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Abstract
Let {DM}M�0 be the n-vertex random directed graph process, where D0 is the empty directed graph on n
vertices, and subsequent directed graphs in the sequence are obtained by the addition of a new directed
edge uniformly at random. For each ε > 0, we show that, almost surely, any directed graph DM with mini-
mum in- and out-degree at least 1 is not only Hamiltonian (as shown by Frieze), but remains Hamiltonian
when edges are removed, as long as at most 1/2− ε of both the in- and out-edges incident to each ver-
tex are removed. We say such a directed graph is (1/2− ε)-resiliently Hamiltonian. Furthermore, for each
ε > 0, we show that, almost surely, each directed graph DM in the sequence is not (1/2+ ε)-resiliently
Hamiltonian.

This improves a result of Ferber, Nenadov, Noever, Peter and Škorić, who showed, for each ε > 0,
that the binomial random directed graph D(n, p) is almost surely (1/2− ε)-resiliently Hamiltonian if
p=ω( log8 n/n).

2020 MSC Codes: 05C20, 05C80, 05C38, 05C45

1. Introduction
One of the most studied properties of graphs is that of Hamiltonicity, the property that a graph
contains a cycle through every vertex, known as a Hamilton cycle. The natural extremal func-
tion for Hamiltonicity was studied by Dirac [8], whose celebrated theorem demonstrates that any
graph with n� 3 vertices and minimum degree at least n/2 is Hamiltonian. An early question
of Erdős and Rényi [9] in the study of the binomial random graph G(n, p), where edges among
n vertices are chosen independently at random with probability p, asked when such a graph is
likely to be Hamiltonian. After work by Pósa [27] and by Korshunov [20], this was determined
independently by Komlós and Szemerédi [19] and Bollobás [6], who proved that if p= ( log n+
log log n+ω(1))/n, then G(n, p) is Hamiltonian with probability 1− o(1). We say here that
G(n, p) is almost surely Hamiltonian. This is best possible, for if p= ( log n+ log log n−ω(1))/n,
then G(n, p) almost surely has vertices of degree 0 or 1, and as such is clearly not Hamiltonian.

In fact, inG(n, p), Hamiltonicity is almost surely concurrent with the property that every vertex
has at least two neighbours. This is most precisely shown by the following beautiful result, proved
independently by Bollobás [7] and Ajtai, Komlós and Szemerédi [1]. Consider the n-vertex ran-
dom graph process G0, . . . ,G(n2)

, where G0 is an empty graph on n vertices and each subsequent
graph in the sequence is formed by the addition of a non-edge uniformly at random. Almost
surely, the first graph in the sequence with minimum degree at least 2 is Hamiltonian [1, 7].
Furthermore, we can strengthen this by showing that, in almost every random graph process,
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every graph with minimum degree at least 2 is not only Hamiltonian, but remains so despite the
removal of any set of edges, subject only to a simple condition on the edges removed. That is, it is
resiliently Hamiltonian.

The general study of resilience in random graphs, initiated by Sudakov and Vu [31] in 2008,
has developed into an active area of research (see e.g. [4, 5, 13, 21, 22, 31] and the survey [30]). We
study the resilience of a graph G with respect to some property P using the following definition.

Definition 1.1. A graph G is α-resilient with respect to the property P if, for any H ⊂G with
dH(v)� αdG(v) for each v ∈V(G), G−H has property P .

Note that Dirac’s theorem is exactly that the complete graph on n� 3 vertices is (1/2)-
resiliently Hamiltonian. A natural generalization to random graphs is to ask how resiliently
Hamiltonian a typical random graph is. This was the subject of series of results (see [5, 13, 31]),
before, in a key breakthrough, Lee and Sudakov [22] showed that, if p=ω( log n/n), then G(n, p)
is almost surely (1/2− o(1))-resiliently Hamiltonian. Here the constant 1/2 is best possible as
such a random graph can typically be disconnected while removing only 1/2+ o(1) of the edges
around any one vertex. However, the bound on p can be improved slightly, and the result made
best possible by considering the resilience of Hamiltonicity in the random graph process. Indeed,
independently, the author [24] and Nenadov, Steger and Trujić [25], showed that in almost every
n-vertex random graph process, each Hamiltonian graph is (1/2− o(1))-resiliently Hamiltonian.
In this paper we prove the corresponding result for the random directed graph process.

A Hamilton cycle in a directed graph (digraph) is a cycle through every vertex whose edges
are oriented in the same direction around the cycle. The corresponding result to Dirac’s theorem
was shown by Ghouila-Houri [14], who proved that every digraph on n� 3 edges with mini-
mum in- and out-degree at least n/2 contains a Hamilton cycle. The binomial random digraph
D(n, p) has n vertices and each possible edge chosen independently at random with probabil-
ity p. For each vertex pair u, v, −→uv and −→vu may appear in D(n, p). The techniques for studying
Hamiltonicity in G(n, p) do not immediately translate to the directed case, but an elegant gen-
eral coupling argument of McDiarmid [23] shows that, if p= ( log n+ log log n+ω(1))/n, then
D(n, p) is almost surely Hamiltonian. However, the natural local impediment to Hamiltonicity in
D(n, p) is that every vertex must have in- and out-degree at least 1. This almost surely holds if
p= ( log n+ω(1))/n, and almost surely does not if p= ( log n−ω(1))/n.

Frieze [12] showed that, if p= ( log n+ω(1))/n, then D(n, p) is almost surely Hamiltonian,
and gave a corresponding result for the random digraph process. In the n-vertex random digraph
process D0,D1, . . . ,Dn(n−1), D0 is the empty digraph on n vertices, and each subsequent digraph
in the sequence is obtained by the addition of a new directed edge uniformly at random. Frieze
[12] showed that, in almost every n-vertex random digraph process, every digraph with minimum
in- and out-degree at least 1 is Hamiltonian.

To study resilience in directed graphs, we use the corresponding definition to resilience in
graphs, as follows.

Definition 1.2. A directed graph D is α-resilient with respect to the property P if, for any H ⊂D
with djH(v)� αdjD(v) for each v ∈V(D) and j ∈ {+,−}, D−H has property P .

Hefetz, Steger and Sudakov [17] showed that, if p� log n/
√
n, then D(n, p) is almost surely

(1/2− o(1))-resiliently Hamiltonian. As with the undirected case, the constant 1/2 here is tight,
but the bound on p is rather loose. Ferber, Nenadov, Noever, Peter and Škorić [11] showed that,
if p=ω( log8 n/n), then D(n, p) is almost surely (1/2− o(1))-resiliently Hamiltonian. Here we
will make a best possible improvement to the bound on p, and bring the known resilience of
Hamiltonicity in random digraphs into line with that known for random graphs, as follows.
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Theorem 1.3. Let ε > 0. In almost every n-vertex random directed graph process
D0,D1, . . . ,Dn(n−1), the following is true for each 0�M� n(n− 1). If δ±(DM)� 1, then
DM is (1/2− ε)-resiliently Hamiltonian, but not (1/2+ ε)-resiliently Hamiltonian.

Standard techniques easily infer from Theorem 1.3 that, if p= ( log n+ω(1))/n, then D(n, p)
is almost surely (1/2− o(1))-resiliently Hamiltonian (see e.g. Section 7).

The constant 1/2 in Theorem 1.3 arises from the following. Almost surely, if D(n, p) has
minimum in- and out-degree at least 1, then it can be disconnected into two roughly equal halves
by deleting only a little over half of the in- and out-edges at each vertex. This is easy to show when
p=ω( log n/n), and, with a little care, it is possible to show in almost every random digraph pro-
cess for each digraph DM with δ±(DM)� 1 (see Section 7.6). Thus it is relatively straightforward
to demonstrate the limits of the resilience of Hamiltonicity required for Theorem 1.3.

On the other hand, if we remove only at most a (1/2− ε)-proportion of the in- and out-edges
around each vertex, then we cannot disconnect the digraphD. In fact, typically wemust retain two
key properties. Firstly, if two large equal-sized vertex sets are chosen disjointly at random, then
there is likely to be a matching directed from the first into the second. Secondly, given a small
collection of pairs of vertices disjoint from a random small vertex subset, we can use the vertex
subset to connect the pairs into a directed cycle. The first property allows us, by taking a sequence
of random sets, to cover most of a typical random digraph by relatively few directed paths. The
second property then allows us to join these paths together into a directed cycle, using a reserved
random small set of vertices. This may, of course, not cover all the vertices, and hence we use
the absorbing method. This is described in detail in Section 2, but, in short, we note that the key
behind our progress compared to Ferber et al. [11], who used the same broad outline, is in our
construction of the reservoir. In particular, each vertex in the reservoir is created by contracting
a short directed path to create a new vertex. A Hamilton cycle in this altered digraph is found,
before the contractions are undone to create a Hamilton cycle in the original digraph. This allows
the use of a larger reservoir, and in combination with an adaptation of path connection methods
by Glebov, Krivelevich and Johannsen [15] to the directed graph setting (see Section 4), and the
careful division of vertex sets using the local lemma (see Section 3), makes the improvements
required to show Theorem 1.3.

In the rest of this section we detail our notation. In Section 2 we give a sketch of our proof
followed by an outline of the rest of the paper.

Notation

A digraph D has vertex set V(D) and edge set E(D), and we set |D| = |V(D)| and e(D)= |E(D)|.
For any set A⊂V(D), we set

N+D (A)= {v ∈V(D) \A : ∃u ∈A s.t.−→uv ∈ E(D)},
N−D (A)= {v ∈V(D) \A : ∃u ∈A s.t.−→vu ∈ E(D)}.

We say N+D (A) is the out-neighbourhood of A and N−D (A) is the in-neighbourhood of A. Where A
is a single vertex v, we let djD(v)= |Nj

D(v)| for each j ∈ {+,−}. Given a set of edges E, we let V(E)
be the set of vertices contained in these edges. For any disjoint vertex sets A and B in a digraph D,
and each j ∈ {+,−}, e+D(A, B) is the number of edges directed from A to B in D, and e−D(A, B)=
e+D(B,A). Where it is clear from context, we often drop the digraph D from the subscript. For
a digraph D, �−(D), �+(D), δ−(D) and δ+(D) are the maximum in- and out-degree and the
minimum in- and out-degree of D respectively. For any vertex set A in a digraph D, the digraph
D[A] has vertex set A and edges exactly those in D contained within A.
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For convenience, we consider paths to have an inherent order, and thus treat them as an
ordered sequence of vertices. In this sequence, we allow vertices to repeat consecutively with-
out consequence. For example, if a path P has start vertex u and end vertex v, then we consider
uPv to be the same path as P. Given a path P,←−P is the path on the same vertices as P but with
the vertex order reversed. An alternating path is one whose vertices all have either in-degree 0 or
out-degree 0 within the path. In a digraph D, for any disjoint vertex sets A and B, amatching from
A into B is a set of |A| independent edges oriented from A into B.

Where we use ± in an expression, we mean that this holds with ± replaced by both + and −.
We use log for the natural logarithm and, for each k� 2, we use log[k] n to refer to the kth
iterated logarithm of n, so that, for example, log[3] n= log log log n. For each integer k, we let
[k]= {1, . . . , k}.

We use common asymptotic notation to relate functions of n, as follows. If f =O(g) or g =
�( f ), then there exists a constant C such that f (n)� Cg(n) for every n ∈N. When the implicit
constant C depends on ε, we will denote this in the subscript, using, for example f =Oε(g). If f =
ω(g) or g = o( f ), for a non-zero function g, then f (n)/g(n)→∞ as n→∞. When, for example,
�( f ) is used in expressions, we mean that this can be replaced by some function g =�( f ) so that
the expression holds. Many of our lemmas hold for n� n0(ε), for some function n0 depending on
ε. In the proofs we do not mention this explicitly, but only note that we take ‘n sufficiently large’
where our argument requires n to be large. Similarly, when f =ω(g) or f = o(g) we mean that this
is true for each fixed ε. If f =O(g) and g =O( f ), then we say that f =�(g).

For clarity of presentation we do not include floor and ceiling symbols where they are not
crucial.

2. Outline and proof of a key lemma
2.1 Proof sketch and outline
Pseudorandom digraphs.We will build a Hamilton cycle in any sufficiently large digraph which
satisfies certain pseudorandom properties, before showing that random digraphs resiliently con-
tain such a digraph. These properties are defined precisely in Definition 2.1, but, roughly speaking,
they say the following.

• The minimum and maximum in- and out-degrees are bounded (see A1).
• Small sets with many incident edges expand well (see A2 and A3).
• Medium-sized sets expand to more than one-half of the vertex set (see A4).

In our more informal discussion, we say that a set expands if its in- and out-neighbourhood is
comfortably larger than the set itself. The exact parameters of the expansion we use are found in
Definition 2.1.

The first two properties listed above are naturally resilient (if the minimum degree bounds are
reduced by an appropriate factor). The third condition is naturally almost surely (1/2− o(1))-
resilient in D(n, p) if p=ω(1/n). Typically, here, medium-sized sets will expand to almost all of
the vertex set. Then removing at most 1/2− ε of the in- and out-degrees around any vertex will
only reduce the size of the in- and out-neighbourhood by at most a factor of 1/2− ε/2, so the
third condition holds resiliently.

Boosting the minimum degrees. As we consider every Hamiltonian digraph in the random
digraph process, we work with digraphs with very low minimum in- or out-degree. However,
we use a natural modification to increase the minimum degree when there are a small number of
vertices with low in- or out-degree. After the removal of edges, we take each low-degree vertex
and assign it both an in- and out-neighbour, before deleting the low-degree vertex and merging its
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assigned in-neighbour into its assigned out-neighbour (see Definition 2.5). This creates the pseu-
dorandom digraph in which we find a Hamilton cycle. Taking this cycle, undoing the merging,
and putting the low-degree vertices between their assigned neighbours, creates a Hamilton cycle
in the original digraph.

Hamilton cycles in pseudorandom digraphs. We create a Hamilton cycle in a pseudorandom
digraph D using the same broad outline as Ferber et al. [11]. We use the absorbing method, first
given as a general method by Rödl, Ruciński and Szemerédi [28]. We find a directed path P in
D in combination with a reservoir R in V(D) \V(P), so that, given any subset of vertices R′ ⊂ R,
we can find a directed path with vertex set V(P)∪ R′ and the same start and end vertices as P.
Dividing the vertices V(D) \ (V(P)∪ R) in the digraph into equal-sized sets at random, we find
matchings between them to create a small number of directed paths which cover the remaining
vertices. Using vertices in R, we then join these paths into a directed cycle with P – say the cycle
is Q. This gives a cycle covering all the vertices except for R \V(Q). Using the absorbing property
we then find a path with vertex set V(P)∪ (R \V(Q)) and the same end vertices as P, and replace
P with this path in Q to get a Hamilton cycle.

The improvements we make from the methods of Ferber et al. [11] come from three areas, as
follows.

• We use a more efficient absorbing structure so that the reservoir may have size
�(n log[2] n/ log n). Our reservoir in fact consists of disjoint directed paths, not vertices. We
contract these paths into vertices in the obvious manner, and use these vertices as the reser-
voir.We then find aHamilton cycle in themodified digraph, before replacing each contracted
vertex by its original path to get a Hamilton cycle in the original digraph.

• To construct absorbers and join paths into a cycle we develop and use a directed graph
version of some path connection techniques by Glebov, Krivelevich and Johannsen [15].

• We use the local lemma to randomly partition the vertex set into subsets and find matchings
between them.

The first area represents themajor innovation of this paper, while the subsequent two areas require
quite a few technicalities. Due to this, we structure the paper so that the most important part of
the argument appears first, in the rest of this section.

Outline. In the rest of this section we define our notion of pseudorandomness precisely, before
defining a good partition. We then prove a key lemma, Lemma 2.7, that says any digraph with a
good partition is Hamiltonian. This allows us to give the most important part of our argument,
before embarking on the more technical aspects. Finally, we cover some useful results from the
literature.

In Section 3 we give our use of the local lemma to find useful vertex partitions. In Section 4
we give a digraph version of techniques by Glebov, Krivelevich and Johannsen [15] for finding
connecting paths. In Section 5 we divide the vertex set into subsets and find matchings between
them in order to cover most of the digraph with a small number of directed paths. In Section 6 we
combine this all to show that any sufficiently large pseudorandom digraph has a good partition.
Finally, in Section 7, we find the pseudorandom properties in a random digraph needed to prove
Theorem 1.3, and also show the promised limits of resilience.

2.2 Pseudorandom digraphs and good partitions
Wewill begin by defining a (d, ε)-pseudorandom digraph and a good partition of a digraph. A good
partition is defined essentially as one with the properties needed to carry through our construction
of a directed Hamilton cycle. On the other hand, the properties of a pseudorandom digraph more
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naturally reflect those of a typical random digraph. For example, for each ε > 0, if p=ω( log n/n),
then D(n, p) is typically (d, ε)-pseudorandom with d= pn/2 log n.

