointed out.

1. Introduction
Investigations of dynamical properties of fluid–fluid dispersions, e.g. emulsions

(Borwankar & Case 1997; Mason 1999) and polymer blends (Tucker III & Moldenaers
2002; Windhab et al. 2005), require detailed understanding of the behaviour of viscous
drops in creeping flows. Such understanding is also crucial in the development of new
drop-based microfluidic systems (Whitesides & Stroock 2001; Tan et al. 2004; Cristini
& Tan 2004; Song, Chen & Ismagilov 2006; Grigoriev, Schatz, & Sharma 2006).
Therefore, drop dynamics at small Reynolds numbers have been extensively studied
experimentally (Torza, Cox & Mason 1972; Bentley & Leal 1986; Bigio, Marks &
Calabrese 1998; Guido, Minale & Maffettone 2000; Cristini et al. 2003b; Guido,
Grosso & Maffettone 2004) computationally (Rallison & Acrivos 1978; Kennedy,
Pozrikidis & Skalak 1994; Cristini, B�lawzdziewicz & Loewenberg 1998; Zinchenko,
Rother & Davis 1999; Cristini, B�lawzdziewicz & Loewenberg 2001; Cristini et al.
2003b; Renardy 2006) and theoretically (Barthès-Biesel & Acrivos 1973; Rallison
1980; B�lawzdziewicz, Cristini & Loewenberg 2002, 2003; Vlahovska, B�lawzdziewicz
& Loewenberg 2005).

These investigations revealed complex nonlinear drop dynamics resulting from the
coupling between the drop shape and fluid flow. Examples of nonlinear phenomena
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that occur under creeping-flow conditions include formation of self-similar neck
regions during a drop breakup process (B�lawzdziewicz, Cristini & Loewenberg
1997; Lister & Stone 1998), universal slow evolution of drops near the critical flow
strength above which there are no stationary drop shapes (B�lawzdziewicz, Cristini
& Loewenberg 1998; Navot 1999; B�lawzdziewicz et al. 2002), and existence of two
branches of stable stationary shapes of highly viscous drops in two-dimensional
Stokes flows with non-zero vorticity (B�lawzdziewicz et al. 2003).

As revealed by the analysis presented by B�lawzdziewicz et al. (2003), there exists a
flow-parameter range where a high-viscosity drop can either adopt a nearly spherical
shape stabilized primarily by the rotational flow component or an elongated shape
stabilized primarily by capillary forces. Abrupt changes of the drop shape from
one state to the other can be used in manipulation of emulsion microstructure and
for controlling the behaviour of highly viscous drops in microfluidic devices. Due
to discontinuous changes of emulsion microstructure, the bistable drop behaviour
may also significantly affect emulsion rheology. The mechanism of the bistability is
also of fundamental interest because of close analogies to the dynamics of vesicles
(Misbah 2006; Mader et al. 2006; Vlahovska & Gracia 2007) and macromolecules
(B�lawzdziewicz 2006) in external flows.

Because of the fundamental significance and potential applications (such as those
mentioned above), it is important to explore the dynamics of highly viscous drops
in linear flows with non-zero vorticity. Our earlier investigation of this system
(B�lawzdziewicz et al. 2003) was limited to stationary drop shapes and stationary
external flows. In the present study we thus focus on drop behaviour in time-
dependent flows. We elucidate the physical mechanisms that gives rise to the bistable
drop behaviour and examine the consequence of these mechanisms for drop response
to time variation of the fluid vorticity.

The system dynamics is investigated via direct boundary-integral simulations
(Pozrikidis 1992; Cristini et al. 2001; B�lawzdziewicz 2006) and by using a small-
deformation approach (Vlahovska 2003; Vlahovska et al. 2005). In particular, we
show that the small-deformation equations with only several essential terms retained
reproduce complex dynamical features of drop evolution that are associated with
drop bistability.

To emphasize important aspects of the drop dynamics we consider three flow-
variation protocols. In the first protocol, the vorticity is slowly increased and then
decreased. We find that such quasi-static vorticity ramping gives access to both the
elongated and compact, nearly spherical stationary drop shapes. The drop exhibits
a hysteretic behaviour, with transitions between the compact shape (rotationally
stabilized) and elongated shape (stabilized by capillary forces) occurring at different
values of the vorticity when it is slowly ramped up or down.

In the second protocol, the vorticity undergoes finite-frequency harmonic
oscillations. As expected, at low frequencies the drop behaviour is quasi-static,
with a hysteresis loop analogous to the one observed for linear ramping. At high
frequencies the vorticity variation averages out, and the drop undergoes small
oscillations around the stationary shape corresponding to the average flow. However,
at intermediate frequencies we find a much more complex behaviour. In particular
we show that there exists a frequency and amplitude domain where the drop response
to the periodic forcing is chaotic. Since in the creeping-flow regime fluid motion
is governed by the linear Stokes equations, the nonlinear chaotic behaviour of the
drop stems entirely from the coupling between the drop shape and the fluid flow.
An analysis of drop motion in the chaotic domain indicates that the transition to
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chaos is associated with the existence of two stationary states observed in steady
flow.

In our third flow-variation protocol, the vorticity of the imposed flow undergoes
random changes. We observe that the resulting statistical distribution of the drop
length is bimodal in a certain regime of flow parameters, with two peaks around
the drop length corresponding to the short and long stationary solutions. Hence, we
find that, also in this problem, the existence of two stationary states underpins drop
behaviour in time-dependent flow.

In § 2 the system considered in our paper is defined. The quasi-static hysteretic drop
behaviour is analysed in § 3, our results for chaotic drop dynamics are presented in
§ 4, and drop motion in linear flows with randomly varying vorticity is discussed in
§ 5. Our findings are summarized in § 6. In the Appendix we discuss some aspects of
drop behaviour in a near-critical regime (i.e. close to a drop instability).

2. Viscous drops in two-dimensional linear flows
We consider a viscous drop suspended in an incompressible Newtonian fluid of

a constant viscosity μ. The viscosity of the drop fluid is μ̂ = λμ, and the interfacial
tension between the two phases is σ . The drop is surfactant-free, and no Marangoni
stresses are present. There are also no buoyancy forces. We focus here on nonlinear
effects that stem entirely from the coupling of the fluid flow to the drop shape (but
not from the fluid inertia). Therefore, the creeping-flow conditions are assumed.

In the creeping-flow regime the fluid motion in the regions inside (μi = μ̂) and
outside (μi = μ) the drop is governed by the Stokes equations

μi∇2u = ∇p, (2.1)

∇ · u = 0. (2.2)

The fluid velocity u is continuous at the drop interface Ω . Due to the absence of the
Marangoni stresses the tangential viscous traction is also continuous. The jump in
the normal viscous traction across Ω is equal to the capillary pressure

[n̂ · τ · n̂] = 2κσ, (2.3)

where τ is the viscous stress tensor, n̂ is the outward normal unit vector, and κ is the
local curvature.

