
Euro. Jnl of Applied Mathematics (2003), vol. 14, pp. 547–570. c© 2003 Cambridge University Press

DOI: 10.1017/S0956792503005163 Printed in the United Kingdom
547

Estimates for the three-wave interaction
of surface water waves

GUIDO SCHNEIDER1 and C. EUGENE WAYNE2

1Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

email: guido.schneider@mathematik.uni-karlsruhe.de
2Department of Mathematics and Center for BioDynamics, Boston University,

Cummington St., Boston, MA 02215, USA

email: cew@math.bu.edu

(Received 22 March 2002; revised 2 January 2003)

The equations for three-wave interaction describe the resonant, quadratic, nonlinear interac-

tion of three waves. They are obtained as amplitude equations in an asymptotic reduction of

the basic equations of nonlinear optics, fluid mechanics, and plasma physics. These equations

are completely integrable and have been the subject of intensive research in the last years. It

is the purpose of this paper to prove exact estimates between the approximations obtained via

this system and solutions of the original physical system. Although the three-wave interaction

model is believed to describe a number of different physical models we restrict attention to

its application as a model of the resonant interaction of water waves subject to weak surface

tension.

1 Introduction

In this paper we continue our program to justify the use of common models for water

waves. In previous work we have examined the equations appropriate to approximate the

long-wavelength motion of gravity waves [21], and capillary-gravity waves [22]. In this

work we consider the interaction of three wave trains whose frequencies and wave numbers

are in resonance. The equations for the so called Three-Wave Interaction (TWI) are

given by

∂TA1 = cg(k1)∂XA1 + iγ1A2A3,

∂TA2 = cg(k2)∂XA2 + iγ2A1A3, (1.1)

∂TA3 = cg(k3)∂XA3 + iγ3A1A2,

with T ∈ �, X ∈ �, cg(kj) ∈ �, γj ∈ �, kj ∈ �, and Aj(X,T ) ∈ �. The TWI equations

describe the resonant quadratic nonlinear interaction of three wave packets modulating

some underlying wave trains ei(kjx+ωjt). These wave trains have to satisfy the resonance

condition

k1 + k2 + k3 =0

ω1 + ω2 + ω3 =0

}
, (1.2)

with kj ∈ � the spatial wave numbers and ωj the temporal wave numbers. It is the purpose
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of this paper to show that the dynamics in the original system behave as predicted by the

equations for the three-wave interaction, i.e. to prove exact estimates between the solutions

of the water wave problem and the approximations obtained by the equations for the

three-wave interaction. In the case of surface water waves moving under the influence

of gravity and weak surface tension, the system for the three-wave interaction has been

considered previously [3, 6, 17]. For a relatively recent survey of both the theoretical

and experimental status of resonant interaction models in the theory of water waves, see

Hammack & Henderson [9].

The quadratic resonant three-wave interaction seems to play a big role in the generation

of capillary-gravity surface waves. For instance, Janssen [10, 11] argues that three-wave

interactions may be important in the wind-induced generation of initial wavelets com-

paring the formal approximations with experimental data [14]. In the resonant case, a

third wave packet of order O(ε) can be generated out of two wave packets of order O(ε).

In the non-resonant case only the generation of order O(ε2) wave packets is possible.

This idea goes back to the beginning of the 1960s [16, 19], based on observations at

the beginning of the last century, and has been reviewed, for instance, in Hammack &

Henderson [9].

Just as with the Korteweg-de Vries or Nonlinear Schrödinger equations, the TWI

equations can be derived as an asymptotic approximation for a number of systems,

including nonlinear optics, plasma physics, and fluid mechanics, especially for internal

waves in two layer fluids, and for surface water waves in case of low surface tension.

See Ablowitz & Segur [2] and Craik [8] and the references therein. Although we restrict

ourselves to the water wave problem due to our particular interest, we believe that the

approximation property holds for the other original systems, too. In fact, we expect that

the analogous theorems may be easier to prove in those cases, because the local existence

and uniqueness theory is simpler.

Equations (1.1) turned out to be completely integrable, and they have been the subject of

intensive research in the last few years (see elsewhere [4, 5, 13, 1] for recent developments in

the x-independent case). Unlike the KdV equations, for example, the complete integrability

of (1.1) cannot be reduced to an integral equation of Gelfand–Levitan type. Instead, one

must solve a Riemann-Hilbert problem.

The water wave problem consists in finding the irrotational flow of an inviscid, incom-

pressible fluid in an infinitely long canal of fixed depth h with impermeable bottom under

the influence of gravity and surface tension. We choose coordinates with x ∈ IR denoting

the unbounded direction in the fluid and with y � −1 the coordinate measuring the fluid’s

(finite) depth. The velocity field of the fluid satisfies Euler’s equations and the fluid fills

the unknown time-dependent domain Ω(t) between the bottom {(x,−1)|x ∈ �} and the

free unknown top surface Γ (t) = {(x, η(x, t))|x ∈ �} with η : � → �. The TWI equations

are approximation to water waves that are small perturbations of a flat surface. As such,

we assume throughout this paper that the fluid surface can be written as the graph of

some function. It follows from our results that if the initial conditions are of the form

described by the hypothesis of Theorem 1.1, then the surface can be written as a graph

at least over the period when the approximation is valid.

Under these assumptions, there exists a potential φ : Ω(t) → � such that the velocity

field u = (u, v) satisfies u = ∂xφ and v = ∂yφ. The potential φ and the elevation η of the
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top surface satisfy

∂2
xφ+ ∂2

yφ = 0, in Ω(t), (1.3)

∂yφ = 0, for y = −1, (1.4)

∂tη = ∂yφ− (∂xη)∂xφ, on Γ (t), (1.5)

∂tφ = −1

2
((∂xφ)2 + (∂yφ)2) + µ∂x

[
∂xη√

1 + (∂xη)2

]
− η, on Γ (t), (1.6)

where µ is a parameter proportional to surface tension. Without loss of generality, we set

the depth of the fluid and the gravitational constant to one. It is well known, and it will

be explained in the next section, that the water wave problem is completely described by

the evolution of the elevation of the top surface η= η(x, t) and the horizontal velocity

component w = w(x, t) = u(x, η(x, t), t) at the top surface.

Then the equations (1.1) for the three-wave interaction can be derived by the following

multiple scaling ansatz. There exist vectors ϕj ∈ �2 (which depend only upon kj and can

be computed explicitly) such that(
w

η

)
≈ εψ1(x, t) = εA1(εx, εt)e

i(k1x+ω1t)ϕ1 + εA2(εx, εt)e
i(k2x+ω2t)ϕ2

+ εA3(εx, εt)e
i(k3x+ω3t)ϕ3 + c.c.

with 0 < ε � 1 a small parameter, c.c. meaning complex conjugate, and the spatial and

temporal wavenumbers kj and ωj having to satisfy the resonance condition (1.2), and

being related by the linear dispersion relation of the water wave problem

ω2 = (k + µk3) tanh k. (1.7)

Notation. We denote Fourier transform by (Fu)(k) = û(k) = 1
2π

∫
u(x)e−ikx dx. The Sobolev

space Hs is equipped with the norm ‖u‖Hs = (
∫

|û(k)|2(1 + |k|2)s dk)1/2. Moreover, let

‖u‖Cnb =
∑n

j=0 ‖∂jxu‖C0
b
, where ‖u‖C0

b
= supx∈IR |u(x)|.

Then our result is as follows.

Theorem 1.1 Let s � 6 and choose ωj and kj to satisfy (1.2) and (1.7), Then for all C1, T0 >

0 there exist C2, ε0 > 0 such that for all ε ∈ (0, ε0) the following is true.

