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Consider a discrete-time insurance risk model with risky investments+ Under the
assumption that the loss distribution belongs to a certain subclass of the subexpo-
nential class, Tang and Tsitsiashvili ~Stochastic Processes and Their Applications
108~2!: 299–325 ~2003!! established a precise estimate for the finite time ruin prob-
ability+ This article extends the result both to the whole subexponential class and to
a nonstandard case with associated discount factors+

1. INTRODUCTION

Following the works of Nyrhinen @14,15# and Tang and Tsitsiashvili @17,19# , we
consider the finite time ruin probability of an insurer who invests his wealth into a
risky asset+ In this stochastic economic environment, the net loss during period n is
denoted by a real-valued random variable Xn, n � 1,2, + + + , and the discount factor
from time n to time n � 1 is denoted by another positive random variable Yn, n �
1,2, + + + +

Write An � �Xn and Rn � Yn
�1 � 1, n � 1,2, + + + + Then An denotes the total net

income and Rn denotes the total stochastic return rate within period n+ We tacitly
assume that the income An or the loss Xn is calculated at time n+ Let the initial
surplus of the insurer be S0 � x � 0+ Then the surplus accumulated until time n,
denoted by Sn, can be characterized by the recurrence equation

Sn � ~1 � Rn !Sn�1 � An , n � 1,2, + + + + (1.1)
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The probability of ruin within time n is defined as

c~x, n! � Pr� min
0�m�n

Sm � 0�S0 � x�, n � 0,1, + + + +

Iterating ~1+1! and rewriting the resulting formulas in terms of $Xn : n �1,2, + + + % and
$Yn : n � 1,2, + + + % , we obtain that

S0 � x, Sn � S0)
i�1

n

Yi
�1 � (

k�1

n

Xk )
i�k�1

n

Yi
�1 , n � 1,2, + + + +

It follows that

c~x, n! � Pr� max
1�m�n
(
k�1

m

Xk)
i�1

k

Yi � x� n � 1,2, + + + + (1.2)

By ~1+2!, we immediately see that the two-sided inequality

Pr�(
k�1

n

Xk)
i�1

k

Yi � x� � c~x, n!� Pr�(
k�1

n

Xk
�)

i�1

k

Yi � x� (1.3)

holds for n � 1,2, + + + , where X� � X1~X�0! denotes the positive part of a random
variable X and 1A denotes the indicator function of a set A+ This inequality will be
used below+

Tang and Tsitsiashvili @17,19# made the following standard assumptions:

P1: The net losses Xn, n � 1,2, + + + , are independent and identically distributed
~i+i+d+! with common distribution function F on the real line+

P2: The discount factors Yn, n � 1,2, + + + , are also i+i+d+ with common distribu-
tion function G on the positive half-line+

P3: The two sequences $Xn : n �1,2, + + + % and $Yn : n �1,2, + + + % are independent+

Under these assumptions, Tang and Tsitsiashvili @17# derived a precise asymptotic
estimate for the finite time ruin probability for the case that the loss distribution F
belongs to a certain subclass of the subexponential class; see also Tang and Tsitsi-
ashvili @19# for a broader account+

In the present article we aim at extensions of the result of Tang and Tsitsiash-
vili @17# + In the rest of this article, after a brief review on heavy-tailed distributions
in Section 2, we give in Section 3 the first main result in which the loss distribution
F ranges over the whole subexponential class, and we give in Section 4 the second
main result in which the discount factors $Yn : n �1,2, + + + % or, equivalently, the return
rates $Rn : n � 1,2, + + + % are associated+

2. HEAVY-TAILED DISTRIBUTIONS

The most important class of heavy-tailed distributions is the subexponential class+
By definition, a distribution F � 1 � OF on @0,`! or its corresponding random vari-
able is said to be subexponential, denoted by F � S, if the relation
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lim
xr`

F *n~x!

OF~x!
� n (2.1)

holds for some ~or, equivalently, for all! n � 2,3, + + + , where F *n denotes the n-fold
convolution of F+ More generally, a distribution F on ~�`,`! is still said to be
subexponential if the distribution F�~x!� F~x!1~x�0! is subexponential+ By Lemma
2+1 and the last inclusion of ~2+3! below, it is easy to verify that ~2+1! remains valid
for the latter general case+ The class S contains the Pareto-like, the lognormal-like,
and the Weibull-like distributions+

Closely related are the class L of long-tailed distributions and the class D of
distributions with dominatedly varying tails+ A distribution F on ~�`,`! belongs
to the class L if the relation

lim
xr`

OF~x � y!