The drop is subject to a two-dimensional linear incident flow

u0(r) = γ̇ (Es + βΩ) · r, (2.4)

where γ̇ is the strain rate, β is the dimensionless vorticity parameter, r is the position,
and Es and Ω are the symmetric and antisymmetric parts of the normalized velocity-
gradient tensor. In a conveniently chosen coordinate system we have

Es =
1

2

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠ , Ω =

1

2

⎛
⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎠, (2.5)

without loss of generality. According to the above equations, β = 0 corresponds to
a purely straining flow with the extensional axis x = y and the compressional axis
x = −y, and β = 1 corresponds to shear flow in the x direction with the velocity
gradient in the y direction. The tensor Ω in equation (2.4) describes the rigid-body
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= +

y

x

u0 γ· Es · r γ· β Ω · r

Figure 1. Decomposition of a linear incident flow into pure strain and rigid-body rotation.

rotation in the anticlockwise direction with the angular velocity

ω = 1
2
βγ̇ . (2.6)

The decomposition of the flow field (2.4) into the straining and rotational
components (2.5) (as sketched in figure 1) is important for understanding of hysteretic
and chaotic drop dynamics discussed in the following sections.

The dynamics of our system is characterized by three dimensionless parameters.
There is the viscosity ratio λ that characterizes dissipative forces in the drop- and
continuous-phase fluids. The capillary number

Ca =
aμγ̇

σ
(2.7)

(where a is the radius of an undeformed drop) characterizes the ratio between the
deforming viscous forces produced by the imposed flow (2.4) and the capillary forces
that resist drop deformation and drive the drop towards the equilibrium spherical
shape. Finally, the vorticity parameter β characterizes the magnitude of the rotational
component of the external flow relative to the extensional component.

In this paper we focus on the parameter range where the drop deformation may be
significant, which requires that Ca = O(1). (However, the flow is not strong enough to
cause drop breakup.) We also assume that the drop-phase fluid is much more viscous
than the continuous-phase fluid,

λ � 1. (2.8)

The drop-deformation process is hindered at large drop-phase viscosities, while drop
rotation is only weakly affected by the viscous stresses inside the drops. Therefore, the
relative effect of the drop rotation is amplified in the regime (2.8), and the rotational
component of the external flow produces non-trivial qualitative effects.

3. Hysteretic drop behaviour
3.1. Capillary and rotational stabilizing mechanisms

To illustrate the effect of the rotational component of the flow (2.4) on the dynamics
of a highly viscous drop, we consider a system where the parameter β is first slowly
increased and then slowly decreased. We adopt here a linear ramping protocol where
the vorticity is slowly ramped up from β = 0 to β = 0.4 and then ramped down
back to zero. Before the ramping occurs, the flow is maintained at β = 0 (for 5 %
of the total ramping time) to allow the drop to relax to the stationary shape in
purely straining flow. This vorticity variation protocol is represented in the inset of
figure 2(a).

The evolution of the drop shape in this time-dependent flow is depicted in
figure 2. Figure 2(a) represents the drop length l, and figure 2(b) shows the drop
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(a)
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Figure 2. Hysteretic evolution of viscous drop in two-dimensional straining flow with slowly
varying vorticity. Viscosity ratio λ= 200 and capillary number Ca = 0.20. (a) Normalized drop
length l and (b) drop angle φ (the angle between the drop major axis and the horizontal axis x,
as shown in the inset) versus vorticity parameter β . Arrows indicate the direction of increasing
time, and inset in panel (a) shows dependence of β on time. (Results from boundary-integral
simulations.)

angle φ (measured anticlockwise from the axis x, as defined in the inset); both
quantities are plotted against the vorticity parameter β . In our example, the drop
viscosity is λ= 200. The capillary number Ca = 0.2 is below the critical value for
drop breakup (Ca = 0.22 in two-dimensional straining flow) but it is sufficiently large
to allow for a significant flow-induced drop deformation. The total ramping time is
T = 2000λμaσ −1, so that the drop response to the flow variation is nearly quasi-static.
The calculations were performed using the boundary-integral procedure developed
by Cristini et al. (2001, 1998).

The results shown in figure 2 indicate that the drop response to the vorticity
variation is hysteretic. At β = 0 the drop is elongated, and it is aligned with the
extensional axis of the straining component of the flow (φ = π/4). With increasing
β , the drop orientation slowly changes towards the symmetry axis x (φ = 0), and the
drop length slowly decreases. At a critical value of the vorticity parameter, β2 ≈ 0.29,
a discontinuous change occurs: the drop length and the angle suddenly decrease.
Afterwards the drop is almost spherical and nearly aligned with the axis x. When the
direction of the vorticity change is reversed, the drop initially retraces its trajectory.
However, the drop does not jump back to the elongated shape until the vorticity
reaches the lower critical value β1 ≈ 0.22 < β2.

The bistable drop behaviour and the associated hysteretic shape evolution stem
from the existence of two mechanisms that can stabilize a viscous drop in linear
flows with rotation (2.4). Namely, the drop can be stabilized by the capillary stresses
(which drive the drop towards the equilibrium spherical shape) or by the vorticity
flow component (which rotates the drop out of the extensional axis of the straining
component of the flow).

In a purely straining flow the drop assumes the interfacial-tension-stabilized
elongated shape (Taylor 1934). The stationary drop shape results from the balance
between drop deformation by the flow and drop relaxation due to the capillary forces.
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(a) (b)

Figure 3. Schematic representation of the physical mechanism leading to bistable drop
behaviour in two-dimensional linear flows with non-zero vorticity. (a) The elongated drop
is stabilized by capillary forces and destabilized by flow rotation; (b) the compact drop is
stabilized by flow rotation and destabilized by extensional flow component.

The deformation and relaxation occur on the respective time scales

tγ = λγ̇ −1, (3.1)

tσ = λμaσ −1, (3.2)

both of which are proportional to the viscosity ratio for λ� 1. The drop deformation
D = (l − 2a)/a is determined by the time scale ratio

D ∼ tσ /tγ = Ca, (3.3)

and therefore it is independent of the viscosity ratio in the limit λ→ ∞. In purely
straining flows, the drop is oriented along the extensional axis x = y.

For small values of β , the vorticity flow component produces an O(β) perturbation
of the drop orientation. The corresponding decrease of the drop length is O(β2).
However, a further rotational motion of the drop is arrested because the straining
component of the flow produces hydrodynamic stresses that pull the elongated drop
back towards the straining axis (as illustrated in figure 3a).

Since the O(λ−1) internal circulation inside an elongated high-viscosity drop is weak,
the drop in its stationary state behaves analogously to a rigid body whose equilibrium
orientation results from the balance of the torques produced by the straining and
rotational components of the external flow. The transition to the compact drop shape
occurs when the vorticity flow component becomes too strong to be balanced. Under
such conditions, a rigid body would undergo a transition to a periodic motion with
continuous rotation in the clockwise direction. For similar reasons, a drop also starts
to rotate continuously when β achieves the upper critical value β2. During the rotation
the drop length decreases because the drop becomes misaligned with the extensional
axis of the flow. As a result, the drop relaxes to a nearly spherical shape.