Let A1, A2, A3 ∈ C([0, T0], (H
s+2(�,�))3) be solutions of (1.1) with

sup
T∈[0,T0]

‖Aj(T )‖Hs+2 � C1

for j = 1, 2, 3. Then there are solutions of the water wave problem (1.3)–(1.6) satisfying

sup
t∈[0,

T0
ε

]

∥∥∥∥
(
w

η

)
(x, t) − εψ1(x, t)

∥∥∥∥
(Cs−2

b )2
� C2ε

3/2.

This theorem also allows us to find the dynamics of the equations for the three-wave

interaction in the water wave problem, since the error of order O(ε3/2) is small compared

with the solution and approximation, which are both of order O(ε).
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Figure 1. Schematic of the linear dispersion relation and possible quadratic resonances.

It is easy to see that the resonance condition (1.2) can be satisfied for the dispersion

relation (1.7) of the water wave problem for small µ > 0, i.e. for small surface tension (see

Figure 1).

In principle, the proof of Theorem 1.1 is based on a simple application of Gronwall’s

inequality. It has been pointed out [15] that such an estimate can be proved on a time

scale O( 1
ε
) if the solutions are of order O(ε), and if the residual, i.e. the terms which

remain after inserting the ansatz into the equations of the original system, can be made

sufficiently small, here O(ε3). In the present case, we make the residual small by adding

to the original ansatz εψ1 additional terms that are of higher order in ε. That these terms

can be chosen is such a way as to make the residual small is proven in Lemma 3.6.

Therefore, the equations for the three wave interaction (1.1) do provide accurate and

useful approximations of the water wave problem. We note that this fact should not be

taken for granted. There are modulation equations (some examples of which are described

in Schneider [20]) which, although derived by reasonable formal arguments, do not reflect

the true dynamics of the original equations.

The difficulties in proving Theorem 1.1 come largely from the inherent difficulties of

the water wave problem, and not from the approximation procedure. So far there is no

direct local existence and uniqueness theory for the Eulerian formulation (1.3)–(1.6) of

the water wave problem, which does not work with analytic initial conditions. Therefore,

to prove Theorem 1.1 we have to work with the Lagrangian formulation of the water

wave problem for which a number of local existence and uniqueness theorems in Sobolev

spaces exist [7, 18, 24, 25, 26, 27]. This formulation will be introduced in the next

section. It has the drawback that several of the variables in this formulation exhibit

secular growth, which is difficult to control over the long time scales we must work with.

To circumvent this secular growth, we apply a method from Schneider & Wayne [22]
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where the KdV-equation has been justified as an amplitude equation for the water wave

problem with weak surface tension.

Notation. Throughout this paper, we assume 0 < ε � 1 and denote possibly different

constants by the same symbol C . The j-th component of a vector v is denoted by (v)(j).

The commutator of two operators L and M is defined as [L,M] = LM −ML.

2 The Lagrangian formulation of the water wave problem

As mentioned in the introduction, there is no existence and uniqueness theory for the

Eulerian formulation (1.3)–(1.6) of the water wave problem in Sobolev spaces. Thus, this

section is devoted to introducing the Lagrangian formulation of the water wave problem,

rewriting this formulation as a quasi-linear system of partial differential equations, and

then stating an existence theorem for solutions of this system that we proved in Schneider

& Wayne [22]. For fixed time t the free surface of the fluid can be written as

Γ (t) = {(X̃1(α, t), X̃2(α, t)) = (α+X1(α, t), X2(α, t))|α ∈ �}.

It is a Jordan curve which has no intersection with the bottom {(α,−1)|α ∈ �}. In

contrast to the Eulerian formulation in the Lagrangian formulation, Γ (t) does not have

to be a graph over the bottom. Under the assumptions on the flow which we made in the

introduction the dynamics of the water problem is completely determined by the evolution

of the free surface Γ (t), which is governed by (for a careful derivation of the following

system of equations, see Yosihara [27]):

∂2
t X1(1 + ∂αX1) + ∂αX2

(
1 + ∂2

t X2

)
= µR

(
∂αX, ∂

2
αX

)
+ µS

(
∂αX, ∂

3
αX

)
, (2.1)

∂tX2 = K(X)∂tX1, (2.2)

where

X(α, t) = (X1(α, t), X2(α, t)),

R
(
∂αX, ∂

2
αX

)
= −3Q(∂αX)−5

(
(1 + ∂αX1)∂

2
αX1 + (∂αX2)

(
∂2
αX2

))
×

(
−∂αX2∂2

αX1 + (1 + ∂αX1)∂
2
αX2

)
,

S
(
∂αX, ∂

3
αX

)
= Q(∂αX)−3

(
−∂αX2∂3

αX1 + (1 + ∂αX1)∂
3
αX2

)
,

Q(∂αX) = ((1 + ∂αX1)
2 + (∂αX2)

2)1/2.

The operator K(X) acts linearly on U1 = ∂tX1, but depends nonlinearly on X. It is

related to the Dirichlet-Neumann operator and its existence is a consequence of the

incompressibility and irrotationality of the flow. It is defined by K(X)U1 = ∂yφ|Γ (t),

where φ : Ω(t) → � solves (for fixed t) the boundary value problem

∆φ = 0, in Ω(t),

∂yφ = 0, for y = −1,

∂xφ = U1, on Γ (t).

The operator K(X) is of the form K(X) = K0 + S1(X), where K0 is the linear part of

the operator K(X), and has the Fourier symbol K̂0(k) = −i tanh(k). The nonlinear part

S1(X)· has certain smoothing properties which are summarized in Appendix A.
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To prove the existence and uniqueness of solutions of (2.1)–(2.2), it is embedded in a

quasi-linear system of PDEs. There are various ways of doing this but we will use the

notation and formulation from Schneider & Wayne [22].

The quasi-linear system we construct is a four-dimensional system for the variables

X1, X2, U1 and V1 = ∂tU1. All variables are collected in the vector V = (X1, X2, U1, V1).

Unfortunately, as explained in Schneider & Wayne [21], the variable X1 is unbounded

(in space) and grows rapidly (in time), making the resulting solutions difficult to control

over the long time scales which we need to work with. However, as we also discussed

in that reference, the derivatives of X1 do not suffer from this secular growth, and thus

it is advantageous to work with the additional variable Z1 = K0X1 (which for ‘long-

wavelength’ initial conditions behaves like Z1 ≈ ∂αX1.) The reasons for this particular

choice of variables are discussed in more detail in Schneider & Wayne [21, Remark 2.2].

Somewhat surprisingly, the system of equations for the water wave problem can be

rewritten entirely in terms of the four variables (Z1, X2, U1, V1). We define the vectors of

variables W = (Z1, X2, U1) and We = (Z1, X2, U1, V1). The vectors W and We will be in

the spaces Hs = Hs ×Hs ×Hs−3/2 and Hs
e = Hs ×Hs ×Hs−3/2 ×Hs−3, respectively. We

also abuse notation slightly and do not distinguish between operators which depend on

V or W, i.e. for instance we will write K(X) as either K(V) or K(W), depending

on the circumstances. (Note that it is not immediately apparent that K can be expressed

in terms of W. This is a consequence of the way in which it depends on X1, as explained in

Schneider & Wayne [21].)

2.1 The quasi-linear system

The quasi-linear system for We = (Z1, X2, U1, V1) constructed in Schneider & Wayne [22]

is then given by

∂tZ1 = K0U1,

∂tX2 = K0U1 + S1(W)U1,

∂tU1 = V1,

∂tV1 = L(W)U1 + G5.