Definition 2.1. An n-vertex digraph D is (d, ε)-pseudorandom if the following properties hold
withm= n log[3] n/d log n.

A1 δ±(D)� d log n and �±(D)� 106d log n.
A2 For each j ∈ {+,−} and any disjoint sets A, B⊂V(D), with |A|� 2m, and, for each v ∈A,

dj(v, B)� d log[2] n/ log[4] n, we have |B|� 10|A|.
A3 For each j ∈ {+,−} and any disjoint sets A, B⊂V(D), with |A|� 2m, and, for each v ∈A,

dj(v, B)� d( log n)2/3, we have |B|� ( log n)1/3|A|.
A4 Every set A⊂V(D) with |A| =m satisfies |N±(A)|� (1/2+ ε)n.

We will show that every sufficiently large pseudorandom digraph is Hamiltonian, as follows.

Theorem 2.2. For each ε > 0, there exists some n0 = n0(ε) such that, for every d� 10−5, every
(d, ε)-pseudorandom digraph with at least n0 vertices is Hamiltonian.

To show this, we will show that any sufficiently large pseudorandom digraph has a good par-
tition (see Lemma 6.2). This definition requires that directed cycles are found through particular
edges. For this, we define the following weak and strong connection properties, where the key
difference is that the latter property allows a cycle to be found through particular edges in a given
order.

Definition 2.3. A vertex set U in a digraph D is weakly connected if, for any independent set E of
directed edges in the complete digraph with vertex set U, there is a directed cycle in D+ E which
contains every edge in E.

Definition 2.4. A vertex set U in a digraph D is strongly connected if, for any 	 and any indepen-
dent set E= {e1, . . . , e	} of directed edges in the complete digraph with vertex set U, there is a
directed cycle in D+ E which contains the edges e1, . . . , e	 in that order.

We also merge vertices using the following definition.

Definition 2.5. In a digraphD, we merge a vertex x into a vertex y by deleting x and y and creating
a new vertex z with in-neighbourhood N−D (x) \ {y} and out-neighbourhood N+D (y) \ {x}.

Using these definitions, we define a good partition as follows.

Definition 2.6. In a digraph D, a vertex partition V(D)=A∪ B1 ∪ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 is an
(	, r)-good partition if the following hold.

B1 Any set U ⊂V(D) \A with |U|� 4r is strongly connected in D[A∪U].
B2 If B′ ⊂V(D) contains B1 ∪ B2, and u, v ∈ B′ \ (B1 ∪ B2) with u �= v, then there is a collection

of at most 	 disjoint directed paths with length at least 1 in D+−→uv which cover B′ exactly,
each start and end in B2, and one of which contains the edge−→uv.

B3 There are matchings M1, M2 and M3 from R2 into R1, R2 into R3 and R4 into R3 in D,
respectively, and |Ri| = r for each i ∈ [4], so that the following holds.

B4 Let f : R1→ R4 be such that, for each v ∈ R1, f (v) and v are the end vertices of an alternating
path inM1 ∪M2 ∪M3. Merge each vertex v ∈ R1 into f (v) in D to get the digraph D′. Let R
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Figure 1. The directed path in (2.1), with the
additional edges−→uivi , i ∈ [r], in grey.

Figure 2. The partition of V(D) given by the paths in (2.3). It remains to connect the si , ti-paths in some order using some of
the paths xjPjyj, j ∈ [r], to find a directed Hamilton cycle.

be the set of merged vertices in D′. Then any set U ⊂ B2 with |U|� 2	 is weakly connected
in D′[R∪U].

If a digraph has an (	, r)-good partition for some 	, r > 0, then we say D has a good partition.

We now give the main part of our argument, showing that any digraph with a good partition is
Hamiltonian.

Lemma 2.7. Any digraph with a good partition is Hamiltonian.

Proof. Let D be a digraph and let V(D)=A∪ B1 ∪ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 be an (	, r)-good par-
tition of D, for some integers 	, r > 0. Using B3, find a matching from R2 into R1, R2 into R3 and
R4 into R3, so that B4 holds. Use these matchings to label vertices so that R1 = {x1, . . . , xr}, R2 =
{u1, . . . , ur}, R3 = {v1, . . . , vr} and R4 = {y1, . . . , yr}, and, for each i ∈ [r],−→uixi,−→uivi,−→yivi ∈ E(D).

By B1 applied with E= {−→uixi,−→yivi : i ∈ [r]}, we can find disjoint directed paths Pi and Qi, i ∈
[r− 1], and Pr , in D[A∪V(E)] so that

u1x1P1y1v1Q1u2x2P2y2v2Q2 · · · urxrPryrvr (2.1)
is a directed u1, vr-path in D (see Figure 1). Note that, for each i ∈ [r], if xiPiyi is removed from
the path in (2.1), then, as−→uivi ∈ E(D), this is still a directed u1, vr-path in D.

Let R= R1 ∪ R2 ∪ R3 ∪ R4 and note that every vertex in R appears in (2.1). Let A′ be the set
of vertices in A not appearing in (2.1). By B2, we can find somem ∈ [	] and vertices and directed
paths siSiti, i ∈ [m], so that {siSiti : i ∈ [m]} is a set of disjoint directed paths inD+−−→u1vr with length
at least 1 which exactly covers A′ ∪ B1 ∪ B2 ∪ {u1, vr} and for which {si, ti : i ∈ [m]} ⊂ B2, and so
that S1 contains the edge −−→u1vr . Say that S1 = S′1u1vrS′′1 . Thus the following set of paths forms a
partition of A′ ∪ B1 ∪ B2 ∪ {u1, vr}:

{s1S′1u1} ∪ {vrS′′1 t1} ∪ {siSiti : 2� i�m}. (2.2)
Furthermore, then, the following paths form a partition of V(D) (as depicted in Figure 2):

{s1S′1u1} ∪ {vrS′′1 t1} ∪ {siSiti : 2� i�m} ∪ {xiPiyi : i ∈ [r]} ∪ {viQiui+1 : 1� i< r}. (2.3)
Let D′ be the digraph formed from D by, for each i ∈ [r], merging xi into yi to get the vertex zi.

Let R′ = {zi : i ∈ [r]}. Let E′ = {−→siti : i ∈ [m]}. By B4, there are disjoint directed paths T1, . . . , Tm in
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D′[R′ ∪V(E′)] and a bijection g : [m]→ [m] with g(1)= 1 so that

t1T1sg(2)tg(2)T2sg(3)tg(3)T3 · · · sg(m)tg(m)Tms1

is a directed path in D′[R′ ∪V(E′)]+ E′.
For each i ∈ [m], replace each vertex zj, j ∈ [r], of Ti with the corresponding directed path xjPjyj

and call the resulting path T′i . Note that, from the definition of D′, T′i is a directed path in D. Thus
the path

t1T′1sg(2)tg(2)T′2sg(3)tg(3)T′3 · · · sg(m)tg(m)T′ms1

is a directed path in D+ E′. Replacing each edge siti, 2� i�m with the directed path siSiti, and
adding the paths vrS′′1 t1 and s1S′1u1, we get that

C1 := vrS′′1 t1T′1sg(2)Sg(2)tg(2)T′2sg(3)tg(3)T′3 · · · sg(m)Sg(m)tg(m)T′ms1S′1u1

is a directed path in D. As the paths in (2.2) form a partition of A′ ∪ B1 ∪ B2 ∪ {u1, vr}, C1
has vertex set A′ ∪ B1 ∪ B2 ∪ {u1, vr} with some sets V(xjPjyj) added (those appearing in some
path T′i).

For each j ∈ [r], if xjPjyj is contained in C1, then let Zj be the empty path on no vertices, and
otherwise let Zj be xjPjyj. Thus the path

C2 := u1Z1v1Q1u2Z2v2Q2 · · · urZrvr
is the path in (2.1) with some paths xiPiyi, i ∈ [r], removed, which, by construction, is a directed
path. The path C2 contains exactly the vertices in the path in (2.1) except for those appearing in
C1, as well as u1 and vr . Thus, as the path C1 contains all the vertices not in the path (2.1), the two
paths C1 and C2 form a cycle with vertex set V(D), as required.

2.3 Preliminaries
We will use the following well-known version of Chernoff ’s lemma (see e.g. [18, Corollary 2.3]).

Lemma 2.8. If X is a binomial variable with standard parameters n and p, denoted X= Bin(n, p),
and ε satisfies 0< ε � 3/2, then

P(|X−EX|� εEX)� 2 exp (− ε2EX/3).

To find a matching from one set into another, we will use the following simple proposition (for
undirected graphs).

Proposition 2.9. Let G be a bipartite graph with vertex classes A and B with size n each, such
that, for each U ⊂A or U ⊂ B with |U|� 
n/2�, |N(U)|� |U|. Then there is a matching from A to
B in G.

Proof. Let U ⊂A with 
n/2�< |U|� n. By considering a subset U ′ ⊂U with size 
n/2�, we have
that |N(U)|� |N(U ′)|� 
n/2�. Thus |B \N(U)|� n− 
n/2� = �n/2�, so that, by the property in
the lemma, |N(B \N(U))|� |B \N(U)|. Thus, as there are no edges between U and B \N(U), we
have
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|U|� n− |N(B \N(U))|� n− |B \N(U)| = n− (n− |N(U)|),

and therefore |N(U)|� |U|. By the property in the lemma, this is also true for all U ⊂A
with |U|� 
n/2�. Thus Hall’s matching condition is satisfied, and there is a matching from A
into B.

3. Set division using the local lemma
We will take vertex partitions using the following version of the Erdős–Lovász local lemma, due
to Lovász [29, Theorem 1.1].

Theorem 3.1. Let A1, . . . ,An be events in a probability space � with dependence graph G. Suppose
there exist 0< x1, . . . , xn < 1 such that, for each i ∈ [n],

P(Ai)� xi
∏

j:ij∈E(G)
(1− xj).

Then no such event Ai occurs with strictly positive probability.

Throughout the following lemma we use Theorem 3.1 as follows. Given a vertex set A in a
digraph, where every vertex has plenty of in- and out-neighbours in A, we partition A so that
every vertex has at least some in- and out-neighbours in each subset in the partition. We use this
in a similar manner to Hefetz, Krivelevich and Szabó [16] in their work on the sharp threshold of
certain spanning trees in G(n, p).

Lemma 3.2. Let 	,m, n, δ,� ∈N with 2� 	� log n, and let ε ∈ (0, 1). Let D be a digraph with n
vertices and A⊂V(D) so that the following hold.

C1 For each v ∈V(D), d±(v,A)� δ and d±(v)��.
C2 For each U ⊂V(D) with |U| =m, |N±(U,A)|� (1/2+ ε)|A|.

Let a= |A|, and suppose that ai, i ∈ [	], are integers with ∑
i∈[	] ai � a such that the following hold

for each i ∈ [	].

D1
ε2a2i
a

� 103	3.

D2
ε2a2i
a
· exp

(
aiδ
24a

)
� 105	3n.

D3 exp
(
aiδ
24a

)
� 320	�2.

D4
ε2ai
103

�m log
(
en
m

)
.

Then there are disjoint sets A1, . . . ,A	 ⊂A such that |Ai| = ai for each i ∈ [	] and the following
hold.

E1 For each v ∈V(D) and i ∈ [	], aiδ/4a� d±(v,A)� 4ai�/a.
E2 For each U ⊂V(D), with |U| =m, and i ∈ [	], |N±(U,Ai)|� (1/2+ ε/2)ai.
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Proof. Without loss of generality, assume that a1 � a2 � · · ·� a	. Let p= εa	/10	a. For each
i ∈ [	], let

pi = (ai/a)− p� (1− ε/10)ai/a. (3.1)
Let

p0 =min
{
1−

∑
i∈[	]

pi, (	+ 1)p
}
� (	+ 1)p� εa	

5a
(3.1)
� p	. (3.2)

Noting that
∑	

i=0 pi � 1, pick random disjoint sets
B0, B1, B2, . . . , B	 ⊂A

so that, for each vertex v ∈V(D), P(v ∈ Bi)= pi for each 0� i� 	, and whether v appears in one
of the sets, and which set it appears in, is independent of the location of all the other vertices in D.

We will show, using Theorem 3.1, that with positive probability the partition satisfies the
following properties.

F1 For each i ∈ [	], |Bi|� ai, and | ∪	
i=0 Bi|�

∑
i∈[	] ai.

F2 Every subset U ⊂V(D) with |U| =m satisfies |N±(U, Bi)|� (1/2+ ε/2)ai for each i ∈ [	].
F3 For each v ∈V(D) and i ∈ [	], aiδ/4a� d±(v, Bi)� 2ai�/a.
F4 For each v ∈V(D), d±(v, B0)� 2a	�/a.

This will be sufficient to prove the lemma. Indeed, there will thus exist some partition in which
F1–F4 hold. Then let A1, . . . ,A	 ⊂A be disjoint subsets such that Bi ⊂Ai ⊂ Bi ∪ B0 and |Ai| = ai
hold for each i ∈ [	]; this is possible by F1. As E1 follows from F3 and F4, and E2 follows from F2,
we have the required partition.

Then let B be the event that F1 or F2 does not hold. For each v ∈V(D), let B(v) be the event
that F3 or F4 does not hold for v. Let

qB = 1/2 and q= 40	 exp (− a	δ/24a). (3.3)
Note that each event B(v) has some dependence on B and at most 4�2 other events B(v′).

We will show the following two claims.

Claim 1. For each v ∈V(D), P(B(v))� q(1− qB)(1− q)4�2 .

Claim 2. P(B)� qB(1− q)n.

Thus, by Theorem 3.1 and Claims 1 and 2, with positive probability some partition exists for
which no event B or B(v), v ∈V(D), holds, and thus for which F1–F4 hold, as required. It remains
then to prove the two claims.

Proof of Claim 1. Let v ∈V(D), j ∈ {+,−} and d= dj(v,A), so that δ � d��, by C1. For each
i ∈ [	], noting that ai/2a� pi � ai/a, by (3.1), we have, using Lemma 2.8,

P(dj(v, Bi) /∈ (aiδ/4a, 2ai�/a))� P(|dj(v, Bi)− pid|> pid/2)
� 2 exp (− pid/12)
� 2 exp (− aiδ/24a)
� 2 exp (− a	δ/24a). (3.4)

As p0 � p	, by (3.2), we also have

P(dj(v, B0)> 2a	�/a)� P(dj(v, B	)> 2a	�/a)
(3.4)
� 2 exp (− a	δ/24a).
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Thus, for each v ∈V(D), we have
P(B(v))� 4(	+ 1) exp (− a	δ/24a)� q/5.

ByD3, we have that 4q�2 � 1/2. Thus, as qB = 1/2,

P(B(v))� q · (1− qB) · (1− 4q�2)� q · (1− qB) · (1− q)4�
2
.

We will prove Claim 2 using two further claims.

Claim 3. P(F1 holds)� 4	 exp (− ε2a2	/300	
2a).

Proof of Claim 3. By (3.1) and Lemma 2.8, for each i ∈ [	],
P(|Bi|> ai)= P(|Bi| − pia> pa)

= P(|Bi| − pia> (p/pi) · pia)
� 2 exp (− (p/pi)2 · pia/3)
= 2 exp (− p2a/3pi)
� 2 exp (− p2a/3)
= 2 exp (− ε2a2	/300	

2a). (3.5)

Note that, for each v ∈A, by (3.1) and (3.2),

P(v ∈∪	
i=0Bi)=

	∑
i=0

pi =min
{
1,

(∑
i∈[	]

ai
a

)
+ p

}
=: p̄.

If p̄= 1, then, with probability 1,

| ∪	
i=0 Bi| = a�

∑
i∈[	]

ai,

as required, so assume that p̄= (
∑

i∈[	] ai/a)+ p. Then, by Lemma 2.8,

P

(
| ∪	

i=0 Bi|<
∑
i∈[	]

ai
)
= P(| ∪	

i=0 Bi| − p̄a<−pa)

= P(| ∪	
i=0 Bi| − p̄a<−p(p̄a)/p̄)

� 2 exp (− (p/p̄)2 · (p̄a)/3)
� 2 exp (− p2a/3)
= 2 exp (− ε2a2	/300	

2a). (3.6)

Thus the claim follows from (3.6) and, for each i ∈ [	], (3.5).

Claim 4. For each U ⊂V(D) with |U| =m, i ∈ [	], and j ∈ {+,−},
P(|Nj(U, Bi)|< (1/2+ ε/2)ai)� 2 exp (− ε2ai/400).

