
A survey on automating configuration and parameterization
in evolutionary design exploration

JULIAN R. EICHHOFF AND DIETER ROLLER
Institute of Computer-Aided Product Development Systems, University of Stuttgart, Stuttgart, Germany

(RECEIVED September 15, 2014; ACCEPTED April 23, 2015)

Abstract

Configuration and parameterization of optimization frameworks for the computational support of design exploration can
become an exclusive barrier for the adoption of such systems by engineers. This work addresses the problem of defining
the elements that constitute a multiple-objective design optimization problem, that is, design variables, constants, objective
functions, and constraint functions. In light of this, contributions are reviewed from the field of evolutionary design opti-
mization with respect to their concrete implementation for design exploration. Machine learning and natural language pro-
cessing are supposed to facilitate feasible approaches to the support of configuration and parameterization. Hence, the
authors further review promising machine learning and natural language processing methods for automatic knowledge
elicitation and formalization with respect to their implementation for evolutionary design optimization. These methods
come from the fields of product attribute extraction, clustering of design solutions, relationship discovery, computation
of objective functions, metamodeling, and design pattern extraction.

Keywords: Conceptual Design; Design Automation; Design Optimization; Evolutionary Computing; Knowledge Engi-
neering; Machine Learning

1. INTRODUCTION

“The task of an engineer is to find solutions for technical
problems” (Pahl et al., 2007). A multitude of such design
tasks that affect different aspects of a technical product arise
along the process of product development. The overall task
that has to be accomplished by an engineering team can be
paraphrased as search over a set of realizable technical arti-
facts for alternatives that show the highest compliance with
a set of objectives. This directly lends a general scheme for
representing design decisions in terms of mathematical opti-
mization (Marler & Arora, 2004).

However, typically such problems are not fixed from the
beginning. Multiple optimization problems evolve during de-
sign space exploration over consecutive design phases and re-
iterations. Consider the seminal work of Schon (1992), where
he describes the act of exploring different design alternatives
as a process of “seeing–moving–seeing.” From an abstract
perspective, formulating and solving an optimization prob-
lem can be seen as a moving step, whereas interpreting the re-

sults and making conclusions about the formulation of the
next optimization problem is considered seeing.

Although computer-aided methods for solving optimiza-
tion problems have proven very valuable over the last decades
(Marler & Arora, 2004), most of these works solely address
scattered and very specific moving steps. In order to automate
design exploration over chains of seeing–moving–seeing and
thus provide continuous support over several design phases,
new approaches for formulating consecutive design problems
are needed; that is, the seeing step has to be implemented.

Formulating an optimization problem usually requires de-
sign variables to be defined together with their ranges, con-
stants (e.g., weights and other parameters), and functions
over these elements used for setting objectives and con-
straints. In this paper, these tasks are paraphrased using the
following notions of parameterization and configuration:

1. Multiple-objective design optimization problem: Given
a vector of design variables x¼ (x1, x2, . . . , xn)T , a vec-
tor of constants c¼ (c1, c2, . . . , cm)T , a vector of objec-
tive functions f(x, c)¼ [ f1(x, c), f2(x, c), . . . , fk(x, c)]T ,
a set of inequality constraint functions gi(x, c) with i ¼
1, 2, . . . , p, and a set of equality constraint functions
hj(x, c) ¼ 0 with j ¼ 1, 2, . . . , q, then minx f (x, c)

Reprint requests to: Julian Eichhoff, Institut für Rechnergestützte Ingenieur-
systeme, Universität Stuttgart, Universitätsstrasse 38, Stuttgart D-70569,
Germany. E-mail: julian.eichhoff@informatik.uni-stuttgart.de

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2015), 29, 333–350.
# Cambridge University Press 2015 0890-0604/15
doi:10.1017/S0890060415000372

333

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

mailto:julian.eichhoff@informatik.uni-stuttgart.de
https://doi.org/10.1017/S0890060415000372


subject to gi(x, c) � 0 and hj(x, c) ¼ 0 is called a multi-
objective optimization problem.

2. Parameterization: The preparatory act of defining the
value of each constant within c is called parameterization.

3. Configuration: The act of specifying the ranges for each de-
sign variable within x together with the definition of func-
tions f(x, c), gi(x, c), and hj(x, c) is called configuration.

The present work highlights promising methods that support
automatic parameterization and configuration coming from the
fields of machine learning (ML) and natural language pro-
cessing (NLP). Special focus is made on approaches that inte-
grate with the commonly used evolutionary optimization
methods: genetic algorithms (GAs; Holland, 1992) and genetic
programming (GP; Koza, 1992). Hence, information items that
are needed for parameterizing and configuring GA and GP
systems in different design phases are identified.

In this paper, reference is made to the VDI 2221 design
method proposed by the Association of German Engineers
(Verein Deutscher Ingenieure, 1993). It describes design pro-
cesses in the context of product development that consider-
ably builds on early editions of Pahl et al. (2007). The general
applicability of these processes spans a wide range of indus-
tries, for example, electrical design, mechanical design, and
software design. In the following section procedure as to
how the method’s elements map to the definition of design
exploration and evolutionary optimization is shown.

The paper is organized as follows: the basis is built for a
common understanding of design exploration in light of the
design phases of VDI 2221. On the basis of this, applications
of evolutionary optimization within each phase of design ex-
ploration are reviewed. This is followed by a discussion of the
effort for configuring and parameterizing these approaches.
Given this, systems that integrate methods from the fields
of ML and NLP for configuration and parameterization are
further reviewed. The paper closes with a conclusion on the
surveyed works.

2. PHASES OF DESIGN EXPLORATION

At this stage a series of definitions is provided that frame the
above statement from Pahl et al. (2007) more precisely. The
following statements are mainly based on VDI 2221 and
Pahl et al. (2007).

The method defines multiple design phases (cf. Fig. 1 and
Table 1), each of which has two aspects of problem solving.
First, every design phase represents a task to achieve a pro-
cess objective, that is, to transform one product description
into another. The plans for doing so are given by the design
method. Second, each phase addresses one or more prob-
lem-solving steps of the overall design problem/task, that
is, the search for requirement-satisfying product designs.

