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Abstract. In this paper we study the one-sided shift operator on a state space defined
by a finite alphabet. Using a scheme developed by Walters [P. Walters. Trans. Amer.
Math. Soc. 353(1) (2001), 327–347], we prove that the sequence of iterates of the transfer
operator converges under square summability of variations of the g-function, a condition
which gave uniqueness of a g-measure in our earlier work [A. Johansson and A. Öberg.
Math. Res. Lett. 10(5–6) (2003), 587–601]. We also prove uniqueness of the so-called
G-measures, introduced by Brown and Dooley [G. Brown and A. H. Dooley. Ergod. Th.
& Dynam. Sys. 11 (1991), 279–307], under square summability of variations.

1. Introduction
We consider the left one-sided shift map T on the state space X+

= SZ+ , where S is a
finite set. Thus T acts on elements x of X+, x = (x0, x1, x2, . . .), in the following way
(each xi belongs to S):

T (x0, x1, x2, . . .) = (x1, x2, . . .).

A g-measure associated with a continuous function g : SZ+ → [0, 1] is a T -invariant
measure µ in the space of Borel probability measures PX+, such that g = dµ/(dµ ◦ T ),
with

∑
y∈T −1x g(y) = 1, for all x ∈ X+. Such a function is referred to as a g-function and

can be viewed as a probability transition function for the local inverses of T . Keane [6]
introduced the concept of g-measures to ergodic theory.

Since the function g is continuous, existence of at least one g-measure follows if g > 0
and S is finite. If S is countably infinite, then existence is no longer automatic, as SZ+ is
not compact; however, a weak sufficient condition was given in [8].
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Recent results concerning necessary conditions for the uniqueness of a g-measure have
been given by Berger et al [1], and also by Hulse [5].

Necessary and sufficient conditions sometimes, but not always, focus on variations of
the g-function over small parts of its domain. For f : X+

→ R, the variation is defined as

varn f = sup
x∼n y

| f (x) − f (y)|,

where x ∼n y if x, y ∈ X+ coincide in their first n coordinates.
Walters [12] proved uniqueness and rates of convergence under summable variations of

g-functions, or rather their logarithms log g, which amounts to the same thing if inf g > 0.
When S is finite, a sufficient condition for uniqueness of a g-measure, square

summability of variations of the g-function, was found by the present authors in [7].
This result was extended to countable state shifts in Johansson et al [8], where square
summability of variations of a g-function means that

∞∑
n=1

(varn f )2 < ∞. (1.1)

In this paper we prove convergence of the iterates of the transfer (transition) operator,
which is defined by

L f (x) =

∑
y∈T −1x

g(y) f (y) (1.2)

for continuous functions f on X+.
More specifically, we prove that with finitely many symbols in S and under square

summability of variations of a strictly positive g-function, we have Ln f (x) →
∫

f dµ

uniformly in x , where µ is the unique g-measure.
To accomplish this, we use a theory developed by Walters in [13] to study the sequence

of iterates of an operator P , defined as

Pn f (x) = (Ln f )(T n x) (1.3)

for n ≥ 1.
Walters introduces an adjoint sequence of operators P(n)∗

: PX+
→ PX+, n ≥ 1.

Define K n
g = {ν ∈ PX+

| P(n)∗ν = ν}. Then [13, Theorem 2.1(v)] implies that K n
g =

P(n)∗PX+ and that K 1
g ⊃ K 2

g ⊃ · · · . Walters defined Kg =
⋂

∞

n=1 K n
g , which corresponds

to the set of G-measures in the terminology of Brown and Dooley [2]; see also Fan [4]
and Dooley and Stenflo [3] for some recent contributions to establishing uniqueness of
G-measures. One of the motivations for studying G-measures has been to obtain a more
general framework for studying Riesz products; see [4], for example.

Our strategy is to prove that there exists a unique measure in Kg (it is trivial that
any g-measure must be an element of Kg). We then use [13, Theorem 2.9] to conclude
that Ln f (x) →

∫
f dµ, where µ is the unique element of Kg . This follows from a

compactness argument; therefore, to prove the convergence of Ln f , we have to assume
that the symbol space S is finite.

We need to define a probability measure, a Markov chain on X+ which we call a
g-chain, in order to reverse the dynamics in the absence of stationarity; it is not known
whether or when the measures in Kg are invariant under T .
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To conclude the proof, we use the same method as in [7] to show that any two extremal
measures in Kg must be absolutely continuous, and hence that there can exist only one
such measure. This method was developed further in [8] to cover the case of countable
state shifts for g-measures (thus improving on the results of [7]), using more sophisticated
methods to prove absolute continuity of measures. We note that these methods had been
employed much earlier by Shiryaev and co-authors; see, for example, the survey by
Shiryaev [11].

We end the paper by stating two open questions.