(2.3)

We distinguished the relevant linear and quasi-linear terms in the first column on the

right-hand side from the semi-linear ones S1(W)U1 and G5 in the second column. The

exact form of the nonlinear term, G5, is not important for what follows – all we need is

the fact that it is quadratic and semi-linear, that is, if We ∈ Hs
e, then for any R > 0 there

exists CR such that if ‖We‖Hs
e

� R,

‖G5‖Hs−3 � CR‖We‖2
Hs

e
,

which can be easily verified using the formulas for G5 provided in Appendix B. The

quasi-linear term L(W) will be more important in what follows and it has the form:

L(W)U1 = −∂α
(
h0K0∂2

αU1

)
− h2∂2

αU1 − K0∂αU1 (2.4)

h0 = −µ((1 + ∂αX1)
2 + (∂αX2)

2)3/2 (2.5)

h2 =
3µ

((1 + ∂αX1)2 + (∂αX2)2)5/2

(
(1 + ∂αX1)

(
∂2
αX2

)
− (∂αX2)

(
∂2
αX1

))
(2.6)
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In Appendix A we summarize the estimates on S1, which imply the semi-linearity of the

remaining term in the second equation of (2.3). Rather than studying (2.3) in detail at

this point we recommend that the reader goes on and we refer back to (2.3) whenever

necessary during the remainder of the proof. For more details and the derivation of this

system, we refer to Schneider & Wayne [22]. In Schneider & Wayne [22] the following

local existence and uniqueness result was proved.

Theorem 2.1 For all s � 6 there exists a C1 > 0 such that for all C2 ∈ (0, C1] we have a

T0 > 0 such that the following is true. For each initial condition We,0 ∈ Hs
e with ‖We,0‖Hs

e
�

C2 there exists a unique solution We ∈ C([0, T0],Hs
e) of (2.3) with We|t=0 = We,0.

Local existence and uniqueness of solutions of the water wave problem (2.1) and (2.2)

follows indirectly since (2.1) and (2.2) can be identified as a subsystem of (2.3). In particular

not all initial conditions We,0 of (2.3) lead to solutions of the water wave problem (2.1)

and (2.2) – only those which have been computed as described above from X1|t=0, X2|t=0,

and U1|t=0. Therefore, we introduce the space Cp,X of functions which satisfy the following

compatibility conditions, i.e. the subset of the phase space of (2.3) in which the solutions

satisfy (2.1) and (2.2).

Definition 2.1 We define the supset Cp,X of Hs
e to be those elements of Hs

e for which there

exists χ1 ∈ H3 such that

Cp,X = {We = (φ0, φ1, φ2, φ3) | (a) φ0 = K0χ1, and if

φ4 ≡ K(χ1, φ1)φ3 + [∂t,K(χ1, φ1)]φ2 then

b) (1 + ∂αχ1)φ3 + (∂αφ1)(1 + φ4)

= µR
(
∂α(χ1, φ1), ∂

2
α(χ1, φ1)

)
+ µS

(
∂α(χ1, φ1), ∂

3
α(χ1, φ1)

)
.

Note that in the definition of φ4, the quantity [∂t,K(χ1, φ1)] is a function of φ0, φ1

and φ2 since as we remarked above, K(X1, X2) can be re-expressed as a function of

Z1 = K−1
0 X1 and X2, and in addition ∂tχ1 = φ2 and ∂tφ1 = K(χ1, φ1)φ2. Note further

that if W|t=0 ∈ Cp,X it follows W(t) ∈ Cp,X for all t > 0 due to the construction of (2.3).

3 The formal approximation

Our approach to prove Theorem 1.1 is the same as that used in Schneider & Wayne [21, 22],

namely we first derive, via a formal perturbation expansion, equations whose solutions

we believe provide a good approximation to the water wave problem and then prove that

the difference between the approximation provided by the solutions of these modulation

equations and the true solution of the water wave problem remains small for the time

scales of interest. The present section is devoted to deriving the formal modulation

equations for the three-wave interaction model.

We write our approximation in the form of the ansatz:(
X1

X2

)
≈ εψ1 + ε2ψ0 + ε2ψ2 (3.1)
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with

εψ1 =




3∑
j=−3
j�0

εajAj(εα, εt)Ej

3∑
j=−3
j�0

εbjAj(εα, εt)Ej




ε2ψ0 =




3∑
j=−3
j�0

ε2B0
j (εα, εt)Ej

3∑
j=−3
j�0

ε2C0
j (εα, εt)Ej




ε2ψ2 =




3∑
j=−3
j�0

3∑

=−3

�0

ε2Bj
(εα, εt)EjE


3∑
j=−3
j�0

3∑

=−3

�0

ε2Cj
(εα, εt)EjE



 ,

where Ej = ei(kjα+ωjt), Aj = A−j , kj = −k−j , ωj = −ω−j , and where kj and ωj are chosen

such that the resonance condition (1.2) and the linear dispersion relation (1.7) are satisfied.

Remark 3.1 We note that we do not necessarily expect that (3.1) gives an approximation

to the water wave problem correct to O(ε3). While one can presumably derive refinements

of the TWI-system which describe the O(ε2) terms in X1, X2. This may involve additional

terms besides Bj and Cj .

As we show below, the amplitude functions Aj satisfy the three-wave interaction equa-

tions and thus the term εψ1 in (3.1) is precisely the desired approximation in Theorem 1.1.

Note that so long as B0
j , C

0
j , and Bj
, and Cj
 remain of O(1) for 0 � t � T0/ε, we can

choose them to have any value we like without altering the fact that the leading order ap-

proximation is εψ1. We will choose these coefficients to eliminate certain unwanted terms in

the residual and also to simplify the proof of the approximation theorem in the next section.

To derive the equations satisfied by Aj , B
0
j , C

0
j , Bj
 and Cj
, we insert (3.1) into (2.1)–

(2.2) and expand the resulting equations in powers of ε. To identify the various terms we

need to know the form of the linear and bilinear terms in K(W). For this we use the

following lemma.

Lemma 3.2 The operator K(X) possesses the expansion

K(X)U1 = K0U1 + B1(X)U1 + S2(V)U1.

with

B1(X)U1 = ([X1,K0]∂αU1) − (X2 + K0(X2K0))∂αU1

= ([X1,K0]∂αU1) −
(
1 + K2

0

)
(X2∂αU1) − K0([X2,K0]∂αU1), (3.2)

S2(X)U1 = O(‖V‖2)U1. (3.3)
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Proof See Schneider & Wayne [21, Lemma 3.8, Remark 3.9] (based on Craig [7,

Lemma 3.7, p. 827]). �

Remark 3.3 Note that, to compare Lemma 3.2 with the expressions in Schneider &

Wayne [21], we must recall the notation used in that reference. As mentioned in the

previous section in the quasi-linear system (2.3), we replace the variable X1 by Z1 = K0X1.

To rewrite the equations in terms of these new variables we also define the operator

M1(Z1, ·) = [X1,K0]·

whose properties are summarized in Lemma A.4. To express the term ∂αX1 in terms of

Z1, we also define the operator

M2· = −∂α(K0)
−1·

which is a map from Hs+1 to Hs. Note that, with the aid of M1, we can rewrite the

quadratic term in (3.2) as

B1(W)U1 = M1(Z1, ∂αU1) −
(
1 + K2

0

)
(X2∂αU1) − K0([X2,K0]∂αU1),

i.e. as a function of W = (Z1, X2, U1, V1), rather than as a function of (X1, X2). As explained

in Schneider & Wayne [21], this is true not only of the quadratic term in K(X), but

also of the higher order terms as well, so that we can write K(X) as K(W). It is this

observation that allows us to write (2.3) as a quasi-linear system for W rather than for

V = (X1, X2, U1, V1).

