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The notion of polarization tensor is employed for the derivation of the leading-order boundary

perturbations in the steady-state voltage potentials that are due to the presence of conductivity

inclusions of small diameter. Recently, Capdeboscq and Vogelius obtained optimal bounds

of Hashin-Shtrikman type for the trace of the polarization tensor, showing that every pair

satisfying these optimal bounds arises as the eigenvalues of a polarization tensor associated

with a coated ellipse. In this paper, we give numerical evidence of the fact that the set of

possible polarization tensor eigenvalue pairs can also be obtained using simply connected

domains. Our numerical computations are based on a boundary integral method.

1 Introduction

This paper is concerned with the notion of polarization tensor (PT) associated with a

bounded Lipschitz domain and an isotropic constant conductivity. The notion of PT

appeared in problems of potential theory related to certain questions arising in hydro-

dynamics, in electrostatics, and in low-frequency scattering [14, 21, 22]. The PT is a key

mathematical concept in efficiently imaging small conductivity inclusions from boundary

measurements and also in calculating effective electrical properties of composite materials

consisting of inclusions of one material of known shape embedded homogeneously into a

continuous matrix of another having electrical properties different from its own. It is now

known that the leading-order term in the boundary perturbations due to the presence of

an inclusion inside a conductor as well as in the asymptotic expansion of the effective con-

ductivity of a dilute composite material in terms of the volume fraction of the inclusions

can be expressed by means of the PT of the inclusions shape [1, 4, 6, 8, 11, 13, 15, 16, 20].

The asymptotic expansion of the effective conductivity is motivated by the practically

important inverse problem of determining the volume fraction of a suspension of com-

plicated shaped particles from boundary measurements of voltage potentials. Therefore, in
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both applications, it is important from an imaging point of view to precisely characterize

the class of PTs and extract from the (detected) PT some important information, such as

the size and the orientation of the inclusion. Indeed, it is important to obtain bounds for

the matrix-elements of the PT since a better bound for the PT yields a better estimate for

the size of the inclusion [1, 11].

Recently, based on variational techniques originally described in Kohn & Milton

[17], Capdeboscq & Vogelius [11] obtained geometry independent optimal bounds of

the Hashin-Shtrikman (HS) type for the trace of the PT. These bounds had already

been derived, by an alternative approach, by Lipton [19]. Throughout this paper, these

bounds are called the HS bounds. To mathematically state the main estimates provided in

Capdeboscq & Vogelius [11], let M denote the PT associated with the bounded domain

D ⊂ �d whose volume |D| = 1 and the constant conductivity 0 < k� 1 < +∞. Then, for

d = 2, 3, these bounds are as follows:

Trace(M) � (k − 1)

(
d− 1 +

1

k

)
, (1.1.1)

and

Trace(M−1) �
d− 1 + k

k − 1
. (1.1.2)

In particular, in the two-dimensional case, if λ1 and λ2 are two eigenvalues of M, then

λ1 + λ2 �
(k − 1)(k + 1)

k
, (1.1.3)

and

1

λ1
+

1

λ2
�
k + 1

k − 1
. (1.1.4)

Figure 1 shows these bounds graphically, where the region A is the upper part of the HS

bounds, namely the set of all (λ1, λ2) satisfying

λ1 + λ2 <
(k − 1)(k + 1)

k
,

1

λ1
+

1

λ2
�
k + 1

k − 1
, λ1 � λ2,

and the region B is the set of all (λ1, λ2) satisfying

λ1 + λ2 <
(k − 1)(k + 1)

k
,

1

λ1
+

1

λ2
�
k + 1

k − 1
, λ1 � λ2.

The question we deal with in this paper is whether each point inside the HS bounds is

a pair of eigenvalues of a PT associated with a domain of unit area in �2. This question

was positively answered by Capdeboscq & Vogelius [12]. These authors showed that each

point inside the HS bounds is attained as a PT associated with a coated ellipse, or a washer

of elliptic shape. In fact, every point on the lower bound 1/λ1 + 1/λ2 = (k + 1)/(k − 1)

corresponds to an ellipse, and as ellipses get thinner, corresponding points on the lower

bound move to the upper or lower corner. If we start from an ellipse corresponding to a
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Figure 1. The optimal bounds for the polarization tensor in �2.

. . . . .

Figure 2. The variation of cross-domains starting from the unit disk.

point on the lower bound, and make confocal washers of elliptic shape, then corresponding

points move toward the upper bound following a certain curve as the washers get thinner

and larger. These curves make foliations and cover all regions inside the bounds except

the upper bound.

Our goal in this paper is to give numerical evidence of the fact that this optimal set can

also be obtained using simply connected domains. Our approach is to compute numerically

the polarization tensors corresponding to a radial interpolation between ellipses of unit

area and crosses with right angles, equal legs, and smooth corners. It turns out that if we

start from the unit disk and vary the domain to make a thin and long cross as shown

in Figure 2, the corresponding eigenvalues move from the intersection point of the lower

hyperbola and the line λ1 = λ2 toward the intersection point of the upper bound and

the line λ1 = λ2 following the line λ1 = λ2. Note that the intersection point of the lower

hyperbola and the line λ1 = λ2 is the pair of eigenvalues of the PT associated with the unit

disk. We also note that the cross-shaped domain in Figure 2 is invariant under rotation

by π/2, and hence the corresponding PT is of the form λI for some λ where I is the