OF~x!
� 1

holds for some ~or, equivalently, for all! y � 0; F belongs to the class D if the
relation

lim sup
xr`

OF~xy!

OF~x!
� ` (2.2)

holds for some ~or, equivalently, for all! 0 � y � 1+
It is well known that

L � D � S � L+ (2.3)

For more details of heavy-tailed distributions, we refer the reader to Embrechts,
Klüppelberg, and Mikosch @8# and references therein+

In what follows, all limiting relationships are for x r ` unless stated other-
wise+ For two positive functions a~{! and b~{!, we write a~x!� O~b~x!! if lim sup
a~x!0b~x! � `, a~x! � o~b~x!! if lim a~x!0b~x! � 0, a~x! ; b~x! if lim a~x!0
b~x!� 1, and a~x! � b~x! if lim sup a~x!0b~x! � 1+

The following lemma is well known; see Embrechts and Goldie @7# , Cline @5,
Cor+ 1# , and Tang and Tsitsiashvili @17, Lemma 3+2# +

Lemma 2.1: Let F be the convolution of two distributions F1 and F2+ If F1 � S,
F2 � L, and OF2~x!� O~ OF1~x!! , then F � S and

OF~x! ; OF1~x!� OF2~x!+

The following lemma is from Cline and Samorodnitsky @6, Thm+ 2+1# +

Lemma 2.2: Let X and Y be two independent random variables with distributions
F and G, respectively, satisfying F � S and G~0! � 0. The distribution H of the
product XY is subexponential if there is a positive function a~x! � o~x! such that
OF~x � a~x!! ; OF~x! and OG~a~x!!� o~ PH~x!! .
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3. FOR THE STANDARD CASE

Let us go back to the model introduced in Section 1+ Hereafter, denote the generic
random variable of $Xn : n � 1,2, + + + % ~under assumption P1! by X, the generic ran-
dom variable of $Yn : n � 1,2, + + + % ~under assumption P2! by Y, and the distribution
of XY ~under assumptions P1, P2, and P3! by H � F � G+

The main result of Tang and Tsitsiashvili @17# is that, under assumptions P1,
P2, and P3, the relation

c~x, n! ; (
k�1

n

Pr�X)
i�1

k

Yi � x� (3.1)

holds for each n �1,2, + + + if F � L � D and EY p � ` for some large p � 0 ~more
precisely, for some p larger than the upper Matuszewska index of the distribution
F!+ The estimate given by ~3+1! enables us to recursively calculate the ruin proba-
bility c~x, n!+ However, an obvious drawback is that the condition F � L � D
excludes many popular distributions such as the lognormal-like and the Weibull-
like distributions; recall ~2+2!+

The following is our first main result, which extends the scope of the loss dis-
tribution to the whole subexponential class S:

Theorem 3.1: Assume P1, P2, and P3. If F � S and there is some 0 � t � 1 such
that OF~x � x t!; OF~x! and OG~x t!� o~ PH~x!! , then (3.1) holds for each n �1,2, + + + .

Two concrete cases of Theorem 3+1 are listed below without proof+

Corollary 3.1: Assume P1, P2, and P3. Relation (3.1) holds for each n �1,2, + + +
if one of the following groups of conditions is valid:

(A) F is lognormal-like with a tail satisfying OF~x! ; c OF1~x! for some c � 0,
where the distribution F1 has a density function

f1~x! �
1

M2psx
exp��~ ln x � µ!2

2s 2 � , x � 0,

with �`� µ �` and s� 0, and OG~x t!� o~ PH~x!! for some 0 � t� 1.
(B) F is Weibull-like with a tail satisfying OF~x! ; c exp $�dx n% for some c,

d � 0, 0 � n � 1, and OG~x t!� o~ PH~x!! for some 0 � t � 1 � n.