Remark 3.4 The estimate on S2 in (3.3) is not just formal. If s � 7/2, one has the estimate

‖S2(W)U1‖Hs � C‖W‖2
Hs‖U1‖H3 .

See Schneider & Wayne [21, Corollary 3.16].

We expand (2.1)–(2.2) with the aid of Lemma 3.2, retaining explicitly the linear and

quadratic terms:

∂2
t X1 + ∂αX2 − µ∂3

αX2 = B1(X1, X2) + O(‖W‖3), (3.4)

∂tX2 − K0∂tX1 = B2(X1, X2) + O(‖W‖3) (3.5)

with

B1(X1, X2) = −
(
∂2
t X1

)
∂αX1 − (∂αX2)∂

2
t X2

− 3µ
(
∂2
αX1

)
∂2
αX2 − µ(∂αX2)∂

3
αX1

− 2µ(∂αX1)∂
3
αX2,

B2(X1, X2) = X1K0∂α∂tX1 − K0(X1∂α∂tX1)

−X2∂α∂tX1 − K0((X2K0)∂α∂tX1).
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We now turn to the derivation of the three-wave interaction model. If we insert (3.1)

into (3.4)–(3.5), and consider first the terms proportional to εEj for j = ±1,±2,±3, we

see that aj and bj must satisfy( −ω2
j ikj + µik3

j

−K̂0(kj) 1

)(
aj
bj

)
=

(
0

0

)
(3.6)

which leads to the linear dispersion relation (1.7). Provided (1.7) holds, we can choose(
aj
bj

)
=

(
1

K̂0(kj)

)
, (3.7)

to satisfy (3.6).

We next consider the terms arising from εψ1 + ε2ψ0 that are proportional to ε2Ej . These

yield:

2iωj∂TAj − ω2
j B

0
j + K̂0(kj)∂XAj + ikjC

0
j

+ 3µk2
j K̂0(kj)∂XAj + µik3

j C
0
j = nonlinear terms,

iωjC
0
j + K̂0(kj)∂TAj − K̂0(kj)∂TAj

− iωjK̂0(kj)B
0
j − ωj

dK̂0

dk
(kj)∂XAj = nonlinear terms.

To obtain an equation for Aj alone, we choose B0
j = 0, and obtain from the second

equation

C0
j = −i dK̂0

dk
(kj)∂XAj + nonlinear terms

and so

2iωj∂TAj +

(
K̂0(kj)

(
1 + 3µk2

j

)
+
dK̂0

dk
(kj)

(
kj + µk3

j

))
∂XAj = nonlinear terms

which is equivalent to

∂TAj = cg(kj)∂XAj + nonlinear terms,

where cg(kj) = dw
dk

(kj) is the group velocity of wave packets with spatial wavenumber kj .

Finally, we turn to the computation of the nonlinear terms. Our strategy is to substitute

(3.1) into (3.4)–(3.5) and use the coefficients Bj
 and Cj
 in ε2ψ2 to eliminate as many of

the terms of O(ε2) in the nonlinearity as possible. Making this substitution and equating

the coefficients of ε2EjE
 in the linear terms which arise from ε2ψ2 with the coefficient of

ε2EjE
 in the nonlinear term, we obtain the equations:(
−(ωj + ω
)

2 i(kj + k
) + µi(kj + k
)
3

−K̂0(kj + k
) 1

)(
Bj

Cj


)
=

(
βj

γj


)
AjA
, (3.8)

where the coefficients βj
 and γj
 are coefficients whose computation in terms of aj , bj ,

ωj and kj is straightforward but tedious.
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We consider the equations (3.8) in three groups:

Group I

(j, 
) ∈ {(1, 1), (2, 2), (3, 3), (−1,−1), (−2,−2), (−3,−3)

(1,−2)(1,−3), (−2, 1), (−3, 1), (2,−1), (−1, 2),

(2,−3), (−3, 2), (3,−2), (−2, 3)}

For (j, 
) taking any of these values, det (
−(ωj+ω
)

2 i(kj+k
)+µi(kj+k
)
3

−K̂0(kj+k
) 1
)� 0. Thus, we set Bj,


and Cj,
 equal to the (unique) solution of (3.8) in this case.

Group II

(j, 
) ∈ {(1,−1), (2,−2), (3,−3), (−1, 1), (−2, 2), (−3, 3)}

In this case, det (
−(ωj+ω
)

2 i(kj+k
)+µi(kj+k
)
3

−K̂0(kj+k
) 1
) = 0 but an explicit calculation shows that

βj,
 = γj,
 = 0, so we set Bj
 = Cj
 = 0 in this case. This is motivated by the fact that the

nonlinear terms for these values of (j, 
) are of order O(ε3), which in turn results from the

fact that the nonlinear terms in the long wave limit (i.e. in the asymptotic limit in which

the KdV-equation is the correct modulation equation) contains at least one derivative.

These derivatives act on functions which vary slowly in time and space, and as a result

these terms are of higher order in ε.

Group III (the resonant terms)

(j, 
) ∈ {(1, 2), (2, 3), (1, 3), (−1,−2), (−2,−3), (−1,−3)}

In this case, det (
−(ωj+ω
)

2 i(kj+k
)+µi(kj+k
)
3

−K̂0(kj+k
) 1
) = 0, but βj,
 and γj,
 are nonzero.

Thus, these terms cannot be eliminated from the nonlinearity, so we set Bj
 = Cj
 = 0

in this case as well.

If we now use the fact that

E1E2 = E3, E1E3 = E2, E2E3 = E1, (3.9)

we see that all terms of order ε and ε2 that result from substituting (3.1) into (3.4) and

(3.5) will vanish provided Aj satisfies:

∂TA1 = cg(k1)∂XA1 + iγ1A2A3,

∂TA2 = cg(k2)∂XA2 + iγ2A1A3, (3.10)

∂TA3 = cg(k3)∂XA3 + iγ3A1A2,

with constants γj ∈ �. The explicit formulas for the γj ’s in terms of the kj and ωj can be

found in Craik [8]. We have γj ∈ � due to the conservation of energy.

For the proof of the Approximation Theorem 1.1, the approximation has to be extended

to the variables Z1, U1 and V1, too. We define εΨX1
as the first component of (3.1), εΨX2

as the second component of (3.1), ΨU1
= ∂tΨX1

, and ΨV1
= ∂2

t ΨX1
. Recalling the definition

of Z1 we define ΨZ1
= K0ΨX1

.
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Remark 3.5 We have no need for the explicit form of ΨZ1
in what follows, but we note

that by taking advantage of the long-wavelength form of the amplitude functions Aj , B
0
j ,

C0
j , Bj
 and Cj
, one can write out an expansion for ΨZ1

in powers of ε. For example, the

terms of O(ε) are simply
3∑

j=−3
j�0

εK̂0(kj)Aj(εα, εt)Ej .

The approximations to the solution are collected in the vector

εΨ =



εΨZ1

εΨX2

εΨU1

εΨV1


 . (3.11)

This approximation allows us to make the formal error, the so-called residual

Rese(We) = (ResZ1
(We),ResX2

(We),ResU1
(We),ResV1

(We))

with
ResZ1

(We) = −∂tZ1 + K0U1,

ResX2
(We) = −∂tX2 + K0U1 + S1(W)U1,

ResU1
(We) = −∂tU1 + V1,

ResV1
(We) = −∂tV1 + L(W)U1 + G5

small. By the calculations defining the coefficients Aj , B
0
j , C

0
j , Bj
, and Cj
, we have

Lemma 3.6 Fix s� 6. For all CA > 0 there exist CΨ, CRes, ε0> 0 such that for all ε ∈ (0, ε0)

the following is true. Let A1, A2, A3 ∈ C([0, T0], (H
s+2(�,�))3) be solutions of (1.1) satisfying

sup
T∈[0,T0]

‖Aj(T )‖Hs+2 � CA

for j = 1, 2, 3. Then we have

sup
t∈[0,T0/ε]

‖Ψ (t)‖Csb � sup
t∈[0,T0/ε]

‖Ψ̂ (t)‖L1(s) � CΨ (3.12)

and

sup
t∈[0,T0/ε]

‖Res(εΨ (t))‖Hs
e

� CResε
5/2,

where ‖û‖L1(s) = ‖ûρs‖L1 with ρ(k) = (1 + k2)1/2.