Proof of Claim 4. Let U ⊂V(D) with |U| =m, i ∈ [	], and j ∈ {+,−}, and take U ′ =Nj(U,A).
By C2, |U ′|� (1/2+ ε)a, so that

E|U ′ ∩ Bi|
(3.1)
� (1/2+ ε)a · (1− ε/10)ai/a� (1/2+ 3ε/4)ai �

1/2+ ε/2
1− ε/8

ai.
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Thus we have both E|U ′ ∩ Bi|� ai/2 and (1/2+ ε/2)ai � (1− ε/8)E|U ′ ∩ Bi|. Therefore, by
Lemma 2.8,

P(|U ′ ∩ Bi|< (1/2+ ε/2)ai)� 2 exp (− (ε/8)2 ·E|U ′ ∩ Bi|/3)
� 2 exp (− (ε/8)2 · ai/6)
� 2 exp (− ε2ai/400).

With these two claims, we can now prove Claim 2, as follows.

Proof of Claim 2. By Claim 3 and Claim 4, and taking into account that there are at most
(n
m
)
�

(en/m)m subsets with sizem of V(D), we have

P(B)� 4	 exp
(
− ε2a2	
300	2a

)
+ 4	 ·

(
en
m

)m
· exp

(
−ε2a	

400

)

D4
� 4	 exp

(
− ε2a2	
300	2a

)
+ 4	 exp

(
−ε2a	

103

)

� 8	 exp
(
− ε2a2	
300	2a

)
.

Note that, by (3.3) and D3, q� 1/2. Therefore, as qB = 1/2, we have qB(1− q)n � e−2qn/2. Thus,
for Claim 2, it is sufficient to show that

8	 exp
(
− ε2a2	
300	2a

)
� e−2qn/2,

or, equivalently,

ε2a2	
300	2a

− log (16	)� 2qn.

ByD1, then, it is sufficient to show that

ε2a2	
300	2a

� 4qn.

However, as q= 40	 exp (− a	δ/24a), this holds directly fromD2.

4. Path connection in pseudorandom digraphs
In order to connect edges into a cycle, we develop a directed version of techniques of Glebov,
Krivelevich and Johannsen [15]. In [15], a concept of (d,m)-extendability is defined and used
to find trees in any graph with certain expansion properties. In short, when a tree S is (d,m)-
extendable in a graph G and v ∈V(S), then, subject to certain simple conditions, we can add a
leaf to v in S so that the subsequent tree remains (d,m)-extendable. As shown in [15], this gives a
flexible framework for embedding trees, but also allows paths to be found between vertex sets in
(d,m)-extendable graphs. This latter property is what we want, except we will adapt this to work
with directed graphs.

To do this, we work with two bipartite graphs, H1 and H2 say, with the same vertex classes, A1
and A2 say. When we apply the results to a digraph D, H1 will typically be the edges in D directed
from A1 into A2 (with the directions removed) while H2 will be the edges in D directed from A2
into A1. If the edges of a path alternate between H1 and H2 then this will be a directed path in the
digraph.

To define our version of extendability we need the following definition.
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Definition 4.1. Given a forest S, an edge e ∈ E(S) and a vertex set X⊂V(S) with exactly one vertex
in each tree in S, let d(e, X) be the distance of the shortest path from any vertex in e to any vertex
in X.

Our extendable subgraph S will be a forest lying in the union of the two bipartite graphs H1
and H2 mentioned above. We use the set X, with exactly one vertex per component tree of S, to
record which edges of S are inH1 and which are inH2. The edges will alternate betweenH1 andH2
working out from the vertex in X in each component of S. The choice of H1 and H2 we later use,
arising from a digraph D as mentioned above, will imply that S with the edges of each component
tree directed out from the vertex in X will lie in D.

We define extendability in a pair of bipartite graphs as follows.

Definition 4.2. Suppose that H1 and H2 are two bipartite graphs with the same vertex classes A1
andA2, and that S is a forest containingX⊂V(S)∩A1 in which exactly one vertex in each tree in S
is in X. For each i ∈ [2], let Si be the subgraph of S with edge set {e ∈ E(S) : d(e, X)≡ i+ 1 mod 2}.

Then we say (S, X) is (d,m)-extendable in (H1,H2) if the following hold.

G1 �(S)� d.
G2 For each i ∈ [2], Si ⊂Hi.
G3 For each i ∈ [2] and U ⊂Ai with 0< |U|� 2m,

|NHi(U) \V(S)|� d|U| − eSi(U,A3−i).

G4 For each i ∈ [2] and U ⊂Ai with |U|�m, |NHi(U)|� |A3−i|/2.

Given a (d,m)-extendable forest that is not too large, we can add an edge to any vertex with
degree less than d in the forest while remaining (d,m)-extendable, as follows.

Lemma 4.3. Let d� 2 and m� 1. Suppose that H1 and H2 are two bipartite graphs with the same
vertex classes A1 and A2, and that S is a forest containing X⊂V(S)∩A1 in which exactly one vertex
in each tree in S is in X. Suppose that (S, X) is (d,m)-extendable in (H1,H2), and

|S|�min{|A1|, |A2|}/2− 2dm− 2. (4.1)

Then, for each i ∈ [2] and x ∈V(S)∩Ai with dS(x)< d, there exists some y ∈NHi(x) \V(S) so
that (S+ xy, X) is (d,m)-extendable in (H1,H2).

Proof. Suppose, to the contrary, that there is some i ∈ [2] and x ∈V(S)∩Ai with dS(x)< d for
which no such y exists. For each y ∈NHi(x) \V(S), G1, G2 and G4 for (S+ xy, X) to be (d,m)-
extendable in (H1,H2) hold directly from the same statements for the extendability of (S, X) and
as y ∈NHi(x) \V(S). Furthermore, asV(S+ xy)∩Ai =V(S)∩Ai,G3 for the index 3− i holds for
(S+ xy, X).

Therefore, for each y ∈NHi(x) \V(S), there is some set Uy ⊂Ai such that |Uy|� 2m and

|NHi(Uy) \V(S+ xy)|< d|Uy| − eSi+xy(Uy,A3−i). (4.2)

From simple set relations and the extendability of (S, X) in (H1,H2), we have, for each y ∈NHi(x) \
V(S), that

|NHi(Uy) \V(S+ xy)| + 1{y∈NHi (Uy)} = |NHi(Uy) \V(S)|
G3
� d|Uy| − eSi(Uy,A3−i)
= d|Uy| − eSi+xy(Uy,A3−i)+ 1{x∈Uy}. (4.3)
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Thus, as (4.2) holds, we must have that 1{y∈NHi (Uy)} = 1, 1{x∈Uy} = 0, and that equality holds
throughout (4.3). That is, we have the following.

G5 For each y ∈NHi(x) \V(S), we have y ∈NHi(Uy), |NHi(Uy) \V(S)| = d|Uy| − eSi(Uy,A3−i)
and x /∈Uy.

We will now show that, in fact, each such Uy must have size at mostm, using the following claim.

Claim 5. If U ⊂Ai and m� |U|� 2m, then |NHi(U) \V(S+ xy)|> d|U|.

Proof of Claim 5. Let U ⊂Ai withm� |U|� 2m. Then, from G4 and (4.1), we have

|NHi(U) \V(S+ xy)|� |A3−i|/2− |S| − 1� 2dm+ 1> d|U|.
Thus, by (4.2) and Claim 5, for each y ∈NHi(x) \V(S), we have |Uy|<m.

Claim 6. For each Y ⊂NHi(x) \V(S), | ∪y∈Y Uy|<m and
|NHi(∪y∈Y Uy) \V(S)| = d| ∪y∈Y Uy| − eSi(∪y∈Y Uy,A3−i).

Proof of Claim 6. We prove this by induction on |Y|. We know this to be true if |Y| = 1 by G5,
so assume that |Y|> 1, and, picking y0 ∈ Y , that the claim is true for Y ′ := Y \ {y0} and {y0}. Note
first that | ∪y∈Y Uy|� | ∪y∈Y ′ Uy| + |Uy0 |� 2m. Then, by the induction hypothesis and simple set
relations (in particular, that for all sets A, B in a graph G, |N(A∪ B)| + |N(A∩ B)|� |N(A)| +
|N(B)|), we have
|NHi(∪y∈Y Uy) \V(S)| + |NHi((∪y∈Y ′ Uy)∩Uy0 ) \V(S)|

� |NHi(∪y∈Y ′ Uy) \V(S)| + |NHi(Uy0 ) \V(S)|
= d| ∪y∈Y ′ Uy| − eSi(∪y∈Y ′ Uy,A3−i)+ d|Uy0 | − eSi(Uy0 ,A3−i)
= d| ∪y∈Y Uy| + d|(∪y∈Y ′ Uy)∩Uy0 | − eSi(∪y∈Y Uy,A3−i)− eSi((∪y∈Y ′ Uy)∩Uy0 ,A3−i).

(4.4)
Now, by G3 applied to (∪y∈Y ′ Uy)∩Uy0 (noting that this also holds if the set is empty), we have
that

|NHi((∪y∈Y ′ Uy)∩Uy0 ) \V(S)|� d|(∪y∈Y ′ Uy)∩Uy0 | − eSi((∪y∈Y ′ Uy)∩Uy0 ,A3−i).
Therefore, in combination with (4.4), we have

|NHi(∪y∈Y Uy) \V(S)|� d| ∪y∈Y Uy| − eSi(∪y∈Y Uy,A3−i). (4.5)

Thus, from G3 applied to ∪y∈YUy, we have that equality holds in (4.5), as required. By Claim 5,
we also then have that | ∪y∈Y Uy|<m.

From Claim 6 with Y =NHi(x) \V(S), we have | ∪y∈Y Uy|<m and

|NHi(∪y∈Y Uy) \V(S)| = d| ∪y∈Y Uy| − eSi(∪y∈Y Uy,A3−i). (4.6)

By G5, we have y ∈NHi(Uy) for each y ∈ Y =NHi(x) \V(S), and thus

|NHi((∪y∈Y Uy)∪ {x}) \V(S)| = |NHi(∪y∈Y Uy) \V(S)|. (4.7)

As, by G5, x /∈Uy for each y ∈ Y , and dS(x)< d, we have
d|(∪y∈Y Uy)∪ {x}| − eSi((∪y∈Y Uy)∪ {x},A3−i)> d| ∪y∈Y Uy| − eSi(∪y∈Y Uy,A3−i). (4.8)

Combining (4.6), (4.7) and (4.8), we have

d|(∪y∈Y Uy)∪ {x}| − eSi((∪y∈Y Uy)∪ {x},A3−i)> |NHi((∪y∈Y Uy)∪ {x}) \V(S)|.
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As |(∪y∈Y Uy)∪ {x}|<m+ 1� 2m, this contradicts G3 in definition of the (d,m)-extendability
of (S, X) in (H1,H2). Thus some such y as required by the lemma must exist.

Applying Lemma 4.3 repeatedly, we can build an extendable copy of a tree, as follows.

Lemma 4.4. Let d� 2 and m� 1. Let A1 and A2 be disjoint sets and let X⊂A1 and X′ ⊂ X. Let T
be a forest containing X, in which each component has exactly one vertex in X and each vertex in
X′ has degree 0. Let Tx, x ∈ X′, be vertex-disjoint trees with maximum degree at most d such that
Tx contains x. Let T′ = ∪x∈X′Tx. Let H1 and H2 be bipartite graphs with vertex classes A1 and A2.
Suppose (T, X) is (d,m)-extendable in (H1,H2) and that

|T| + |T′|�min{|A1|, |A2|}/2− 2dm− 1. (4.9)

Then there is a copy S of T′ so that each vertex x ∈ X′ is copied to itself, V(T)∩V(S)= X′, and
(T + S, X) is (d,m)-extendable in (H1,H2).

Proof. Wewill prove this by induction on |E(T′)|. If |E(T′)| = 0, then let S be the forest with vertex
set X′ and no edges, noting this satisfies the lemma as T + S= T. Suppose then that |E(T′)|� 1.
Pick x0 ∈ X′ with |E(Tx0 )|� 1, let y0 be a leaf of Tx0 which is not equal to x0 and let z0 be the
neighbour of y0 in Tx0 . By the induction hypothesis, there is some copy S′ ⊂H1 ∪H2 of T′ − y0
such that x is copied to x, for each x ∈ X′, V(T)∩V(S′)= X′, and (T + S′, X) is (d,m)-extendable
in (H1,H2).

Let z′0 be the copy of z0 in S′. Suppose z′0 ∈A1, where the case where z′0 ∈A2 follows similarly.
As Tx0 has maximum degree at most d, the degree of z0 in S′ is at most d− 1. By (4.9),

|T + S′|� |T| + |T′| − 1�min{|A1|, |A2|}/2− 2dm− 2.

Thus, by Lemma 4.3, there is some vertex y′0 inA2 \V(T + S′) so that z′0y′0 ∈ E(H1) and, if S := S′ +
z′0y′0, (T + S, X) is (d,m)-extendable in (H1,H2). Noting that V(T)∩V(S)=V(T)∩V(S′)= X′,
and S is a copy of T′ in which each vertex in X′ is copied to itself, completes the proof.

A critical part of the method used by Glebov, Krivelevich and Johannsen [15] is that not only
can we add a leaf and remain (d,m)-extendable, but we can also remove a leaf and remain (d,m)-
extendable, as follows.

Lemma 4.5. Suppose that H1 and H2 are two bipartite graphs with the same vertex classes A1 and
A2, and that S is a forest containing X⊂V(S)∩A1 in which exactly one vertex in each tree in S is
in X. Suppose j ∈ [2], x ∈V(S)∩Ai and y ∈A3−j \V(S) so that (S+ xy, X) is (d,m)-extendable in
(H1,H2).

Then (S, X) is (d,m)-extendable in (H1,H2).

Proof. That G1, G2 and G4 hold for (S, X) to be (d,m)-extendable in (H1,H2) follows directly
from the same conditions for the (d,m)-extendability of (S+ xy, X), so we need only check G3.

For each i ∈ [2], let Sj be the subgraph of S with edge set {e ∈ E(S) : d(e, X)≡ i+ 1 mod 2} and
let S′i be the subgraph of S+ xy with edge set {e ∈ E(S+ xy) : d(e, X)≡ i+ 1 mod 2}. Note that
S′j = Sj + xy and S′3−j = S3−j.

Let U ⊂Ai with 0< |U|� 2m. If x /∈U, then, as (S+ xy, X) is (d,m)-extendable in (H1,H2),

|NHj(U) \V(S)|� |NHj(U) \V(S+ xy)|
� d|U| − eSj+xy(U,A3−j)
= d|U| − eSj(U,A3−j).
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On the other hand, if x ∈U, then y ∈NHj(U), so that

|NHj(U) \V(S)| = |NHj(U) \V(S+ xy)| + 1
� d|U| − eSj+xy(U,A3−j)+ 1
= d|U| − eSj(U,A3−j).

Finally, let U ⊂A3−j with 0< |U|� 2m, then, as y ∈A3−j, and S′3−j = S3−j,

|NH3−j(U) \V(S)| = |NH3−j(U) \V(S+ xy)|
� d|U| − eS′3−j(U,A3−j)

= d|U| − eS3−j(U,A3−j).

Thus G3 holds so that (S, X) is (d,m)-extendable in (H1,H2).

4.1 Path connections
Wewill now build paths between vertex sets, using the work in this section so far. The next lemma
is the key lemma we use to show weak and strong connectivity in pseudorandom digraphs. We
work with two extendable forests S and T in two vertex-disjoint pairs of bipartite graphs (G1,G2)
and (H1,H2). Given vertex sets X′ ⊂V(S) and Y ′ ⊂V(T), we add a (d− 1)-ary tree disjointly to
each vertex in X′ and Y ′ while retaining the respective extendability properties. The resulting trees
attached to X′ and Y ′ are, together, very large, and this will allow us to connect two trees from X′
and Y ′ respectively using another set Z. This allows us to find a path from a vertex in X′ to a
vertex in Y ′ which initially alternates between edges in G1 and G2, then passes through Z, before
alternating between edges in H1 and H2. The edges in these graphs will be chosen so that this
will correspond to a directed path in our initial digraph. Crucially, we can then use Lemma 4.5
to remove the vertices we added but did not use in this connection, while remaining extendable.
This allows us to efficiently repeat the argument to find more connections.

We emphasize again that this is a fairly direct adaptation of the work of Glebov, Krivelevich
and Johannsen [15], only in a form applicable to digraphs.

Lemma 4.6. Let m� 1, d� 3 and k satisfy k= 
logm/ log (d− 1)�, and let 0� j� k. Let G be a
graph containing disjoint vertex sets A1, A2, B1, B2 and Z. Let X⊂A1 and Y ⊂ B1. Let S and T be
forests so that there is exactly one vertex of X and Y in each component of S and T respectively, and
so that

|S|, |T|� 1
2
min{|A1|, |A2|, |B1|, |B2|} − 10dm− 1. (4.10)

Let G1 and G2 be bipartite subgraphs of G with vertex classes A1 and A2 so that (S, X) is (d,m)-
extendable in (G1,G2). Let H1 and H2 be bipartite subgraphs of G with vertex classes B1 and B2 so
that (T, Y) is (d,m)-extendable in (H1,H2).

