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Consider a discrete-time insurance risk model with risky investments. Under the
assumption that the loss distribution belongs to a certain subclass of the subexpo-
nential class, Tang and Tsitsiashvili (Stochastic Processes and Their Applications
108(2): 299-325 (2003)) established a precise estimate for the finite time ruin prob-
ability. This article extends the result both to the whole subexponential class and to
a nonstandard case with associated discount factors.

1. INTRODUCTION

Following the works of Nyrhinen [14,15] and Tang and Tsitsiashvili [17,19], we
consider the finite time ruin probability of an insurer who invests his wealth into a
risky asset. In this stochastic economic environment, the net loss during period 7 is
denoted by a real-valued random variable X,,, n = 1,2,..., and the discount factor
from time #n to time n — 1 is denoted by another positive random variable Y, n =
L,2,....

Write A, = —X,and R, =Y, ' —1,n=1,2,.... Then A, denotes the total net
income and R, denotes the total stochastic return rate within period n. We tacitly
assume that the income A, or the loss X, is calculated at time n. Let the initial
surplus of the insurer be S; = x = 0. Then the surplus accumulated until time #,
denoted by S, can be characterized by the recurrence equation

S,=(0+R)S,_,+A,, n=12,.... (1.1)
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The probability of ruin within time # is defined as

(/J(x,n)ZPr< 50=x>, n=0,1,....

0=m=n

Iterating (1.1) and rewriting the resulting formulas in terms of {X,,: n = ...} and
{Y,:n =1,2,...}, we obtain that

So=x, S, =S, JIv"'- EXk H Y7L n=12,....
i=1

i=k+1

It follows that

Y(x,n) = Pr( max EXkHY >x> n=12,.... 1.2)

I=m=n j=1 i=1

By (1.2), we immediately see that the two-sided inequality

n k n k
Pr(EXk]‘[z>x)s¢(x,n)spr<2xgﬂn>x> (1.3)
k=1 i=1

k=1 i=1

holds for n = 1,2,..., where X" = X 1(x=0) denotes the positive part of a random
variable X and 1, denotes the indicator function of a set A. This inequality will be
used below.

Tang and Tsitsiashvili [17,19] made the following standard assumptions:

P1: The net losses X,,, n =1,2,..., are independent and identically distributed
(i.i.d.) with common distribution function F on the real line.

P2: The discount factors Y, n = 1,2,..., are also i.i.d. with common distribu-
tion function G on the positive half-line.

P3: The two sequences {X,,:n=1,2,...} and{Y,:n=1,2,...} are independent.

Under these assumptions, Tang and Tsitsiashvili [17] derived a precise asymptotic
estimate for the finite time ruin probability for the case that the loss distribution F
belongs to a certain subclass of the subexponential class; see also Tang and Tsitsi-
ashvili [19] for a broader account.

In the present article we aim at extensions of the result of Tang and Tsitsiash-
vili [17]. In the rest of this article, after a brief review on heavy-tailed distributions
in Section 2, we give in Section 3 the first main result in which the loss distribution
F ranges over the whole subexponential class, and we give in Section 4 the second
main result in which the discount factors {Y,: n =1,2,...} or, equivalently, the return
rates {R,:n =1,2,...} are associated.

2. HEAVY-TAILED DISTRIBUTIONS

The most important class of heavy-tailed distributions is the subexponential class.
By definition, a distribution F =1 — F on [0,c0) or its corresponding random vari-
able is said to be subexponential, denoted by F' € S, if the relation
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F™(x)
lim — =n 2.1
X—00 F()C)
holds for some (or, equivalently, for all) n = 2,3,..., where F*" denotes the n-fold

convolution of F. More generally, a distribution F on (—oo,00) is still said to be
subexponential if the distribution F *(x) = F(x) 1(,=0) is subexponential. By Lemma
2.1 and the last inclusion of (2.3) below, it is easy to verify that (2.1) remains valid
for the latter general case. The class S contains the Pareto-like, the lognormal-like,
and the Weibull-like distributions.