Remark 3.7 It may be surprising at first sight that we obtain a bound on the residual

of CResε
5/2 rather than Cε3 that the formal calculation led us to expect. This is simply

a result of the way the L2 norms scale for long-wavelength functions, i.e. if A ∈ L2, and

(SεA)(x) = A(εx), then ‖SεA‖L2 = ε−1/2‖A‖L2 . In contrast we have ‖u‖C0
b

= ‖Sεu‖C0
b
,

and since F(SεA) = ε−1S1/ε(FA) we have ‖û‖L1 = ‖ε−1S1/εû‖L1 . The estimate (3.12) is

used, for instance, to estimate ‖ψR‖Hs � C‖ψ‖Csb‖R‖Hs without loss of powers in ε. See

also Remark A.6.

https://doi.org/10.1017/S0956792503005163 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792503005163


Estimates for the three-wave interaction 559

4 The error estimates

Now we are ready to formulate our main result. For (2.1) and (2.2) written as the first

order system

∂tZ1 = K0U1,

∂tX2 = K0U1 + S1(X)U1, (4.1)

∂tU1 = −(1 − M2Z1 + (∂αX2)K0 + (∂αX2)S1(X))−1
[
(∂αX2)(1 + [∂t,S1(X)]U1)

− µR
(
∂αX, ∂

2
αX

)
− µS

(
∂αX, ∂

3
αX

)]
in the variables collected in W we show that there exist solutions which behave in

approximately the same way as predicted by the approximation εΨ defined in (3.11) and

constructed via the solutions of the equations for the three-wave interaction (1.1).

Theorem 4.1 Fix s� 6. Then for all CA, C0, T0> 0 there exist CR , ε0> 0 such that for all

ε ∈ (0, ε0) the following is true. Let A = (A1, A2, A3) ∈ C([0, T0], (H
s+2)3) be solutions of

(1.1) with

sup
T∈[0,T0]

‖(A1, A2, A3)‖(Hs+2)3 � CA

and let W|t=0 = εΨ |t=0 + εβR|t=0 ∈ Hs with ‖R|t=0‖Hs � C0 and β = 3/2. Then we have

a unique solution W = εΨ + εβR ∈ C([0, T0/ε],Hs) of (4.1), which satisfies

sup
t∈[0,T0/ε]

‖R(t)‖Hs � CR.

Remark 4.2 Local existence and uniqueness of solutions for (4.1) follows indirectly, since

(4.1) is a subsystem of (2.3), namely the system of all solutions of (2.3) in Cp,X .

Remark 4.3 Theorem 1.1 is an immediate consequence of Theorem 4.1. The estimates for

the Eulerian variables w = w(x, t) and η = η(x, t) defined by

w(X̃1(α, t), t) = ∂tX1(α, t) and η(X̃1(α, t), t) = X2(α, t)

follow in a fashion very similar to that of Schneider & Wayne [21, Corollary 1.5], though

the fast oscillation of the Ej with respect to the time scale on which the amplitudes

Aj change make it possible to avoid the use of weighted Sobolev spaces here. Given

solutions A = (A1, A2, A3) ∈ C([0, T0], (H
s+2)3) of (1.1), construct εψ1 + ε2ψ0 + ε2ψ2

as in (3.1) and then εΨ as in (3.11). Choose as initial conditions for (4.1) W|t=0 =

εΨ |t=0+εβR|t=0, and let W = εΨ+εβR be the solution of (4.1) constructed in Theorem 4.1.

Note that X1(α, t) =X1(α, 0) +
∫ t

0
U1(α, s) ds. Theorem 4.1 implies that U1 = εΨU1

+ εβRU1
,

with β= 3/2. Since ΨU1
= ∂tΨX1

, equation (3.1) implies that

ΨU1
(α, t) =

3∑
j=−3
j�0

ε(iωj)ajAj(εα, εt)Ej + ε2
3∑

j=−3
j�0

aj∂TAj(εα, εt)Ej + ε2(∂tψ0)1 + ε2(∂tψ2)1, (4.2)

where (∂tψj)1 denotes the first component of the vector ∂tψj . Note that from the estimates
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on Aj (and the fact that ∂TAj satisfies (1.1)), we have that there exists C > 0 such that∥∥∥∥∥∥∥ε
2

3∑
j=−3
j�0

aj∂TAj(ε·, εt)Ej

∥∥∥∥∥∥∥
Hs+1

� Cε3/2

for all 0 � t � T0/ε. (The ‘loss’ of half a power of ε is again just a reflection of the way in

which the Sobolev norms scale when evaluated on long-wavelength functions.) Similarly,

‖ε2(∂tψ0)1‖Hs+1 � Cε3/2 and ‖ε2(∂tψ2)1‖Hs+1 � Cε3/2. Thus, combining these estimates with

the bounds on RU1
coming from Theorem 4.1, we see that we can write

∫ t

0

U1(α, s) ds =

3∑
j=−3
j�0

ε(iωj)aj

∫ t

0

Aj(εα, εs)Ej ds+

∫ t

0

Urem
1 (α, s) ds,

where ‖
∫ t

0
Urem

1 (·, s) ds‖Hs � Ctε3/2. Turning our attention to the integral involving Aj we

see that ∫ t

0

Aj(εα, εs)e
i(kjα+ωjs) ds =

∫ t

0

Aj(εα, εs)
1

iωj
∂s

(
ei(kjα+ωjs)

)
ds

=
1

iωj
Aj(εα, εs)e

i(kjα+ωjs)
∣∣t
0

− 1

iωj
ε

∫ t

0

∂TAj(εα, εs)e
i(kjα+ωjs) ds. (4.3)

Recalling again the estimates on Aj , and the way in which theHs norms of long-wavelength

functions scale, we have∥∥∥∥∥∥∥ε
3∑

j=−3
j�0

(iωj)aj

∫ t

0

Aj(ε·, s)Ej ds

∥∥∥∥∥∥∥
Hs+1

� C
(√
ε+ tε3/2

)
.

Combining this with the estimates above, we see that for 0 � t � T0/ε, we have

‖X1(·, t) −X1(·, 0)‖Cs−2
b

� C
√
ε. Thus, by the inverse function theorem the function

X̃1(α, t) = α+X1(α, t) has an inverse X̃1
−1

(x, t) = x+ Ξ(x, t) with

sup
t∈[0,T0/ε]

‖Ξ(·, t)‖Cs−2
b

� C
√
ε.

Thus, if we denote by εψ1,2 the second component of the vector εψ1, and note that it is

equal to the order ε term in εΨX2
we have

sup
t∈[0,T0/ε]

‖η(·, t) − εψ1,2(·, t)‖Cs−2
b

� sup
t∈[0,T0/ε]

(
‖X2(·, t) − εψ1,2(·, t)‖Cs−2

b

+ ‖X2(·, t) − η(·, t)‖Cs−2
b

)
= sup

t∈[0,T0/ε]

(
‖X2(·, t) − εψ1,2(·, t)‖Cs−2

b
+ ‖X2(·, t) −X2

(
X̃−1

1 (·, t), t
)
‖Cs−2

b

)
� Cε3/2 + Cε3/2.