For any U ⊂A1 ∪A2 or U ⊂ B1 ∪ B2 with |U| =m, suppose that |NG(U, Z)|> |Z|/2. Suppose
that X′ ⊂ X and Y ′ ⊂ Y with |X′|, |Y ′|�m/(d− 1)j are sets of vertices with degree 0 in S and T
respectively. Then there are some x ∈ X′, y ∈ Y ′, x0 ∈A1 ∪A2 and y0 ∈ B1 ∪ B2 and paths P⊂G1 ∪
G2 and Q⊂H1 ∪H2 such that the following hold.

• P is an x, x0-path with length at most j and no vertices in V(S) \ {x}, and (S+ P, X) is (d,m)-
extendable in (G1,G2).

• Q is a y, y0-path with length at most j and no vertices in V(T) \ {y}, and (T +Q, Y) is (d,m)-
extendable in (H1,H2).

• NG(x0)∩NG(y0)∩ Z �= ∅.
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Proof. By removing vertices from X′ and Y ′ if necessary, assume that |X′| = |Y ′| = 
m/(d− 1)j�.
Let Sx, x ∈ X′, be a collection of disjoint (d− 1)-ary trees with depth j so that Sx has root x for each
x ∈ X′, and let S′ = ∪x∈X′Sx. Let Ty, y ∈ Y ′, be a collection of disjoint (d− 1)-ary trees with depth
j so that Ty has root y for each y ∈ Y ′, and let T′ = ∪y∈Y ′Ty.

Note that, by (4.10),

|S′|� 4md�min{|A1|, |A2|}/2− 2dm− 1− |S|.

Therefore, by Lemma 4.4, there is a copy S′′ of S′ such that x is copied to x for each x ∈ X′ and
(S+ S′′, X) is (d,m)-extendable in (G1,G2). Similarly, by Lemma 4.4, there is a copy T′′ of T′ such
that y is copied to y for each y ∈ Y ′ and (T + T′′, Y) is (d,m)-extendable in (H1,H2).

Noting that |S′′|, |T′′|�m, we can find some x0 ∈V(S′′) and y0 ∈V(T′′) such that NG(x0)∩
NG(y0)∩ Z �= ∅. Let x be the vertex in X′ for which there is a path, P say, in S′′ with length at
most j from x to x0. Note that, by iteratively removing leaves not in X, S+ S′′ can be turned into
S+ P. Thus, by repeated application of Lemma 4.5, we have that (S+ P, X) is (d,m)-extendable in
(G1,G2).

Similarly, there is a y, y0-path, Q say, in T′′ with length at most j, so that (T +Q, Y) is (d,m)-
extendable in (H1,H2). Thus the vertices x, y, x0, y0 and paths P and Q satisfy the requirements in
the lemma.

4.2 Strong connection in pseudorandom digraphs
We now use Lemma 4.6 to show a strong connection property in pseudorandom digraphs. We
first use Lemma 3.2 to find the sets to which we can then apply Lemma 4.6. In our application, we
connect pairs of vertices with paths of length O( log n/ log[2] n).

In the proof of the following theorem, and several times later in the paper, we make various
calculations, often at length, to ensure that Lemma 3.2 can be applied. For the reader who wishes
to take these calculations as read, each such calculation begins with ‘We will now check the condi-
tions’, and we proceed after the calculation with a new paragraph continuing ‘Having checked the
appropriate conditions’.

Theorem 4.7. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d�
10−5 and n� n0. Let D be an n-vertex (d, ε)-pseudorandom digraph containing a set A with |A|�
n/ log[3] n and in which the following hold with m= n log[3] n/d log n.

(1) For each v ∈V(D), d±(v,A)� d( log n)3/4.
(2) For each U ⊂V(D) with |U| =m, |N±(U,A)|� (1/2+ ε/2)|A|.

Then any set V ⊂V(D) \A with

|V|� |A| log[2] n
log n · log[7] n

is strongly connected in D[A∪V].

Proof. Let α = �|A|/5�, δ = d( log n)3/4 and�= 106d log n so that, for each v ∈V(D), d±(v,A)�
δ, and, by A1 in the definition of (d, ε)-pseudorandomness, we have �±(D)��.
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We will now check the conditions D1–D4 to apply Lemma 3.2 with δ, �, m, n unchanged,
	= 5, a1 = · · · = a5 = α and ε/2 in place of ε. ForD1–D4 in turn, we have that

ε2α2

4|A| =�ε(α)=ω(1),

ε2α2

4|A| · exp
(

αδ

24|A|
)
� ε2α2

4|A| · exp
(

δ

200

)
=�ε

(
n

log[3] n
· exp

(
d( log n)3/4

200

))
=ω(n),

exp
(

αδ

24|A|
)
� exp

(
δ

200

)
= exp (�(d( log n)3/4))=ω(d2 log2 n)=ω(�2),

and, as log (en/m)=O( log (d log n)),
ε2α

4 · 103 =�ε(α)=�ε

(
n

log[3] n

)

=�ε

(
m · d log n

( log[3] n)2

)

=ω(m · log (d log n))
=ω

(
m · log

(
en
m

))
.

Having checked the appropriate conditions, by Lemma 3.2, for sufficiently large n, there are
disjoint vertex sets A′1,A2, B′1, B2, Z in A, each with size α, such that

H1 For each v ∈V(D) and B ∈ {A′1,A2, B′1, B2, Z},
d±(v, B)� αδ/4|A|� d( log n)3/4/40.

H2 For each U ⊂V(D) with |U| =m and B ∈ {A′1,A2, B′1, B2, Z},
|N±(U, B)|� (1/2+ ε/4)|B|.

Now let

	0 := |A| log[2] n
log n · log[7] n , (4.11)

and take an arbitrary set E= {−→yixi : i ∈ [	]} of 	� 	0 vertex-disjoint edges in the complete digraph
with vertex set V(D) \A. To show the lemma, it is sufficient to find a directed cycle in D[A∪
V(E)]+ E which contains the edges−−→y1x1, . . . ,−−→y	x	 in order.

Let X= {x1, . . . , x	} and Y = {y1, . . . , y	}. Let G1 and G2 be the bipartite (undirected) graphs
with vertex set A1 :=A′1 ∪ X and A2 and the edges in D from A1 to A2 and A2 to A1 respectively,
but without their directions. Let H1 and H2 be the bipartite (undirected) graphs with vertex set
B1 := B′1 ∪ Y and B2 and the edges in D from B2 to B1 and B1 to B2 respectively, again without
their directions. Let G have vertex set A∪ X ∪ Y and consist of the edges in G1,G2,H1,H2 as well
as the edges from A1 ∪A2 to Z and Z to B1 ∪ B2. Let d0 = ( log n)1/3 and note that d0m= o(a). Let
IX and IY respectively be the graphs with vertex set X and Y which each have no edges.

Claim 7. For sufficiently large n, (IX , X) is (d0,m)-extendable in (G1,G2) and (IY , Y) is (d0,m)-
extendable in (H1,H2).

Proof of Claim 7. We will show that (IX , X) is (d0,m)-extendable in (G1,G2). That (IY , Y) is
(d0,m)-extendable in (H1,H2) follows similarly. Note thatG1 andG2 in Definition 4.2 are imme-
diate as IX and IY have no edges. Furthermore, from H2, for each U ⊂A2 with |U|�m, we
have
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|NG2 (U) \ X| = |N+D (U,A1 \ X)|
= |N+D (U,A′1)|
� (1/2+ ε/4)|A′1|
= (1/2+ ε/4)(|A1| − |X|)
> |A1|/2,

where we have used that |X| = 	= o(a). Thus, as for eachU ⊂A1 with |U|�mwe have, fromH2,
that |NG1 (U)| = |N+D (U,A2)|> |A2|/2, we have that G4 holds.

Let U ⊂A1 with 0< |U|� 2m. Each vertex in U has at least d( log n)3/4/40� d( log n)2/3 out-
neighbours in A2 in D byH1, for sufficiently large n. Thus, as A2 ∩ X=∅, by A3 in the definition
of (d, ε)-pseudorandomness, we have

|NG1 (U,A2 \ X)| = |N+D (U,A2)|� d0|U|. (4.12)

Furthermore, for each U ⊂A2 with 0< |U|� 2m, each vertex in U has at least d( log n)3/4/40�
d( log n)2/3 out-neighbours in A′1 inD byH1, for sufficiently large n. Thus, byA3 in the definition
of (d, ε)-pseudorandomness, we have

|NG2 (U,A1 \ X)| = |N+D (U,A′1)|� d0|U|. (4.13)

In combination, (4.12) and (4.13) show that G3 holds to complete the proof of the (d0,m)-
extendability of (IX , X) in (G1,G2).

Let

k=
⌈

logm
log (d0 − 1)

⌉
=O

(
log n
log[2] n

)
(4.11)= o

(
a
	0

)
. (4.14)

Take a maximal set I ⊂ [	] for which there is a vertex-disjoint set of paths Pi ⊂G1 ∪G2 and Qi ⊂
H1 ∪H2, i ∈ I, with length at most k each and distinct vertices zi, i ∈ I, in Z such that the following
hold (with addition modulo 	 in the indices).

I1 For each i ∈ I, Pi is a path with start vertex xi and no vertices in X \ {xi}, and (IX +∑
i∈I Pi, X) is (d0,m)-extendable in (G1,G2).

I2 For each i ∈ I, Qi is a path with start vertex yi+1 and no vertices in Y \ {yi+1}, and (IY +∑
i∈I Qi, Y) is (d0,m)-extendable in (H1,H2).

I3 For each i ∈ I, Pizi←−Qi is a directed xi, yi+1-path in D.

Note that, by Claim 7, I =∅ satisfies I1–I3, so that such a set I exists.
If I = [	], then, by I3,

∑
i∈I (yixiPizi

←−Q i) is a directed cycle in E+D[A∪V(E)] containing the
edges yixi, i ∈ I, in order, as required. Thus assume for contradiction that there is some j ∈ [	] \ I.

Let the paths Pi and Qi, and disjoint vertices zi, i ∈ I, satisfy the conditions above. Let Z′ =
Z \ (∪i∈I zi), and note that |Z′|� |Z| − 	. Thus, by H2, the definition of G, and as 	� 	0 = o(a),
we have the following.

I1 For any U ⊂A1 ∪A2 or U ⊂ B1 ∪ B2 with |U| =m, we have

|NG(U, Z′)|� (1/2+ ε/4)|Z| − 	 > |Z|/2� |Z′|/2.
Let S= IX +∑

i∈I Pi and T = IY +∑
i∈I Qi, so that, by I1 and I2, (S, X) and (T, Y) are (d0,m)-

extendable in (G1,G2) and (H1,H2) respectively. Note that, by (4.14), as d0m= o(a), we have

|S|, |T|� 	(k+ 1)= o(a)= o
(
1
2
min{|A1|, |A2|, |B1|, |B2|} − 10d0m− 1

)
. (4.15)
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Thus, by (4.14), (4.15) and I1, we can apply Lemma 4.6 with X′ = {xj} and Y ′ = {yj+1} to get
vertices x′ ∈A1 ∪A2, y′ ∈ B1 ∪ B2 and zj ∈ Z′ and paths Pj ⊂G1 ∪G2 and Qj ⊂H1 ∪H2 such that
the following hold.

J1 Pj is an xj, x′-path with length at most k and no vertices in V(S) \ {xj}, and (S+ Pj, X) is
(d0,m)-extendable in (G1,G2).

J2 Qj is a yj+1, y′-path with length at most k and no vertices in V(T) \ {yj}, and (T +Qj, Y) is
(d0,m)-extendable in (H1,H2).

J3 x′zj, zjy′ ∈ E(G).
Note that, by the definition of (d0,m)-extendability, for each i, the ith edge of Pj, counting from xj,
is in G2−(i mod 2). Thus, by the choice of the graphs G1 and G2, Pj is a directed path inD. Similarly,
Qj is, when reversed, a directed path in D. By J3, and the choice of G, then Pjzj

←−Qj is a directed
xjyj+1-path in D.

Then Pi, Qi and zi, i ∈ I ∪ {j}, satisfy I1–I3, contradicting the maximality of I.

4.3 Weak connection in pseudorandom digraphs
We now use Lemma 4.6 to connect edges into a cycle using directed paths with, on average,
length O(1) (see Theorem 4.8), rather than the (potential) length �ε( log n/ log[2] n) used in
Theorem 4.7. For this to be feasible we remove the restriction that the original edges appear in
the cycle in a specified order; this is the difference between weak and strong connection (see
Definitions 2.3 and 2.4).

Similarly to the proof of Theorem 4.7, we prove Theorem 4.8 by first applying Lemma 3.2 to
find sets before, for any appropriate set of edges E, selecting a maximal set of paths satisfying some
conditions. Lemma 4.6 will then show that we have as many paths as possible, and thus have the
cycle we need. However, for discussion it is more convenient to think about finding paths one by
one, each time connecting two of the edges in E and moving closer to the cycle. At the start, there
are many potential pairs of edges we could connect together, allowing us to apply Lemma 4.6 with
initially large sets X′ and Y ′. When we have connected most of the edges into a cycle we will need
to use longer paths, but we will still have used, on average, short paths.

Theorem 4.8. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d�
10−5 and n� n0. Let D be an n-vertex (d, ε)-pseudorandom digraph containing disjoint vertex sets
A and V so that

n log[2] n
log n · log[4] n � |A|� n( log[2] n)3

log n
(4.16)

and |V|� |A|/ log[6] n, and the following hold with m= n log[3] n/d log n.

(1) For each v ∈A∪V, d±(v,A)� 40d log[2] n/ log[4] n and d±(v,A∪V)� d( log[2] n)3.
(2) For each U ⊂A∪V with |U| =m, |N±(U,A)|� (1/2+ ε/8)|A|.

Then V is weakly connected in D[A∪V].

Proof. Let α= �|A|/5�, δ = 40d log[2] n/ log[4] n, �= d( log[2] n)3 and n′ = |A∪V|� 6a.
We will now check the conditions D1–D4 to apply Lemma 3.2 to D[A∪V] with n′ in place of

n, δ, �, m unchanged, 	= 5, a1 = · · · = a5 = α and ε/8 in place of ε. For sufficiently large n, we
have forD1–D3 in turn that
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(
ε

8

)2
· α2

|A| =�ε(α)=ω(1),

(
ε

8

)2
· α2

|A| · exp
(

δα

24|A|
)
=�ε

(
α · exp

(
d log[2] n
5 log[4] n

))
=ω(α)=ω(n′),

and

exp
(

δα

24|A|
)
= exp

(
�

(
d log[2] n
log[4] n

))
=ω(d2( log[2] n)6)=ω(�2).

Using (4.16), for D4, note that, as n′ � 6α � 6n( log[2] n)3/ log n, log (en′/m)=
O( log (d log[2] n)), and hence(

ε

8

)2
· α

103
=�ε(α)

(4.16)= �ε

(
n log[2] n

log n · log[4] n
)

=�ε

(
m · d log[2] n

log[3] n · log[4] n
)

=ω

(
m · log

(
en′

m

))
.

Having checked the appropriate conditions, by Lemma 3.2, for sufficiently large n, there are
disjoint vertex sets A′1,A2, B′1, B2, Z in A, each with size α, such that

K1 For each v ∈V(D) and B ∈ {A′1,A2, B′1, B2, Z},
d±(v, B)� d log[2] n/ log[4] n.

K2 For each U ⊂V(D) with |U| =m and B ∈ {A′1,A2, B′1, B2, Z},
|N±(U, B)|� (1/2+ ε/16)|B|.

Now take an arbitrary set E= {−→yixi : i ∈ [	]} of 	� |V|/2= o(a) vertex-disjoint edges in the com-
plete digraph with vertex set V . To show the lemma, it is sufficient to find a directed cycle in
D[A∪V(E)]+ E which contains the edges−−→y1x1, . . . ,−−→y	x	 in any order.

Let X= {x1, . . . , x	} and Y = {y1, . . . , y	}. Let G1 and G2 be the bipartite (undirected) graphs
with vertex set A1 :=A′1 ∪ X and A2 and the edges in D from A1 to A2 and A2 to A1 respectively,
but without their directions. Let H1 and H2 be the bipartite (undirected) graphs with vertex set
B1 := B′1 ∪ Y and B2 and the edges in D from B2 to B1 and B1 to B2 respectively. Let G have vertex
set A∪ X ∪ Y and consist of the edges inG1,G2,H1,H2 as well as the edges from A1 ∪A2 to Z and
Z to B1 ∪ B2, again without their directions. Let IX and IY respectively be the graphs with vertex
set X and Y which each have no edges. Let d0 = 10.

Claim 8. For sufficiently large n, (IX , X) is (d0,m)-extendable in (G1,G2) and (IY , Y) is (d0,m)-
extendable in (H1,H2).