2 × 2 identity matrix. Thus, by interpolating a cross-shape domain and an ellipse, we can

obtain foliation of the bounds (1.1.3) and (1.1.4). This is the basic idea of our work. Based

on this idea, we will show, by numerical computations, that each point inside the HS

bounds is attained by cross-shaped domains whose sides are different (see § 3 for precise

parameterizations of domains). We will also present a method to find a domain whose PT

has a given pair of eigenvalues. We emphasize that the result of this paper is numerical

and analytic computations of the PTs associated with the domains we construct in this

work, for arbitrary aspect ratios, seem unlikely. However, we will show that it is possible

to compute the eigenvalues of mixtures of ellipses and cross-shape domains in the high

aspect ratio limit.
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The paper is organized as follows. In § 2, we review the definition of the PT and its

representation in terms of boundary integrals. This boundary integral representation is

used for our numerical computations throughout this paper. In § 3 § 4, we parameterize

the domains we consider using two parameters, one being the ellipticity of the ellipses

(or the length over width ratio of the crosses’ legs) and the second being the proportion

of ellipses and crosses, to show numerical evidence of the fact that the corresponding

PTs make foliation of the HS bounds. In § 5 we first provide the asymptotic behavior of

the PT associated with crosses as crosses get thinner and longer. We then show that this

results validates the numerical results presented in § 4 for thin an long inclusions – which

are the most difficult to accurately simulate numerically.

In § 6, we present a method to identify a parameterized domain whose PT has a given

pair of eigenvalues. We derive an approximate formula to extrapolate from the computed

eigenvalue pairs data the shape of the domain. We use a combination of least square

fitting with Lagrange interpolation. The robustness of this extrapolation, compared to the

direct simulation, is accurately tested.

In concluding this introduction, we briefly mention a conjecture of Pólya-Szegö. Observe

that among the points in HS-bounds, the intersection point of the lower bound and the line

λ1 = λ2, (2(k−1)/(k + 1), 2(k−1)/(k + 1), has the minimal trace, and this is the eigenvalue

of the PT associated with the disk of unit area. Pólya & Szegö [21] conjectured that the

disk (or the sphere for three dimensions) is a unique domain with minimal trace. This

conjecture has not yet been proved.

2 Preliminaries

Let us recall the definition of PT. Let D be a bounded Lipschitz domain in �2. The

conductivity of �2 \D and D are assumed to be 1 and 0 < k� 1 < +∞, respectively. Let

W 1,2 be the collection of all functions ψ such that
∫

�2 |∇ψ|2 < +∞ and ψ(x) = O(|x|−1).

The polarization tensor M = (Mij)i,j=1,2 associated with the domain D is defined to be

the 2 × 2 matrix given by

Mij = (k − 1)

[
δij |D| +

∫
∂D

xj
∂ψi
∂ν

∣∣∣
−
ds

]
, i, j = 1, 2, (2.2.1)

where ψi, i = 1, 2, is the unique solution in W 1,2 to the following transmission problem:

∆ψi = (1 − k)∇ · (χ(D) (∇ψi + ei)) , (2.2.2)

or equivalently, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆ψi = 0 in (�2 \ D) ∪ D,
ψi|+ − ψi|− = 0 on ∂D,

∂ψi
∂ν

∣∣∣
+

− k
∂ψi
∂ν

∣∣∣
−

= (k − 1)νi on ∂D,

ψi(x) = O(|x|−1) as |x| → ∞.
Here, χ(D) is the characteristic function of D, ei is the standard basis of �2, the subscripts

+ and − denote the limits from outside and inside D, respectively, and ν = (ν1, ν2) is the

https://doi.org/10.1017/S0956792506006541 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006541


Optimal bounds for the polarization tensor 205

unit outward normal to ∂D. Then one can show [12] that for any ξ ∈ �2

Mξ · ξ =

∫
�2

γD

∣∣∣∣∇w +
k − 1

k
χ(D)ξ

∣∣∣∣
2

+
k − 1

k
|ξ|2 |D|, (2.2.3)

where w is the solution to

∆w = (1 − k)∇ · (χ(D) (∇w + ξ)) .

Here and throughout this paper γD := 1 + (k − 1)χ(D). Moreover, the solution w is the

minimizer of the functional∫
�2

γD

∣∣∣∣∇φ+
k − 1

k
χ(D)ξ

∣∣∣∣
2

+
k − 1

k
|ξ|2 |D|

over φ ∈ W 1,2. It then follows that∫
�n

γD

∣∣∣∣∇w + χ(D)
k − 1

k
ξ

∣∣∣∣
2

= −
∫

�2

γD |∇w|2 +
(k − 1)2

k
|ξ||D|. (2.2.4)

See Capdeboscq & Vogelius [12] for details.

The definition (2.2.1) of PT is proved to be equivalent to the following representation

using layer potential techniques [2, 1]. For φ ∈ L2(∂D), let K∗
Dφ be defined by

K∗
Dφ(x) =

1

2π
p.v.

∫
∂D

〈x− y, νx〉
|x− y|2 φ(y)dσ(y),

where p.v. stands for the Cauchy principal value. Then M can be represented as follows:

Mij =

∫
∂D

yj(λI − K∗
D)−1(νi)(y)dσ(y), λ :=

k + 1

2(k − 1)
. (2.2.5)

This boundary integral representation of PT is particularly useful for computational

purpose and we will use this representation for all the computations provided in this

paper.

3 Parameterizations of domains and attainability

In this section, we show numerically that every point inside the bounds (1.1.3) and (1.1.4)

is a pair of eigenvalues of a PT associated with a simply connected domain of unit area.

The domains varies from ellipses to crosses as shown in the introduction. The crosses

to be considered in this section will be slightly different from those considered in the

previous section in order to avoid the corners.