In this new, compact shape the fluid inside the drop circulates with the angular
velocity ωd that is nearly equal to the angular velocity of the external flow (2.6).
Within each period of rotation the drop undergoes a small deformation produced by
the straining component of the external flow (as schematically illustrated in figure 3b).
However, the deformation does not accumulate because it is constantly convected
away by the rotational component of the flow. Since the rotation occurs on the time
scale

trot = (βγ̇ )−1, (3.4)
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and the drop deforms on the much longer time scale (3.1), we find that the drop
deformation in the compact state,

D ∼ trot/tγ = (βλ)−1, (3.5)

is small for λ� 1, consistent with the results shown in figure 2(a).
Relation (3.5) indicates that the deformation of the rotationally stabilized drop

increases with the decreasing parameter β . When β falls below the lower critical
value β1, the hydrodynamic torque associated with the straining component of the
flow acting on a slightly elongated drop becomes strong enough to reorient the drop
towards the straining axis and arrest further drop rotation. Deformation thus starts to
accumulate, the drop is stretched, and a transition to the interfacial-tension-stabilized
elongated state takes place.

As shown in figure 2, a drop in the compact, rotationally stabilized stationary state
is nearly aligned with the symmetry axis of the applied flow x. This behaviour stems
from the flow-reflection symmetry of Stokes equations and the fact that the drop is
stabilized by rotation rather than the capillary forces. In the absence of the capillary
forces (or in the limit of infinitely strong flow) the symmetry of Stokes equations
implies that the stationary drop shape is invariant with respect to the flow reflection.
Hence, the shape is also invariant with respect to the corresponding transformation
(x, y, z) → (−x, y, z) of the spatial coordinates (i.e. the reflection of the drop shape in
the y–z plane), and this symmetry corresponds to drop alignment in the x direction.
A perturbation due to the presence of the capillary stresses produces only a small
asymmetry because the effect of capillary forces is insignificant for a nearly spherical
drop.

3.2. Parameter dependence of drop response

3.2.1. Simulation results

The quasi-static response of the drop length to the variation of the vorticity is
illustrated in figure 4 for different values of the capillary number Ca and viscosity
ratio λ. The corresponding drop angle is shown in figure 5. The results indicate that
the size of the hysteresis loop (in both drop length and angle) is the largest for large
values of λ and Ca . When the capillary number is decreased, the upper critical vorticity
parameter β2 (corresponding to the transition from the elongated to the compact drop)
decreases but the lower critical parameter β1 remains nearly unaffected. In contrast,
the viscosity ratio λ affects primarily the position of the lower critical parameter β1

(corresponding to the transition from the compact to the elongated drop).
This behaviour is consistent with the scaling relations (3.3) and (3.5) and the

mechanism of drop bistability explained in § 3.1. According to our analysis, the
critical states associated with the transitions between the elongated and compact
drop shapes correspond to the parameter values where the maximal torque τγ exerted
by the extensional component of the flow on the drop marginally balances the torque
τrot exerted by the vorticity flow component. Since the straining component of the
flow produces a non-zero torque only on elongated shapes, and τrot is approximately
independent of D, we obtain the scaling relations

τγ ∼ D, τrot ∼ β. (3.6)

Assuming the torque balance

τγ ≈ τrot , (3.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

20
36

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002036


216 Y.-N. Young, J. B�lawzdziewicz, V. Cristni and R. H. Goodman
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Figure 4. Quasi-static variation of drop length l with vorticity parameter β for (a) λ= 200,
(b) 100, (c) 50, and different values of capillary number (as labelled). (Results from
boundary-integral simulations.)

near a transition point and combining relations (3.6) with the estimates (3.5) and (3.3)
for the drop deformation in the compact and elongated states, we find the scaling
relations

β1 ∼ λ−1/2, (3.8)

β2 ∼ Ca (3.9)

for the lower and upper critical vorticity parameters.
Both scaling relations (3.8) and (3.9) are consistent with our simulation results

shown in figure 4. Relation (3.8) also agrees with the asymptotic result result (3.22),
which is obtained in § 3.3 using a small-deformation theory.

The plots shown in figure 4 indicate that for a given viscosity ratio, there exists
a critical value of the capillary number Ca
 below which the drop response to the
changes of the flow vorticity does not exhibit a hysteretic loop. The bifurcation
point occurs at the critical value of the vorticity parameter β
 that corresponds to
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Ca = 0.20
(a)
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π/8
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β
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φ

φ

(b)
Ca = 0.20
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(c)
Ca = 0.20

0.10

Figure 5. Quasi-static variation of drop angle φ with vorticity parameter β for (a) λ= 200,
(b) 100 and (c) 50. Different curves correspond to different values of capillary number as
labelled in figure 4.

the position of the infinitesimal hysteresis loop for Ca slightly above the critical
value Ca
. Noting that the hysteresis loop disappears when β1 = β2, we find from the
estimates (3.8) and (3.9) that Ca
 ∼ λ1/2 and β
 ∼ λ1/2. These scaling relations agree
with the earlier asymptotic analysis by B�lawzdziewicz et al. (2003), who have shown
that the cusp bifurcation resulting in the hysteretic drop behaviour occurs at

Ca
 =
16

19

(
5

λ

)1/2

, β
 =
3

4

(
15

λ

)1/2

, (3.10)

where λ� 1 is assumed. (See equations (16) in B�lawzdziewicz et al. 2003, and note
the difference in the definition of capillary number.)

Relations (3.10) indicate that the transition between the hysteretic and non-
hysteretic behaviour occurs at Ca
 ≈ 0.13 for λ= 200 and Ca
 ≈ 0.19 for λ= 100;
the corresponding positions of the infinitesimal hysteresis loops are β
 ≈ 0.21 and
β
 ≈ 0.29. The above estimates are consistent with the results shown in figures 4(a)
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and 4(b). For λ= 50, equation (3.10) predicts Ca
 ≈ 0.26, which is above the critical
capillary number for drop breakup, Cacrit = 0.22. Hence, the elongated stationary
drop shape does not exist for Ca > Ca
, and therefore there is no hysteretic loop
seen in figure 4(c).

3.2.2. Numerical accuracy

Numerical simulations presented in this paper were performed using the adaptive
boundary-integral procedure developed by Cristini et al. (1998, 2001). The maximal
number of nodes on the drop surface during the simulation runs shown in figures 2,
4, and 5 ranged from N = 362 for Ca = 0.1 and λ= 50 to N ≈ 103 for Ca = 0.2
and λ= 200. The time-stepping was performed using the second-order Runge–Kutta
method. The total ramping time ranged from T = 250tσ for small values capillary
number and viscosity to T = 2000tσ for the most difficult simulation of the system
with Ca = 0.2 and λ= 200. Numerical accuracy of the results is within 2 %.