Proof of Claim 8. We will show that (IX , X) is (d0,m)-extendable in (G1,G2). That (IY , Y) is
(d0,m)-extendable in (H1,H2) follows similarly. Note that G1 and G2 in Definition 4.2 hold as
IX and IY have no edges. Furthermore, from K2, we have, for each U ⊂A2 with |U|�m, that

|NG2 (U,A1) \ X| = |N+D (U,A′1)|� (1/2+ ε/16)|A′1|> |A1|/2,
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where we have used that |X| = 	= o(a). Thus, as, for each U ⊂A1 with |U|�m, we have, from
K2, that |NG1 (U,A2)| = |N+D (U,A2)|> |A2|/2, we have that G4 holds.

Let U ⊂A1 with 0< |U|� 2m. By K1, for sufficiently large n, each vertex in U has at least
d log[2] n/ log[4] n out-neighbours in A2 in D. Thus, as A2 ∩ X=∅, by A2 in the definition of
(d, ε)-pseudorandomness, we have

|NG1 (U,A2 \ X)| = |N+D (U,A2)|� d0|U|. (4.17)

Furthermore, for sufficiently large n, for each U ⊂A2 with 0< |U|� 2m, each vertex in U has at
least d log[2] n/ log[4] n out-neighbours in A′1 in D by K1. Thus, by A2 in the definition of (d, ε)-
pseudorandomness, we have

|NG2 (U,A1 \ X)| = |N+D (U,A′1)|� d0|U|. (4.18)

In combination, (4.17) and (4.18) show that G3 holds to complete the proof of the (d0,m)-
extendability of (IX , X) in (G1,G2).

We will now cover the edges−→yixi, i ∈ [	], using as few directed paths as possible, subject to some
conditions (L1–L4 below). We will then use Lemma 4.6 to show that in fact we have one directed
path. Applying Lemma 4.6 again will then allow us to complete this path into a cycle.

To govern the length of the covering paths, we use a function g defined as follows. For each
r ∈ [	], let

g(r)=
r∑

i=1

⌈
log

(
4m

	+ 1− i

)/
log (d0 − 1)

⌉
. (4.19)

As before, let IX and IY be the graphs with no edges and vertex sets X and Y respectively.
Now, for the smallest possible r ∈ [	], find vertex-disjoint directed paths Ri, i ∈ [r], in D[A∪

V(E)]+ E satisfying the following properties.

L1 Each edge−→yixi appears in some path Rj, j ∈ [r].
L2 In total, the paths Ri, i ∈ [r], have length at most 	+ 4 · g(	− r) and contain at most 	− r

vertices in Z.
L3 Each path Ri, i ∈ [r], starts with some vertex yj and ends with some vertex xj′ .
L4 Letting P andQ be the graphs of the edges in the pathsRi which appear (without their direc-

tions) in G1 ∪G2 and H1 ∪H2 respectively, (IX + P, X) is (d0,m)-extendable in (G1,G2)
and (IY +Q, Y) is (d0,m)-extendable in (H1,H2).

Note that the 	 paths consisting of just the edges −→yixi, i ∈ [	], satisfy these properties, so such an r
and such paths Ri, i ∈ [r], exist.

We will show, by contradiction, that r= 1. Let us assume then that r� 2. Let r′ = �r/2�� 1.
Let X′ be a set of r′ end vertices of some of the paths Ri, i ∈ [r], and let Y ′ be a set of r′ start vertices
of some of the paths Ri, i ∈ [r], so that no path Ri, i ∈ [r], has a vertex in both X′ and Y ′. This is
possible as 2r′ � r. Note that, by L3, X′ ⊂ X and Y ′ ⊂ Y . Furthermore, each vertex in X′ appears
only in some edge in E in the paths Ri, i ∈ [r], and therefore has degree 0 in IX + P. Similarly, each
vertex in Y ′ has degree 0 in IY +Q.

We will apply Lemma 4.6 to IX + P and IY +Q, so we need a bound on their size, which we get
from the following claim.

Claim 9. We have

g(	)=
	∑

i=1

⌈
log

(
4m

	+ 1− i

)/
log (d0 − 1)

⌉
= o(a).

https://doi.org/10.1017/S0963548320000140 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000140


922 R. Montgomery

Proof of Claim 9. For any positive integer s� 2 and each i ∈ [	], if
s= 
log (4m/(	+ 1− i))/ log (d0 − 1)�,

then

(d0 − 1)s−1 <
4m

	+ 1− i
� (d0 − 1)s,

and thus

	+ 1− 4m
(d0 − 1)s−1

< i� 	+ 1− 4m
(d0 − 1)s

.

Certainly, there are at most 1+ 4m/(d0 − 1)s−1 integers i which satisfy this.
Thus we have, as 	� |V|/2� |A|/ log[6] n= o(a), that

g(	) (4.19)=
	∑

i=1

⌈
log

(
4m

	+ 1− i

)/
log (d0 − 1)

⌉

� 	+

log (4m)/ log (d0−1)�∑

s=2

(
1+ 4m

(d0 − 1)s−1

)
· s

� 	+
⌈

log (4m)
log (d0 − 1)

⌉2
+ 4m ·

∞∑
s=2

s
(d0 − 1)s−1

� 	+ log2 n+ 4m ·O(1)
= o(a).

As 	= o(a), by Claim 9 and L2, we have

|IX + P| + |IY +Q|� 3	+
r∑

i=1
4
⌈
log

(
4m

	+ 1− i

)/
log (d0 − 1)

⌉
= o(a).

Let Z′ = Z \ (∪i∈[r] V(Ri)), noting that, by L2, K2 and the definition of G, and as 	= o(a), we
have, for sufficiently large n, that

K2′ For each U ⊂A1 ∪A2 and U ⊂ B1 ∪ B2 with |U| =m,

|NG(U, Z′)|� (1/2+ ε/16)|Z| − 	 > |Z′|/2.
Let k′ = 
log (4m/r)/ log (d0 − 1)�, so that

g(	− r+ 1)= g(	− r)+ k′, (4.20)

and |X′| = |Y ′| = r′ � r/2� 2m/(d0 − 1)k′ . Thus, as d0m= o(a) by (4.16), by Lemma 4.6, there are
some j, j′ ∈ [	], vertices x′ ∈A1 ∪A2 and y′ ∈ B1 ∪ B2, and paths P′ ⊂G1 ∪G2 and Q′ ⊂H1 ∪H2
such that the following hold.

M1 xj ∈ X′ and yj′ ∈ Y ′.
M2 P′ is an xj, x′-path with length at most k′, no vertices in (X ∪V(P)) \ {xj}, and for which

(IX + P+ P′, X) is (d0,m)-extendable in (G1,G2).
M3 Q′ is a yj′ , y′-path with length at most k′ and no vertices in (Y ∪V(Q)) \ {yj′ }, and (IY +

Q+Q′, Y) is (d0,m)-extendable in (H1,H2).
M4 NG(x′)∩NG(y′)∩ Z′ �= ∅.
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Note that, by definition of the (d0,m)-extendability, the ith edge of P′, counting from xj, is in
G2−(i mod 2). Thus, by the choice of the graphsG1 andG2, P′ is a directed xj, x′-path inD. Similarly,
Q′ is, when reversed, a directed yj′ , y′-path in D. UsingM4, and noting that, by the choice of G,

NG(x′)∩NG(y′)∩ Z′ =N+D (x
′)∩N−D (y′)∩ Z′,

select a vertex z ∈ Z′ such that P′z
←−
Q′ is a directed xjyj′-path in D.

Note that, byM1 and the choice of X′ and Y ′, xj is the end vertex of a path different to the path
of which yj′ is the start vertex. Assume, then, by relabelling if necessary, that xj is the end vertex
of Rr−1 and yj′ is the start vertex of Rr . We will show that the r− 1 paths R′i = Ri, i ∈ [r− 2], and
R′r−1 = Rr−1P′z

←−
Q′Rr satisfy L1–L4, contradicting the definition of r.

By M2 and M3, the choice of Z′, and as the paths Ri, i ∈ [r], are vertex-disjoint, the paths R′i,
i ∈ [r− 1], are vertex-disjoint. By L1 for the paths Ri, i ∈ [r], and as the paths R′i contain the paths
Ri, L1 holds for the paths R′i, i ∈ [r− 1]. Each path R′i shares a start vertex with some path Ri′ and
an end vertex with some (potentially different) path Ri′′ , and therefore, as L3 holds for the paths
Ri, i ∈ [r], L3 holds for the paths R′i, i ∈ [r− 1].

Note that P+ P′ andQ+Q′ are exactly the graphs of edges in the paths R′i which appear (with-
out direction) in G1 ∪G2 and H1 ∪H2 respectively. Thus L4 holds for the paths R′i, i ∈ [r− 1], by
M2 andM3.

The paths R′i, i ∈ [r− 1], contain one additional vertex in Z compared to the paths Ri, i ∈ [r], so
that, in total, they have at most 	− (r− 1) vertices in Z by L2 for the paths Ri. As P′ and Q′ have
length at most k′, we have, by L2 for the paths Ri again, that the paths R′i have total length at most

	+ 4g(	− r)+ 2k′ + 2� 	+ 4g(	− r)+ 4k′
(4.20)
� 	+ 4g(	− r+ 1).

Therefore L2 holds for the paths R′i, i ∈ [r− 1]. This completes the proof that L1–L4 hold for the
paths R′i, i ∈ [r− 1], contradicting the choice of r.

Therefore we have that r= 1. That is, with relabelling, there is a single path R inD[A∪V(E)]+
E containing each edge in E, with start vertex y1 and end vertex x2, with length at most o(a) (using
Claim 9) and at most 	 vertices in Z such that the following holds. If R′ and R′′ are the graphs of
the edges in the path R which appear (without direction) in G1 ∪G2 and H1 ∪H2 respectively,
then (IX + R′, X) and (IY + R′′, Y) are (d0,m)-extendable in (G1,G2) and (H1,H2) respectively.

Let Z′′ = Z \V(R), and note that, as |Z ∩V(R)|� 	= o(a), for sufficiently large n, by K2, we
have that

K2′′ For each U ⊂A1 ∪A2 and U ⊂ B1 ∪ B2 with |U| =m,

|NG(U, Z′′)|� (1/2+ ε/16)|Z| − 	 > |Z′′|/2.
Note that, R′ is a collection of paths in G1 ∪G2, where each path contains exactly one vertex in X,
which is furthermore one of its end-points. The other end-point of such a path has an in- or out-
neighbour in Z′′ in R. Similarly, R′′ is a collection of paths in H1 ∪H2, where each path contains
exactly one vertex in Y , which is one of its end-points. The other end-point of such a path has an
in- or out-neighbour in Z′′ in R.

Now R has the start vertex y1 and contains the edge−−→y1x1, so y1 is not in R′′. Similarly, R has the
end vertex x2 and contains the edge −−→y2x2, so x2 is not in R. Therefore x2 and y1 have degree 0 in
IX + R′ and IY + R′′, respectively.

Let k= 
log (2m)/ log (d0 − 1)�, so thatm/(d0 − 1)k � 1. By Claim 9, L2 and L4, and as d0m=
o(a), for sufficiently large n, by Lemma 4.6 applied with X′ = {x2} and Y ′ = {y1}, there are vertices
x′′ ∈A1 ∪A2 and y′′ ∈ B1 ∪ B2 and paths P′′ ⊂G1 ∪G2 and Q′′ ⊂H1 ∪H2 such that the following
hold.
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N1 P′′ is an x2, x′′-path with length at most k and no vertices in V(R) \ {x2}, and for which
(IX + R′ + P′′, X) is (d0,m)-extendable in (G1,G2).

N2 Q′′ is a y1, y′′-path with length at most k and no vertices in V(R) \ {y1}, and (IY + R′′ +
Q′′, Y) is (d0,m)-extendable in (H1,H2).

N3 NG(x′′)∩NG(y′′)∩ Z′ �= ∅.
Note that, by the definition of (d0,m)-extendability, the ith edge of P′′, counting from x2, is in
G2−(i mod 2). Thus, by the choice of the graphs G1 and G2, P′′ is a directed x2, x′′-path in D.
Similarly, Q′′ is, when reversed, a directed y′′, y1-path in D. Using N3, and noting that, by the
choice of G,

NG(x′′)∩NG(y′′)∩ Z′′ =N+D (x
′′)∩N−D (y′′)∩ Z′′,

select a vertex z′ ∈ Z′′ such that P′′z′
←−
Q′′ is a directed x2y1-path in D[A∪V].

Therefore RP′′z′
←−
Q′′ is a directed cycle in D[A∪V]+ E containing each edge in E, as req-

uired.

5. Covering vertices with directed paths
To cover most of the vertices with few directed paths in a pseudorandom digraph, we divide
the vertex set into random sets using the local lemma and then find matchings between the
sets. It would be nice to do this in one application of Lemma 3.2, but this is not possible.
Essentially, this would attempt to track the in- and out-degrees of all vertices into each ran-
dom set, which is too much for our methods. To see this, consider the following. We wish to
cover at least n/2 vertices in a pseudorandom digraph D using paths of length k=�( log n ·
log[5] n/ log[2] n), and therefore we take sets with size �(n/k) and find matchings between them.
Looking at D3, to apply Lemma 3.2 to V(D) in D to get a partition including a set of size
�(n/k), we need to have exp (�(δ(D)/k))� (�(D))2. However, if D is (d, ε)-pseudorandom with
d= 1 (as we must consider), so that δ(D)=�( log n) and �(D)=�( log n), this corresponds to
exp (�( log[2] n/ log[5] n))��( log2 n). Thus we cannot apply Lemma 3.2 in this manner. There
is also a very similar issue that the number of sets in the partition will be too large for D3 if we
take k sets of such a size.

However, these calculations are not far from working. Considering still d= 1, the calculations
above suggest we could use Lemma 3.2 to split the digraph into sets with size �(n log[2] n/k), as
then exp (�(δ(D) · log[2] n/k))� (�(D))2 can hold. By that lemma, this would give sets whose
induced digraph in D has maximum degree at most �(�(D) · log[2] n/k)=O( log[2] n) and mini-
mum degree at least �(δ(D) · log[2] n/k)=�(( log[2] n)2/ log[5] n). If we then apply Lemma 3.2
to such an induced digraph, some D′ say, to divide into log[2] n different sets, D3 requires
that exp (�(δ(D′)/ log[2] n))� (�(D′))2, which now (rather easily) does hold. Doing this to the
digraph induced on each set from the first application of Lemma 3.2 then gives k sets. Dividing
into two stages also solves the similar issue with the number of sets in the partition being too large.

This double application lies behind our proof of Lemma 5.1, though the proof is (only slightly)
more complicated, as for each vertex we need to track its in- and out-degree into the sets we want
to match it with.

Lemma 5.1. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d� 10−5
and n� n0. Suppose an n-vertex (d, ε)-pseudorandom digraph D contains a set B with |B|� n/2
such that the following hold with m= n log[3] n/d log n.

O1 For each v ∈V(D), d±(v, B)� d log n/8.
O2 For each U ⊂V(D) with |U| =m, |N±(U, B)|� (1/2+ ε/2)|B|.
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Then there is a collection of at most n log[2] n/(20 log n · log[5] n) directed paths (with single ver-
tices permitted) which partition B, so that any vertex v ∈V(D) has at most d( log[2] n)2 in- or
out-neighbours among their start and end vertices.

Proof. Let 	= n log[2] n/(50 log n · log[5] n) and k= �|B|/	�. Noting that k=�( log n ·
log[5] n/ log[2] n), take integers r and k1, . . . , kr such that log[2] n� ki � 2 log[2] n and∑

i∈[r] ki = k, and note that, for sufficiently large n, r� log n.
We will now check that the conditions D1–D4 hold for an application of Lemma 3.2 (using r

in place of 	 where it appears in that lemma, and ε/2 in place of ε) with ai = ki	 for each 2� i� r
and a1 = |B| − a2 − · · · − ar � k1	. Note that if these conditions hold for k1	, then they also hold
for a1 � k1	.

Let �= 106d log n, so that from the definition of a (d, ε)-pseudorandom digraph, we have
�±(D)��. Let δ = d log n/8, so that, for each v ∈V(D), d±(v, B)� δ by O1. For D1, note that,
for each i ∈ [r], (

ε

2

)2
· (ki	)

2

|B| =�ε

(
n

log2 n

)
=ω(r3).

Now, for each i ∈ [r], note that
δ(ki	)
24|B| �

d log n · (ki	)
192n

=�

(
dki log[2] n
log[5] n

)
=ω

(
d log[2] n

)
. (5.1)

ForD2, then, for each i ∈ [r] and sufficiently large n, we have(
ε

2

)2
· (ki	)

2

|B| · exp
(

δ(ki	)
24|B|

)
(5.1)
� ε2	2

4n
· exp (ω(d log[2] n))=�ε

(
n

log2 n
· log6 n

)
=ω(nr3).

Furthermore, forD3, for each i ∈ [r], as r� log n and �= 106d log n, we have

exp
(

δ(ki	)
24|B|

)
(5.1)= exp (ω(d log[2] n))=ω(r�2).