Product development starts with the phase referred to as re-
quirement modeling or task clarification. The process objec-
tive of this phase is to formulate a requirements specification
according to the client’s desired results of product develop-

ment, where the latter is typically documented in the form
of a design brief. Requirement modeling is also often revis-
ited during later phases to change or add requirements that
follow from intermediate design results.

Conceptual design consists of two phases, function model-
ing and principle modeling. Function modeling’s process ob-
jective is to establish a more detailed requirement description
by decomposing functional requirements into so-called func-
tion structures. These are models that provide a detailed de-
scription of the product’s purpose by explaining how its sub-
functions interact with each other. In VDI 2221 and Pahl et al.
(2007), these interactions are conceptualized as conversion
processes of energy, material, and signal flows within the
product. The next phase, principle modeling, searches for
adequate solution principles that realize a function structure’s
subfunctions. Solution principles describe the physical effect
for achieving a function together with properties of material
and geometry. For instance, the solution principle “winch”
can be used to achieve the function “lift weight.” The under-
lying physical effect is the mechanical advantage, which is
applied in terms of the material and geometric properties of
a rope, spool, and crank assembly. Finally, it has to be de-
scribed how the solution principles are combined to work
together as a whole. This kind of model is called a principle
solution (also termed working structure or concept).

Defining properties of geometry, material, programming,
and manufacturing is subject to configuration modeling. It
comprises embodiment design and detail design. Embodi-
ment design itself can be divided into three phases: modular-
ization, preliminary embodiment design, and detailed embo-
diment design. First in line, modularization assigns the
elements of the principle solution to structures of realizable

Fig. 1. Phases of product development in the context of the product life
cycle, based on Pahl et al. (2007) and VDI 2221.

J.R. Eichhoff and D. Roller334

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


modules, that is, the act of modeling systems and subsystems.
Then preliminary embodiment design concentrates on defin-
ing the most important modules with respect to geometry,
material, and/or programming in terms of preliminary lay-
outs. In detailed embodiment design, the separately designed
modules of a preliminary layout are integrated to form a de-
finitive layout. The last phase then is to prepare and document
all details needed for manufacturing.

The early design phases from function modeling to pre-
liminary embodiment design require the generation of a set
of alternatives as their desired state. These phases and the re-
curring phase of requirement modeling are considered to be
phases of design exploration.

3. EVOLUTIONARY DESIGN EXPLORATION

This section provides an overview of the usage of GAs and
GP for design exploration in light of the discussed design
phases. On the basis of this review, the parameterization
and configuration of such applications will be described later.

3.1. Requirement modeling

The main task of requirement modeling is to establish a def-
inition of the overall design task. Therefore, the demands and
wishes that are stated in a design brief first have to be trans-
lated from a customer-oriented perspective to concrete tech-
nical requirements. The resulting list of requirements is fur-
ther refined in order to resolve contradictions, elaborate
details, determine the priority of requirements, and match
the interests of the engineering company.

To the authors’ knowledge uses of GA/GP-based methods
in the field of requirement modeling are sparse. Nonetheless,
there is a growing interest in search-based requirements opti-
mization (Zhang et al., 2008).

3.1.1. Quality function deployment (QFD)

QFD is a method that assists in the translation between cus-
tomer-oriented and technology-oriented perspectives on the
design problems. QFD considers the requirements to be for-
mulated in the language of the customer. These customer re-
quirements are then correlated with technical attributes of the
solution (Mehrjerdi, 2010). The common model used for
QFD is the house of quality (HoQ; see Fig. 2). Within this
context, GAs have been used to maximize satisfaction with
customer requirements along with further goals (cost, design
time, market share). This is done by searching for optimal tar-
gets for technical attributes, that is, determine the degree of
attainment for each technical attribute (Tang et al., 2002),
find target values for technical attributes (Bai & Kwong,
2003), determine importance weights for each technical attri-
bute (Liu, 2010), or choose target values under consideration
of competing products (Kwong et al., 2011). In all cases sim-
ple decision variable vectors are used for representing indi-
viduals. Evaluation relies on preference weights for customer
requirements and two correlation matrices. One traces require-
ments to technical attributes (center of HoQ). The other de-
fines dependencies among technical attributes (roof of HoQ).

3.1.2. Next release problem (NRP)

The NRP originates from software engineering. Software
systems are typically deployed as a series of subsequent revi-

Table 1. Role of design phases in solving the overall design task

Process Objective
Problem Solving Steps of Overall Design Task

Phase Given State Desired State
Problem
Analysis

Problem
Formul.

System
Synth.

System
Analysis Evaluation Decision

Requirement
modeling*

Design brief Requirements
specification † †

Conceptual Design

Function modeling* Req. spec. Function structures † †

Principle modeling* Req. spec. and
function structure

Principle solutions
† † † †

Configuration Modeling

Embodiment design
Modularization* Req. spec. and

principle solution
Modular structures

† †

Preliminary* Req. spec. and
modular structure

Preliminary layouts
† † † †

Detailed Req. spec. and
preliminary layout

Definitive layout
† † † †

Detail design Req. spec. and
definitive layout

Product documentation
† †

*The phases of design exploration.

Automating evolutionary design exploration 335

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


sions. Given a set of customer requirements and a limited
number of resources that a software company can invest in
implementing requirements for the next revision, the NRP
asks for the ideal allocation of resources to requirements
(Bagnall et al., 2001). Greer and Ruhe (2004) apply a GA
to find an optimal schedule that determines which of the re-
quirements will be realized and in what release they will be
realized. Later, Zhang et al. (2007) compared different GA
variants on a multiple-objective formulation of the NRP,
that is, minimizing cost while maximizing customer satisfac-
tion (also called value). Like in QFD, decision variable vec-
tors are used for representing individuals. Evaluation is also
fairly simple because it mainly builds on attributes associated
with requirements and customers.