Simulations of hysteretic drop evolution are numerically demanding, owing to
high drop viscosity and close proximity to bifurcation points corresponding to the
transitions between the elongated and compact stationary drop shapes. For Ca = 0.2
and moderate values of β the system is also close to the critical point for drop breakup,
which adds to a further increase of the numerical cost. As explained in the Appendix,
in the neighbourhood of critical points drop evolution exhibits (a) critical slowing
down and (b) large susceptibility to small perturbations of the system parameters.
We find that the critical slowing down is responsible for somewhat blurred transition
between the hysteretic and non-hysteretic drop behaviour seen in figures 4(a), 4(b),
5(a) and 5(b). The large susceptibility of the system to small perturbations associated
with the discretization errors is the main cause of the approximately 1 % difference in
the drop length as the vorticity is slowly ramped up and then down along the branch
of elongated solutions (β <β1). The corresponding inaccuracy of the drop angle is
smaller.

3.3. Small-deformation analysis

3.3.1. Evolution equations

Crucial features of the evolution of a highly viscous drop in two-dimensional flows
with non-zero vorticity are well captured by small-deformation equations. In our
approach (B�lawzdziewicz et al. 2003; Vlahovska 2003; Vlahovska et al. 2005), the
position rS of the drop interface is expanded in spherical harmonics,

rS/a = α′ +
√

2
∑

l,m

[f ′
lmRe(Ylm) + f ′′

lmIm(Ylm)], (3.11)

where l > 0 and l � m � 0 denote the spherical-harmonic order, f ′
lm and f ′′

lm are the
expansion coefficients, and the parameter α′ is given by the drop-volume constraint.
Since for m = 0 all spherical harmonics are real, we set f ′′

l0 = 0 in expansion (3.11).
Moreover, flow-induced drop deformation preserves the symmetry of the incident flow
(2.4). Therefore only even values of l and m need to be included in the analysis.

Evolution equations for the expansion coefficients f ′
lm and f ′′

lm are obtained by
inserting the series (3.11) into the boundary-value problem (2.1)–(2.5), performing
a boundary-perturbation analysis, and re-expanding resulting products of spherical
harmonics using appropriate Clebsch–Gordan coupling coefficients. The detailed ana-
lysis and explicit expressions for the evolution equations at different truncation
levels are presented elsewhere (Vlahovska 2003; Vlahovska et al. 2005; Vlahovska,
B�lawzdziewicz & Loewenberg 2008).
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For simplicity, our small-deformation calculations are performed with the expansion
(3.11) truncated at the lowest spherical-harmonic order l = 2, which leaves us with
three independent drop shape components: f ′

22, f
′′
22, and f ′

20. Noting that

Re(Y22) ∼ cos 2φ, Im(Y22) ∼ sin 2φ, (3.12)

we find that the shape parameters f ′
22 and f ′′

22 correspond to the drop deformation
along the symmetry axis x and the straining axis x = y, respectively. The parameter
f ′

20 describes an axisymmetric deformation along the axis z.
The evolution equations for the shape parameters f ′

22, f
′′
22, and f ′

20, truncated at the
second-order in the drop deformation, can be represented in the following form,

ḟ ′
20 = λ−1(d11 + d12f

′
20)f

′′
22 − λ−1Ca−1

[
D1f

′
20 − D2

(
f ′2

20 − f ′2
22 − f ′′2

22

)]
, (3.13a)

ḟ ′
22 = −2ωf ′′

22 + λ−1
[
d21f

′
22f

′′
22 − Ca−1(D1 + 2D2f

′
20)f

′
22

]
, (3.13b)

ḟ ′′
22 = 2ωf ′

22 + λ−1
[
(d31 + d32f

′
20 + d33f

′2
20 + d34f

′2
22 + d35f

′2
22 ) − Ca−1(D1 + 2D2f

′
20)f

′′
22

]
,

(3.13c)

where the dot denotes the time derivative (normalized by γ̇ −1). The terms involving
the coefficients dij correspond to drop deformation by the external flow, and the
terms involving Dk describe the capillary relaxation. All these terms are O(λ−1) in
the large-viscosity-ratio regime. Explicit expressions for the coefficients dij and Dk

are given in (Vlahovska 2003; Vlahovska et al. 2008); here we only note that these
coefficients are functions of the viscosity ratio λ and have finite limits for λ→ ∞.

The two remaining terms on the right-hand side of equations (3.13b) and (3.13c)
(i.e. the terms proportional to ω) are viscosity-independent. These terms represent the
rigid-body rotation of the drop, with the angular velocity

ω = − 1
2
β + 1

2
c1f

′
22, (3.14)

where c1 = (15/2π)1/2. Consistent with our qualitative physical picture described in
§ 3.1 (and illustrated in figure 3), the rotational velocity (3.14) involves two terms. The
first term corresponds to the rotation of the drop by the vorticity component of the
flow (2.4). The second term, which is proportional to the shape parameter f ′

22 that
described deformation in the x direction, corresponds to the rotation of a deformed
drop by the straining component of the external flow towards the straining axis x = y.

3.3.2. Reduced description

It has been shown by B�lawzdziewicz et al. (2003) that for λ� 1 the drop behaviour
near the bifurcation point (3.10) can be described by simplified asymptotic equations

ḟ ′
22 = −2ωf ′′

22 − λ−1Ca−1D̄1f
′
22, (3.15a)

ḟ ′′
22 = 2ωf ′

22 − λ−1Ca−1D̄1f
′′
22 + λ−1d̄31. (3.15b)

where D̄1 = 20/19 and d̄31 = (5π/6)1/2 are the high-viscosity limits of D1 and d31.
The asymptotic result (3.15) is obtained from (3.13) on assumption that near the
bifurcation point there is a balance between drop deformation and rotation (which
corresponds to λ−1 ∼ ωf ′

22) and the balance between capillary relaxation and rotation
(which yields (λCa)−1f ′

22 ∼ ωf ′′
22 and (λCa)−1f ′′

22 ∼ ωf ′
22). Moreover, it is assumed that

the two contributions to the angular velocity (3.14) are of the same order but do
not cancel (i.e. ω ∼ β ∼ f ′

22). Equations (3.13) are rescaled accordingly, and only the
leading-order terms are retained.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

20
36

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002036


220 Y.-N. Young, J. B�lawzdziewicz, V. Cristni and R. H. Goodman

Equations (3.15) have all necessary ingredients that are needed to describe the
hysteretic drop behaviour. There are terms representing drop rotation by the straining
and vorticity components of the external flow (i.e the terms proportional to ω), drop
relaxation due to the presence of the capillary forces (the terms proportional to
Ca−1), and stretching of the drop along the extensional axis x = y (the last term in
equation (3.15b)). Neglecting any of these terms would qualitatively alter the solution
structure, which would no longer manifest the key features of the drop evolution in
the parameter range considered herein.

We expect the simplified small-deformation equation (3.15) to yield not only a
qualitative but also a quantitative description of the bistable drop behaviour for
a large portion of the hysteresis loops depicted in figures 2, 4, and 5. Significant
deviations are expected only for the elongated states outside the small-capillary-
number regime, especially for small values of the vorticity parameter β .