The estimate on w is similar and Theorem 1.1 follows.
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Proof of Theorem 4.1 The proof is very close to that of Schneider & Wayne [22], where the

validity of the KdV and Kawahara equations has been established for long-wavelength

initial data, though as mentioned in the introduction the proof is actually somewhat

simpler here due to the shorter time scales involved.

We write a solution W = (Z1, X2, U1) of (4.1) as a sum of the approximation εΨ and

an error εβR with

εΨ =
(
εΨZ1

, εΨX2
, εΨU1

)
and εβR =

(
eβRZ1

, εβRX2
, εβRU1

)
,

and we write a solution We = (Z1, X2, U1, V1) of (2.3) as a sum of the approximation

εΨe =
(
εΨZ1

, εΨX2
, εΨU1

εΨV1

)
and εβRe =

(
eβRZ1

, εβRX2
, εβRU1

εβRV1

)
.

To control the growth of the solutions in an optimal way, it is advantageous to consider

(4.1) in parallel with (2.3). As we will see, we can use (4.1) to control the low order

derivatives of the solution, and consider (2.3) only to control the highest order derivatives.

We expand the right-hand side of both systems in Taylor polynomials, in (4.1) considering

explicitly only the linear terms, while in (2.3) we must retain explicitly all the quasi-linear

terms.

Throughout the rest of this section, we assume that the following standing hypothesis

holds:

(HS) For all CR > 0 there exist constants ε0 > 0 and C > 0 such that the following estimates

hold for all ε ∈ (0, ε0) and t � 0 as long as supτ∈(0,t) ‖Re(τ)‖Hs
e

� CR .

This assumption will be validated with the energy estimate at the end of the section, and

(HS) should be viewed as boot strap assumption.

If we first insert the ansatz W = εΨ + εβR into (4.1) and expand, identifying explicitly

the linear terms, we obtain

∂tRZ1
= K0RU1

,

∂tRX2
= K0RU1

+ N1, (4.4)

∂tRU1
= −∂αRX2

+ µ∂3
αRX2

+ N2,

where with the aid of Lemma 3.2, Remark 3.4 and Remark A.6, we see that provided

(HS) holds:

‖N1‖Hs � C
(
ε‖R‖Hs + εβ‖R‖2

Hs + εCRes

)
, (4.5)

‖N2‖Hs−3 � C
(
ε‖R‖Hs + εβ‖R‖2

Hs + εCRes

)
. (4.6)

(See also Schneider & Wayne [22, equations (35) and (36)], where similar estimates are

derived.)

Note that we cannot use these equations to control the long-time behavior of the Hs−3/2

norm of RU1
since we would lose regularity. Thus, as we did in previous work [21, 22], we

extend (4.4) by considering also the evolution of V1 = ∂tU1. To prevent misunderstanding,

we remind the reader that solutions of (2.3) which lie in Cp,X are also solutions of the
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water wave problem (4.1). Inserting our ansatz We = εΨe + εβRe into (4.1) we obtain

∂tRZ1
= K0RU1

∂tRX2
= K0RU1

+ N1
(4.7)

∂tRU1
= RV1

,

∂tRV1
= −∂α

(
h0∂2

αK0RU1

)
− h2∂2

αRU1
− K0∂αRU1

+ N3,

where we have retained all the quasi-linear terms and where N3 obeys

‖N3‖Hs−3 � C
(
ε‖Re‖Hs

e
+ εβ‖Re‖2

Hs
e
+ εCRes

)
under the standing hypothesis (HS) (and N1 satisfies the same estimate as before).

We also recall that the coefficients h0 and h2 were defined in (2.5) and (2.6). Solutions of

this system are controlled using the energy function constructed in Schneider & Wayne [22]

and the general outline of what follows is similar to the argument used there. As a first

step, the variable RZ1
is estimated in terms of the others. In the second step we construct

a new scalar product Es(·, ·) for the (RX2
, RU1

, RV1
)-variables. It is equivalent to the usual

Hs

 = Hs × Hs−3/2 × Hs−3-scalar product. We define R
 = (RX2

, RU1
, RV1

), the lower part

of Re. The main part of this energy functional is chosen such that in the computation of
d
dt

Es(R
,R
) all quasi-linear terms from (2.3) cancel, and we can estimate d
dt

Es(R
,R
) in

terms of Es(R
,R
). Once this is achieved the desired estimate on the norm of We follows

easily from Gronwall’s inequality.

We begin by estimating RZ1
in terms of R
. From the first two equations for the error,

it follows that

∂tRX2
− ∂tRZ1

= N1

where N1 satisfies (4.5). Integration with respect to time and Gronwall’s inequality yields

the estimate

∀CA, T0∃C4, C5∃ε0 > 0∀ε ∈ (0, ε0) :

sup
t∈[0,T0/ε]

‖RZ1
(t)‖Hs � C4 + C5‖R
(t)‖Hs



,

as long as sup
t∈[0,T0/ε]

‖Re(t)‖Hs
e

� CR.

Recall that we are interested in solutions of (4.7) that lie in Cp,X , i.e. solutions that are

actually solutions of the original water wave problem. From Definition 2.1, we see that

for We ∈ Cp,X we can relate V1 = ∂tU1 to µ∂3
αX2 − ∂αX2. Thus, by the implicit function

theorem we obtain

µ∂3
αRX2

− ∂αRX2
= RV1

+ N4

with

‖N4‖Hs−3 � C
(
ε‖R‖Hs + εβ‖R‖2

Hs + εCRes

)
.

In particular, for solutions in Cp,X , we can estimate the highest derivatives ∂sαRX2
appearing
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in the following by

∥∥∂sαRX2

∥∥
L2 � µ−1

(∥∥∂s−3
α RV1

∥∥
L2 +

∥∥∂s−2
α RX2

∥∥
L2 +

∥∥∂s−3
α N4

∥∥
L2

)
,

so we can control ‖RX2
‖Hs by ‖RX2

‖L2 , ‖RU1
‖Hs−3/2 , and ‖RV1

‖Hs−3 .

Given the preceeding estimates, all that remains is to estimate ‖RX2
‖L2 , ‖RU1

‖Hs−3/2 ,

and ‖RV1
‖Hs−3 . For this purpose, we use the energy functional constructed in Schneider &

Wayne [22], whose definition we now recall.

Since the operator M2 = −∂αK−1
0 is self-adjoint and positive, we can take its square

root and find

∂t

∫ (
M1/2

2 RX2

)2
dα/2 =

∫
RX2

(
M2∂tRX2

)
dα

=

∫
RX2

(
M2

(
K0RU1

+ N1

))
dα (4.8)

=

∫ (
∂αRX2

)
RU1

dα+ Ne1,

where

|Ne1| � C
(
ε‖R
‖2

Hs
e
+ εβ‖R
‖3

Hs


+ εCRes‖R
‖Hs




)
under (HS). Similarly, we obtain for the positive self-adjoint operator M3 = µK−1

0 ∂3
α that

∂t

∫ (
M1/2

3 RX2

)2
dα/2 = −

∫ (
µ∂3

αRX2

)
RU1

dα+ Ne2, (4.9)

where Ne2 obeys the same estimates as Ne1.

Next using the evolution equation for RU1
we see that

∂t

∫ (
RU1

)2
dα/2 =

∫
RU1

(∂tRU1
) dα

=

∫
RU1

(
− ∂αRX2

+ µ∂3
αRX2

+ N2

)
dα (4.10)

= −
∫
RU1

(
∂αRX2

)
dα+ µ

∫
RU1

(
∂3
αRX2

)
dα+ Ne3,

where Ne3 obeys the same estimates as Ne1.