Let us briefly explain how we numerically compute the PT M. The domain D to be

considered is symmetric with respect to x and y axes, and centered at the origin (0, 0). In

order to compute M using its definition given in (2.2.5), we compute (λI − K∗
D)−1(νi)(y)

in the following way. We first choose 2m points x1, x2, . . . , x2m on ∂D, and find φi, i = 1, 2,

satisfying

(λI − K∗
D)φi(xk) = νi(xk), k = 1, 2, . . . , 2m.

This equation is solved by making use of the collocation method and trapezoid rule (see,

for instance, Kress [18]). Because of the symmetry of D, the discretized operator (λI−K∗
D)

https://doi.org/10.1017/S0956792506006541 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006541


206 H. Ammari et al.

is a matrix of the form (A B
B A) where A and B are m × m matrices, and the vector

νi = νi(xk) for k = 1, . . . , 2m, takes the form ( ai−ai). Therefore, the solution φi = (φi(xk))
2m
k=1

should be of the form ( bi−bi), where the vector bi ∈ �m is the solution of the algebraic

equation

(A − B)bi = ai, i = 1, 2. (3.3.1)

To solve (3.3.1), we use the decomposition P (A − B) = LU where the matrix L, U and P

are a lower triangular, an upper triangular, and a permutation matrix, respectively. Once

(3.3.1) is solved, we can in a standard way use (2.2.5) to finally calculate M.

As will be shown in the following, the domain D can be a thin long cross. As the

cross gets thinner and longer, we need more points on ∂D, and hence the matrix A − B
becomes larger, causing more difficulties for solving (3.3.1). But, thanks to the symmetry

of D, A − B is a sparse matrix and then we can decompose it into several symmetric

matrices of small sizes.

Note that, because of an obvious symmetry reason, it suffices to consider the region

λ2 � λ1. In fact, we recall that if two domains D and D′ are related by D′ = R(D) where R

is a unitary transformation, then their corresponding PTs, M ′ and M, satisfy the relation:

M ′ = RMRT . (3.3.2)

For t � 1, let E(t) be the ellipse of the form

x2

a2
+
y2

b2
= 1, a � b,

where t := b/a and the area |E(t)| = 1. The cross-shaped domain D(t), t � 2, is defined

by

D(t) := {(x, y), (x,−y), (−x, y), (−x,−y)|(x, y) ∈ D},
where |D(t)| = 1, and for x � 0 and y � 0, t := r1/r2, and the set D is given by

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(r1, y) for 0 � y � r2
2
,(

r1 − r2

2
+
r2

2

x√
x2 + y2

,
r2

2
+
r2

2

y√
x2 + y2

)
for 0 � tan−1 y

x
� π

2
,

(x, r2) for 3r2
2

� x � r1 − r2
2
,(

3r2
2

+
r2

2

x√
x2 + y2

,
3r2
2

+
r2

2

y√
x2 + y2

)
for π � tan−1 y

x
� 3π

2
,

(r2, y) for 3r2
2

� y � r1 − r2
2
,(

r2

2
+
r2

2

x√
x2 + y2

, r1 − r2

2
+
r2

2

y√
x2 + y2

)
for 0 � tan−1 y

x
� π

2
,

(x, r1) for 0 � x � r2
2
.
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Figure 3. The graph of D(t) for t = r1/r2 = 3.
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U(s,2)

A
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U(s,2)

Figure 4. The curve of PT associated with U(s, 2) divides A into the upper part A1 and the lower

part A2.

The domain D(t) is a cross whose corners are polished to be arcs. We make the corners

smooth to make the computations easier. Figure 3 shows the shape of D(t = 3). The classes

of domains E(t) and D(t) are the basic building blocks for representing the optimal shapes

constructed in this paper.

It is known that the eigenvalue pair of the PT of the ellipse E(t) lies on the lower

bound (hyperbola) of the region A. In fact, according to Brühl et al. [8], the PT for the

ellipse E(t) is given by

M = |E|
( (k−1)(a+b)

a+kb
0

0 (k−1)(a+b)
ka+b

)
. (3.3.3)

Thus the eigenvalue pair of the PT for E(t) is(
(k − 1)(1 + t)

1 + kt
,
(k − 1)(1 + t)

k + t

)
.

On the other hand, since the domain D(t) is invariant under the rotation by π/2, by the

relation (3.3.2) the eigenvalue pair of its PT lies on the line λ1 = λ2. Let

U(s, 2) = (1 − s)D(2) + sE(2), 0 � s � 1.

As shown in Figure 4, the eigenvalue pair of the PT associated with the domain

U(s, 2) divides the region A into two parts A1 and A2. Therefore, we will use different
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t=10

t=8

t=6

t=4

t=2
s=1 s=0.8 s=0.6 s=0.4 s=0.2 s=0

(1)

(2)

(3) (4) (1)

(2)

(3)

(4)

Figure 5. The variation of U(s, t) and the corresponding eigenvalue pairs. As t → ∞, the cross and

ellipse become thinner and longer, and corresponding eigenvalues move toward the upper bound.

As s → 1, the cross becomes an ellipse and corresponding eigenvalues move toward the lower

hyperbola.

parameterizations of domains to attain points in A1 and A2. This is solely for the

convenience of the computations.

Attainability of the region A1. Let

U(s, t) = (1 − s)D(t) + sE(t), 0 � s � 1, 2 � t.