Clearly, both in Theorem 3+1 and Corollary 3+1, the condition OG~x t!� o~ PH~x!!
is implied by OG~x t!� o~ OF~x!!+More concretely, in Corollary 3+1~A! the G can be
every Weibull distribution or every lognormal distribution with a density function

g~x! �
1

M2p Isx
exp��~ ln x � Iµ!2

2 Is 2 � , x � 0,
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as long as �`� Iµ �` and 0 � Is� s, and in Corollary 3+1~B! the G can be every
Weibull-like distribution with a tail OG~x! ; Ic exp $� Ddx Iv% as long as Ic, Dd � 0 and
Iv � v0~1 � v!+

In the proof of Theorem 3+1 we will need the following lemma+

Lemma 3.1: Under the conditions of Theorem 3.1, it holds for each k �1,2, + + + that

Pr�X)
i�1

k

Yi � x � x t�; Pr�X)
i�1

k

Yi � x�+
Proof: We only prove the result for k �1 since the general case extends by induc-
tion+ Trivially, the condition OF~x � x t! ; OF~x! implies that OF~x � Cx t! ; OF~x!
holds for every constant C � 0+ Choose some 0 � « � 1 such that OG~«! � 0+ Then
it holds for all large x � 0 and t � ~«, x t# that

x t

t
�

1

«
� x

t
�t+

For all large x � 0, we derive

PH~x � x t ! � ��
0

«

��
«

x t

��
x t

`� OF� x � x t

t
�G~dt !

� Pr~«X � x � x t !G~«!��
«

x t

OF� x

t
�

1

«
� x

t
�t�G~dt !� OG~x t !

� Pr~«X � x � x t,Y � «!
G~«!

OG~«!

� ~1 � o~1!! �
«

x t

OF� x

t
�G~dt !� OG~x t !

� Pr~XY � x � x t !
G~«!

OG~«!
� ~1 � o~1!! PH~x!� OG~x t !

� PH~x � x t !
G~«!

OG~«!
� ~1 � o~1!! PH~x!+

It follows that

PH~x � x t !

PH~x!
� ~1 � o~1!!�1 �

G~«!

OG~«!�
�1

+

Since G~0!� 0 and « � 0 can be arbitrarily small, we obtain

lim sup
xr`

PH~x � x t !

PH~x!
� 1,

which actually amounts to PH~x � x t! ; PH~x!+ �
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Proof of Theorem 3.1: Recall the two-sided inequality ~1+3!+ If we can prove the
relation

Pr�(
k�1

n

Xk)
i�1

k

Yi � x�; (
k�1

n

Pr�Xk)
i�1

k

Yi � x�, n � 1,2, + + + ,

without using F~0�! � 0, then the same proof should also be valid for the relation

Pr�(
k�1

n

Xk
�)

i�1

k

Yi � x�; (
k�1

n

Pr�Xk
�)

i�1

k

Yi � x�, n � 1,2, + + + ,

and we immediately obtain ~3+1!+ Write

Vn � (
k�1

n

Xk)
i�k

n

Yi , n � 1,2, + + + +

Under assumptions P1, P2, and P3, it is clear that

Vn �d (
k�1

n

Xk)
i�1

k

Yi , n � 1,2, + + + ,

where �d denotes “equal in distribution+” Based on this analysis, it suffices to prove
the relation

Pr~Vn � x! ; (
k�1

n

Pr�Xk)
i�1

k

Yi � x�, n � 1,2, + + + + (3.2)

In view of Theorem 4+1 below, we only need to consider the case that Y is
unbounded+We prove the asymptotic relation ~3+2! by the inductive method+

Trivially, ~3+2! holds for n � 1+ Applying Lemma 2+2, we also know that V1

is subexponential+ Now we assume by induction that ~3+2! holds for n � m � 1
and that Vm is subexponential+ Clearly, OF~x! � O~Pr~Vm � x!! since OG~1! � 0+
From Lemmas 2+1 and 3+1 and the inductive hypothesis, it follows that the sum
Xm�1 � Vm is subexponential and that

Pr~Xm�1 � Vm � x � x t ! ; Pr~Xm�1 � x � x t !� Pr~Vm � x � x t !

; Pr~Xm�1 � x � x t !� (
k�1

m

Pr�Xk)
i�1

k

Yi � x � x t�
; Pr~Xm�1 � x!� (

k�1

m

Pr�Xk)
i�1

k

Yi � x�
; Pr~Xm�1 � Vm � x!+

Hence, by Lemma 2+2, the random variable Vm�1 is subexponential+ By Lemma 2+1
and the inductive hypothesis, we derive that
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Pr~Vm�1 � x!

� ��
0

x t

��
x t

`�Pr~Xm�1 � Vm � x0t !G~dt !