Closely related are the class £ of long-tailed distributions and the class D of
distributions with dominatedly varying tails. A distribution F on (—o0,00) belongs
to the class L if the relation

F(x+Yy) B
o Pl

holds for some (or, equivalently, for all) y > 0; F belongs to the class D if the
relation

F(x
lim sup (9) < oo (2.2)

X—00 F(x)

holds for some (or, equivalently, for all) 0 <y < 1.
It is well known that

LNDCSCL. (2.3)

For more details of heavy-tailed distributions, we refer the reader to Embrechts,
Kliippelberg, and Mikosch [8] and references therein.

In what follows, all limiting relationships are for x — co unless stated other-
wise. For two positive functions a(-) and b(-), we write a(x) = O(b(x)) if lim sup
a(x)/b(x) < oo, a(x) = o(b(x)) if lima(x)/b(x) = 0, a(x) ~ b(x) if lima(x)/
b(x) =1, and a(x) < b(x) if limsup a(x)/b(x) = 1.

The following lemma is well known; see Embrechts and Goldie [7], Cline [5,
Cor. 1], and Tang and Tsitsiashvili [17, Lemma 3.2].

LEMMA 2.1: Let F be lhe_ convolution of two distributions F, and F,. If F; € S,
F, € L, and F,(x) = O(F,(x)), then F € S and

F(x) ~ Fy(x) + F(x).
The following lemma is from Cline and Samorodnitsky [6, Thm. 2.1].

LEmMMA 2.2: Let X and Y be two independent random variables with distributions
F and G, respectively, satisfying F € S and G(0) = 0. The distribution H of the
product XY is subexponential if there is a positive function a(x) = o(x) such that
F(x — a(x)) ~ F(x) and G(a(x)) = o(H(x)).
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3. FOR THE STANDARD CASE

Let us go back to the model introduced in Section 1. Hereafter, denote the generic
random variable of {X,:n =1,2,...} (under assumption P1) by X, the generic ran-
dom variable of {Y,:n =1,2,...} (under assumption P2) by ¥, and the distribution
of XY (under assumptions P1, P2, and P3) by H = F &) G.

The main result of Tang and Tsitsiashvili [17] is that, under assumptions P1,
P2, and P3, the relation

n k
(x,n) ~ > Pr <X 11y, > x> (3.1
k=1 i=1

holds for eachn =1,2,... if FE L N Dand EY? < oo for some large p > 0 (more
precisely, for some p larger than the upper Matuszewska index of the distribution
F). The estimate given by (3.1) enables us to recursively calculate the ruin proba-
bility ¢ (x,n). However, an obvious drawback is that the condition F € £ N D
excludes many popular distributions such as the lognormal-like and the Weibull-
like distributions; recall (2.2).

The following is our first main result, which extends the scope of the loss dis-
tribution to the whole subexponential class S:

THEOREM 3.1: Assume P1, P2, and P3. If F € S and there is some 0 < 1 < 1 such
that F(x —x") ~ F(x) and G(x") = o (H(x)), then (3.1) holds for eachn = 1,2,....

Two concrete cases of Theorem 3.1 are listed below without proof.

COROLLARY 3.1: Assume P1, P2, and P3. Relation (3.1) holds for eachn =1,2,...
if one of the following groups of conditions is valid:

(A) F is lognormal-like with a tail satisfying F(x) ~ cF,(x) for some ¢ > 0,
where the distribution F has a density function

—(Inx — p)?
K s x>0,

1
file) = \27ox exp{ 202

with —oo < u < oo and o >0, and G(x7) = o(H(x)) for some 0 <7 < 1.
(B) F is Weibull-like with a tail satisfying F(x) ~ cexp{—dx"} for some c,
d>0,0<v<1,and G(x7) = o(H(x)) for some 0 <71 <1—w.