By this notation, we do not mean the convex combination of the two shapes. No-

tice for every t, that D(t) and E(t) are both star-shaped domains around the ori-

gin, i.e., there exist two functions dt ∈ C1([0, 2π]) and et ∈ C∞([0, 2π]) such that

∂D(t) = {(ϕ, dt(ϕ)), ϕ ∈ [0, 2π]} and ∂E(t) = {(ϕ, et(ϕ)), ϕ ∈ [0, 2π]}. The precise definition

of U(s, t) for a given s ∈ [0, 1] is the bounded domain limited by the C1 curve ∂U(s, t) =

{(ϕ, (1 − s)dt(ϕ) + set(ϕ)), ϕ ∈ [0, 2π]}. Note that |U(s, t)| = 1
2

∫ 2π

0
((1− s)dt(ϕ)+ set(ϕ))2 dϕ

is not a priori equal to one. We therefore rescale the polarization tensor by a factor

1/|U(s, t)|.
Our goal in this section is to show that the points inside A1 are attained by the domain

U(s, t). Note that U(1, t) = E(t) is an ellipse and U(0, t) = D(t) is a cross. As t gets larger,

the ellipse U(1, t) becomes thinner and the cross U(0, t) becomes thinner and longer.

For a fixed t, U(s, t) changes its shape from a cross to an ellipse as s varies from 0 to

1. The left-hand side of Figure 5 shows the variation of the domain U(s, t). Numerical

computations show that as t → ∞, the eigenvalue pair of PT associated with U(0, t)

moves toward the point (λ1, λ2) = ((k − 1)(k + 1)/(2k), (k − 1)(k + 1)/(2k)) following the

line λ1 = λ2 while that of U(1, t) moves toward the point ((k − 1)/k, k − 1) following the

hyperbola. Both of these facts will be rigorously established in § 5. For each fixed t, the

eigenvalue pair for U(s, t), 0 � s � 1, makes a curve in the region A1, and these curves

make foliation of the region A1 as t varies. Figure 5 shows variations of U(s, t) and the

result of numerical computations.
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Figure 6. The variations of L(s, t) and the corresponding eigenvalue pairs of its PT.
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1.04
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Figure 7. The left figure shows the eigenvalue pairs of the PTs associated with U(s, t) and L(s, t).

The blue points are eigenvalue pairs corresponding to U(s, t) and the red ones to L(s, t). The right

figure enlarges A2.

Attainability of the region A2. Let

L(s, t) := (1 − s)E(t) + sD(2), 0 � s � 1 and 1 � t < 2.

As above, this notation does not mean the convex combination of E(t) and D(2) but the

bounded domain limited by the curve {(ϕ, (1 − s)et(ϕ) + sd2(ϕ)), ϕ ∈ [0, 2π]}. Note that

D(2) is fixed. For each fixed t, E(t) corresponds to a point on the lower hyperbola. So,

L(s, t) interpolates the point on the hyperbola and the fixed point on the line λ1 = λ2

corresponding to D(2). Numerical computations give the evidence of the fact that the

points in A2 arise as the eigenvalue pairs of the PT corresponding to the domain L(s, t).

Figure 6 shows the variation of L(s, t) and the corresponding eigenvalues of its PT.

Figure 7 shows attainability of both the regions A1 and A2.
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4 An approximate formula for the foliation

In the previous section, we parameterized domains to show that as the parameter s varies

from 0 to 1 for a fixed t, the eigenvalue pairs make a curve. Then, by varying t these

curves, a foliation of the region, say A1, can be obtained.

In this section, we derive an approximate formula for this foliation. Since the formula

for the region A2 can be obtained in almost the same way, we omit its derivation.

Choose finite sets of parameters, S = {s0 = 0, s1, . . . , sm = 1} and T = {t0 = 2, t1, . . . , tn}.
Then numbers m, n are at our disposal. We may take large ones if we need very accurate

approximations. We then compute the eigenvalues (λ1(si, tj), λ2(si, tj)) of the PT associated

with the domain U(si, tj) for i = 0, . . . , m and j = 0, . . . , n. Our objective is to find a formula

to relate λ1(si, tj) with λ2(si, tj).

Let us introduce a transformation which makes the computations easier. Let V be given

by

V (x, y) := R π
4

(
x− (k − 1)(k + 1)

2k
, y − (k − 1)(k + 1)

2k

)
,

where Rθ is the rotation by θ. Then define

(ρ1(s, t), ρ2(s, t)) := V (λ1(s, t), λ2(s, t)).

We seek to find a function P (x, t) of the form

P (x, t) =

m∑
l=0

al(t)x
l,

such that

ρ2(si, tj) = P (ρ1(si, tj), tj) =

m∑
l=0

al(tj)ρ1(si, tj)
l .

We can obtain the desired formula by completing the following steps.

An approximate formula for the foliation

S1. For each si ∈ S (i�m) and l = 1, 2, we look for a function P l
i on (1, 3/2] satisfying

P l
i

(
1 + tj

tj

)
= ρk(si, tj), tj ∈ T ,

or minimizing ∑
tj∈T

∣∣∣∣P l
i

(
1 + tj

tj

)
− ρk(si, tj)

∣∣∣∣ .
We obtain such a polynomial P l

i using the least square curve fitting.

If i = m or si = 1, then U(sm, t) is an ellipse, and the corresponding eigenvalues are

given explicitly by (3.3.3). We use these explicit formulas for our P l
m, l = 1, 2.

S2. We seek a function P (x, t), which is the unique m-th degree polynomial in x satisfying

P (ρ1(si, tj), tj) = ρ2(si, tj), si ∈ S and tj ∈ T .
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Figure 8. Numerical results for U and L. The dots are the computed eigenvalue pairs of the PT

of the domains and solid curves are curves fitting dots.