The range of validity of the small-deformation description can be extended to
the domain of moderately large capillary numbers by using complete second-order
equations (3.13). (One can also include higher-order spherical harmonics and higher-
order terms in the expansion of the evolution equations in the shape parameters;
these higher order-contributions were derived by Vlahovska 2003; Vlahovska et al.
2005; Vlahovska et al. 2008). The accuracy of the small-deformation equations is
further discussed in § 3.3.4.

3.3.3. Asymptotic solution

In the regime λ−1 � 1 and β � 1 the stationary solutions of equations (3.15) can be
obtained by a singular-perturbation analysis. To leading order in the small parameters,
we find that the elongated drop is described by the relations

ω � 0, (3.16a)

λ−1Ca−1D̄1f
′′
22 � λ−1d̄31. (3.16b)

The first of the above expressions corresponds to the fact that an elongated drop
does not rotate (there is only a weak fluid circulation inside it, as predicted by
our qualitative analysis). The second relation describes the balance between drop
deformation by the external flow and relaxation due to the capillary forces. Recalling
the definition (3.14) of the angular velocity ω, we find that (3.16) yields

f ′
22 � c1β, (3.17a)

f ′′
22 � D̄−1

1 d̄31 Ca. (3.17b)

By inserting the above relations back into (3.15) one can verify that they constitute a
leading-order asymptotic stationary solution.

According to equation (3.17b), drop elongation along the straining axis x = y (i.e.
φ = π/4) scales with the capillary number, which is consistent with the estimate (3.3).
The drop angle

φ = 1
2

arctan(f ′′
22/f

′
22) (3.18)

only slightly deviates from φ = π/4 because f ′
22 � f ′′

22 (assuming that Ca � β and
β � 1).

The leading-order stationary solution corresponding to the compact drop is
obtained from the relations

−2ωf ′′
22 � 0, (3.19a)

2ωf ′
22 � −λ−1d̄31, (3.19b)
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which are obtained by dropping from the evolution equations (3.15) the O(λ−1)
capillary-relaxation terms. Taking into account the definition (3.14) of ω we thus
obtain

f ′′
22 � 0 (3.20a)

and

f ′
22 � β −

√
β2 − 4c1d̄31λ−1

2c1

(3.20b)

(the solution with the plus sign in front of the square root is unstable).
Since the shape parameter f ′′

22 vanishes according to equation (3.20a), the drop is
oriented in the x direction. For λ−1 � β2 we find

f ′
22 = d̄31(βλ)−1, (3.21)

which is consistent with our scaling estimate (3.5). In the regime β < β1, where

β1 = 2(c1d̄31)
1/2λ−1/2, (3.22)

the solution (3.20b) does not exist; the drop thus undergoes a transition to the
elongated shape when β drops below the critical value β1. Inserting numerical values
of the parameters c1 and d̄31 into (3.22), we find β1 = (10/λ)1/2, in quantitative
agreement with our numerical results presented in figure 4.

The solutions and (3.17) and (3.20) of the simplified small-deformation equations
(3.15) are perturbative. However, the exact stationary solution can also be found
(B�lawzdziewicz et al. 2003). As shown in the following sections, our analytical solutions
quantitatively agree with the results of numerical simulations, provided that the drop
deformation is not too large.

3.3.4. Numerical results

Predictions of the small-deformation equations (3.13) for drop behaviour in two-
dimensional linear flows with slowly varying vorticity are depicted in figure 6 for a
system with viscosity ratio λ= 200. Figures 6(a) and 6(b) show the dependence of the
drop length evaluated to leading order in the shape parameter,

l

2a
= 1 +

√
15

8π

(
f ′2

22 + f ′′2
22

)1/2
, (3.23)

and angle (3.18) on the vorticity parameter β for the same set of capillary numbers as
those represented in figures 4 and 5. In figures 6(c) and 6(d ), the small-deformation
results are compared directly with the results of the boundary-integral simulations.
The small-deformation calculations were performed using the second-order equations
(3.13) because for an elongated drop they are more accurate than the simplified
equations (3.16).

The results shown in figure 6 indicate that for small and moderate capillary numbers
the small-deformation theory yields accurate quantitative predictions. At higher values
of Ca drop behaviour is also captured quantitatively, except for the upper portion
of the hysteresis loop (i.e. when the drop is in the elongated state). For all values
of the capillary number, the lower and upper critical vorticity parameters β1 and β2

are obtained within the numerical error of the boundary-integral simulations. Our
additional calculations (not shown) indicate that a similar accuracy is obtained for
λ= 50 and λ= 100. The range of capillary numbers for which the deformation of
the drop in elongated stationary state is reproduced accurately is consistent with
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Figure 6. Quasi-static variation of drop length l and angle φ with vorticity parameter β for
λ= 200 and different values of capillary number (as labelled). (a, b) Solution of small-
deformation equations (3.13); (c, d ) comparison of small-deformation results (dashed lines)
with boundary-integral simulations (solid lines).

previously reported results for moderate drop viscosities (Vlahovska 2003; Vlahovska
et al. 2005).

4. Chaotic drop dynamics in a sinusoidal straining flow
Dynamical systems with multiple equilibrium states often exhibit novel dynamics

when driven by simple forcing (Guckenheimer & Holmes 1983b). Thus, despite the
laminar nature of the Stokes flow, we expect to find interesting nonlinear dynamics of
a viscous drop in a time-varying linear flow with rotation. To explore this dynamics
we will now investigate the drop response to harmonic variation of the vorticity

β(t) = β̄ + δβ cos(2πt/T ), (4.1)

where β̄ is the average vorticity value, δβ is the oscillation amplitude, and T is the
oscillation period.

We have performed a series of small-deformation calculations (§ 4.1) and boundary-
integral simulations (§ 4.2) for different values of the flow parameters β̄ , δβ , and
T . If the oscillation period T is much shorter than the drop–deformation and
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Figure 7. Evolution of drop length (a–e) and angle (f–j) in two-dimensional linear flow with
harmonic variation of vorticity (4.1), for different values of period T normalized by drop-
relaxation time (as labelled). Mean vorticity β̄ = 0.21, vorticity amplitude δβ = 0.13, viscosity
ratio λ= 275, and capillary number Ca = 0.2. (c, h) Chaotic dynamics. (Results from small-
deformation theory.)

drop-relaxation times (3.1) and (3.2), we find that the drop undergoes small oscillations
about a stationary shape corresponding to the mean value of β (which is an
expected behaviour). In the opposite regime T � tγ , tσ , the quasi-static drop behaviour
described in § 3 is recovered. In what follows we focus on the most interesting
parameter domain T ∼ tγ , tσ and δβ ∼ β1 − β2, in which an interaction of different
timescales as well as an interplay between the short and elongated drop shapes is
anticipated.