2. Results and proofs
THEOREM 2.1. Assume that we have a finite symbol set S. Let g > 0 satisfy

∞∑
n=1

(varn log g)2
�

∞∑
n=1

(varn g)2 < ∞

and let µ be the corresponding unique g-measure. Then Kg = {µ} or, in other words, there
exists a unique G-measure which is the same as the unique g-measure.

The following theorem is, in view of [13], a corollary of Theorem 2.1. It is based on
[13, Theorem 2.9], and we reproduce part of the proof here to explain why we need
to assume that there are only finitely many symbols: this is because one has to have a
compact state space, or at least some kind of tightness property, so that a certain convergent
subsequence will exist for a sequence of measures.

THEOREM 2.2. Assume that we have a finite symbol set S. Let g > 0 be a g-function
with square summable variation and let µ be the corresponding unique g-measure. Then
supx |Ln f (x) −

∫
f dµ| → 0.

Proof. (Borrowed from [13, Theorem 2.9]) Under these same assumptions,
Theorem 2.1 gives us a unique measure in Kg . From this we can show that
supx |Pn f (x) −

∫
f dµ| → 0, because otherwise there would exist a continuous function

f , an ε > 0 and sequences {nk} and {xk} such that∣∣∣∣∫ f d(P(nk )
∗

δxk ) −

∫
f dµ

∣∣∣∣ ≥ ε for all k ≥ 1.

Owing to compactness, we can then pick a subsequence {k j } of {k} such that the sequence

of measures {P(nk j )
∗

δxk j
} converges to ν ∈ PX+; however, since K (n)

g = P(n)∗PX+, we

would also have ν ∈ Kg , which is a contradiction. Since P(n) f (x) = (Ln f )(T n x), we
have supx |Ln f (x) −

∫
f dµ| → 0. 2

2.1. Proof of Theorem 2.1. We begin with some preliminary terminology; see [8] for a
more thorough exposition. For a pair of probability measures ν, ν̃ ∈ PX and some filtration
{Fn}, let Zn(x) = Zn(x; ν̃, ν, Fn) be the likelihood-ratio martingale

Zn(x; ν̃, ν, {Fn}) =
d ν̃|Fn

dν|Fn

(x)

on Fn , where we assume that ν̃ and ν are locally absolutely continuous on Fn .
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Now let X = SZ and X+
= SZ+ , and extend the one-sided shift T on X+ to a two-sided

shift on X . For a, b ∈ Z, let 5a,b be the mapping that takes x ∈ X to (xa, xa+1, . . . , xb) ∈

Sb−a+1, and define the natural projection 5+ : X → X+ taking bi-infinite sequences x in
X to one-sided ones in X+ by 5+((xi )

i=∞

i=−∞
) = (x0, x1, . . .). Also let Fb

a be the algebra

generated by 5a,b and define F−
n := F−1

−n , the ‘forward’ algebra, and F+
n := Fn−1

0 , the
‘backward’ algebra. A cylinder set is a set of the form [x]

b
a = 5−1

a,b5a,b(x).
We now define a certain Markov chain that will enable us to go forward in time, since

we may not assume that the measures in Kg defined by Walters are invariant under T .

Definition 1. A g-chain on X = SZ is a probability measure ν ∈ PX such that, for
all n ∈ Z,

ν(xn|xn+1, xn+2, . . .) = g(xn, xn+1, xn+2, . . .). (2.1)

A forward g-chain is a probability measure ν on X satisfying (2.1) for n ≤ −1.

The distribution under a g-chain ν of the process x (t)
∈ X+, t ∈ Z defined by

x (t)
:= 5+(T −t x) = (x−t , x−t+1, . . .)

is that of a Markov chain such that the transition probabilities are given by g (and the
transition operator of the chain is L). That is, for all t ∈ Z,

ν(x (t)
|x (t−1)) = g(x (t)).

The same holds for t ≥ 1 in the case of a forward g-chain ν.

LEMMA 2.3. A probability measure ν ∈ PX is a g-chain only if ν ◦ 5−1
+ ∈ PX+ is an

element of the set Kg of eigen-measures as defined by Walters in [13]. Conversely, any ν

in Kg corresponds, by extension, to a unique g-chain.

Proof. Suppose that we have P∗ν = ν. This is equivalent to L∗(ν ◦ T −1) = ν. By
interpreting the conditional probability ν(x0|x1, x2, . . .) as the transition probability
ν(x (0)

|x (−1)) from the Markov chain defined above, we reach the conclusion that

ν(x0|x1, x2, . . .) = g(x0, x1, . . .).

Thus, if P(n)∗ν = ν, we have, for 0 ≤ k ≤ n − 1,

ν(xk |xk+1, xk+2, . . .) = g(xk, xk+1, xk+2, . . .). (2.2)

Since K n
g = P(n)∗PX+ and Kg =

⋂
∞

n=1 K n
g , we know (2.2) holds for all k ≥ 0. Using

measures in the non-empty set Kg as initial distributions, we may define the full g-chain
by making a unique canonical extension (see Neveu [9, p. 83, the corollary]) so that (2.2)
is true for k ≤ −1. Hence (2.2) holds for all k ∈ Z. 2

From now on, we shall not distinguish between a g-chain ν and its one-sided restriction
ν ◦ 5−1

+ .