Such a polynomial is given by

P (x, t) =

m∑
i=0

ai(t)x
i

=

m∑
i=0

∏
l�i

l=0, ...,m

(
ρ2(si, t)

x− ρ1(sl , t)

ρ1(si, t) − ρ1(sl , t)

)

=

m∑
i=0

∏
l�i

l=0, ...,m

(
P 2
i

(
1 + t

t

)
x− P 1

l

(
1+t
t

)
P 1
i

(
1+t
t

)
− P 1

l

(
1+t
t

)
)
,

where P 1
i , P

2
i , i = 0, . . . , m, are the polynomials obtained in step S1.

Notice that for the sake of a simpler parameterization we have used two different ways

of interpolation for the lower and upper parts.

Figure 8 shows results of numerical tests using Matlab program. For these computations

we assume the conductivity k = 3. The boundary integral is discretized at 16, 000 boundary

points. This large number of points will be used throughout the paper. After doing

experiments on the accuracy of the method, we have chosen this number to make the

numerical computations precise, since as the cross gets thinner, the domain variations

affect very little the PT. The dots in the left figure of Figure 8 are the computed

eigenvalue pairs of the PT associated with U(s, t) for s = 0, 0.2, . . . , 1 and t = 2, 3, . . . , 18.

The solid-curves are graphs of P (x, t) fitting dots, which are computed following the

procedure described in steps S1 and S2. We use S := {0, 0.4, 1} and T := {2, 3, . . . , 18}
for the computation of P (x, t). The right hand side figure is for L(s, t), s = 1, 1.1, . . . , 1.9,

t = 2, 3, . . . , 18. Numerical values for the eigenvalues are recorded in Tables 1 and 2.

Figure 9 shows whole foliation by P (x, t) of the HS bounds.

5 Asymptotics of PT for thin crosses, and analytic accuracy of the foliation

On Figure 5 we see that the upper trace bound is reached by the PT corresponding to

E(t) as t tends to infinity. It also seems that as the cross becomes thinner and longer, the

corresponding PT approaches the upper trace bound.
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Table 1. The eigenvalue pairs (λU1 (s, t), λU2 (s, t)) associated with U(s, t)

t\s 0 0.2 0.4 0.8 1

2 (1.0111,1.0111) (0.9736,1.0463) (0.9376,1.0847) (0.8778,1.1640) (0.8571,1.2000)

3 (1.0443,1.0443) (0.9812,1.1021) (0.9194,1.1656) (0.8227,1.2886) (0.8000,1.3333)

4 (1.0737,1.0737) (0.9945,1.1480) (0.9160,1.2292) (0.7938,1.3803) (0.7692,1.4286)

5 (1.0981,1.0981) (1.0074,1.1852) (0.9171,1.2798) (0.7767,1.4498) (0.7500,1.5000)

6 (1.1182,1.1182) (1.0187,1.2158) (0.9195,1.3208) (0.7656,1.5042) (0.7368,1.5556)

7 (1.1351,1.1351) (1.0285,1.2413) (0.9220,1.3548) (0.7578,1.5482) (0.7273,1.6000)

8 (1.1491,1.1491) (1.0366,1.2627) (0.9243,1.3833) (0.7520,1.5844) (0.7200,1.6364)

9 (1.1622,1.1622) (1.0443,1.2815) (0.9268,1.4078) (0.7475,1.6147) (0.7143,1.6667)

10 (1.1717,1.1717) (1.0497,1.2970) (0.9282,1.4286) (0.7438,1.6407) (0.7097,1.6923)

11 (1.1811,1.1811) (1.0552,1.3111) (0.9299,1.4470) (0.7410,1.6629) (0.7059,1.7143)

12 (1.1881,1.1881) (1.0591,1.3229) (0.9308,1.4629) (0.7382,1.6824) (0.7027,1.7333)

13 (1.1964,1.1964) (1.0640,1.3344) (0.9325,1.4773) (0.7361,1.6995) (0.7000,1.7500)

14 (1.2025,1.2025) (1.0675,1.3441) (0.9335,1.4901) (0.7342,1.7147) (0.6977,1.7647)

15 (1.2077,1.2077) (1.0703,1.3527) (0.9341,1.5013) (0.7325,1.7281) (0.6957,1.7778)

16 (1.2134,1.2134) (1.0736,1.3609) (0.9351,1.5117) (0.7309,1.7403) (0.6939,1.7895)

17 (1.2205,1.2205) (1.0779,1.3690) (0.9368,1.5213) (0.7299,1.7511) (0.6923,1.8000)

18 (1.2272,1.2272) (1.0819,1.3764) (0.9384,1.5301) (0.7282,1.7613) (0.6909,1.8095)

Table 2. The eigenvalue pairs (λL1 (s, t), λL2 (s, t)) associated with L(s, t)

t\s 0 0.2 0.4 0.8 1

1 (1.0111,1.0111) (1.0078,1.0078) (1.0048,1.0048) (1.0006,1.0006) (1.0000,1.0000)

1.1 (1.0111,1.0111) (1.0027,1.0130) (0.9946,1.0152) (0.9812,1.0208) (0.9767,1.0244)

1.2 (1.0111,1.0111), (0.9981,1.0178) (0.9856,1.0248) (0.9642,1.0399) (0.9565,1.0476)

1.3 (1.0111,1.0111) (0.9940,1.0222) (0.9775,1.0339) (0.9491,1.0581) (0.9388,1.0698)

1.4 (1.0111,1.0111) (0.9903,1.0264) (0.9702,1.0424) (0.9357,1.0753) (0.9231,1.0909)

1.5 (1.0111,1.0111) (0.9869,1.0302) (0.9636,1.0504) (0.9237,1.0917) (0.9091,1.1111)

1.6 (1.0111,1.0111) (0.9838,1.0338) (0.9575,1.0580) (0.9128,1.1074) (0.8966,1.1304)

1.7 (1.0111,1.0111) (0.9810,1.0372) (0.9520,1.0652) (0.9029,1.1224) (0.8852,1.1489)

1.8 (1.0111,1.0111) (0.9783,1.0404) (0.9468,1.0720) (0.8938,1.1368) (0.8750,1.1667)

1.9 (1.0111,1.0111) (0.9759,1.0434) (0.9421,1.0785) (0.8855,1.1506) (0.8657,1.1837)

The first result of this section show that this is indeed what is predicted by the

asymptotics.