� ~1 � o~1!!�
0

x t

~Pr~Xm�1 � x0t !� Pr~Vm � x0t !!G~dt !� O~ OG~x t !!

� ~1 � o~1!!�
0

x t�Pr~Xm�1 � x0t !� (
k�1

m

Pr�Xk)
i�1

k

Yi � x0t��G~dt !

� O~ OG~x t !!

� ~1 � o~1!! (
k�1

m�1

Pr�Xk)
i�1

k

Yi � x�� O~ OG~x t !!

� ~1 � o~1!! (
k�1

m�1

Pr�Xk)
i�1

k

Yi � x�+
This proves that ~3+2! holds for n � m � 1+ By the mathematical inductive method,
we conclude that ~3+2! holds for each n � 1,2, + + + + �

4. FOR THE CASE OF ASSOCIATED DISCOUNT FACTORS

Recently, the study on ruin probabilities of nonstandard models has become an impor-
tant part of risk theory+ We refer the reader to Cai @1,2# and Cai and Dickson @4# ,
among many others+

Now we propose a general ~positively! dependence structure for the discount
factors+We say that a sequence of random variables $Yn : n �1,2, + + + % is ~positively!
associated if the inequality

E f1~Y1, + + + ,Yn ! f2~Y1, + + + ,Yn ! � E f1~Y1, + + + ,Yn !E f2~Y1, + + + ,Yn ! (4.1)

holds for all n � 1,2, + + + and all coordinatewise ~not necessarily strictly! increasing
functions f1 and f2 for which the moments involved exist+ Since it was introduced by
Esary, Proschan, and Walkup @9# , this dependence structure has been extensively
studied and applied by many researchers in statistics, applied probability, insur-
ance, and finance+ Trivially, if in the above definition f1 is coordinatewise increas-
ing but f2 is coordinatewise decreasing, then ~4+1! is changed to

E f1~Y1, + + + ,Yn ! f2~Y1, + + + ,Yn ! � E f1~Y1, + + + ,Yn !E f2~Y1, + + + ,Yn !+ (4.2)

The following is our second main result, which partially extends Theorem 3+1
to the proposed nonstandard case:
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Theorem 4.1: Assume P1, P3, and

P2': The discount factors $Yn : n � 1,2, + + + % constitute a sequence of bounded,
associated, and positive random variables.

If F � S, then (3.1) holds for each n � 1,2, + + + .

Theorem 4+1 indicates that the association of the bounded discount factors does
not influence the asymptotic relation ~3+1!+ Moreover, if we restrict the discussion
to the case of Pareto-like loss distributions, then under assumptions P1 and P3,
using a result of Resnick and Willekens @16# , it is not difficult to prove that ~3+1!
even holds for arbitrarily dependent discount factors $Yn : n � 1,2, + + + % as long as
they satisfy suitable summability conditions+

We also remark that the boundedness condition of Theorem 4+1 is not so restric-
tive for application+ For example, it allows for a realistic case below ~see also Exam-
ple 4+1 of Tang and Tsitsiashvili @19# !+

Suppose that an insurer invests his wealth not only in a risk-free asset ~a bank!
but also in a risky asset ~a stock market!+At time n �1, the insurer has wealth Sn�1,
and he keeps a nonrandom fraction, say 0 � an � 1, of his wealth in the bank and
invests the remaining part in the stock market+ Then, at time n, the first part becomes
an~1 � rn!Sn�1 with some deterministic interest rate rn � 0 and the second part
becomes ~1� an!~1� Rn!Sn�1 with some stochastic return rate Rn � @�1,`!+ Con-
sequently, the discount factors equal

Yn �
1

an~1 � rn !� ~1 � an !~1 � Rn !
, n � 1,2, + + + , (4.3)

which are obviously bounded from above by positive constants+
For related discussions in continuous-time settings, see Hipp and Plum @12# ,

Gaier and Grandits @10# ,Gaier,Grandits, and Schachermayer @11# , Cai @3# , Liu and
Yang @13# , among others+

Additionally, from ~4+3! we see that if 0 � an � 1 for n � 1,2, + + + , the associ-
ation of $Yn : n � 1,2, + + + % is equivalent to that of $Rn : n � 1,2, + + + % +

In the proof of Theorem 4+1, we will need the following lemma, which is a
restatement of Proposition 5+1 of Tang and Tsitsiashvili @18#+

Lemma 4.1: Let $X1, + + + , Xn% be n i.i.d. real-valued random variables with common
distribution F � S. Then, for arbitrarily fixed 0 � a � b � `, the relation

Pr�(
k�1

n

ck Xk � x�; (
k�1

n

OF~x0ck ! (4.4)

holds uniformly for ~c1, + + + , cn! � @a,b#� {{{� @a,b#; that is,

lim
xr`

sup
~c1,{{{, cn !�@a,b#�{{{�@a,b# � Pr�(

k�1

n

ck Xk � x�
(
k�1

n

OF~x0ck !