Clearly, both in Theorem 3.1 and Corollary 3.1, the condition G(x7) = o (H(x))
is implied by G(x7) = o(F(x)). More concretely, in Corollary 3.1(A) the G can be
every Weibull distribution or every lognormal distribution with a density function

—(Inx — f)?
a , x>0,

1
X) = €X
0" Tomon |~
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aslong as —oo < i < oo and 0 < & < o, and in Corollary 3.1(B) the G can be every
Weibull-like distribution with a tail G(x) ~ ¢ exp{—dx®} as long as &, d > 0 and
o> v/(1 —v).

In the proof of Theorem 3.1 we will need the following lemma.

LeEmMA 3.1: Under the conditions of Theorem 3.1, it holds for each k = 1,2, ... that

k k
Pr(XHY,->x—xT> ~Pr<XHYi >x>.

i=1 i=1
ProoF: We only prove the result for k = 1 since the general case extends by induc-
tion. Trivially, the condition F(x — x7) ~ F(x) implies that F(x — Cx™) ~ F(x)
holds for every constant C > 0. Choose some 0 < & < 1 such that G(g) > 0. Then
it holds for all large x > 0 and 7 € (&, x7] that

xT 1 [xY\

— S f— - .

t e\t
For all large x > 0, we derive

1= ([ PP o

< fx 1 /(x\ _
=Pr(eX>x—x")G(¢g) +f F(; — ;(-) >G(dt)+G(xT)

t

Pr(eX > Y > )G(S)
= rr e X— X E) =
’ G(e)

< [x _
+(1+0(l))f F(;)G(dt)-i—G(x")

G(e) _ _
=Pr(XY>x—x")=—+ {0 +0()H(x)+ G(x7)
G(e)
. . G(e) _
=H(x—x") G +(1+0(1)H(x).

It follows that

H(x—x7) G(e)\!

Since G(0) = 0 and & > 0 can be arbitrarily small, we obtain

. H(x—x7)

msup ——= —— =1,

x—>oop H(X)

which actually amounts to H(x — x7) ~ H(x). u
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PROOF OF THEOREM 3.1: Recall the two-sided inequality (1.3). If we can prove the
relation

n k n k
Pr(EXkH)/i>x>~ EPr(XkHYi >x>, n=12,...,
k=1 i=1 k=1 i=1

without using F(0—) > 0, then the same proof should also be valid for the relation

n k n k
Pr(}j x 11 >x> ~> Pr(Xk+ 11y >x>, n=12,...,
k=1 i=1 k=1 i=1
and we immediately obtain (3.1). Write

v,=>X]lv, n=12,....

Under assumptions P1, P2, and P3, it is clear that

n k
V,=>x. 1Y, n=12,..,
k=1 i=1

where =9 denotes “equal in distribution.” Based on this analysis, it suffices to prove
the relation

n k
Pr(V,,>x)~ZPr<XkHY,»>x), n=12,.... 3.2)
k=1 i=1

In view of Theorem 4.1 below, we only need to consider the case that Y is
unbounded. We prove the asymptotic relation (3.2) by the inductive method.

Trivially, (3.2) holds for n = 1. Applying Lemma 2.2, we also know that V,
is subexponential. Now we assume by induction that (3.2) holds for n = m = 1
and that V,, is subexponential. Clearly, F(x) = O(Pr(V,, > x)) since G(1) > 0.
From Lemmas 2.1 and 3.1 and the inductive hypothesis, it follows that the sum
Xn+1 TV, is subexponential and that

Pr(X,.,+V,>x—x")~Pr(X,,, >x—x")+Pr(V,>x—x")

m k
~Pr(X,. >x—x7)+ >, Pr(XkHYi >x—xT>
k=1

= i=1
m k
~Pr(X, >x) + > Pr(XkHYi > x)
k=1 i=1
~Pr(X,,,+V,>x).