Theorem 5.1 The PT MD(t) associated to D(t) satisfies

lim
t→∞

MD(t) =
(k − 1)(k + 1)

2k

(
1 0

0 1

)
. (5.5.1)

On Figure 9, it seems that as the “thinness” parameter t becomes large, the curve

described by (λU1 (s, t), λU2 (s, t)) as s varies between 0 and 1 appears to be a straight line.

This can be measured on table 1 as well. The cross-shape was designed to be “simple”
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V–1

Figure 9. The numerical results for the foliation.

from a computational point of view. The drawback is that obtaining precise analytical

results for this shape is unreasonably technical. We shall show that the affine nature of

the curve (λU1 (s, t), λU2 (s, t)) is asymptotically correct for a similar (but different) cross for

which analytical computations are simpler.

The alternate cross we consider is given as follows. Let Ft and St be a “flat” elliptic

beam and a “standing” elliptic beam given by

Ft :
x2

b2
+
y2

a2
= 1, St :

x2

a2
+
y2

b2
= 1, a =

1√
2πt

, b = ta.

Define Xt := Ft ∪ St, and following the approach introduced in section 3, define for all

s ∈ [0, 1] and t ∈ [1,∞),

U(s, t) = sE(t) + (1 − s)X(t),

the domain of unit area obtained by radial interpolation between X(t) and E(t). The

second result of this section shows that as s varies between 0 and 1, the curve described

by (λU1 (s, t), λU2 (s, t)) is asymptotically a line.

Theorem 5.2 The PT MU(s,t) associated to U(s, t) satisfies

MU(s,t) =

(√
2s+ 1 − s

)2

(√
2s+ 1 − s

)2

+ (1 − s)2
MU(1,t) +

(1 − s)2(√
2s+ 1 − s

)2

+ (1 − s)2
MU(0,t) + ε(t),

where ε(t) tends to zero as t tends to infinity.

We shall start by proving Theorem 5.1.

Note that D(t) can be approximated by D̃t = Ht ∪ Vt, where

Ht =

[
−

√
t

8
,

√
t

8

]
×

[
− 1√

8t
,

1√
8t

]
and Vt =

[
− 1√

8t
,

1√
8t

]
×

[
−

√
t

8
,

√
t

8

]
.

The difference between the two domains are the smooth corners of D(t), and the surface

of Ht ∪ Vt which is not exactly one. It is easy to see that, for every t > 0 there exists t1
and t2 and λ such that

|t1 − t2| + |λ− 1| �
C

t
,
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where C is a constant independent of t, and D̃t1 ⊂ D(t) ⊂ λD̃t2 . Since the polarization

tensors are monotonous with respect to inclusion, we deduce that

MD(t) = MD̃(t) + O

(
1

t

)
.

In the sequel, we will identify D and D̃(t). The asymptotic limit of the polarization tensor

of a single thin beam is known [7]. We have

lim
t→∞

MH(t) =
1

2

⎛
⎝k − 1 0

0
k − 1

k

⎞
⎠ , and lim

t→∞
MV (t) =

1

2

⎛
⎝k − 1

k
0

0 k − 1

⎞
⎠ .

Given ξ ∈ �2, let wξt ∈ W 1,2 be the solution to

∆wt = (1 − k)∇ · (χ(D(t)) (∇wt + ξ)) ,

and let hξt , and vξt be the solutions to the same equations with D(t) replaced with Ht and

Vt, respectively. The following lemmas hold.

Lemma 5.3 For any unit vector ξ = (ξ1, ξ2), the functions hξt and vξt satisfy∥∥∥∥∇hξt + χ(Ht)
1 − k

k
ξ2e2

∥∥∥∥
L2(�2)

= ε(t), and

∥∥∥∥∇vξt + χ(Vt)
1 − k

k
ξ1e1

∥∥∥∥
L2(�2)

= ε(t), (5.5.2)

where limt→∞ ε(t) = 0.

Proof Write M(Ht) = (Mi,j
t )i,j=1,2. Since

M
1,1
t =

k − 1

2
+ ε(t) as t → ∞,

it follows from (2.2.3) and (2.2.4) that∫
�2

γHt
|∇he1t |2 = ε(t).

On the other hand, since M2,2
t = (k − 1)/2k + ε(t) as t → ∞, we get from (2.2.3) that

∫
�2

γHt

∣∣∣∣∇he2t +
k − 1

k
χ(Ht)e2

∣∣∣∣
2

= ε(t).