4.1. Small-deformation results

Figure 7 illustrates the dependence of the drop evolution in linear flow with the oscil-
latory vorticity (4.1) on the oscillation period T . The viscosity ratio in this example
is λ= 275, and the capillary number is Ca = 0.2. The mean value of the vorticity
β̄ = 0.21 is close to the lower critical value β1 = 0.19, and the oscillation amplitude
is δβ = 0.13. Figure 7(a–e) shows the evolution of the drop length, and figure 7 (f–j)
depicts the evolution of drop angle with respect to the axis x. Since the drop shape
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is point-symmetric, we restrict the angle φ to the domain (−π/2, π/2) by identifying
drop configurations that differ by π.

Figure 7(a, f ) represents our results for the shortest oscillation period of the flow
vorticity T/tσ = 0.36. The drop oscillates about the compact stationary shape in this
case. Both the drop length and angle vary periodically, with the period Td equal to
the period T of the external forcing. The drop length decreases when the drop is in
the compressional quadrant −π/2 < φ < 0 and increases for 0 <φ < π/2. We find that
upon an increase of the period of the external forcing the amplitude of the angular
drop oscillations increases. When the oscillation amplitude reaches π/2 the drop
starts to tumble, which corresponds to dφ/dt < 0 over the whole period of motion,
as illustrated in figure 7(b, g). (Note that the angles φ = −π/2 and π/2 describe the
same drop configuration, so there are no discontinuities in the drop evolution.)

A further increase of the period of the external forcing results in a qualitative change
of drop response. We find that the drop still undergoes a tumbling motion; however,
the evolution is not periodic but it becomes chaotic, as shown in figure 7(c, h). The
chaotic motion continues up to T/tσ = 1.37, and then the drop reverts to periodic
motion. For T/tσ = 1.82 (figure 7d, i) the drop oscillates about the elongated stationary
shape, and in the regime T/tσ � 1 (figure 7e, j ) the system approaches the quasi-static
behaviour discussed in § 3.†

The transition to the chaotic drop motion occurs through a cascade of period-
doubling events, as illustrated in figures 8 and 9. Figure 8 depicts the drop evolu-
tion at two values of the amplitude of vorticity oscillations δβ (the remaining sy-
stem parameters are the same as those that yield the chaotic motion depicted in
figure 7c, h). The results shown in figure 8(a) indicate that for a sufficiently small
oscillation amplitude (δβ = 0.06 in our example) the drop evolves with the period
Td = T (i.e. the period equal to that of the external forcing). At a larger amplitude
δβ = 0.08 the drop oscillation period is Td = 2T (cf. figure 8b) and for δβ = 0.083 we
find Td = 4T (not shown). The period-doubling scenario of the transition to chaos in
our system is further supported by the bifurcation diagrams depicted in figure 9, where
the drop length l at times t = nT (n = 1, 2, . . .) is plotted versus the flow-oscillation
amplitude δβ .

An analysis of the results shown in figure 8 indicates that the period doubling
occurs as a result of a resonance between the drop tumbling motion and the vorticity
oscillations. Namely, if the drop is relatively long and approximately aligned with
the straining axis of the external flow when the vorticity parameter β(t) reaches a
minimum, the drop rotation may be significantly slowed down or even arrested (as
in the long-drop stationary state discussed in § 3). Such a temporary arrest of drop
rotation corresponds to the shoulders in the plots of the angular evolution depicted
in figure 8. On the other hand, if the drop angle exceeds φ = π/4 when the vorticity
goes through a minimum, the arrest of drop rotation does not occur. As seen in
figure 8(b) the interplay of drop tumbling with oscillations of the external forcing
produces the period-doubling bifurcation that leads to alternating accelerated and
retarded drop-rotation cycles.

The bifurcation diagrams shown in figures 9(a) and 9(b) illustrate the sensitivity of
the period-doubling cascade to small variations of the system parameters. The two

† The only significant deviation from the quasi-static evolution for T/tσ � 1 occurs right after
the drop jumps from the long to the compact shape when β increases above the upper critical value
β2. Namely, before the drop settles down to the compact stationary shape it undergoes a tumbling
motion with the amplitude of length variation decaying on the time scale (3.2).
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Figure 8. Period doubling in the dynamics of a viscous drop in two-dimensional linear flow
with harmonic variation of vorticity. Vorticity parameter β (solid lines), drop deformation D
(dashed), and drop angle φ (dotted) are shown versus time t normalized by the oscillation
period T . Viscosity ratio λ= 275, capillary number Ca = 0.2, period T/tσ = 1.14, mean
vorticity β̄ = 0.21, and vorticity oscillation amplitude (a) δβ = 0.06 and (b) 0.08. (Results
from small-deformation theory.)
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Figure 9. Bifurcation diagrams showing period-doubling cascades and transition to chaos for
viscous drop in linear flow with harmonic vorticity variation with (a) mean β̄ = 0.21 and period
T/tσ = 1.14, and (b) mean β̄ = 0.22 and period T/tσ = 1.82. For (a) the viscosity ratio and
capillary number are the same as in figures 7 and 8. For (b) the viscosity ratio and capillary
number are the same as in figure 11. (Results from small-deformation theory.)
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Figure 10. The same as figure 7, except that the results are from boundary-integral simulations
and for slightly different values of oscillation period. The same β̄ and δβ as in figure 7.

plots correspond to slightly different values of β̄ and T ; yet, the results are quite
distinct. Not only has the position of the period-doubling bifurcations and the range
of variation of the drop length changed, but also the chaotic domain in figure 9(b)
disappears in the region 0.95 � δβ � 0.115.

In our numerical calculations depicted in figures 7–9 we have used the full set of
the small-deformation equations (3.13), but we find that the simplified asymptotic
equations (3.15) yield similar results. In particular, the simplified equations reproduce
the cascade of the period-doubling bifurcations and the chaotic-evolution domain.
(However, any further simplification of the evolution equations is not possible: if any
of the terms in equations (3.15) is removed the solutions qualitatively change and
the chaotic domain disappears.) We find that chaotic drop dynamics occurs only for
highly viscous drops with λ� 200.

4.2. Boundary-integral results

Figure 10 shows examples of our simulation results for the periodic and chaotic drop
evolution. The flow parameters are similar to those used in our small-deformation
calculations described in § 4.1. As with the small-deformation calculations, for
short periods of the external forcing T the drop oscillates around the compact
stationary shape, for moderate periods the system undergoes a transition to chaotic
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Figure 11. Bifurcation diagram for viscous drop in linear flow with harmonic vorticity
variation with β̄ = 0.22, T/tσ = 1.82, λ= 275, and Ca = 0.2. (Results from boundary-integral
simulations.)

evolution, and for long periods the drop motion approaches the quasi-static behaviour.
Consistent with the small-deformation results, the chaotic drop dynamics revealed
by the boundary-integral simulations is associated with a cascade of period-doubling
bifurcations. A bifurcation diagram illustrating this behaviour is presented in figure 11
for the system parameters corresponding to the small-deformation results depicted in
figure 9(b).

A comparison of the results shown in figures 9(b) and 11 indicate that the domain
of chaotic dynamics in the direct boundary-integral simulations somewhat differs
from the corresponding domain obtained from the small-deformation theory. In
the regions 0 � δβ � 0.07 and 0.15 � δβ � 0.2 the initial period-doubling bifurcations
occur at approximately the same positions. However, the period-doubling cascade is
shifted, and and a stable periodic solution found in the small-deformation theory for
0.092 � δβ � 0.11 does not appear in our boundary-integral simulations.