Hence, by Lemma 2.2, the random variable V,, | is subexponential. By Lemma 2.1
and the inductive hypothesis, we derive that
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Pr(V,,. >x)

= <f0" 4_f;o>Pr(Xm+1 +V, > x/t)G(dt)

=(1+o(1)) fox (Pr(X,,, > x/t) + Pr(V,, > x/t))G(dt) + O(G(x"))

= (1+0(1) f (Pr(xm+1 > x/1) + ﬁ Pr(Xk Iy, > m)) G(dr)

i=1

+0(G(x7))

=(1+o(1)) 2+ Pr(Xk 1y, > x> +0(G(x7))

i=1

m+1 k
=(1+o(1) X Pr(XkH Y, >x).
k=1 i=

i=1

This proves that (3.2) holds for n = m + 1. By the mathematical inductive method,
we conclude that (3.2) holds for each n = 1,2,.... |

4. FOR THE CASE OF ASSOCIATED DISCOUNT FACTORS

Recently, the study on ruin probabilities of nonstandard models has become an impor-
tant part of risk theory. We refer the reader to Cai [1,2] and Cai and Dickson [4],
among many others.

Now we propose a general (positively) dependence structure for the discount
factors. We say that a sequence of random variables {Y,: n =1,2,...} is (positively)
associated if the inequality

Efi\(Yy,....Y,) o (Yy,....Y,) = Efi(Y,,....Y,)Efs(Yy,...,Y,) 4.1)

holds for all n = 1,2,... and all coordinatewise (not necessarily strictly) increasing
functions f; and f> for which the moments involved exist. Since it was introduced by
Esary, Proschan, and Walkup [9], this dependence structure has been extensively
studied and applied by many researchers in statistics, applied probability, insur-
ance, and finance. Trivially, if in the above definition f; is coordinatewise increas-
ing but f, is coordinatewise decreasing, then (4.1) is changed to

Efi(Y,,...,Y) h(Y,,....Y,) = Efi(Y,,....Y )Ef,(Yy,...,Y,). 4.2)

The following is our second main result, which partially extends Theorem 3.1
to the proposed nonstandard case:
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THEOREM 4.1: Assume PI, P3, and

P2': The discount factors {Y,:n = 1,2,...} constitute a sequence of bounded,
associated, and positive random variables.

If F € S, then (3.1) holds for eachn = 1,2,....

Theorem 4.1 indicates that the association of the bounded discount factors does
not influence the asymptotic relation (3.1). Moreover, if we restrict the discussion
to the case of Pareto-like loss distributions, then under assumptions P1 and P3,
using a result of Resnick and Willekens [16], it is not difficult to prove that (3.1)
even holds for arbitrarily dependent discount factors {Y,:n = 1,2,...} as long as
they satisfy suitable summability conditions.

We also remark that the boundedness condition of Theorem 4.1 is not so restric-
tive for application. For example, it allows for a realistic case below (see also Exam-
ple 4.1 of Tang and Tsitsiashvili [19]).

Suppose that an insurer invests his wealth not only in a risk-free asset (a bank)
but also in a risky asset (a stock market). At time n — 1, the insurer has wealth S,,_|,
and he keeps a nonrandom fraction, say 0 < a, = 1, of his wealth in the bank and
invests the remaining part in the stock market. Then, at time #, the first part becomes
a,(l + r,)S,_; with some deterministic interest rate r, = 0 and the second part
becomes (1 — a,)(1 + R,)S,_, with some stochastic return rate R,, € [—1,00). Con-
sequently, the discount factors equal

1
= s =1,2,..., 4.3
a(tr)+(-ayi+r) " @)

n

which are obviously bounded from above by positive constants.

For related discussions in continuous-time settings, see Hipp and Plum [12],
Gaier and Grandits [ 10], Gaier, Grandits, and Schachermayer [11], Cai [3], Liu and
Yang [13], among others.

Additionally, from (4.3) we see that if 0 < a,, < 1 for n = 1,2,..., the associ-
ation of {Y,:n = 1,2,...} is equivalent to that of {R,:n =1,2,...}.