3.1.3. Optimize specific requirement models

Over the span of different engineering disciplines, there
also exist different and very specialized models for represent-
ing requirements. In the context of naval vessel design Sut-
cliffe et al. (2002) make use of so-called scenario task se-
quences (STS) for defining required interactions among
human agents and computer equipment in a defined environ-
ment. A GA is employed to find optimal STS with respect to
their influence on system reliability. In comparison to QFD
and NRP, where decision variables could be readily used
for defining genotypes, STS require a more complex chromo-
some representation. Sutcliffe et al. (2002) developed a map-
ping scheme, which encodes the sequence of tasks and the
task–agent–equipment type combinations as binary string.
For evaluation, a custom “performance interpreter” compo-
nent models the expected influence of training, task complex-
ity, operational time, quality, and utility on system reliability.
Therefore, the interpreter component relies on attributes asso-
ciated with agent and equipment types and rules that map
these attributes to reliabilities.

Table 2 summarizes the evaluation criteria of the men-
tioned works, that is, the used objective and constraint
functions.

3.2. Function modeling

The goal of function modeling is to clearly state the purpose
of the design object, called primary function. This is done by
delineating what subfunctions are needed to establish the pri-
mary function and how these functions must interoperate with
each other, a process known as functional decomposition.
Usually graph-based notations are used for describing func-
tion structures. In VDI 2221 and Pahl et al. (2007), for in-
stance, functions are represented as nodes of a graph. These
nodes are connected by directed edges that represent energy,
material, and signal flows. The resulting graph depicts how
forms of energy, material, and signals are transformed along
the paths in order to enable the contained functions.

However, few works addressed optimization in context of
function modeling. This may be because these models are
very abstract in nature and lack commonly agreed schemes
for their evaluation.

3.2.1. Optimization of function structure

Nonetheless, Güroğlu (2005), Jin and Li (2006), and Sun
and Yao (2012) applied GP for functional decomposition.
The standard tree-based representation of GP individuals of-
fers a way to capture topological information in function
structures. Hence, different tree serializations of function
structures have been developed (as an example, see Fig. 3).
In order to evaluate the generated function structures a num-
ber of abstract criteria have been proposed that require further
explanation (see Table 3).

3.2.2. Model consistency

The GP-generated function structures should be consistent
in light of the underlying model of functional decomposition,
for example, with respect to the one of Pahl et al. (2007).
Hence, a function structure must not be an arbitrary graph;
it should rather correspond to the functional requirements
for which it has been generated. For instance, the input and
output flows of a function structure should match those of a
more abstract black-box representation. Güroğlu (2005) and
Jin and Li (2006) term this feasibility. Sun and Yao (2012)
do not explicitly define such a measure. They require that
their algorithm should include all resources that are men-
tioned in the requirements specification. However, these re-
sources actually resemble the flows within the function struc-
ture.

3.2.3. Uniqueness of elements and function structure size

Sun and Yao (2012) define creativity as a matter of variety.
Thus, GP trees with a relatively large amount of unique nodes
are preferred. Jin and Li (2006) adopt a similar variety mea-
sure as part of a compound desirability score. Desirability
also includes function structure dimension. The latter aims
at limiting the size of elements in a function structure. Güro-
ğlu (2005) also combines uniqueness of elements and func-
tion structure size. Their complexity measure is based on

Fig. 2. House of quality model used for quality function deployment, based
on Liu (2010).

J.R. Eichhoff and D. Roller336

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


information entropy and promotes individuals with many
unique elements.

3.2.4. Change from initial population

Both Güroğlu (2005) and Jin and Li (2006) compare gen-
erated function structures with individuals of the initial pop-
ulation. However, their assumptions on this comparison dif-
fer. Güroğlu (2005) generates an initial population from
existing function structures made by engineers. The goal is
to produce new unseen solutions from this set. Therefore, a
creativity score measures the probability of functions and
flows occurring with respect to the initial population. Jin
and Li (2006), in turn, generate their initial population by
means of a graph grammar. Hence, the generated graphs
are per se artificial and do not have to correspond to existing
products. The graph grammars rules follow the principles of
functional decomposition and produce reasonable structures.
Hence, the aim of Jin and Li (2006) is to keep graph grammar-
produced structures where possible.

3.2.5. Physical compatibility

With reference to the following design phase of principle
modeling, Jin and Li (2006) and Sun and Yao (2012) evaluate
function structures by inspecting physical properties of their
later realizations. As can be seen below, Jin and Li (2006)
also search means combinations that can be used for realizing
a function structure. The degree of compatibility among these
means serves as a performance indicator of function struc-
tures. Sun and Yao (2012) adopt principles from the theory
of inventive problem solving (Altshuller, 1999). Following
the theory of inventive problem solving, a solution is inven-

tive if physical contradictions have to be overcome. Hence,
Sun and Yao (2012) introduce a score to determine inventive
solutions based on the amount of physical contradictions
being introduced by the function structure.

3.3. Principle modeling

Principle modeling is concerned with the search for ways to
physically realize the defined functions. A rather abstract de-
scription of such means are the already mentioned solution
principles (Pahl et al., 2007). As a result of the later design
phases, solution principles will be implemented in concrete
product components (e.g., in the context of ship design the so-
lution principle “combustion engine” may be realized as a
“four-stroke diesel engine”). Hence, especially in routine de-
sign tasks, it is also common to directly consider already real-
ized product components at this stage of concept development.

Compared to requirement modeling and function model-
ing, more research has been done on using optimization for
principle modeling. In this category three usage patterns for
optimization can be identified.