Finally, as log (en/m)=O( log (d log n)), we have, for each i ∈ [r],(
ε

2

)2
· ki	
103
=�ε

(
n( log[2] n)2

log n · log[5] n
)
=�ε

(
m · d( log[2] n)2

log[3] n · log[5] n
)
=ω

(
m log

(
en
m

))
.

Having checked the appropriate conditions, for sufficiently large n, by Lemma 3.2, we can take
disjoint sets B1, . . . , Br in B so that

P1 For each 2� i� r, |Bi| = ki	, and k1	� |B1| = |B| − a2 − · · · − ar � (k1 + 1)	.
P2 For each i ∈ [r] and v ∈V(D),

δki	
4|B| � d±(v, Bi)�

4�(ki + 1)	
|B| � 16�ki	

n
= o(d( log[2] n)2).

P3 For each U ⊂ B with |U| =m, we have |N±(U, Bi)|� (1/2+ ε/4)|Bi|.
The directed paths we find will all start and end in B1 ∪ Br , so that, by P2, for sufficiently large n,
every vertex in V(D) has at most d( log[2] n)2 in- and out-neighbours among these vertices.

Let D1 =D[B1 ∪ B2], Dr =D[Br−1 ∪ Br], and, for each 2� i� r− 1, let Di =D[Bi−1 ∪ Bi ∪
Bi+1]. For each i ∈ [r], let

ni = |Di|� 5ki	+ 	� n( log[2] n)2

log n
�m · d( log[2] n)2. (5.2)
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Let �̄= d( log[2] n)2/2, so that, by P2, for sufficiently large n, �(Di)� �̄ for each i ∈ [r].
Let d0 = d log[2] n/ log[4] n, so that exp (d0)=ω(ki�̄2) for each i ∈ [r]. Furthermore, for each

i ∈ [r], let δi = δki	/4|B|, so that, by P2, for each v ∈V(Di),

d±(v, Bi)�
δki	
4|B| = δi �

(d log n) · ki · 	
32n

� dki log[2] n
104 log[5] n

=ω(kid0). (5.3)

We will now check the conditions D1–D4 to apply Lemma 3.2 with ε/4 in place of ε to the set
Bi in the digraph Di, for each i ∈ [r], to find, in Bi, ki disjoint sets with size 	. Note that, for each
i ∈ [r], |Bi|� ki	+ 	. First, forD1, we have, for each i ∈ [r],(

ε

4

)2
· 	2

ki	+ 	
=�ε

(
	

ki

)
=ω

(
n

log2 n

)
=ω(k3i ).

Secondly, forD2, we have, for each i ∈ [r],
(

ε

4

)2
· 	2

ki	+ 	
· exp

(
	δi

24(ki	+ 	)

)
=�ε

(
	

ki
· exp

(
δi
48ki

))

(5.3)= �ε

(
n

log n · log[5] n exp (d0)
)

=�ε

(
n

log n
· ( log[2] n)6

)

(5.2)= ω(nik3i ).

Furthermore, forD3, we have, for each i ∈ [r],

exp
(

	δi
24(ki	+ 	)

)
(5.3)= �( exp (d0))=ω(ki�̄2).

Finally, forD4, for each i ∈ [r], by (5.2), we have log (eni/m)=O( log (d log[2] n)). Thus
(

ε

4

)2
· 	

103
=�ε

(
n log[2] n

log n · log[5] n
)
=�ε

(
m · d log[2] n

log[5] n · log[3] n
)
=ω

(
m log

(
eni
m

))
.

Having checked the appropriate conditions, for sufficiently large n, by Lemma 3.2 applied to
the set Bi in the digraph Di, for each i ∈ [r], we can find in Bi disjoint sets Bi,1, . . . , Bi,ki so that the
following hold.

Q1 For each i ∈ [r] and j ∈ [ki], |Bi,j| = 	.
Q2 For each i ∈ [r], j ∈ [ki] and v ∈V(Di), d±(v, Bi,j)� δi	/4(ki	+ 	)� d0 (using (5.3)).
Q3 For each i ∈ [r], j ∈ [ki] and U ⊂V(Di) with |U| =m, we have

|N±(U, Bi,j)|� (1/2+ ε/8)|Bi,j|.
Note that, for 2� i� r, the sets Bi,1, . . . , Bi,ki partition Bi, and the sets B1,1, . . . , B1,k1 cover all but
at most 	 vertices in B1.

Recall that
∑

i∈[r] ki = k. Relabelling the sets B1,1, . . . , B1,k1 , B2,1, . . . , B2,k2 , . . . , Br,1, . . . , Br,kr
as C1, . . . , Ck respectively, from Q1–Q3, we have that |Ci| = 	 for each i ∈ [k] and the following
hold.

R1 For each 1� i� k− 1 and v ∈ Ci, d+(v, Ci+1)� d0.
R2 For each 2� i� k and v ∈ Ci, d−(v, Ci−1)� d0.
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R3 For each 1� i� k− 1 and U ⊂ Ci withm� |U|� 
	/2�, we have
|N+(U, Ci+1)|� (1/2+ ε/8)	� |U|.

R4 For each 2� i� k and U ⊂ Ci withm� |U|� 
	/2�, we have
|N−(U, Ci−1)|� (1/2+ ε/8)	� |U|.

By R1, R2 and A2 in the definition of (d, ε)-pseudorandomness, the following hold.

R1′ For each 1� i� r− 1 and U ⊂ Ci with |U|�m, |N+(U, Ci+1)|� |U|.
R2′ For each 2� i� r and U ⊂ Ci with |U|�m, |N−(U, Ci−1)|� |U|.

Thus, for each i ∈ [r− 1], by R1′, R2′, R3, R4 and Proposition 2.9 applied to the bipartite graph
between Ci and Ci+1 with (undirected) edges those directed from Ci to Ci+1 inD, there is a match-
ing from Ci into Ci+1 in D. Combining such matchings gives 	 vertex-disjoint paths covering
C1 ∪ · · · ∪ Ck. These paths start in B1 and end in Br , and cover all the vertices in B except for
|B1| − k1	� 	 vertices in B1. Taking these paths with the uncovered vertices in B1, to get at most
2	 paths, thus gives the required partition of B.

We wish to cover most of our digraph with few paths, all of which end in a certain subset B2,
in order to have B2 in the definition of a good partition. To do this, we use Lemma 5.1 to cover
the vertices outside of B2 with few paths, and then use Lemma 3.2 in the same way as before to
find directed paths covering B2. By matching the end vertices of the paths outside B2 into some of
the start vertices of the paths in B2, and similarly attaching the start vertices of the paths outside
B2 into some of the end vertices of the paths in B2, we will get a set of paths which start and end
in B2.

Lemma 5.2. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d� 10−5
and n� n0. Suppose an n-vertex (d, ε)-pseudorandom digraph D contains disjoint sets B1 and B2
such that the following hold with

d0 = d log[2] n
log[4] n

, 	= n log[2] n
log n · log[5] n and k= log[2] n.

P1 |B1|� n/2 and |B2| = k	.
P2 For each v ∈V(D), d±(v, B1)� d log n/8 and, for each U ⊂V(D) with |U| =m,

|N±(U, B1)|� (1/2+ ε/2)|B1|.
P3 For each v ∈V(D), 4d0k� d±(v, B2)� d( log[2] n)2 and, for each U ⊂V(D) with |U| =m,

|N±(U, B2)|� (1/2+ ε/4)|B2|.
Then, for any set V ⊂V(D) \ (B1 ∪ B2) with |V|� ε|B1|/20− 2 and u, v ∈V(D) \ (V ∪ B1 ∪ B2),
there is a set of at most 	 directed paths with length at least 1 which partition V ∪ B1 ∪ B2 ∪ {u, v},
each start and end in B2, and one of which contains−→uv.

Proof. Let B=V ∪ B1 ∪ {u, v} and note that, by P2, as |V ∪ {u, v}|� ε|B|/20, we have the
following.

S1 For each U ⊂V(D) with |U| =m, we have
|N±(U, B)|� (1/2+ ε/2)|B1|� (1/2+ ε/4)|B|.
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S2 For each v ∈V(D), we have d±(v, B)� d log n/8.

Thus, by S1, S2, P1 and Lemma 5.1, there is a collection of directed paths P1, . . . , Pr , for some
r� 	/20, in D which partition B (allowing single vertices as paths) and so that every vertex in D
has at most d( log[2] n)2 in- and out-neighbours among their start and end vertices. Let Pr+1 be
the path with length 1 consisting of the edge−→uv. For each i ∈ [r+ 1], label vertices so that Pi is an
xi, yi-path (noting that we may have xi = yi). Let X= {x1, . . . , xr+1} and Y = {y1, . . . , yr+1}, and
letD′ be the digraph on the vertex set B2 ∪ X ∪ Y whose edges are the edges inD[B2 ∪ X ∪ Y] with
at least one vertex in B2.

Note that every vertex has at most ( log[2] n)2 + 2 in- or out-neighbours in X ∪ Y . Combining
this with P3, letting �̄= d( log[2] n)3, we have, for sufficiently large n, that �±(D′)� �̄. Let k1 =
log[2] n, so that, log[2] n� k1 � 2 log[2] n, and, by definition of k, k1 = k. Note that, for each v ∈
V(D′), d±(v, B2)� 4k1d0 by P3. Let n1 = |D′|, so that n1 � 2k1	. The conditions D1–D4 for an
application of Lemma 3.2 to D′ to partition B2 into k sets with size 	 hold very similarly to the
same conditions in the second application of this lemma in the proof of Lemma 5.1 (from (5.2)
onwards); all that differs is a factor of 50 in the value of 	.

Thus, for sufficiently large n, by Lemma 3.2 there is a partition C1 ∪ · · · ∪ Ck of B2 such that
|Ci| = 	 for each i ∈ [	], and the following hold.

T1 For each i ∈ [	] and U ⊂V(D′) with |U| =m, we have |N±(U, Ci)|� (1/2+ ε/8)|Ci|.
T2 For each v ∈V(D′) and i ∈ [	], we have d±(v, Ci)� 4kd0 · 	/4k	= d0.

Similarly to the reasoning in the proof of Lemma 5.1, for each i ∈ [k− 1], there is a matching
from Ci into Ci+1. Combine these matchings to get directed paths Qi, i ∈ [	], which cover B2.
Similarly to the reasoning in the proof of Lemma 5.1, by T1 and T2, for each U ⊂ X we have
|N−(U, Ck)|� |U|, and for each U ⊂ Y we have |N+(U, C1)|� |U|. Note that here it is important
that |X|� |Ck|/2 and |Y|� |C1|/2. Thus, as Hall’s matching condition is satisfied, we can find
vertex-disjoint edges ei, i ∈ [r+ 1], directed from Y intoC1, and vertex-disjoint edges fi, i ∈ [r+ 1]
directed fromCk intoX. Renaming if necessary, assume that, for each i ∈ [r+ 1], xi ∈ fi and yi ∈ ei.

Note that combining the paths Qi, i ∈ [	], and paths Pi + ei + fi, i ∈ [r+ 1], gives a collection
of at most 	 directed paths and cycles in D which cover V ∪ B1 ∪ B2 ∪ {u, v} and so that each path
starts and ends in B2, each cycle contains some path Qi, and as the edge−→uv is contained in Pr+1, it
is contained in one path or cycle. Breaking an edge in someQi in each cycle then gives the required
set of paths.

6. Finding an (�, r)-good partition
To find a good partition of a pseudorandom digraph, we first apply Lemma 3.2 twice to find the
necessary sets for the good partition and record the properties we get, as follows.

Lemma 6.1. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d� 10−5
and n� n0 with

k= log[2] n, 	= n log[2] n
log n · log[5] n , d0 = d log[2] n

log[4] n
, m= n log[3] n

d log n
, r= n log[2] n

log n · log[6] n .

Every n-vertex (d, ε)-pseudorandom digraph D has a partition V(D)=A∪ B1 ∪ B2 ∪ R1 ∪ R2 ∪
R3 ∪ R4 such that the following hold.
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U1 |A| = εn/40, |B2| = k	 and |R1| = |R2| = |R3| = |R4| = r.
U2 For each v ∈V(D), d±(v,A)� d( log n)3/4 and, for each U ⊂V(D) with |U| =m,

|N±(U,A)|� (1/2+ ε/2)|A|.
U3 For each v ∈V(D), d±(v, B1)� d log n/8 and, for each U ⊂V(D) with |U| =m,

|N±(U, B1)|� (1/2+ ε/2)|B1|.
U4 For each v ∈V(D), 4d0k� d±(v, B2)� d( log[2] n)2 and, for each U ⊂V(D) with |U| =m,

|N±(U, B2)|� (1/2+ ε/4)|B2|.
U5 For each v ∈ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 and i ∈ [4], 40d0 � d±(v, Ri)� d( log[2] n)2 and, for

each U ⊂ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 with |U| =m,
|N±(U, Ri)|� (1/2+ ε/4)|Ri|.

Proof. Wewill apply Lemma 3.2 twice, again so that the second applicationmay be with a stronger
maximum degree condition.

We will check the conditions D1–D4 for an application of Lemma 3.2 to find a partition
V(D)=A∪ B1 ∪ B′2 ∪ B′3. Let

a1 = εn
40

, a3 = (1− ε/5)k	, a4 = εk	
5
+ 4r and a2 = n− a1 − a3 − a4 �

n
2
, (6.1)

where the last inequality follows for sufficiently large n. Let δ = d log n and �= 106d log n. From
the definition of (d, ε)-pseudorandomness, we have that δ±(D)� δ and �±(D)��.

Note that a1, a2, a3 � a4, so that we need only checkD1–D4 for a4. First, forD1, we have

ε2a24
n
=�ε

(
n

log2 n

)
=ω(1). (6.2)

Note that k	δ/n=ω(d log[2] n). Thus, forD2, we have

ε2a24
n
· exp

(
a4δ
24n

)
(6.2)= �ε

(
n

log2 n
· exp

(
εk	δ
103n

))
= n

log2 n
· exp (ω(d log[2] n))=ω(n).

Furthermore, forD3, we have

exp
(
a4δ
24n

)
� exp

(
εk	δ
103n

)
= exp (ω(d log[2] n))=ω(d2 log2 n)=ω(�2).

Finally, we have that log (en/m)=O( log (d log n)), so that, forD4,

ε2a4
103
=�ε(k	)=�ε

(
n( log[2] n)2

log n · log[5] n
)
=�ε

(
m · d( log[2] n)2

log[3] n · log[5] n
)
=ω

(
m · log

(
en
m

))
.

As a1 = εn/40, a1δ/4n= εd log n/160=ω(d( log n)3/4). As a2 � n/2, a2δ/4n� d log n/8.
Having checked the appropriate conditions, for sufficiently large n, by Lemma 3.2, V(D) has

a partition A∪ B1 ∪ B′2 ∪ B′3 so that |A| = a1 = εn/40, |B1| = a2, |B′2| = a3 = (1− ε/5)k	, |B′3| =
a4 = εk	/5+ 4r, and U2 and U3 hold along with the following.

V1 For each v ∈V(D), a3δ/4n� d±(v, B′2)� 4a3�/n, and, for each U ⊂V(D) with |U| =m,

|N±(U, B′2)|� (1/2+ ε/2)|B′2|.
V2 For each v ∈V(D), a4δ/4n� d±(v, B′3)� 4a4�/n, and, for each U ⊂V(D) with |U| =m,

|N±(U, B′3)|� (1/2+ ε/2)|B′3|.
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Let D′ =D[B′2 ∪ B′3]. Let n′ = |D′| = a3 + a4 = k	+ 4r� 2k	, for sufficiently large n, and let �̄=
d( log[2] n)2. Note that

4(a3 + a4)�
n

� 8k	�
n
=O

(
d( log[2] n)2

log[5] n

)
= o(�̄). (6.3)

Thus, by V1 and V2, for sufficiently large n we have �(D′)� �̄. Using (6.1), let

δ′ = a4δ
4n

� εk	δ
20n
=�ε

(
k	 · d log

[2] n
r log[6] n

)
=�ε

(
k	
r
· d0 log

[4] n
log[6] n

)
=ω

(
k	
r
· d0

)
. (6.4)

By V2, for each v ∈V(D′), we have d±(v, B′3)� δ′.
We will now check the conditions D1–D4 to apply Lemma 3.2 to D′ to get 4 sets, R1, R2, R3

and R4 in B′3, each with size r. First, forD1, as n′ � 2k	, we have(
ε

2

)2
· r

2

n′
=�ε

(
n

log n

)
=ω(1).

Next, forD2, we have, as n′ � 2k	,(
ε

2

)2
· r

2

n′
· exp

(
rδ′

24n′

)
=�ε

(
n′ ·

(
r
k	

)2
· exp

(
rδ′

48k	

))

(6.4)= �ε

(
n′ ·

(
1

log[2] n

)2
· exp (ω(d0))

)

=ω(n′).
Furthermore, forD3, we have

exp
(

rδ′

24n′

)
� exp

(
rδ′

24k	

)
(6.4)= exp (ω(d0))=ω(�̄2).