The first two terms on the right-hand side cancel with the corresponding terms in the

time derivatives of
∫

(M1/2
2 RX2

)2 dα and
∫

(M1/2
3 RX2

)2 dα.

We define a pair of skew-symmetric operators, λ1 and λ2 related to M2, namely:

λ2
1 = −K0∂α, (4.11)

λ2
2 = −M2 = ∂αK−1

0 . (4.12)

Recalling the definitions of h0 and h2 from above, we define:

Λ· = −∂αλ1(h0∂αλ1) · −λ1λ2(h2λ1λ2) · −λ2
1 · . (4.13)
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Then, just as in Schneider & Wayne [22], we treat the quasi-linear terms by introducing

RU = λ1RU1
, and RV = λ1RV1

and considering

1

2

d

dt

(
(ΛrRV , Λ

rRV )L2 +
(
Λr+

1
2RU,Λ

r+ 1
2RU

)
L2

)
= (ΛrRV , Λ

rλ1N3)L2 + (ΛrRV , ∂t(Λ
r)RV )L2 +

(
Λr+

1
2RU, ∂t

(
Λr+

1
2

)
RU

)
L2
, (4.14)

where 3r = s− 7
2
. The detailed calculation to obtain the relation (4.14), i.e. the cancellation

of the quasi-linear terms can be found in Schneider & Wayne [22, Section 2]. With the

estimates for N3 from above, it follows that

|(ΛrRV , Λrλ1N3)L2 | � C
(
ε‖R
‖2

Hs


+ εβ‖R
‖3

Hs


+ εCRes‖R
‖Hs




)
. (4.15)

By the calculations of Schneider & Wayne [22, Section 4], it is known that the time

derivatives ∂t(Λ
r) and ∂t(Λ

r+ 1
2 ) can be estimated as follows

|(ΛrRV , ∂t(Λr)RV )L2 | +
∣∣∣(Λr+ 1

2RU, ∂t

(
Λr+

1
2

)
RU

)∣∣∣
� C

(
(ΛrRV , Λ

rRV )L2 +
(
Λr+

1
2RU,Λ

r+ 1
2RU

)
L2

+
(
RZ1

, RZ1

)
Hs +

(
RX2

, RX2

)
Hs +

(
RU1

, RU1

)
Hs− 3

2
+

(
RV1

, RV1

)
Hs−3

)
, (4.16)

i.e. these terms can be considered as semi-linear. We need slightly more, however, namely

that these terms are O(ε). To see why this is so, note that using the form of Λ in (4.13) we

have:

(ΛrRV , ∂t(Λ
r)RV )L2 =

r−1∑
j=0

(ΛrRV , Λ
j(∂αλ1(∂th0)∂αλ1 + λ1λ2(∂th2)λ1λ2)Λ

r−j−1RV )L2 .

All these terms are bounded in a very similar fashion – we shall look at one of them

explicitly, and then leave the rest as an exercise.

Consider, for example, (ΛrRV , Λ
r−1(∂αλ1(∂th0)∂αλ1)RV )L2 . From the formula for h0, we

see that

∂th0 =
3µ[(1 + M2Z1)(M2(∂tZ1)) + (∂αX2)(∂α∂tX2)][

(1 + (M2Z1))2 + (∂αX2)2]5/2
]

=
3µ[(1 + M2Z1)(M2(K0U1)) + (∂αX2)(∂α[K0U1 + S1(W)U1])][

(1 + (M2Z1))2 + (∂αX2)2]5/2
] . (4.17)

Now recalling that Z1 = εΨZ1
+ εβRZ1

, X2 = εΨX2
+ εβRX2

and U1 = εΨU1
+ εβRU1

, we

see that

‖Λr−1∂αλ1(∂th0)‖L∞ � C
(
CResε+ ε‖Re‖Hs

e
+ εβ‖Re‖2

Hs
e

)
,

under hypothesis (HS). Thus,

|(ΛrRV , Λr−1(∂αλ1(∂th0)∂αλ1)RV )L2 | � C
(
CResε‖Re‖Hs

e
+ ε‖Re‖2

Hs
e
+ εβ‖Re‖3

Hs
e

)
.

The remaining terms can all be bounded in a similar fashion, and if we take advantage

of the fact that the Hs norm of RZ1
can be controlled by ‖R
‖Hs



, we can combine these
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estimates with (4.15) to obtain

1

2

d

dt

(
(ΛrRV , Λ

rRV )L2 +
(
Λr+

1
2RU,Λ

r+ 1
2RU

)
L2

)
� C

(
CResε‖R
‖Hs



+ε‖R
‖2

Hs


+εβ‖R
‖3

Hs



)
.

With these considerations, we define the energy

Es(R
,R
) =

∫ (
M1/2

2 RX2

)2
+

∫ (
M1/2

3 RX2

)2
+

∫ (
RU1

)2

+ (ΛrRV , Λ
rRV )L2 +

(
Λr+

1
2RU,Λ

r+ 1
2RU

)
L2 .

Recalling that the Hs norm of RX2
can be controlled by the L2 norm of RX2

, the Hs−3/2

norm of RU1
and the Hs−3 norm of RV1

and recalling that the Hs norm of RZ1
can be

controlled by all others we see that the scalar product defined by Es(·, ·) is equivalent to

the usual Hs
e scalar product, i.e. there exist positive constants c1 and c2 and an ε0> 0

such that for all ε ∈ (0, ε0) we have

‖W‖2
Hs

e
� c1Es(W
,W
) � c2‖W‖2

Hs
e
. (4.18)

Therefore, combining (4.8), (4.9), (4.10), (4.14), (4.15) and (4.16), we see that there are con-

stants C1 =C1(Cψ, CRes, cj), C2 =C2(Cψ, CRes, CR, cj) and C3 =C3(Cψ, CRes, cj), such that

1

2
∂tEs(R
,R
) � εC1Es(R
,R
) + εβC2Es(R
,R
)

3
2 + εC3Es(R
,R
)

1
2

� εC1Es(R
,R
) + εβC2Es(R
,R
)
3
2 + εC3 + εC3Es(R
,R
).

Applying Gronwall’s inequality shows, for all t ∈ [0, T0/ε],

Es(R
,R
)(t) � Es(R
,R
)(0) +

t∫
0

e(C1+C3+1)ετ dτ · C3ε

� Es(R
,R
)(0) + C3T0e
(C1+C3+1)T0 =: c−1

1 CR,

where we have chosen ε0 > 0 so small that εβ−1C2(CR) · c2C2
R < 1. This yields with (4.18)

that

sup
t∈[0,T0/ε]

‖Re‖2
Hs

e
� CR.

This completes the proof of Theorem 4.1 �

5 Conclusion

In this paper, we have proved that the dynamics of three resonant wave packets in

the 2D water wave problem, can approximately be described by the equations for the

so called three-wave interaction. To do so, we established estimates between the formal

approximation obtained via the TWI-system and true solutions of the Lagrangian formu-

lation of the 2D water wave problem.
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There are two natural generalizations of this result. First, the proof of such estimates

for the 3D water wave problem. A major difficulty which has to be overcome in the 3D

case is the proof of a local existence and uniqueness theorem which so far is not available

for the situation considered here.

The second generalization is the justification of the so called four-wave-interaction

system, i.e. the description of four resonant wave packets with spatial wavenumbers kj
and temporal wavenumbers ωj satisfying

k1 + k2 + k3 + k4 = 0 and ω1 + ω2 + ω3 + ω4 = 0.