Since hξt = ξ1h
e1
t + ξ2h

e2
t , we obtain the first limit in (5.5.2). The second estimate can be

proved in a similar fashion. �

Lemma 5.4 For each unit vector ξ, we have∥∥∥∇wξt −
(

∇hξt + ∇vξt
)∥∥∥

L2(�2)
= ε(t), (5.5.3)

where limt→∞ ε(t) = 0.
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Proof Let us, for simplicity, drop superscripts ξ. Since

‖∇ht‖L2(Ht∩Vt) �

∥∥∥∥∇ht + χ(Ht)
1 − k

k
ξ2e2

∥∥∥∥
L2(Ht∩Vt)

+ ξ2|Ht ∩ Vt| = ε(t),

it follows from (5.5.2) that

‖∇ht‖L2(Vt)
= ε(t). (5.5.4)

Likewise we get

‖∇vt‖L2(Ht)
= ε(t). (5.5.5)

By simple algebra, we obtain

∇ · γD(t)∇ (wt − ht − vt)

= (k − 1) ∇ · (χ(Vt)∇ht + χ(Ht)∇vt) − (k − 1) ∇ · (χ(Ht ∩ Vt) (∇ht + ∇vt + ξ)) .

If we multiply the above equation by a test function φ and integrate by parts, we get∫
�2

γXt∇ (wt − ht − vt) · ∇φ = (k − 1) (A+ B + C)

with

|A| =

∣∣∣∣
∫
Ht∩Vt

(∇ht + ∇vt + ξ) · ∇φ
∣∣∣∣ � ‖∇ht + ∇vt + ξ‖L2(Ht∩Vt) ‖∇φ‖L2(�2) ,

|B| =

∣∣∣∣
∫
Vt

∇ht · ∇φ
∣∣∣∣ � ‖∇ht‖L2(Vt)

‖∇φ‖L2(�2) ,

|C| =

∣∣∣∣
∫
Ht

∇vt · ∇φ
∣∣∣∣ � ‖∇vt‖L2(Ht)

‖∇φ‖L2(�2) .

Thanks to (5.5.4) and (5.5.5), we obtain∣∣∣∣
∫

�2

γD(t)∇ (wt − ht − vt) · ∇φ
∣∣∣∣ � ‖∇φ‖L2(�2) ε(t),

for any test function φ, and hence (5.5.3) follows. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1 By (2.2.1) we have

MD(t)ξ · ξ = (k − 1)

[
1 + (k − 1)

∫
D(t)

ξ · ∇wξt dx
]
,

for any ξ ∈ �2. It then follows from (5.5.3) that

MD(t)ξ · ξ = (k − 1)

[
1 + (k − 1)

∫
D(t)

ξ · (∇hξa + ∇vξd )dx
]

+ ε(t). (5.5.6)
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From (5.5.2) we obtain that∫
D(t)

ξ · (∇hξt + ∇vξt )dx =

∫
Ht

ξ · ∇hξt +

∫
Vt

ξ · ∇vξt +

∫
D(t)\Ht

ξ · ∇hξt +

∫
D(t)\Vt

ξ · ∇vξt

=

∫
Ht

ξ · ∇hξt +

∫
Vt

ξ · ∇vξt + ε(t).

Therefore, (5.5.6) yields

MD(t)ξ · ξ = MV (t)ξ · ξ +MH(t)ξ · ξ + ε(t).

Now, (5.5.1) immediately follows from (5). �

Proof of Theorem 5.2 We have introduced

U(s, t) = sE(t) + (1 − s)X(t),

that is, a domain with vertical and horizontal symmetries defined in the first quadrant as

the domain inside the curve given, in polar coordinates, by

for 0 � ϕ �
π

4
, ρU(ϕ) =

√
t

2π

( √
2s√

t2 cos2(ϕ) + sin2(ϕ)
+

1 − s√
t2 sin2(ϕ) + cos2(ϕ)

)

for
π

4
� ϕ �

π

2
, ρU(ϕ) =

√
t

2π

√
2s+ 1 − s√

t2 cos2(ϕ) + sin2(ϕ)
.

With this definition, we can compute

|U(s, t)| =

∫ π
4

0

1

2
ρ2
U(ϕ)dϕ+

∫ π
2

π
4

1

2
ρ2
U(ϕ)dϕ =

(1 − s)2

2
+

(√
2s+ 1 − s

)2

2
+ ε(t).

Furthermore, we see that, up to a small volume, U(s, t) = F̃st ∪ S̃st + ε(t), where

F̃st :
x2

ã2
+
y2

b̃2
= 1, S̃st :

x2

c̃2
+
y2

d̃2
= 1, a =

√
2s+ 1 − s√

2πt
, b = ta

and

c = td, d =
(1 − s)√

2πt
.

Arguing as before, we see that the PT corresponding to U(s, t) is equal to the PT

corresponding to F̃st ∪ S̃st, up to an error ε(t) which tends to zero as t tends to infinity.

The polarization tensors of F̃st and S̃st are known [8] and given by (3.3.3). Thus we have

lim
t→∞

MFst = ‖Fst‖

⎛
⎝k − 1 0

0
k − 1

k

⎞
⎠ , and lim

t→∞
MS (t) = ‖Sst‖

⎛
⎝k − 1

k
0

0 k − 1

⎞
⎠ .

Using the same arguments that in the proof of Theorem 5.1, with D(t), H(t) and V (t)
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replaced by U(s, t), F̃st and S̃st respectively, formula (5) becomes

‖U(s, t)‖MU(s,t)ξ · ξ = MFstξ · ξ +MSstξ · ξ + ε(t),

which, together with (5), concludes the proof of Theorem 5.2. �

In concluding this section, we would like to refer to the recent paper by Capdeboscq

and Kang [9] where it is shown that if the domain contains certain set of volume and is

not thin than its PT stays away from the upper HS-bound.

It is also worth noticing that the asymptotic result in this section holds in the three-

dimensional case as well. Indeed, taking combinations of ellipsoids, we can show by

exactly the same arguments as those presented above the optimality of the upper bounds

(1.1.1) and (1.1.2).