We have tested the convergence of our boundary-integral simulations, and we
believe that the differences in the drop behaviour obtained using the two different
methods stems primarily from the approximations involved in the small-deformation
theory. We note, however, that drop evolution in the period doubling and chaotic
regimes is very sensitive to small perturbations (as illustrated in figure 9). Hence,
some differences in the bifurcation diagrams obtained from the two methods is
expected.

5. Drop statistics in a linear flow with stochastic vorticity
In some systems, e.g. emulsion flows through a packed bed of fibres (Mosler &

Shaqfeh 1997) or turbulent emulsion flows with drops that are much smaller than the
Kolmogorov scale (Cristini et al. 2003a), a viscous drop undergoes deformation in
a random external creeping flow. To gain some understanding of the role that drop
bistability may play in such systems we consider the drop behaviour in a flow with
stochastic vorticity.
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Figure 12. Length probability distribution for viscous drop with λ= 200 and Ca = 0.2, in
linear flow with stochastic vorticity. Mean value of the vorticity parameter 〈β〉 = 0.25, variance
δβ = 0.13, and correlation time τ corr/tσ = 0.24. Inset shows vorticity probability distribution.
(Results from boundary-integral simulations.)

We assume that the time variation of the vorticity parameter β is described by a
stationary Markovian Gaussian process (i.e. the Ornstein–Uhlenbeck process) with
the mean 〈β〉, variance δβ , and correlation time τ corr . A standard numerical scheme
(Fox et al. 1988) for generating such a time-correlated Gaussian process is applied
to model the time variation of β along a drop trajectory. The results shown in
figures 12–14 were obtained using a single long simulation run for each set of system
parameters. Owing to the ergodicity of the process, the drop statistics along a single
trajectory is equivalent to the stationary ensemble distribution.

An example of drop behaviour in a stochastic flow with a Gaussian variation of the
vorticity is presented in figure 12. The mean value of the vorticity is 〈β〉 = 0.25 and the
variance is δβ = 0.13. The correlation time of the vorticity distribution τ corr/tσ = 0.24 is
several times shorter than the drop-relaxation time. The figure depicts the probability
distribution of the drop-length, obtained using the boundary-integral simulations. The
capillary number is Ca = 0.2, and the drop viscosity is λ= 200.

The results indicate that the drop-length distribution is bimodal for the above
parameter values. This behaviour is expected since the vorticity undergoes random
variation in the domain that includes both the lower and upper critical values β1, and
β2 of the vorticity parameter β . Since drop response to a flow with slow variation of
vorticity is hysteretic, a drop in the random flow tends to stay in the neighbourhood
of the compact and the elongated stationary states.

We note that the peak of the length probability distribution at l ≈ 1.25 is shifted
towards the shorter drop lengths compared to the length of a drop in the elongated
stationary shape. This is because Ca = 0.2 is close to the critical capillary number for
drop breakup. Thus, due to the slow time scale in the drop dynamics near the critical
capillary number (see Blawzdziewicz et al. 2002, and the discussion in the Appendix),
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Figure 13. (a) Length and (b) angle probability distributions for viscous drop with λ= 200 and
Ca = 0.2, in linear flows with stochastic vorticity. Mean and variance of the vorticity parameter
are the same as in figure 12; the correlation times are τ corr/tσ = 0.025, 0.1, 0.2, 0.3, 0.4 for lines
marked 1–5, respectively. (Results from small-deformation theory.)
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Figure 14. (a) Mean and (b) variance of drop length (dashed line) and angle (dotted)
versus correlation time τ corr normalized by the drop-deformation time, for λ= 200, Ca = 0.2,
〈β〉 = 0.25, and δβ = 0.13.

the drop does not have sufficient time to extend fully before the vorticity significantly
changes.

Figure 13 shows the probability density for the drop length l and drop angle
φ for different values of the flow correlation time τ corr . (Other system parameters
are the same as in figure 12.) The calculations were performed using the small-
deformation equations (3.13). The results indicate that at short flow correlation times
the drop-length probability distribution is peaked around small values corresponding
to the short-drop stationary solution and has a moderate-height peak at φ ≈ π/4. As
the flow correlation time τ corr increases, the length probability distribution becomes
bimodal: one of its peaks corresponds to compact and the other to elongated drops.
A corresponding change occurs in the angle distribution, i.e. its peak becomes more
pronounced, and shifts towards the straining axis φ = π/4.

The shift of the typical drop length and orientation from the compact to elongated
state when the flow correlation time is increased resembles the analogous shift for a
system with harmonic vorticity oscillations (see figures 7b, g and 7d, i). This behaviour
is further illustrated in figure 14, which shows the average values and the variance of
l and φ versus the correlation time τ corr .
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6. Conclusions
We have presented results of numerical and theoretical investigations of the

dynamics of highly viscous drops in two-dimensional linear creeping flows with
time-dependent vorticity. In our earlier publication (B�lawzdziewicz et al. 2003) we
predicted that in stationary flows such drops exhibit bistable behaviour: there is
a range of system parameters where the drop may assume either an elongated
shape approximately aligned with the straining axis of the external flow or a nearly
spherical shape approximately aligned in the flow direction. Here the consequences
of this behaviour for the system dynamics are analysed, and the physical mechanism
that leads to drop bistability is elucidated.

A direct consequence of the existence of two stationary states is hysteretic drop
response to a flow with slowly varying vorticity. We have explained that the rapid
transition from an elongated non-rotating drop shape to the nearly spherical compact
shape occurs when the vorticity becomes strong enough to overcome the effect of the
straining flow component that aligns the drop with the straining axis. This transition
is thus analogous to a similar instability that occurs for an elongated rigid particle
which starts to tumble when the vorticity grows above a critical value (Jeffery 1922).
A viscous drop also begins to tumble at a critical vorticity magnitude β2. However,
when the drop becomes misaligned with the extensional axis, it relaxes under the
action of capillary forces towards a nearly spherical rotationally stabilized stationary
shape.

If, in turn, the vorticity is slowly decreased, the drop returns to the elongated
shape only after the vorticity magnitude reaches a lower critical value β1 <β2. This
hysteretic drop response occurs in the high-viscosity regime because the rotational
stabilizing mechanism is more efficient at high drop viscosities. A highly viscous drop
deforms less within each drop revolution, so the compact shape remains stable even
for relatively small vorticity magnitudes.

The existence of two stationary states affects drop dynamics not only in the
quasi-static regime but also at finite frequencies of the external forcing. At small
amplitudes of harmonic vorticity variation the drop simply oscillates (with the same
frequency as the external forcing) about one of the stationary states. However, if the
vorticity-variation range includes both critical values β1 and β2 the dynamics of the
system is much richer. We find that with an increasing magnitude of the vorticity
oscillations the system undergoes a cascade of period-doubling bifurcations resulting
in chaotic drop dynamics. The period doubling stems from the resonance between
the periodicity of the external forcing and the tumbling motion of the drop when it
jumps from a (partially) elongated shape towards the compact rotationally stabilized
state.