There is a new qualitative difficulty due to the longer time scale, which is O( 1
ε2

) in contrast

to O( 1
ε
) for the TWI-case. We expect that for a proof normal form transforms are necessary

to eliminate the quadratic terms in the Lagrangian formulation of the 2D water wave

problem.
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Appendix A Some estimates on the operator K(X)

In this appendix, we summarize several estimates which are used in previous sections. For

more details we refer to Schneider & Wayne [21], and the literature cited there.

As already said the operator K(X) is of the form K(X) = K0 + S1(X), where the

operator S1(X)· has certain smoothing properties. As a rule a term with S1(X)· in front

will have the regularity of X. More precisely, in terms of the variables W defined in § 2.

Lemma A.1 Fix s� 11/2. Then there exist C > 0 and Cs > 0 such that for

‖(Z1, X2)‖Hs×Hs � Cs the operator S1(W) = K(W) − K0 satisfies

‖S1(W)U‖Hs � C‖W‖Hs‖U‖H3 .

Proof See Schneider & Wayne [21, Lemma 3.14]. �

Lemma A.2 Assume the situation of Lemma A.1. Then for all s � 6 we have

‖∂t(S1(W)U1)‖Hs−3 � C‖W‖Hs (‖U1‖H3 + ‖V1‖H3 ),∥∥[∂2
t ,S1(W)]U1]

∥∥
Hs−3 � C‖We‖Hs

e
(‖U1‖H3 + ‖V1‖H3 ),

‖∂α(S1(W)U1)‖Hs−1 � C‖W‖Hs‖U1‖H3 .

Proof See Schneider & Wayne [21, Lemma 3.15]. �
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In the quasi-linear system commutators [a,K0]· play a big role. As a rule [a,K0]u

smooths u and has the regularity of the function a.

Lemma A.3 Let r � 0, q > 1/2 and 0 � p � q. Then there exists a C > 0 such that

‖[a,K0]u‖Hr � C‖a‖Hr+p‖u‖Hq−p .

Proof See Schneider & Wayne [21, Lemma 3.12]. �

To avoid the secular growth in the variable X1, we introduced the variable Z1 = K0X1

and we associated to Z1 the operator

M1(Z1, ·) = [X1,K0]·

which satisfies

Lemma A.4 Let r � 0, q > 1/2 and 0 � p � q. Then there exists a C > 0 such that

‖M1(a, u)‖Hr � C‖a‖Hr+p‖u‖Hq−p .

Proof See Schneider & Wayne [21, Corollary 3.13]. �

Remark A.5 M1 is well defined, even though K0 is not invertible in general, due to the

commutator in its definition.

To express the term ∂αX1 in terms of Z1, we defined additionally the operator

M2· = −∂α(K0)
−1·

which is a map from Hs+1 to Hs.

Finally, the operator (1 + K2
0)· is infinitely smoothing due to the fact that in Fourier

space its symbol (1 + K̂0(k)
2) vanishes with some exponential rate for |k| → ∞.

Remark A.6 Examining the expression for for ‖[a,K0]u‖Hr on Schneider & Wayne [21,

p. 1499], (which is expressed in terms of the Fourier transforms of a and u), one also sees

that it can be bounded by

‖[a,K0]u‖Hr � Cmin
(
‖â‖L1(r+p)‖u‖Hq−p , ‖a‖Hr+p‖û‖L1(q−p)

)
, (A 1)

where ‖f̂‖L1(n) =
∫

(1 + |k|2)(n/2)|f̂(k)| dk. One then has a similar bound for ‖M1(a, u)‖Hr ,

namely

‖M1(a, u)‖Hr � Cmin
(
‖â‖L1(r+p)‖u‖Hq−p , ‖a‖Hr+p‖û‖L1(q−p)

)
. (A 2)
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Estimates of this kind were also used in Schneider & Wayne [21] – see, for example,

equation (6.8).

We can use these commutator estimates, along with the expansion in Lemma 3.2 to

obtain an estimate of S1(W) without the loss of half a power of ε usually associated

with the Hs norms. Note that if we write S1(εΨ )U = B1(εΨ )U + S2(εΨ )U, bound the

commutators the expression for B1 in (3.2) by the estimates in (A 1) and (A 2), and take

advantage of the fact that (1 + K2
0) is infinitely smoothing, and if we bound S2(εΨ )U

by the estimate in Remark 3.4, then we obtain

‖S1(W)U‖Hs � Cε‖U‖H3 ,

where the constant C depends on the norm of Ψ , but is independent of ε. Similar estimates

hold the inequalities in Lemma A.2. See also Remark 3.7.

Appendix B The quasi-linear system

In this appendix, we give the detailed form of the various terms in the quasi-linear

system (2.3). This form of the water wave problem was derived in Section 2 of Schneider

& Wayne [22], which the reader may consult for additional details. Recall that the

quasi-linear system had the form

∂tZ1 = K0U1,

∂tX2 = K0U1 + S1(W)U1,

∂tU1 =V1,

∂tV1 = L(W)U1 + G5.

(B 1)

The quasi-linear term L(W) was discussed in § 2, so here we just give the (long) expression

for G5.

G5 = −G4 + K0∂αU1,

G4 = (f3 −H1)
−1

(
G3 +H3

(
h0f3K0∂3

αU1

)
+ h1a1f3∂2

αU1 + h1a2f3K0∂2
αU1

))
,

G3 = (f1 − f2K0)G2 + [(f1 − f2K0), h0](f1 + f2K0)K0∂3
αU1

+ [(f1 − f2K0), h1a1](f1 + f2K0)∂
2
αU1

+ [(f1 − f2K0), h1a2](f1 + f2K0)K0∂2
αU1

− h0H2K0∂3
αU1 − h1a1H2∂2

αU1 − h1a2H2K0∂2
αU1,

G2 = G1 − h0f2

(
1 + K2

0

)
∂3
αU1

+ 3µQ−5(f1∂αf1 + f2∂αf2)f2

(
1 + K2

0

)
∂2
αU1,

G1 = ∂tU1

(
1 + K2

0

)
∂αU1 + (1 + ∂tU2)∂α(S1(X)U1),

+ (∂αX2)
([

∂2
t ,S1(X)

]
U1

)
+ ((1 + ∂tU2) − ∂tU1K0)K0∂αU1

− µ∂1R
(
∂αX, ∂

2
αX

)
∂αU − µ∂1S

(
∂αX, ∂

3
αX

)
∂αU

− µQ(∂αX)−3
(
(1 + ∂αX1)∂

3
α(S1(X)U1)

))
+ 3µQ−5

(
(−f2∂αf1 + f1∂αf2)f2∂2

α(S1(X)U1)
)
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+ 3µQ−5
(
(f1∂αf1 + f2∂αf2)f1∂2

α(S1(X)U1)
)
,

H2· = f2[K0, f1] · −f2K0[K0, f2] · +f2

(
1 + K2

0

)
(f2·),

H1· = f2[K0, f1] · −f2K0[K0, f2] · +f2

(
1 + K2

0

)
(f2·) − (f1 − f2K0)f2S1(X)·,

h1 = 3µQ(∂αX)−5,

h0 = −µQ(∂αX)−3 = −µ
(
f2

1 + f2
2

)−3/2
,

a2 = f1∂αf1 + f2∂αf2,

a1 = (−f2∂αf1 + f1∂αf2),

f3 = f2
1 + f2

2 ,

f2 = ∂αX2,

f1 = (1 + ∂αX1).

The key fact, which the patient reader can verify without difficulty using these formulas

and the estimates on K from Appendix A is that G5 is quadratic, and semi-linear, that

is, if We ∈ Hs
e, then for any R > 0 there exists CR such that if ‖We‖Hs

e
� R,

‖G5‖Hs−3 � CR‖We‖2
Hs

e
.
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