3.3.1. Optimization of principle solution combination

Jin and Li (2006) partly base their approach on the method
of Pahl et al. (2007) and search for solution principles that can
be used for realizing a function structure and/or fit some given
requirements. Jin and Li (2006) used a GA to search for a
working structure that fits a given function structure. The par-
ticular function structure is evolved in parallel making use of
GP as mentioned earlier. While the topology is defined by the
function structure, the combination of solution principles is
built from a library of solution principles. It provides informa-

Table 2. Evaluation criteria used for requirement modeling

Reference
Customer

Satisfaction Cost
Design Time

Urgency Market Share
Realization

Dependencies Reliability

Tang et al. (2002) † † †

Liu (2010) † † † †

Kwong et al. (2011) † † †

Bai & Kwong (2003) † †

Greer & Ruhe (2004) † † † †

Zhang et al. (2007) † †

Sutcliffe et al. (2002) †

Fig. 3. Exemplary function structure to genetic programming tree serialization (Func. ¼ Function), based on Jin and Li (2006).

Automating evolutionary design exploration 337

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


tion on available principles, including possible functions that
can be implemented with a principle and constraints for inte-
grating principles with others. The evaluation of solution
principles follows compatibility, performance, and prefer-
ence measures. An early step in the same direction is the
work of Pham and Yang (1993). Here, so-called building
blocks are combined to produce principle solutions for trans-
mission systems. These building blocks constitute abstract so-
lution principles like “helical gear pairs” or “belt-wheels.” A
GA performs the search over possible arrangements of build-
ing blocks considering their physical compatibility. Further,
Campbell et al. (1999) proposed a seminal agent-based
method named A-design that uses a GA-like method to search
for optimal conceptual designs. A-design takes a user-defined
functional specification as input and builds a configuration of
abstract component descriptions from it. For instance, “gear,”
“shaft,” or “spring” are typical abstract components. Their de-
scriptions hold information about their connectivity with
other components, that is, how energy and signals are trans-
formed and how energy variables relate to others. In a second
step, these abstract versions are instantiated to concrete com-
ponents from a catalog, for example, “Spring: ERS-A1-36
$0.93, K¼16.0lb/in.”

3.3.2. Optimization of component combination

Other approaches skip this level of abstraction and directly
search for adequate components, whose descriptions are
usually stored in a product database. This avoids the need
to model abstract solution principles and offers direct ways
for evaluation, for example, by using the price, weight, and
dimensions of components. Xu et al. (2006) used genetic
search to find appropriate component combinations for so-
called function groups. These are groups of similarly used
functions from existing example products and constitute a
product platform’s functionality. Function groups are corre-

lated with both requirements (via key characteristics) and
concrete components of the example products. This trace of-
fers a flexible way of ranking and constraining component
configurations with respect to requirements (cost, weight,
manufacturing time, etc.). Hutcheson et al. (2006) started
from a manually designed function structure and defined rel-
evant component families for each function. Genetic search
has been used to search for optimal component combinations
with respect to cost, performance, and stress factors.

3.3.3. Optimization of parametric product templates

A third pattern is to use domain-specific key parameters
(e.g., number of engines for a plane). This approach is prev-
alent in domains where there is no need to consider the varia-
bility of custom-made function structures. To a great extent
the kind of functions to be fulfilled, their topology, and the
means used for realizing them are all considered to be well
known. The remaining variability is bound to an enumerable
set of predefined product templates. Special discrete variables
are then used to choose from this set (e.g., wing type), while
additional continuous variables (e.g., wing span) refine the
concept. Several works from the field of aerospace design fol-
lowed this approach to identify configurations for aircraft
designs and space operations with respect to mission require-
ments (Roth & Crossley, 1998; Crossley, 1999; Blasi et al.,
2000; Perez & Behdinan, 2002; Hassan & Crossley, 2003).
Further examples of this kind range from golf club design
(Qiu et al., 2002) through hydropower systems (Parmee,
1998) to dynamics of bridge design (Wang & Tang, 2011).
A significantly different parameter-oriented approach is pro-
posed by Wu et al. (2008). They start from a function struc-
ture and propose a method that yields a bond graph model
representing the physical parameters of solution principles.
Genetic search is used to determine the optimal parameters
for this model.

Table 3. Evaluation criteria used for function modeling

Reference and Concept
Model

Consistency
Uniqueness
of Elements

Function
Structure Size

Change From
Initial Population

Physical
Compatibility

Güroðlu (2005)
Feasibility †

Complexity † †

Creativity †

Jin & Li (2006)
Function/hierarchical/

global flow consistency †

Function structure
dimension †

Function variety †

Grammar rule usage †

Function-means
compatibility †

Sun & Yao (2012)
Variety †

Contradictions †

J.R. Eichhoff and D. Roller338

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


Table 4 summarizes the criteria used for evaluation. These
criteria heavily rely on attributes that are associated with so-
lution principles or components. In simple cases, these attri-
butes are directly matched against required key characteris-
tics, most often in terms of constraint functions. Prevalent
properties of this kind are cost, weight/mass, reliability/stress,
and other indicators of quality, efficiency, or performance. In
other cases, properties of the overall solution are computed
from its solution principles or components, for example, by
means of equations that take various properties of multiple
parts of the solution into account. Examples for this are pre-
cision, respond speed, or domain-specific criteria like orbital
altitude or the number of satellites (Crossley, 1999). A central
point in principle modeling is that a chosen working structure
is actually physically feasible. Wu et al. (2008), for instance,
ensure this through behavioral equations of bond graphs. Fur-
ther optimization goals mentioned are designer preference,
grade level of technology, and manufacturing time.

3.4. Modularization

In modularization working structures are split into intercon-
nected subsystems that constitute the system architecture.
Each of these so-called modules is defined by its specific
set of attributes (e.g., nose/cabin/tail length of an aircraft’s fu-
selage module). Preferably, modules are formed with respect
to reoccurring patterns within the working structures of one or
more products. Grouping these commonalities yields re-
usable modules that in turn enable product developers to in-

crease variety, shorten lead times, and reduce costs (Simpson,
2004). Hence, modularization has received a lot of attention
from the domain of product family design. Building on Fujita
(2002) and taking recent developments into account, three
types of optimization problems can be distinguished in this
field.