6 Identification of domains

In this section, given a pair (λ1, λ2) inside the HS bounds, we present a method to find the

parameters s and t, such that this pair arises as the eigenvalue pair of the PT associated

with U(s, t) or L(s, t).

Our procedure is described in the following.

Identification algorithm

S’1. Given (λ1, λ2) ∈ A1, transform it into

(ρ1, ρ2) := V (λ1, λ2).

S’2. Find the zero t∗ � 2 satisfying

P (ρ1, t
∗) = ρ2.

Here P (x, t) is the polynomial computed in the previous section.

S’3. Compute (ρ1(si, t
∗), ρ2(si, t

∗)) for si ∈ S . From these data, we derive the relation

between s and ρ1(s, t
∗) as follows:

x1(s) =

m∑
i=0

∏
l�i

(
ρ1(si, t

∗)
s− sl

si − sl

)
, 0 � s � 1.

S’4. Find s∗ so that

x1(s
∗) = ρ1.

We can check the validity of the above algorithm by computing the relative error. If

(s∗, t∗) is the computed pair of parameters, then we calculate the eigenvalues λ1(s
∗, t∗) and
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Table 3. The numerical results for the identification algorithm. For a given eigenvalue

pair (λ1, λ2), we compute the parameters t∗, s∗ of the domain and find the eigenvalues

(λ1(s
∗, t∗), λ2(s

∗, t∗)). The last column is the relative error

(λ1, λ2) t∗ s∗ (λ1(s
∗, t∗), λ2(s

∗, t∗))
|(λ1 ,λ2)−(λ1(s∗ ,t∗),λ2(s∗ ,t∗))|

|(λ1 ,λ2)|

(1.0470,1.2893) 9.5607 0.1992 (1.0480,1.2902) 8.0838E-4

(0.8277,1.4614) 6.8182 0.6081 (0.8248,1.4586) 2.3709E-3

(1.2060,1.2060) 14.4493 4.7730E-15 (1.2062,1.2062) 2.1222E-4

(0.9387,1.5378) 19.0739 0.4008 (0.9403,1.5394) 1.2567E-3

(0.7274,1.7702) 18.4077 0.8089 (0.7253,1.7681) 1.5114E-3

(1.1015,1.4132) 26.7781 0.1981 (1.1065,1.4182) 3.9419E-3

λ2(s
∗, t∗) of its associated PT. We can see the order of the relative error by computing

|(λ1, λ2) − (λ1(s
∗, t∗), λ2(s

∗, t∗))|
|(λ1, λ2)|

.

As shown in Table 3, the above algorithm identifies the parameterized domain pretty

well.

7 Conclusion

In this paper we proved that the PT associated with crosses approaches to the upper

bound as cross gets thinner and longer. We then show, by numerical computations based

on a boundary integral method, that every point inside the Hashin-Shtrikman bounds

for polarization tensors can be attained by a simply connected domain which is given

explicitly in terms of two parameters. We also present a method to find the parameters

corresponding to a given pair of eigenvalues inside the Hashin-Shtrikman bounds.
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[8] Brühl, M., Hanke, M. & Vogelius, M. S. (2003) A direct impedance tomography algorithm

for locating small inhomogeneities. Numer. Math. 93, 635–654.

[9] Capdeboscq, Y. & Kang, H. (n.d.) Improved Hashin-Shtrikman bound for thick domains.

Contemporary Math. (to appear).

[10] Capdeboscq, Y. & Vogelius, M. S. (2003) A general representation formula for the bound-

ary voltage perturbations caused by internal conductivity inhomogeneities of low volume

fraction, Math. Modelling Num. Anal. 37 (2003), pp. 159–173.

[11] Capdeboscq, Y. & Vogelius, M. S. (2003) Optimal asymptotic estimates for the volume of

internal inhomogeneities in terms of multiple boundary measurements. Math. Modelling

Num. Anal. 37, 227–240.

[12] Capdeboscq, Y. & Vogelius, M. S. (2003) A review of some recent work on impedance

imaging for inhomogneieties of low volume fraction. Proceedings Pan-American Advanced

Studies Institute on PDEs, Inverse problems and Nonlinear Analysis.

[13] Cedio-Fengya, D. J., Moskow, S. & Vogelius, M. (1998) Identification of conductivity

imperfections of small diameter by boundary measurements: Continuous dependence and

computational reconstruction. Inverse Problem, 14, 553–595.

[14] Dassios, G. & Kleinman, R. E. (2000) Low Frequency Scattering. Oxford Science Publications.

The Clarendon Press, Oxford University Press.

[15] Jikov, V. V., Kozlov, S. M. & Oleinik, O. A. (1994) Homogenization of Differential Operators

and Integral Functionals. Springer-Verlag.

[16] Kleinman, R. E. & Senior, T. B. A. (1986) Rayleigh scattering. In: V. K. Varadan and V. V.

Varadan, editors, Low and High Frequency Asymptotics, pp. 1–70. North-Holland.

[17] Kohn, R. V. & Milton, G. W. (1986) On bounding the effective conductivity of anisotropic

composites. Homogenization and Effective Moduli of Materials and Media, IMA Volumes in

Mathematics and its Applications 1, pp. 97–125.

[18] Kress, R. (1980) Linear Integral Equations, Applied Mathematical Sciences, Vol. 82, Springer-

Verlag.

[19] Lipton, R. (1993) Inequalities for electric and elastic polarization tensors with applications to

random composites. J. Mech. Phys. Solids, 41, 809–833.

[20] Milton, G. W. (2001) The Theory of Composites. Cambridge Monographs on Applied and

Computational Mathematics. Cambridge University Press.
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