Finally, we have that log (en′/m)� log (2ek	/m)=O( log (d log[2] n)), so that(
ε

2

)2
· r
103
=�ε

(
n log[2] n

log n · log[6] n
)
=�ε

(
m · d log[2] n

log[3] n · log[6] n
)
=ω

(
m · log

(
en′

m

))
.

Having checked the appropriate conditions, by Lemma 3.2 and (6.4), for sufficiently large n,
there are disjoint sets R1, R2, R3, R4 in B′3 so that the following holds.

V3 For each v ∈ B′2 ∪ B′3 and i ∈ [4], d±(v, Ri)� 40d0, and, for eachU ⊂ B′2 ∪ B′3 with |U| =m,

|N±(U, Ri)|� (1/2+ ε/4)|Ri|.
Let B2 = (B′2 ∪ B′3) \ (R1 ∪ R2 ∪ R3 ∪ R4), so that |B2| = a3 + a3 − 4r= k	. Note that we have cho-
sen our set sizes so that U1 holds. Note further that B′2 ⊂ B2, so that, by V1, for each U ⊂V(D)
with |U| =m,

|N±(U, B2)|� (1/2+ ε/2)|B′2| = (1/2+ ε/2)(1− ε/5)k	� (1/2+ ε/4)|B2|. (6.5)
By V1, V2, (6.3) and (6.4), and for each v ∈V(D) we have, for sufficiently large n, 4d0k�
d±(v, B2)� �̄. Therefore, in combination with (6.5), we have that U4 holds.

Note that, for each v ∈ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 =V(D′) and i ∈ [4], we have d±(v, Ri)� �̄=
d( log[2] n)2. Therefore, with V3, we have that U5 holds. This completes the proof that U1–U5
hold, so we have found the partition as required.

We now combine the work in the last few sections to find good partitions.
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Lemma 6.2. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d� 10−5.
Every (d, ε)-pseudorandom digraph D with at least n0 vertices has a good partition.

Proof. Let

k= log[2] n, 	= n log[2] n
log n · log[5] n , d0 = d log[2] n

log[4] n
, m= n log[3] n

d log n
, r= n log[2] n

log n · log[6] n .

Let D be an n-vertex (d, ε)-pseudorandom digraph. Letting n be sufficiently large, by Lemma 6.1
we can find a partition V(D)=A∪ B1 ∪ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 such that U1–U5 hold. By
Theorem 4.7, U1 and U2, and observing that

r=O
( |A| · log[2] n
log n · log[6] n

)
= o

( |A| · log[2] n
log n · log[7] n

)
,

we have, for sufficiently large n, that B1 holds in Definition 2.6. By Lemma 5.2, U3 and U4,
and as |A∪ R1 ∪ R2 ∪ R3 ∪ R4|� εn/40+ 4r, for sufficiently large n we have that B2 holds in
Definition 2.6.

UsingU5 andA2, by the simple reasoning at the end of the proof of Lemma 5.1, the conditions
in Proposition 2.9 hold for the edges directed from Ri into Rj for any j �= i. Therefore we can find
matchingsM1,M2 andM3 from R2 into R1, R2 into R3 and R4 into R3 in D, respectively.

Let f : R1→ R4 come from the matchings M1, M2 and M3, and suppose each vertex v ∈ R1 is
merged into f (v) in D to get the digraph D′ (as in B4). Let R be the set of merged vertices in D′.
For each v ∈ R, let v− ∈ R1 and v+ ∈ R4 be such that v− is merged into v+ to create v. For each
U ⊂V(D′), let

U− = (U \ R)∪ {v− : v ∈U ∩ R} and U+ = (U \ R)∪ {v+ : v ∈U ∩ R}.
By U4 and U5, we have that the following hold.

W1 For each v ∈ R∪ B2, we have d+D′(v, R)= d+D (v+, R1)� 40d0 and d−D′(v, R)= d−D (v−, R4)�
40d0.

W2 For each v ∈ R∪ B2, we have
d+D′(v, R∪ B2)= d+D (v

+, R1 ∪ B2)� 2d( log[2] n)2,
d−D′(v, R∪ B2)= d−D (v

−, R4 ∪ B2)� 2d( log[2] n)2.

Thus �±(D′[R∪ B2])� 2d( log[2] n)2.
W3 For each U ⊂ R∪ B2, with |U| =m, we have

|N+D′(U, R)|� |N+D (U+, R1)|� (1/2+ ε/8)r,
|N−D′(U, R)|� |N−D (U−, R4)|� (1/2+ ε/8)r.

Note that

	= r log[6] n
log[5] n

= o
(

r
log[6] n

)
.

Thus, for sufficiently large n, for any V ⊂ B2 with |V|� 2	, by Theorem 4.8, W1, W2 and W3,
V is weakly connected in D′[R∪V]. Therefore B3 and B4 hold in Definition 2.6.

Therefore B1–B4 hold for the partition V(D)=A∪ B1 ∪ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4, and thus D
has an (	, r)-good partition.

Theorem 2.2 now follows immediately from Lemmas 2.7 and 6.2.
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7. Pseudorandomness of random digraphs
In this section we study the pseudorandom properties of digraphs in the random digraph process,
allowing us then to apply Theorem 2.2 to prove Theorem 1.3. This section is organized as follows.
First, in Section 7.1, we give some simple results on maximum and minimum in- and out-degree,
to later show that A1 resiliently holds in Definition 2.1. Next, in Section 7.2, with A4 in mind,
we give a simple result concerning the edges between sets. Then, in Section 7.3, we prove a result
showing that expansion will follow from minimum degree conditions (Lemma 7.6), which will
allow us to show that A2 and A3 hold. In Section 7.4 we then study the vertices with low in-
and out-degree in the digraphs early in the random digraph process. After recording together all
the properties we use, in Section 7.5 we then prove the resilience of Hamiltonicity in the ran-
dom digraph process needed for Theorem 1.3. Finally, in Section 7.6, we study the limits of the
resilience of Hamiltonicity to complete the proof of Theorem 1.3.

It will often be convenient to show that properties are likely in D(n, p), before inferring that
these properties are also likely in the random digraph process. Let Dn,M be the random digraph
with n vertices and M edges, chosen uniformly at random from all such digraphs. Note that, in
the n-vertex random digraph process D0,D1, . . . ,Dn(n−1), for each 0�M� n(n− 1), DM is dis-
tributed as Dn,M . We use the following standard proposition to relate Dn,M and D(n, p) (see e.g.
[3, 26]).

Proposition 7.1. Let P be a digraph property and let p=M/n(n− 1). If M=M(n)→∞ is any
function such that M(1− p)→∞, then, for sufficiently large n,

P(Dn,M satisfies P)� 5
√
M · P(D(n, p) satisfies P).

7.1 Maximum andminimum degree
We will use the following standard result, which implies that, almost surely, each digraph DM in
the n-vertex random digraph process withM� n( log n− log[2] n) is not Hamiltonian.

Lemma 7.2. see [10]. If M= n( log n− log[2] n), then D=Dn,M almost surely satisfies δ+(D)= 0
or δ−(D)= 0.

When M� 50n log n, each digraph DM in the random digraph process will likely have well-
bounded minimum and maximum degrees, as follows.

Lemma 7.3. In almost every n-vertex random digraph process D0,D1, . . . ,Dn(n−1), if M�
50n log n, then δ±(DM)�M/2n and �±(DM)� 2M/n.

Proof. For eachM� 50n log n, let pM =M/n(n− 1) and D̄M =D(n, pM). For each v ∈V(D) and
j ∈ {+,−},

E(djD̄M
(v))= (n− 1)pM =M/n� 50 log n,

so that, by Lemma 2.8,

P(djD̄M
(v)<M/2n or djD̄M

(v)> 2M/n)� 2 exp (− 50 log n/12)= o(n−4).

Therefore, by a union bound, with probability 1− o(n−3), δ±(D̄M)�M/2n and �±(D̄M)�
2M/n.

Now, for 50n log n�M� n(n− 1)− log n, by Proposition 7.1, with probability 1− o(n−2),
δ±(DM)�M/2n and �±(DM)� 2M/n. Thus, by a union bound, this property almost surely
holds for each 50n log n�M� n(n− 1)− log n in the random digraph process. Finally, note
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that, for eachM� n(n− 1)− log n, δ±(DM)� n− 1− log n�M/2n, for sufficiently large n, and
�±(DM)� n− 1� 2M/n.

We also need a maximum in- and out-degree condition earlier in the random digraph process,
as follows.

Lemma 7.4. For each n log n/2�M� 50n log n, if D=Dn,M, then P(�±(D)� 100M/n)= 1−
o(n−2). Furthermore, then, in almost every n-vertex random digraph process D0,D1, . . . ,Dn(n−1),
every digraph DM with M� n log n/2 has �±(D)� 100M/n.

Proof. The required bounds on the maximum in- and out-degree almost surely hold for each
M� 50n log n by Lemma 7.3. For each n log n/2�M� 50n log n, let pM =M/n(n− 1) and
D̄M =D(n, pM). For each v ∈V(D) and j ∈ {+,−}, we have

P

(
djD̄M

(v)� 100M
n

)
�

(
n− 1

100M/n

)
p100M/n
M �

(
enpM

100M/n

)100M/n
�

(
e
50

)100M/n
= o(n−4).

Therefore, with probability 1− o(n−3), �±(D̄M)� 100M/n. Thus, by Proposition 7.1, for
each n log n/2�M� 50n log n, with probability 1− o(n−2), �±(Dn,M)� 100M/n, as required.
Finally, by a union bound, this property almost surely holds for each n log n/2�M� 50n log n
in the random digraph process.

7.2 Edges between sets
We will use the following simple proposition on the typical number of edges between sets in
D(n, p).

Proposition 7.5. Let ε > 0, p� 1/n and m= log[4] n/p. Then, with probability 1− o(n−3) in
D(n, p), if sets A, B⊂V(DM) satisfy |A|�m/2 and |B|� n/10, then

(1− ε)p|A||B|� e±(A, B)� (1+ ε)p|A||B|.

Proof. For each such A and B, and each j ∈ {0, 1}, ej(A, B) is a binomial random variable with
expectation p|A||B|. (Note that, even when A and B are not disjoint, each edge is counted exactly
once in ej(A, B).) Thus, by Lemma 2.8, we have

P(|ej(A, B)− p|A||B||> εp|A||B|)� 2 exp (− ε2p|A||B|/3)
� 2 exp (− ε2n log[4] n/60)
= 2 exp (−ω(n)).

There are at most 2(2n)2 choices for j ∈ {0, 1} and such sets A and B. Thus, by a union bound, the
property in the proposition holds with probability 1− o(n−3).

7.3 Expansion fromminimum degree conditions
We now prove a lemma used to show both A2 and A3 in Definition 2.1. The proof follows a
section of the proof by Alon, Krivelevich and Sudakov of Lemma 3.1 in [2].

Lemma 7.6. Let

p� log n
10n

, d= p(n− 1)
2 · 103 log n � 10−5, m= n log[3] n

d log n
and f (n)= o( log[3] n).
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Then, with probability 1− o(n−3), in D=D(n, p), for any two disjoint sets A, B⊂ [n], with |A|�
4m, and any integer k with 1� k� n/8m, and any j ∈ {+,−}, if ejD(A, B)� dk|A| log[2] n/f (n),
then |B|� k|A|.

Proof. For each k ∈ [n/8m], let dk = dk log[2] n/f (n). IfD does not have the property in the lemma
then there is some k� n/8m, j ∈ {+,−} and two disjoint sets A, B⊂V(D), where |A|� 4m, |B| =
k|A| and ejD(A, B)� dk|A| (adding vertices to B if necessary to get equality). For each r ∈ [4m], let
pr,k be the probability no two such sets occur with |A| = r� 4m (noting that this does not depend
on j). Then

pr,k �
(
n
r

)(
n
kr

)(
kr2

dkr

)
pdkr

�
(
en
r

(
en
kr

)k(ekrp
dk

)dk)r

�
((

en
r

)2k(ekrp
dk

)dk)r

=
((

e2knp
dk

)2k(ekrp
dk

)dk−2k)r
. (7.1)

Now
e2knp
dk
= e2np · f (n)

d log[2] n
=O

(
log n · f (n)
log[2] n

)
= o( log n). (7.2)

Furthermore,

ekrp
dk
= erp · f (n)

d log[2] n
=O

(
r log n · f (n)
n log[2] n

)
= o

(
r · log[3] n · f (n)
md · log[2] n

)
= o

(
r

md · ( log[2] n)1/2
)
. (7.3)

For sufficiently large n, we have dk � 4k. Therefore, by (7.1), (7.2) and (7.3), we have, for
sufficiently large n,

pr,k �
(
log2k n

(
r

md · ( log[2] n)1/2
)dk/2)r

=
(
log2 n

(
r

md · ( log[2] n)1/2
)dk/2k)kr

. (7.4)

If r <
√
n, then r/md=O( log n/

√
n), and hence, as dk =ω(k) and kr� 1, pr,k = o(n−4).

If r�√n, then, as r� 4m, we have, for large n, by (7.4), that

pr,k �
(
log2 n

(
4

d · ( log[2] n)1/2
)d log[2] n/2f (n))kr

�
(
log2 n · exp

(
−d log

[2] n · log[3] n
8f (n)

))kr
.

As d=�(1) and f (n)= o( log[3] n), we have that, for sufficiently large n, pr,k � 2−kr � 2−k
√
n =

o(n−4).
Therefore 2

∑
r,k pr,k = o(m · (n/m) · n−4)= o(n−3). Thus the probability for some j, r and k

that such a pair A, B exists is o(n−3).

7.4 Low-degree vertices
We will treat vertices with low in-degree or low out-degree separately. We will use that, typically,
no vertex will have both low in-degree and low out-degree in the digraphs we consider.

https://doi.org/10.1017/S0963548320000140 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000140


Combinatorics, Probability and Computing 935

Proposition 7.7. In almost every n-vertex random digraph process D0,D1, . . . ,Dn(n−1), if M�
9n log n/10, then, for all v ∈V(DM), d+DM

(v)+ d−DM
(v)� 2M/103n.

Proof. Note that in almost every random digraph process this property holds for M� 50n log n
by Lemma 7.3, so we need only show that this almost surely holds for every 9n log n/10�M�
50n log n.

Let p= 7 log n/8n, D=D(n, p) and d= log n/10. Note that 20� e3. For each v ∈V(D), the
probability that d+D (v)+ d−D (v)� d is at most

d∑
i=0

(
2n− 2

i

)
pi(1− p)2n−2−i �

d∑
i=0

(
2enp
i

)i
e−p(2n−2−i)

� e−pn(2−o(1)) ·
d∑

i=0

(
2e log n

i

)i

� (d+ 1) · e−pn(2−o(1)) ·
(
2e log n

d

)d

� 2d · e−(7/4−o(1)) log n · (20e)log n/10
� 2d · e−(7/4−2/5−o(1)) log n
= o(n−1).

Thus, by a union bound, almost surely, for each v ∈V(D), d+D (v)+ d−D (v)� d.
An easy application of Lemma 2.8 demonstrates that D almost surely has at most 9n log n/10

edges. Furthermore, the property – P say – that, for each v ∈V(D), d+D (v)+ d−D (v)� d, is an
increasing property. Thus we have, withM0 = 9n log n/10,

1− o(1)= P(D(n, p) ∈P)� P(e(D(n, p))>M0)+ P(Dn,M0 ∈P)= o(1)+ P(Dn,M0 ∈P).

Hence we have P(Dn,M0 ∈P)= 1− o(1). Therefore, almost surely, if M0 = 9n log n/10�M�
50n log n, then, for every v ∈V(DM), d+DM

(v)+ d−DM
(v)� d= log n/10� 2M/103n.

We will collect the vertices of low in- or out-degree in the random digraph into a set S. We
use the following definition to record that there will typically be no vertices in S which are close
together (in a graph-theoretic sense).

Definition 7.8. For a vertex set S in a digraph D, an S-path is a path with length at most 4 in D
(with any orientation on the edges) starting and ending in S. An S-cycle is a cycle with length at
most 4 in D (with any orientations on the edges, and a cycle with length 2 permitted if it consists
of two distinct edges) which contains a vertex in S.

We wish to show that, in almost every n-vertex random digraph process, each digraphDM with
9n log n/10�M� 50 log n has no S-paths or S-cycles, when S is the set of vertices with low in-
or out-degree, and S is a small set (see Lemma 7.11). To do this, we cannot show this is likely for
each such digraph and then take a union bound, as the property is not sufficiently likely. Instead,
we start by showing that this property is likely in a certain random digraph D(n, p).