1. Optimization of module attributes: The task is to opti-
mize attribute parameterizations for a given system ar-
chitecture. This problem has already been discussed
for single products in the previous section. Optimiza-
tion can also be utilized to find design parameters that
best suit all members of a set of products. Considering
requirements that hold for the whole product family
(e.g., manufacturing concerns), this may lead to differ-
ent results than optimizing each product individually. In
this sense, the goal of Ferguson et al. (2009) was to op-
timize multiple car configurations simultaneously by
means of GAs. One of their goals was to determine
the optimal degree of adaptability for each configura-
tion while considering the cost and performance of
the whole product platform.

2. Optimization of module combination: This problem is
about finding an optimal combination of predefined
modules whose attribute parameterizations are fixed.
This has also been outlined in the previous section
when choosing adequate existing components for a sin-
gle product. In light of a product family, it is desirable to
share components among products. Again, taking

Table 4. Evaluation criteria used for principle modeling

Reference
Physical

Compatibility Cost Weight
Grade
Level

Designer
Preference

Quality,
Efficiency,

Performance
Manufac.

Time
Reliability

Stress
Suffice Key
Character.

Jin & Li (2006) † † † † †

Pham & Yang
(1993) †

Campbell et al.
(1999) † † † †

Xu et al. (2006) † † † † †

Hutcheson et al.
(2006) † † †

Blasi et al.
(2000) † †

Perez &
Behdinan
(2002) † †

Crossley (1999) † †

Roth & Crossley
(1998) † †

Hassan &
Crossley
(2003) † † †

Parmee (1998) † †

Wang & Tang
(2011) † † †

Wu et al. (2008) † †

Automating evolutionary design exploration 339

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


product family-wide requirements into account may
have effects on the optimization results. Within this
context, Li and Azarm (2002) generate alternatives for
a cordless screwdriver, then select common compo-
nents from these for a product platform. Wang et al.
(2011) provide a numerical example to demonstrate
the feasibility of their GA-based approach for finding
optimal module combinations.

3. Optimization of attribute-module assignment: Here, the
goal is to find an optimal modularization scheme from
given attribute parameterizations. After the parameters
of each product have been determined, commonalities
among the parameterizations can be identified and utilized
to group identically parameterized product parts into mod-
ules. For this purpose, Simpson and D’Souza (2004) and
Lewis et al. (2011) used GAs to assign attributes to mod-
ules. They had a specific interest in identifying those

attributes that should be part of a common product
platform.

Figure 4 illustrates all three optimization problems with re-
spect to a desired product architecture. The right-hand side
shows the desired modularized product architecture in SysML
notation (Object Management Group, 2012). The left-hand
side depicts the different starting points of the mentioned op-
timization approaches. Besides this, Table 5 provides an over-
view of the evaluation criteria used in the above works.

3.5. Preliminary embodiment design

The following phase of preliminary embodiment design ad-
dresses the geometrical realization of the system architecture.
The goal is to find geometrical structures that embed the pre-
viously defined modules. Kicinger et al. (2005a) provide a

Fig. 4. Exemplification of typical modularization optimization problems.

J.R. Eichhoff and D. Roller340

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


comprehensive survey on evolutionary structural design and
categorize prevalent problems in this field as follows:

3.5.1. Topology optimization

Topology optimization is also known as layout optimization
or topological optimum design. Although the principle topol-
ogy has already been set through functional decomposition
and modularization, it has to be clarified how the parts have
to be connected geometrically, taking account of weight, struc-
tural stability, and further aspects. Chapman et al. (1994),
Bentley and Kumar (1999), Jakiela et al. (2000), Wang and
Tai (2005), and Chen and Chiou (2013) consider a fixed geo-
metrical grid defining the design space and employ a GA to de-
termine which cells of the grid should be occupied by the
product. Hamda et al. (2002) in turn used Voronoi diagrams
consisting of filled and empty cells to indicate what space
should be occupied. Besides these Schoenauer (1996) also
takes so-called H-representations into account. These denote
void by overlapping elementary shapes (e.g., rectangles) while
all remaining parts of space are occupied by the product.
Schoenauer (1996) compares all three forms of representation
using GAs. Tai and Akhtar (2005) propose a graph-based rep-
resentation that is consecutively rendered as a geometrical fill/
no-fill grid. This graph holds information about a b-spline-
based line model and thickness values for these lines. Another
distinct group of works builds topologies from truss and frame
elements. Here, GAs (Koumousis & Georgiou, 1994; Bohnen-
berger et al., 1995; Rajan, 1995; Nakanishi & Nakagiri, 1996;
Rajeev & Krishnamoorthy, 1997; Azid et al., 2002; Mahdavi
& Hanna, 2003; Kicinger et al., 2005b) and GP (Soh &
Yang, 2000; Yang & Soh, 2002) are utilized to search for op-
timal connections of such elements.

3.5.2. Shape optimization

After the topology has been set, the next step is to determine
the product shape. With respect to the nodes of a layout, this
means that connections between nodes remain fixed while their
positions are adjusted. For this purpose, evolutionary optimiza-
tion has been applied to find adequate shapes based on splines
(Kita & Tanie, 1999; Cerrolaza et al., 2000; Annicchiarico &
Cerrolaza, 2001; Muc & Gurba, 2001), polygons (Grierson
& Pak, 1993; Keane & Brown, 1996; Soh & Yang, 1996),
boundary representations (Woon et al., 2001; Namgoong

et al., 2012), and constructive solid geometry (Bentley &
Wakefield, 1996).

3.5.3. Sizing optimization

The last problem under consideration for design explora-
tion is identifying optimal sizes of product parts. Specific di-
mensional aspects with strategic influence have already been
in focus of modularization. The current stage takes account of
more detailed matters of sizing. Just to mention a few exem-
plary works, sizing optimization with evolutionary algorithms
has been addressed in context of determining sizes of basic
elements like columns, beams, trusses, and rods (Hajela,
1990; Deb, 1991; Rajeev & Krishnamoorthy, 1997; Muc &
Gurba, 2001; Kaveh & Kalatjari, 2002; Jármai et al., 2003)
or domain-specific sizing problems like cross-sectional di-
mensions in bridge design (Jenkins, 1992), or bay and floor
sizing in building design (Rafiq & Rustell, 2011).