In the proof of Theorem 4.1, we will need the following lemma, which is a
restatement of Proposition 5.1 of Tang and Tsitsiashvili [18].

LEMMA 4.1: Let{X,,...,X,} be ni.i.d. real-valued random variables with common
distribution F € S. Then, for arbitrarily fixed 0 < a = b < oo, the relation
Pr( E e Xi > x) ~ 2 F(x/c) 4.4)
k=1 k=1

holds uniformly for (ci,...,c,) € [a,b] X --- X [a,b]; that is,

Pr( > e X > x)
k=1

lim sup —1|=0.
X% (cy, 0, ¢,)Ea, b]X - X[a, b] no_

> Flx/cy)

k=1
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PrROOF OF THEOREM 4.1: Choose some constant d = d,, > 1 as a common upper
bound of the random variables {Y},..., Y, }. First, we derive an asymptotic upper bound
for ¢ (x, n). For an arbitrarily fixed 0 < & < 1 such that Pr(e < Y; =d) > 0 for
each j = 1,...,n, we split the probability on the right-hand side of (1.3) into two

parts as
n k
Pr( >xIIy > x)
k=1 i=1
:pr(zx:HY,->x, U(Y,s@)
k=1 i=1 j=1
n k
+Pr(2X H > x, ﬂ(s< ))
k=1 i=1
= J,(x,e) + J,(x,¢€). 4.5)
Since the random variables {Y},...,Y,} are associated and are independent of the

nonnegative random variables {X;",..., X, }, by (4.2) it holds that

J,(x,e)=E|:l . /. }
<k2 X, _]'[ Y; >x> ( ‘L:JI(Y]-SS)>
" k ] E[l " }
DRAIRY >x> ( AL:J]<YJ-s8>>

=Pr<§n: ,jﬁ >x)Pr<LnJ(Yj§s)>. (4.6)

=1
Substituting (4.6) into (4.5) and rearranging the resulting inequality, we have

) Jo(x, &)
X = n .
1—Pr<U(Yj§s)>

4.7)

n k
Pr(E x [1v>
k=1 i=1

For J,(x,&), on the event (/_, (e < ¥; = d), we have

1 n
<H Yn?HK) € [8n,dn] X X [gll,dnl
i=1 i=1

Hence, by Lemma 4.1 and the independence between {X,...,X,} and {Y},...,Y,},

n k n n k
Jy(x,8) ~ >, Pr<XkHY,- >x, (N(e<Y = d)) => Pr(XkHY,. >x>. 4.8)
k=1 i=1 Jj=1 k=1 i=1
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Substituting (4.8) into (4.7) yields

M=

k
Pr(XkHY,« >x>.

i=1

Pr(}n:X,:HYi>x>s nl
k=1 i=1 I_PI'(U(Y;SS)) k

Jj=1

Since the random variables {Y,,...,Y,} are positive and & > 0 can be arbitrarily
small, we prove that

n

k n k
lp(x,n)SPr<2Xk+HYi>x)S ZPr(XkHYi>x>. 4.9)
k=1 i=1

k=1 i=1

Now we aim at an asymptotic lower bound. From (1.3), Lemma 4.1, and the asso-
ciation of the random variables {Y;,...,Y,}, we derive

1//(x,n)2Pr<iXkHYi>x, ﬁ(s<Yjsd)>

i=1 j=1

k

~ ZPr(XkHYi>x, N (e < %Sd))
k=1 j=1

i=1

k= i=1 k=1 i=1 j=1
n k n
=> Pr(Xk 11y, > x>(1 — Pr<U (v, = 8))).
k=1 i=1 j=1
As earlier, by letting € ~ 0, we conclude that
n k
y(x,n) =, Pr(XkHYi >x>. (4.10)
k=1 i=1
Combining (4.9) and (4.10) leads to the announced result (3.1). u
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