LEMMA 2.4. The set Kg is a non-empty convex subset with mutually singular extreme
points.

Proof. See Walters [13, Theorem 2.11 and its proof]. 2
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We work under the assumption that g > 0 and hence that any two g-chains will be
locally absolutely continuous on any of the algebras Fb

a , where a and b are finite. Given
two g-chains ν, ν̃ ∈ Kg , let

ξn(x) := Zn(x; ν̃, ν, {F+
n }). (2.3)

Note that ξn is the likelihood-ratio martingale and, since it is a positive L1(ν)-bounded ν-
martingale, we know that it converges ν-almost surely. We want to show that it is uniformly
integrable (UI) with respect to ν, which gives L1-density between ν̃ and ν onF+

= lim F+
n

and thus, according to Lemma 2.4, a contradiction if ν and ν̃ are chosen to be distinct and
extremal in Kg .

It was shown in [7, p. 595] that verifying the UI property for a likelihood-ratio
martingale such as ξn amounts to showing that

lim
K→∞

sup
n

ν̃(log ξn > K ) = 0. (2.4)

To see (2.4), we note that, for a fixed value of m, a translation by m steps to the left of
both the point and the measure gives

ξm(x) = Zm(T m x; ν̃ ◦ T −m, ν ◦ T −m, {F−
m }). (2.5)

Hence the law of ξm under ν̃, namely ν̃ ◦ ξ−1
m , equals the distribution (ν̃ ◦ T −m) ◦ ζ−1

m,m
where {ζm,n(x) : n ∈ Z+} is the forward likelihood-ratio martingale

ζm,n(x) = Zn(x; ν̃ ◦ T −m, ν ◦ T −m, {F−
n }).

This means that we start with two extremal measures ν, ν̃ ∈ Kg translated m times to the
left, i.e. ν ◦ T −m and ν̃ ◦ T −m ; these can be extended to well-defined g-chains and we may
then go forward along F−

n .
Thus, it is enough to prove the following lemma which states that the forward likelihood

ratios are uniformly tight in a strong sense. The estimates have to be uniform in all g-
chains, since our substitutions µ = ν ◦ T −m and µ̃ = ν̃ ◦ T −m are valid only for a fixed m.

LEMMA 2.5. Assume that varn g is square summable and that g is bounded away from
zero. For all ε > 0, there exists a K = K (ε) such that

sup
µ̃,µ

sup
n

µ̃(log Zn(x; µ̃, µ, {F−
n }) > K ) < ε, (2.6)

where µ̃ and µ are chosen among all pairs of forward g-chains.

Proof. We adapt part of the proof in [7, pp. 597–598]. One could also use the more
advanced theory of Shiryaev [11] and his co-authors, as was done in [8].

Given µ and µ̃, write (using the notation from [7]) Mn(x) = Zn(x; µ̃, µ, {F−
n }). We

show that log Mn has a Doob decomposition

log Mn = An + ηn

where An is pre-visible with the uniform bound An ≤ C1
∑

(varn g)2 and, moreover, ηn

is a µ̃-martingale and uniformly bounded in L2(µ̃) with µ̃(η2
n) ≤ C2

∑
(varn g)2 (see, for
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example, [14, pp. 120–121]). It is the uniformity of the estimates that makes it possible to
conclude the strong formulation of (2.6). We define

Pn(x) =
µ[x−n, x−n+1, . . . , x−1]

µ[x−n+1, . . . , x−1]
,

P̃n(x) =
µ̃[x−n, x−n+1, . . . , x−1]

µ̃[x−n+1, . . . , x−1]
,

and note that |P̃n − Pn| ≤ varn g.
The proof then proceeds exactly as in [7, pp. 597–598]. 2

3. Open questions
In this section we present two questions which the authors find interesting, as well as
challenging, in the light of the present investigation.

3.1. Question 1. Does uniqueness of a g-measure imply

Ln f →

∫
f dµ ?

We assume that we have finitely many symbols for the left-shift map T and a continuous
and strictly positive g-function.

In this paper we used the fact that a unique measure in Kg (in Walters’ notation) or,
equivalently, a unique G-measure (as defined by Brown and Dooley [2], Fan [4] and
others) implies that Ln f (x) →

∫
f dµ uniformly in x ∈ X+. It is natural to ask: if Kg

only contains the g-measure, then would this also be the unique member of Kg? (Recall
that a g-measure is always a member of Kg .) It would then follow that uniqueness of
a g-measure (under the assumptions given in our question) implies convergence of the
iterates of L, without imposing any stronger regularity on g than continuity.

3.2. Question 2. Under square summability of variations of the g-function, what is the
rate of convergence of Ln f (x) in the supremum-norm? Rates of convergence in the case
of summable variations are available; see Pollicott [10].
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