3.5.4. Unified embodiment optimization

Some works combine the mentioned embodiment aspects
in a unified process. Schnier and Gero (1996) “grow” floor
plan layouts using a shape grammar. Here, all possible mod-
ifications are predefined by production rules. A GA then
searches for application sequences of rules that result in solu-
tions showing high similarity with a set of given design cases.
Kicinger et al. (2005c) proposed another rule-based system
that uses GAs to jointly search for the optimal topology and
shape of a building’s structural system, and Hornby (2004)
use a similar method for table design. Further, Turrin et al.
(2011) and Gerber and Lin (2012) integrate parametric archi-
tectural design with a GA. Hence, topology, shape, and size
may be jointly optimized with respect to the underlying para-
metric model. In addition to these works, a very different ap-
proach is taken by Shang et al. (2009). They render concep-
tual design as a form of geometrical decomposition toward
so-called functional surfaces. Initially, functional require-
ments are mapped to primitive geometric objects that form
a prototype concept. After being codified as genotype, this
concept is evolved to complex geometric structures using a
genetic search. The engineer then performs an evaluation of
generated solutions manually.

Despite the variety of approaches to preliminary embodi-
ment design, the criteria used for evaluation show significant

Table 5. Evaluation criteria used for modularization

Reference Complexity
Market
Share

Consumer
Choice Utility Profit Cost

Product Level
Problem Performance Adaptability Commonality

Ferguson et al.
(2009) † † † †

Li & Azarm (2002) † † †

Wang et al. (2011) † † †

Lewis et al. (2011) † †

Simpson & D’Souza
(2004) † †

Automating evolutionary design exploration 341

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


commonalities. Most often the goals are to achieve a design
of minimum volume or mass while maintaining structural sta-
bility (in terms of stress, displacement, buckling, deflection,
vibration, etc.). Another prevalent requirement is to satisfy
certain geometrical affordances like symmetry (Kicinger
et al., 2005b) or boundary conditions (Annicchiarico & Cer-
rolaza, 2001). Further, more domain-specific evaluation cri-
teria comprise usable space (Rafiq & Rustell, 2011), material
constraints (Mahdavi & Hanna, 2003), light characteristics
(Bentley & Wakefield, 1996), aerodynamic properties (Nam-
goong et al., 2012), and costs for manufacturing and opera-
tion (Deb, 1991; Jenkins, 1992; Rafiq & Rustell, 2011;
Gerber & Lin, 2012; Namgoong et al., 2012).

4. CONFIGURATION AND PARAMETERIZATION

The reviewed works show how the design problems of a spe-
cific design phase can be formulated in such a way so that
evolutionary optimization methods become applicable. In
most cases, exemplary scenarios demonstrated how the
methods could be applied. However, in order to be applied

to any other practical problem instance, one has to prepare de-
sign variables x, constants c, and functions f(x, c), gi(x, c),
hj(x, c) for the specific scenario at hand. In simple cases,
only constants have to be adjusted (parameterization), while
more complex adjustments require the preparation of vari-
ables and functions (configuration). Taking a closer look
at the items used for parameterizing and configuring the
above problems (cf. Table 6), four recurring patterns can be
observed.

In Pattern 1, the representation of individuals used for GA/
GP is predominantly determined by the desired description of
the design phase’s process objective (e.g., to yield a function
structure). At this point, the design variables have to be de-
fined and subsequently transformed into the chromosome
or GP tree representation of the particular approach. Typi-
cally, this requires the user to define the variable ranges under
consideration (e.g., in case of function modeling, the vari-
ables may represent the available functions to choose from).

In Pattern 2, representation stands in close relation to the
methods used for fitness evaluation. These methods require
individuals to have certain attributes from which evaluation

Table 6. Entities and relations from requirements (A) or design rationale (B) that are used for problem specification

Phase Entities Relations

Requirement modeling
QFD A: CR A: preference weights of CR

A: Competing products A: target values of competing products
B: TA and their target values B: engineering characteristics (e.g., costs, design times) of TA target

values
B: correlations between CR and TA
B: correlations between TA

NRP A: customers A: importance weights of customers
A: requirements B: costs of requirements

A: values and urgencies of requirements for customers
B: dependencies between requirements

STS A: agents A: weights of properties
A: tasks B: attributes of agents and equipment
A: equipment B: evaluation rules

Function modeling A: initial function model (black box) A: weights of evaluation criteria
B: functions B: engineering characteristics of flows
B: flows B: operators for functional decomposition (e.g., graph grammar rules)

B: validity rules for combining functions
B: taxonomies for functions/flows

Principle modeling A: evolved function model (function structure) B: map between functions and SP/components
B: SP B: map between SP and components
B: components B: engineering characteristics (weight, cost, grade level, designer

preference, etc.) of SP/components
B: product template model B: validity rules for combining SP/components

B: models for input/output behaviors
Modularization A: modules (incl. product platforms) B: engineering characteristics of products/modules

A: products A: target values for characteristics
B: map between modules and products

Preliminary A: existing topology A: geometric limitations (e.g. boundaries, grids, degrees of freedom)
embod. design A: materials B: models for physical behaviors

B: geometric primitive objects B: operators for geometric modification (e.g., shape grammar rules)
B: engineering characteristics of materials/objects

Note: QFD, Quality function deployment; CR, customer requirements; TA, technical attributes; NRP, next release problem; STS, scenario task
sequences; SP, solution principles.

J.R. Eichhoff and D. Roller342

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


criteria may be calculated (e.g., cost or weight of a compo-
nent). Hence, the design space has to be attributed before-
hand, either by translating requirements to attributes, like in
QFD, or by drawing upon experience from existing design ra-
tionale; that is, it is well known to the engineer what attributes
typically need to be considered for the problem at hand. Con-
versely, the calculation of an individual’s fitness is affected
by the chosen definitions for design variables. Objective
functions need to be configured to incorporate new design
variables or modified variable ranges.