Chaos in our system emerges despite linearity of Stokes equations – the system
dynamics is nonlinear because of the coupling of the flow to the evolving fluid
interface. A detailed analysis of small-deformation equations describing drop dyna-
mics reveals that, in addition to chaos associated with the period-doubling mechanism,
there also exists in our system a different kind of chaotic evolution that results from
manifold tangling (Guckenheimer & Holmes 1983b). Our analysis of different types
of chaos will be presented in a separate publication.

To our knowledge, chaotic drop dynamics in Stokes-flow regime has never been ob-
served before. We note, however, that in a recent independent study Kas-Danouche,
Papageorgiou & Siegel (2007) have reported chaotic dynamics in co-annular Stokes
flow with insoluble surfactant adsorbed on the fluid interface. Chaos in their system
also appears via a period-doubling cascade.
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Understanding of drop bistability and the associated dynamical phenomena is
relevant for many practical problems. For example, interpretation of rheological
response of emulsions of highly viscous drops to time-varying flows requires proper
insight into drop dynamics. Our results may also be useful in designing new methods
for manipulating emulsion microstructure in material processing and controlling
drop behaviour in microfluidic flows. Drop bistability could, for instance be used
to construct microfluidic switches, and chaotic drop dynamics may be relevant for
microfluidic mixing.

The stabilizing and destabilizing mechanisms described in our paper apply not only
to viscous drops but also to other deformable particles. Therefore, results of our study
have a broader significance.

In particular, our analysis suggests that macromolecules with high degree of internal
dissipation may undergo a transition between a nearly spherical and moderately
elongated states (in addition to the standard coil-stretch transition predicted by
de Gennes 1974). In fact, the dynamics of macromolecules can be modelled using
equations analogous to (3.15), supplemented with terms representing random thermal
forces. As shown in our preliminary study (B�lawzdziewicz 2006), such a simplified
description correctly captures the most important features of power spectra of DNA
molecules evolving in linear flows with non-zero rotational component (cf. the review
article by Shaqfeh 2005 on the dynamics of macromolecules in linear flows). Our
analysis also explains the stabilizing effect of the rotational component of the flow
on the compact molecule conformation.

There are also close analogies between drop and vesicle motion. The main difference
between these two systems is that vesicles satisfy a constant-area constraint whereas
the drop area can vary. This constraint gives rise to periodic vesicle motion (such
as tank treading and tumbling) even in stationary flows (Misbah 2006; Vlahovska &
Gracia 2007). It would be interesting to determine if a coupling of vesicle oscillations
to a harmonic variation of the external flow can lead to chaotic dynamics.

It would also be of significant interest to experimentally explore the bistable and
chaotic drop dynamics (as well as related phenomena for other deformable particles).
In such experiments a four-roll mill could be used to produce a linear flow with a
controlled magnitude of vorticity. The experiments could also be performed using
recently developed microfluidic analogues of a four-roll mill device (Hudson et al.
2007; Lee et al. 2007).

Appendix. Highly viscous drops in near-critical regime: Physical sources
of numerical inaccuracies

Simulations of the hysteretic evolution of high-viscosity drops are numerically
demanding because of two inherent physical features of the system. First, drop relaxa-
tion towards the stationary state is very slow; and second, in the relevant parameter
range, the drop length is very sensitive to small perturbations. Both these features
result from a critical behaviour near the bifurcation points that characterize the
system dynamics. The relaxation time is in addition significantly increased owing to
high drop viscosity.

Critical slowing down

As discussed by B�lawzdziewicz et al. (2002) (also see B�lawzdziewicz et al. 1998;
Navot 1999), near a bifurcation point Ca = Cacrit at which a given branch of stationary
drop shapes loses its stability, the stabilizing and destabilizing stresses balance each
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other. This causes a slow evolution of the drop shape on the time scale tcrit ∼ δCa−1/2,
where

δCa = |Ca − Cacrit | (A 1)

is the distance from the bifurcation point. For our present system, the critical point
Ca = Cacrit corresponds either to a transition between the elongated and compact
stationary shapes at a given value of the vorticity β , or to the instability that results
in drop breakup. A slow evolution also occurs near the cusp bifurcation leading to
the emergence of the two coexisting branches of stationary states.

For highly viscous drops the evolution outside the near-critical regime occurs on
the time scale (3.1). Taking into account the critical slowing down we thus have

tcrit = δCa−1/2λγ̇ −1. (A 2)

The two large factors δCa−1/2 and λ in equation (A 2) imply that very long simulation
runs are required to obtain quasi-static drop behaviour in the region near the bifurca-
tion points. Moreover, while the evolution of the slowest mode occurs on the slow time
scale (A 2), the size of the numerical time step is limited by the stability requirements
associated with the much faster relaxation of the short-wave perturbations of the
drop shape and with the rotational relaxation on a short time scale γ̇ −1. Therefore, a
large number of time steps is required to obtain quasi-static results.

Critical susceptibility

As indicated by B�lawzdziewicz et al. (2002), the stationary drop length near a
bifurcation point exhibits the critical behaviour

l = lcrit − α δCa1/2, (A 3)

where lcrit is the critical length and α is a proportionality constant. The critical
behaviour (A 3) implies that the stationary drop length l is very sensitive to small
perturbations of the system. This is because even a small shift of the critical point can
result in a significant change of l. Such a shift may occur as a result of discretization
errors or approximations used in a small-deformation description of drop dynamics.

The sensitivity of the stationary shape to small perturbations implies that a
much larger number of mesh nodes N is needed to achieve an assumed numerical
accuracy near a critical point than outside a near-critical regime. In particular,
the approximately 1 % differences between the drop length l for the upwards and
downwards ramps of vorticity parameter β , seen in figure 4 for Ca = 0.2, stem from
numerical inaccuracies magnified by the large susceptibility to small perturbations
near the critical point for drop breakup. The most challenging simulation run for
viscosity ratio λ= 200 and Ca = 0.2 required N ≈ 103 mesh nodes on the drop surface.
Moreover, a very long ramping period (T = 8 × 104γ̇ ) was needed to ensure the quasi-
static behaviour of the drop shape. The whole simulation run thus required several
weeks of CPU time on a fast Linux workstation.

In the above discussion, the distance of the system from the critical point is
characterized in terms of the capillary parameter (A 1) at a given value of β . However,
analogous results would also be obtained if the distance from the critical point is
measured in terms of the vorticity parameter δβ = |β − βcrit | at a fixed value of the
capillary number. In particular, the critical behaviour l−lcrit ∼ β1/2 is seen in figures 2,
4, and 6 for β near a critical value β1 or β2. In general, the square-root behaviour of
the relaxation time scale and of the amplitude of the critical mode in the stationary
solution is characteristic for autonomous dynamical systems near a turning-point
bifurcation (Drazin 1992).
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