� 1�� 0+
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Proof of Theorem 4.1: Choose some constant d � dn � 1 as a common upper
bound of the random variables $Y1, + + + ,Yn% + First,we derive an asymptotic upper bound
for c~x, n!+ For an arbitrarily fixed 0 � « � 1 such that Pr ~« � Yj � d ! � 0 for
each j � 1, + + + , n, we split the probability on the right-hand side of ~1+3! into two
parts as

Pr�(
k�1

n

Xk
�)

i�1

k

Yi � x�
� Pr�(

k�1

n

Xk
�)

i�1

k

Yi � x,�
j�1

n

~Yj � «!�
� Pr�(

k�1

n

Xk
�)

i�1

k

Yi � x,�
j�1

n

~« � Yj � d !�
� J1~x,«!� J2~x,«!+ (4.5)

Since the random variables $Y1, + + + ,Yn% are associated and are independent of the
nonnegative random variables $X1

� , + + + , Xn
�% , by ~4+2! it holds that

J1~x,«! � E 

1� (

k�1

n

Xk
� )

i�1

k

Yi � x�1��
j�1

n

~Yj�«!�


� E 

1� (

k�1

n

Xk
� )

i�1

k

Yi � x�


E 

1��

j�1

n

~Yj�«!�


� Pr�(
k�1

n

Xk
�)

i�1

k

Yi � x�Pr��
j�1

n

~Yj � «!�+ (4.6)

Substituting ~4+6! into ~4+5! and rearranging the resulting inequality, we have

Pr�(
k�1

n

Xk
�)

i�1

k

Yi � x� �
J2~x,«!

1 � Pr��
j�1

n

~Yj � «!� + (4.7)

For J2~x,«!, on the event �j�1
n ~« � Yj � d !, we have

�)
i�1

1

Yi , + + + ,)
i�1

n

Yi� � @«n,d n #� {{{� @«n,d n # +

Hence, by Lemma 4+1 and the independence between $X1, + + + , Xn% and $Y1, + + + ,Yn% ,

J2~x,«! ; (
k�1

n

Pr�Xk)
i�1

k

Yi � x,�
j�1

n

~« � Yj � d !� � (
k�1

n

Pr�Xk)
i�1

k

Yi � x�+ (4.8)
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Substituting ~4+8! into ~4+7! yields

Pr�(
k�1

n

Xk
�)

i�1

k

Yi � x� �
1

1 � Pr��
j�1

n

~Yj � «!� (k�1

n

Pr�Xk)
i�1

k

Yi � x�+
Since the random variables $Y1, + + + ,Yn% are positive and « � 0 can be arbitrarily
small, we prove that

c~x, n! � Pr�(
k�1

n

Xk
�)

i�1

k

Yi � x� � (
k�1

n

Pr�Xk)
i�1

k

Yi � x�+ (4.9)

Now we aim at an asymptotic lower bound+ From ~1+3!, Lemma 4+1, and the asso-
ciation of the random variables $Y1, + + + ,Yn% , we derive

c~x, n! � Pr�(
k�1

n

Xk)
i�1

k

Yi � x,�
j�1

n

~« � Yj � d !�
; (

k�1

n

Pr�Xk)
i�1

k

Yi � x,�
j�1

n

~« � Yj � d !�
� (

k�1

n

Pr�Xk)
i�1

k

Yi � x�� (
k�1

n

Pr�Xk)
i�1

k

Yi � x,�
j�1

n

~Yj � «!�
� (

k�1

n

Pr�Xk)
i�1

k

Yi � x��1 � Pr��
j�1

n

~Yj � «!��+
As earlier, by letting « ' 0, we conclude that

c~x, n! � (
k�1

n

Pr�Xk)
i�1

k

Yi � x�+ (4.10)

Combining ~4+9! and ~4+10! leads to the announced result ~3+1!+ �
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