In Pattern 3, the fitness of individuals is further determined
by the given descriptions of the preceding design phase (e.g.,
the chosen working principles should match the functions of
a given function structure). Typically, method-specific objec-
tive functions need to be parameterized by setting constants
(e.g., weights setting the relative importance of require-
ments). Nonetheless, often completely new objective func-
tions need to be added to reflect custom requirements (e.g.,
a simulation model for estimating the range of an aircraft
design, where the desired range has been determined by the
preceding principle modeling phase). The same applies to
constraint functions. In GA/GP-based optimization, these
are often reflected as penalty objective functions. In this
case, comparable actions need to be done for parameteriza-
tion and configuration. Instead of using penalty functions,
constraints can also be considered in advance during the gen-
eration of individuals. Here, the same parameterization and
configuration steps apply.

In Pattern 4, some works also require specifying relations
needed for the generation of individuals (e.g., rules that de-
fine feasible design decisions within functional decomposi-
tion). Though such relations are out of the scope of the
optimization problem’s definition, they are valuable for im-
proving the problem-solving efficiency of evolutionary opti-
mization methods. Here, the design space is restricted by
integrating rules for production and/or validation into the
mechanisms for generating individuals. This corresponds to
the idea of using constraints to limit the individuals that are
considered for evaluation to only feasible ones.

ML and NLP approaches offer a variety of ways to discover
information entities and relations from available data. In case
of ML, it is usually assumed that this data is already available
in a formal format (e.g., as vector or graph representation),
whereas NLP methods address the extraction of information
entities and relations from naturally written texts. Principally,
both fields provide methods to explore a space of possible hy-
potheses for models that best explain the available data. The
next sections review literature where this characteristic has
been employed to support parameterization and/or configura-
tion of optimization problems. Moreover, reference is made
to promising ML/NLP approaches that could contribute to
this task. Therefore, symbols used for design variables and
constants are both considered to be information entities.
Among these entities, relations are defined. They represent
range definitions, value assignments, objective functions,
constraint functions, or relations used for generation. Table 6

lists the information entities and relations that were used for
configuration and parameterization considering the reviewed
works. They are further distinguished whether they originate
from product specific requirements (A) or from existing
knowledge for decision making in that phase, that is, the de-
sign rationale (B).

4.1. Methods supporting parameterization

Objectives and constraints are often formulated in a general
sense and must be adapted to the concrete problem at hand be-
fore the optimization problem can be solved. For instance,
imagine the task of finding an optimal bridge design. The
original problem for that task could state that “the length of
a bridge must be greater than the width of the river it spans.”
Now, in order to find designs that suffice this constraint, the
width of the river must be defined. Such concretizations of the
problem are typically modeled by constants c that configure
the objective functions f(x, c) ¼ [ f1(x, c), f2(x, c), . . . ,
fk(x, c)]T and/or constraint functions gi(x, c), hj(x, c).

Cluster-oriented genetic algorithms provide a method for
dynamically parameterizing objective functions (Parmee &
Bonham, 1999; Parmee, 2002). They are a variant of GA
that allows for exploring design spaces that have not been
considered in the first place. This is supposed to support early
design stages where the problem definition is uncertain and
subject to frequent redefinition. A threshold constant on
each objective function is introduced that determines which
candidates will be considered in the solution set. The thresh-
old can be adapted iteratively, where low values broaden the
search while high values cause a more focused exploration of
distinct regions of high performance. These regions are
visually depicted so that the user can change the threshold
in order to drive the problem definition toward a desired di-
rection. Parmee and Bonham (1999) demonstrate this by
showing the high-performance regions of three objective
functions in a multiple-objective optimization problem.
Two of the regions do overlap, which indicates that there is
a subset of compromise solutions for the associated objec-
tives. However, the high-performance region of the third ob-
jective is isolated from this. Relaxing the threshold for this
objective is equivalent to a reduction of its relative impor-
tance and causes the associated region to expand. This ulti-
mately leads to an overlapping of all three regions.

Ren and Papalambros (2011) tackle the problem of de-
signer preference elicitation for design optimization by using
a customized version of the efficient global optimization algo-
rithm. It integrates a support vector machine (SVM) to itera-
tively refine constraints used for optimization. With each
iteration of the efficient global optimization algorithm, the
human designer chooses relatively suitable candidates from
the generated solutions. From this response, the SVM classi-
fication mechanism produces a decision function that is used
by a GA to sample new candidates from the design space.
Completing the cycle, these samples are then presented to the
designer to gather new feedback. Hence, the SVM decision

Automating evolutionary design exploration 343

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


function resembles a configurable constraint that is adapted
over time in order to produce optimal solutions as desired by
the designer.

4.2. Methods supporting configuration

Parameterization can be considered as choosing an instance
from a rather narrow set of optimization problems that is defined
by a known problem class. Configuration instead addresses the
definition of that problem class. In the next sections different
approaches are reviewed that help to determine all further ele-
ments of the problem definition beside constants, that is, design
variables, objective functions, and constraint functions.

4.3. Product attribute extraction

Ghani et al. (2006) characterized the term product attribute
extraction. The idea of this NLP method is to produce formal
representation of a product’s attributes from semistructured or
unstructured product descriptions (e.g., product recessions).
Ideally, the extraction produces a variable description of
each attribute found in the document corpus with its range de-
fined by the written values. Each product description can then
be represented by a data vector made up of the found attri-
butes. This information can be directly used to define design
variables x for product attributes. In contrast, product attri-
bute extraction establishes the link between products/compo-
nents and their attributes. In cases where design variables
represent products/components, this relationship can be
used to formulate objective functions f(x, c) and/or constraint
functions gi(x, c), hj(x, c) that evaluate their characteristics.

Besides the original supervised method for extracting
product attributes of Ghani et al. (2006), semisupervised
(Wu et al., 2009) and unsupervised (Wong et al., 2008)
methods have been developed. These systems operate on
semistructured product descriptions like websites, where ad-
ditional context information is given by the structure of the
HTML document. Raju et al. (2009) focused on unsupervised
methods that can also be used for product attribute extraction
from unstructured texts.