Lemma 7.9. If p= 7 log n/8n, then, almost surely, the following holds for D=D(n, p) with

S= {v ∈V(D) : d+(v)< log n/20 or d−(v)< log n/20}.
There are no S-paths or S-cycles and |S|� n1/3.
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Proof. Let d= log n/20. Note that 20� e3. We have

E|S|� n ·
d∑

i=0
2
(
n− 1
i

)
pi(1− p)n−1−i

� 2n(d+ 1) ·
(
enp
d

)d
· e−(1−o(1))np

� n log n · (20e)d · e−(7/8−o(1)) log n
� log n · e4d · e(1/8+o(1)) log n
= log n · e(1/5+1/8+o(1)) log n
= o(n1/3).

Thus, by Markov’s inequality, we almost surely have that |S|� n1/3.
Let X be the number of S-paths in D(n, p). Then

EX �
(
n
2

) 3∑
k=0

(2p)k+1nk ·
2d∑
i=0

4
(
2n
i

)
pi(1− p)2n−5−i

� n(2np)4 · (2d+ 1) · 4
(
2enp
2d

)2d
e−(2−o(1))np

=O(n log5 n · (20e)2de−(2−o(1))np)
=O(n log5 n · exp (8d− (7/4− o(1)) log n))
=O(n log5 n · exp (5 log n/4))
= o(1).

Thus, almost surely, there are no S-paths in D.
Let Y be the number of S-cycles in D(n, p). Then, similarly,

EY � n ·
3∑

k=1
(2p)k+1nk ·

d∑
i=0

2
(
n
i

)
pi(1− p)n−4−i

=O
(
(np)4 · (d+ 1) ·

(
enp
d

)d
· e−(1−o(1))np

)

=O( log5 n · (20e)d · e−(7/8−o(1)) log n)
=O( log5 n · exp (4d− (7/8− o(1)) log n))
= o(1).

Thus, almost surely, there are no S-cycles in D.

Lemma 7.9 shows only that a property exists with probability 1− o(1), so we cannot use
Proposition 7.1 as we did before. However, we can easily show that the property holds for some
useful digraph in the random digraph process, as follows.

Corollary 7.10. There exists some M0 =M0(n) with n log n/2�M0 � 9n log n/10 such that the
following almost surely holds for D=Dn,M0 with

S= {v ∈V(D) : d+(v)< log n/20 or d−(v)> log n/20}.
There are no S-paths or S-cycles and |S|� n1/3.
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Proof. Let p= 7 log n/8n, N0 = n log n/2 and N1 = 9n log n/10. By a simple application of
Lemma 2.8, we have that, almost surely, N0 � e(D(n, p))�N1. Thus, if P is the property of
digraphs satisfying the condition in the corollary, then

P(D(n, p) ∈P)=
n(n−1)∑
M=0

P(Dn,M ∈P) · P(e(D(n, p)=M)

� P(e(D(n, p)) /∈ (N0, . . . ,N1))+
N1∑

M=N0

P(Dn,M ∈P) · P(e(D(n, p))=M)

� o(1)+
(

sup
N0�M�N1

P(Dn,M ∈P)
)
·

N1∑
M=N0

P(e(D(n, p))=M)

� o(1)+ sup
N0�M�N1

P(Dn,M ∈P).

Thus, as P(D(n, p) ∈P)= 1− o(1), we must have

sup
N0�M�N1

P(Dn,M ∈P)= 1− o(1).

ChoosingM0 to maximize P(Dn,M0 ∈P) subject to N0 �M0 �N1 thus gives the result.

Next, by starting with the digraph Dn,M0 from Corollary 7.10, we show that if O(n log n) ran-
dom edges are added then it is likely that no short paths between the vertices with small in- or
out-degree are created. This will give us the following lemma.

Lemma 7.11. Almost surely, in the n-vertex random digraph process D0,D1, . . . ,Dn(n−1), the
following holds for each M with 9n log n/10�M� 50n log n. Letting

SM = {v ∈V(D) : d+DM
(v)< log n/20 or d−DM

(v)< log n/20},

there are no SM-paths or SM-cycles, and |SM|� n1/3.

Proof. Let M0 be from Corollary 7.10. Let N0 = 9n log n/10 and N1 = 50n log n, and note that
M0 �N0. Reveal the edges of DM0 and let S= SM0 , so that, almost surely, |S|� n1/3 and there are
no S-paths or S-cycles. Note that SM ⊂ S for eachM0 �M�N1. Thus, if we can show that, almost
surely, DN1 has no S-paths or S-cycles, then we are done.

For each M, M0 �M <N1, let eM be the edge added to DM to get DM+1. Let S′M be the set of
vertices within a graph distance 2 of any u ∈ SM in the underlying undirected graph ofDM . Let EM
be the event that eM is contained within S′M . Note that if no such event EM ,M0 �M <N1, occurs,
then DN1 has no S-paths or S-cycles.

Note that, for eachM,M0 �M <N1, |S′M|� 2(�+(DM)+�−(DM))2|S|, and thus

P(EM|(�±(DM)� 104 log n)∧ (|S|� n1/3))=O
(
log4 n · (n1/3)2
n(n− 1)−M

)

=O
(
n2/3 log4 n

n2

)

= o
(

1
n log n

)
.
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By Lemma 7.4, for eachM0 �M <N1, P(�±(DM)� 104 log n)= 1− o(n−2). Thus the probabil-
ity that no event EM ,M0 �M <N1, occurs is at most

P(|S|> n1/3)+
N1−1∑
M=M0

(o(n−2)+ P(EM|(�±(DM)� 104 log n)∧ (|S|� n1/3))= o(1).

7.5 Resilience in the random digraph process
For convenience, we collect together the properties of the random digraph process that we have
shown into the following corollary.

Corollary 7.12. Let ε > 0. In almost every n-vertex random digraph process D0,D1, . . . ,Dn(n−1),
each digraph DM with δ±(DM)� 1 satisfies M� n( log n− log[2] n) and the following with

dM = M
2 · 103n log n , mM = n log[3] n

dM log n
and

SM = {v : d+DM
(v)< 2dM log n or d−DM

(v)< 2dM log n}.

X1 �±(DM)� 100M/n� 106dM log n/2.
X2 For each v ∈V(DM), d+DM

(v)+ d−DM
(v)� 2M/103n= 4dM log n.

X3 There are no SM-paths or SM-cycles in DM and |SM|�√n.
X4 If sets A, B⊂V(DM) satisfy |A|�mM/2 and |B|� n/4, then, for each j ∈ {+,−}, letting

pM =M/n(n− 1),

(1− ε/100)pM|A||B|� ejDM
(A, B)� (1+ ε/100)pM|A||B|.

X5 For any disjoint sets A, B⊂V(DM) and j ∈ {+,−} with |A|� 4mM and, for each v ∈A,
djDM

(v, B)� dM log[2] n/4 log[4] n, we have |B|� 10|A|.
X6 For any disjoint sets A, B⊂V(DM) with |A|� 4mM and j ∈ {+,−}, for each v ∈A,

djDM
(v, B)� dM( log n)2/3/4, we have |B|� |A|( log n)1/3.

Proof. By Lemma 7.4, we almost surely have that�±(DM)� 100M/n, and thusX1 holds, for each
M� n log n/2. By Lemma 7.7, we almost surely have thatX2 holds for allM� 9n log n/10. Almost
surely, by Lemma 7.3, for each M� 50n log n, δ±(DM)�M/2n� 103dM log n, so that SM =∅.
Note that ifM� 50n log n then 2dM log n� log n/20, and thus, combining this with Lemma 7.11,
we have that, almost surely, X3 holds for each M� 9n log n/10. By Propositions 7.5 and 7.1, we
have that X4 almost surely holds for each 9n log n/10�M� n(n− 1)− log n. Note that, when
M� n(n− 1)− log n, there are at most log n missing edges, so X4 easily holds for sufficiently
large n.

Almost surely, by Lemma 7.6 with f (n)= 40 log[4] n and taking the resulting property with
k= 10, and using Proposition 7.1, X5 holds for each 9n log n/10�M� n(n− 1)− log n. Almost
surely, by Lemma 7.6 with f (n)= 4 log[2] n/( log n)1/3 and taking the resulting property with
k= ( log n)1/3 = o(n/mM), and using Proposition 7.1, X6 holds for each 9n log n/10�M�
n(n− 1)− log n. Note that, if M� n(n− 1)− log n, then dM log[2] n/4 log[4] n� 40mM and
dM( log n)2/3/4� 4mM( log n)1/3, so X5 and X6 hold.

Therefore X1–X6 almost surely hold for each M� 9n log n/10. By Lemma 7.2, almost surely,
if M� n( log n− log[2] n), then δ+(DM)= 0 or δ−(DM)= 0. Thus, almost surely, if δ±(DM)� 1,
thenM� n( log n− log[2] n) and X1–X6 hold.
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We now have the tools we need to prove the resilience in Theorem 1.3.

Proof of the resilience in Theorem 1.3. Almost surely, by Corollary 7.12, every digraph DM in
the random digraph process with δ±(DM)� 1 satisfiesM� n( log n− log[2] n) and X1–X6 with

dM = M
2 · 103n log n , mM = n log[3] n

dM log n
and

SM = {v : d+DM
(v)< 2dM log n or d−DM

(v)< 2dM log n}.
We will show, for sufficiently large n, that each such DM is (1/2− ε)-resiliently Hamiltonian.

Fix M� n( log n− log[2] n) such that δ±(DM)� 1, and suppose that H ⊂DM with djH(v)�
(1/2− ε)djDM

(v) for each v ∈V(DM) and j ∈ {+,−}. Pick for each v ∈ SM an in-neighbour xv and
an out-neighbour yv inDM −H, noting that this is possible as djDM−H(v)> djDM

(v)/2> 0 for each
j ∈ {+,−}. Note that, as there are no SM-paths or SM-cycles in DM by X3, the vertices v, xv and
yv, v ∈ SM , are distinct. Form D from DM −H by deleting the vertices in SM and, for each v ∈ SM ,
merging xv into yv to get the new vertex zv.

Claim 10. For sufficiently large n, D is an (ε/100, dM)-pseudorandom digraph.

Proof. We will check the conditions A1–A4. Let n̄= |D| = n− 2|SM| = (1− o(1))n, where we
have usedX3. Letm= n̄ log[3] n̄/dM log n̄, so that, for sufficiently large n,mM �m�mM/2. Note
that, as there are no SM-paths or SM-cycles in DM by X3, every vertex in V(DM) \ SM has at
most 1 in- or out-neighbour in SM ∪ {xv, yv : v ∈ SM} in DM . Thus every vertex in D has in- and
out- degree at least (1/2+ ε) · 2dM log n− 1� dM log n� dM log n̄ in D, for sufficiently large n.
Furthermore, by X1, �±(D)� 106dM log n̄, and therefore A1 holds.

Now suppose A, B⊂V(D) are disjoint sets with |A|� 2m� 4mM and, for each v ∈A,
d+D (v, B)� dM log[2] n̄/ log[4] n̄. Let A′ ⊂V(DM) be formed from A by replacing any vertex zv,
v ∈ SM , with the vertex yv, and let B′ ⊂V(DM) be formed from B by replacing any vertex zv,
v ∈ SM , with the vertex xv. Then, for each v ∈A′, we have d+DM

(v, B′)� dM log[2] n/4 log[4] n, for
sufficiently large n. Thus, using X5, we have |B| = |B′|� 10|A′| = 10|A|. Similar reasoning for
d−DM

(v, B′), again using X5, completes the proof to show that A2 holds. Similarly, A3 follows from
X6.

Therefore it is left only to show that A4 holds. Suppose, for contradiction, there is some U ⊂
V(D), with |U| =m, for which, without loss of generality |N+D (U)|� (1/2+ ε/100)n̄. Let U ′ be
the set U with any vertex zv, v ∈ SM , replaced by yv, so that |U ′| =m and, using X3,

|N+DM−H(U
′)|� |N+D (U)| + 2|SM|� (1/2+ ε/100)n̄+ 2

√
n.

Let V =V(DM) \ (U ′ ∪N+DM−H(U
′)), so that

|V|� n−m− (1/2+ ε/100)n− 2
√
n� (1/2− ε/50)n, (7.5)

for sufficiently large n. By X4, letting pM =M/n(n− 1), we have

e+DM
(U ′,V)� (1− ε/100)pM|U ′||V|

(7.5)
� (1− ε/100) · (1/2− ε/50) · pM|U ′|n. (7.6)

On the other hand, by the choice of V , we have e+DM−H(U
′,V)= 0, so that

e+DM
(U ′,V)= e+H(U

′,V)

=
∑
u∈U ′

d+H(u,V)
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�
∑
u∈U ′

(1/2− ε)d+DM
(u)

= (1/2− ε)e+DM
(U ′,V(D))

� (1/2− ε) · (1+ ε/100) · pM|U ′|n, (7.7)

where the last inequality follows by X4.
Thus we have, by (7.6) and (7.7),

(1− ε/100) · (1/2− ε/50)� (1/2− ε) · (1+ ε/100),

a contradiction. Therefore A4 holds, completing the proof that D is (ε/100, d)-pseudo-
random.

Thus, by Theorem 2.2, for sufficiently large n, D contains a directed Hamilton cycle, C say. For
each vertex zv, v ∈ SM , in C, replace zv by xvvyv. This gives a directed Hamilton cycle in DM −H.
Thus DM −H is Hamiltonian, and therefore DM is (1/2− ε)-resiliently Hamiltonian.

7.6 Non-resilience in the random digraph process
To prove the non-resilience of our random digraph, we divide the vertices without low in- or out-
degree into two sets independently at random with equal probability. By Lemma 3.2, there must
be such a partition where each vertex has roughly an equal number of in- and out-neighbours
in each set. Carefully dividing the low-degree vertices between these sets, we reach a bipartition
where deleting the edges across this partition does not remove substantially more than one-half
of the in- and out-neighbours around any one vertex. This gives us a limit for the resilience of
Hamiltonicity in the digraph.

Proof of the non-resilience in Theorem 1.3. Almost surely, by Corollary 7.12, every digraphDM
in the randomdigraph process with δ±(DM)� 1 satisfiesM� n( log n− log[2] n) andX1–X6with

dM = M
2 · 103n log n , mM = n log[3] n

dM log n
and

SM = {v : d+DM
(v)< 2dM log n or d−DM

(v)< 2dM log n}.
Take the vertices in V(DM) \ SM and partition them as A∪ B so that each vertex is placed into

A or B independently at randomwith probability 1/2.We will show that the following claim holds
for sufficiently large n.

Claim 11. With positive probability, the following holds.

Y For each v ∈V(DM) and j ∈ {+,−}, if djDM
(v)� 2dM log n, then djDM

(v,A), djDM
(v, B)�

(1/2− ε)djDM
(v).

Proof of Claim 11. For each v ∈V(DM) and j ∈ {+,−}, let Ev,j be the event that, if djDM
(v)�

2dM log n, then either djDM
(v,A)< (1/2− ε)djDM

(v) or djDM
(v, B)< (1/2− ε)djDM

(v). Let G be
the dependence graph of these events and note that, by X1, �(G)� (�+(DM)+�−(DM))2 �
105M2/n2.
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Let q= 4 exp (− ε2dM log n/100), so that q ·�(G)= o(1). By X3, djDM−SM (v)� djDM
(v)− 1�

2dM log n− 1� dM log n. By Lemma 2.8, we then have

P(Ev,j)� 2 exp
(
− ε2

12
· d

j
DM−SM (v)

2

)

� 2 exp
(
−ε2dM log n

100

)

= q/2
� q(1− q ·�(G))
� q(1− q)�(G).

Thus, by Theorem 3.1, no event Ev,j occurs with positive probability.

Thus, by Claim 11, there is some partition V(DM) \ SM =A∪ B such that Y holds. Note
that A, B �= ∅. For each v ∈ SM , by X2, there is jv such that djvDM

(v)� 2dM log n, and thus, by
Y, djvDM

(v,A), djvDM
(v, B)� (1/2− ε)djvDM

(v). Let iv ∈ {+,−} such that iv �= jv. By X3, as v ∈ SM ,
there are no edges from v to SM in either direction. Thus there is some Xv ∈ {A, B} such that
divDM

(v, Xv)� divDM
(v)/2.

Let A′ =A∪ {v ∈ SM : Xv =A} and B′ = B∪ {v ∈ SM : Xv = B}, and note that, for each X ∈
{A′, B′}, v ∈ X and j ∈ {+,−}, djDM

(v, X)� (1/2− ε)djDM
(v). Let H be the bipartite digraph with

vertex classesA′ and B′, with edges exactly those edges inDM betweenA′ and B′ in either direction.
Thus we have, for each v ∈V(DM) and j ∈ {+,−}, djH(v)� (1/2+ ε)djDM

(v).
As A, B �= ∅, DM −H is disconnected and hence not Hamiltonian. Therefore DM is not (1/2+

ε)-resiliently Hamiltonian.
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