4.4. Clustering solutions with similar attributes

In product attribute extraction, the link between a variable
(design object) and its range (characteristics of design object)
is established by translating the information that is already ex-
plicit in documents into a formal representation. A different
group of approaches targets the case where this information
is not explicitly given. The starting point for these approaches
is a set of solutions to a design problem. These solutions are
then grouped with respect to the similarity of their character-
istics using clustering methods. Each identified group is con-
sidered as the class of its contained instances. Having iden-
tified such class–instance relationships, the information can
be used to express each class as a design variable x where
the instances represent the variable’s range.

Besides this, the inspection of discovered solution groups can
provide hints for refining the optimization problem. Constraint
functions gi(x, c), hj(x, c) may be defined that reflect the value
boundaries of a specific group in order to formulate an optimi-
zation problem that specifically targets that region. Overlapping
solution groups, in turn, suggest that more decisive optimization
goals should be added to the set of objective functions f(x, c).

Xu et al. (2006) used a neural network to group compo-
nents of similar products, called fan filter units, with respect
to their functionality. Their work presents a way that design
variables and their ranges can be defined automatically.
Therefore, each component is described by means of a data vec-
tor that holds information about its material, signal, and energy
flows. Using this as training data, the neural network is trained to
group components that may be named differently but fulfill the
same functionality; for example, components named “fan filter
unit control,” “monitoring,” and “working condition control”
are assigned to the group “control.” The resulting groups stand
for abstract concepts that denote the functions of a product plat-
form, for example, “control,” “insulation,” and “air filtering.”
For the next step, each group is considered a design variable
with its range defined by the associated components. This en-
ables the GA-based optimization to identify new optimal com-
ponent combinations for the product platform’s set of functions.

Veerappa and Letier (2011) use a distance-based hierarchi-
cal clustering algorithm in the domain of requirement model-
ing. Their underlying problem is finding a set of requirements
that maximizes value while minimizing cost. For each solu-
tion pair on the value- and cost-dimensioned Pareto frontier,
a distance score measures their difference in fulfilled require-
ments. From these distances, a hierarchy of solution clusters
is formed. On the one hand, it is supposed that navigating the
hierarchy eases the selection of desired solutions. Moving
from a cluster to one of its subclusters narrows the set of con-
sidered solutions. At this stage, in order to explore this region
of interest in greater detail, one may introduce new constraints
that correspond to the subcluster’s boundary and rerun the
search process. On the other hand, the proposed method
also supports the identification of different solutions that
achieve similar objectives. This is the case when clusters
overlap. As a consequence for problem formulation, further
objective functions may be introduced.

Similarly Reich and Fenves (1991) used hierarchical clus-
tering to group characteristics of bridge designs (material,
lanes, span, etc.) with respect to their occurrence in example
design variants. The resulting hierarchical structure resembles
a taxonomy of bridge designs, where each subclass is charac-
terized by some specific properties (e.g., wooden bridges and
steel constructions form two distinct groups).

4.5. Discovering relationships

The configuration of optimization problems can also be sup-
ported by making the relations among design variables, con-
stants, objective functions, and constraint functions more tan-
gible. It is essential for the formulation of optimization

J.R. Eichhoff and D. Roller344

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


problems to know how these elements can be combined and
what engineering concepts they reflect. Different approaches
exist to acquire this information automatically:

† Analyze how the elements interact with each other dur-
ing optimization.

† Examine what elements were used in combination over
different problem formulations.

† Extract semantic relations among elements from design
documentation.

Innovization is a method that discovers regressed functions
over the design variables, objectives, and constraints (Bandaru
& Deb, 2013). These so-called design principles express hid-
den regularities within the problem formulation like propor-
tionality between design variables. In order to find design prin-
ciples, the discovery itself is formulated as an optimization
problem searching over possible combinations of design vari-
ables, objectives, and constraints. The problem is then solved
using a GA. As a preparatory step, innovization uses clustering
to group related solutions. Bandaru and Deb (2013) distinguish
between lower level and higher level innovization. Lower level
innovization is used to identify design principles that are com-
mon to a subset of solutions from a single trade-off front. The
extracted design principles can be used to identify solution sub-
sets that show a desired property or conversely to find proper-
ties that characterize a desired region. Higher level innovization
targets uncertainty in problem definition. Therefore, different
trade-off fronts from varying problem parameterizations are
fed into the regression to determine how changes to the prob-
lem affect prevalent design principles. For instance, it allows
investigating what parts of the problem remain unaffected
from the addition or deletion of new constraints.

The goal of Matthews et al. (2006) was to discover abstract
relations among the elements used for formulating optimiza-
tion problems. They used a GP-based approach to determine
what elements in a problem specification are strongly related
to each other. This strength is computed from the covariances
that are computed over the values of existing solutions. From
the discovered relations, heuristics like “the thickness of a de-
sign has a strong influence on its weight” are derived.

Sarkar et al. (2008) analyzed multiple formulations of an
optimization problem using the feature extraction method sin-
gular value decomposition. By means of singular value de-
composition, latent syntactic relations among the used vari-
ables, constants, and functions were discovered. The trained
meta-model can be queried to determine what variables, con-
stants, or functions are relevant in the presence of one an-
other. This feature can be used to guide engineers in finding
an adequate ensemble of constraint and objective functions.

Another group of NLP works can be utilized to guide the
creation of constraint or objective functions by showing how
relevant concepts are related to each other. Wong et al.
(2011) extended the product attribute extraction approach of
Wong et al. (2008) with a clustering method that is applied
on the found product attributes. It arranges semantically related

attributes in hierarchically ordered groups. For instance, the at-
tributes “charger” and “battery” of a digital camera are associ-
ated with the group “power information,” which is likewise a
member of the group “hardware information.” Dong and Ago-
gino (1997) analyzed documents from the field of product de-
velopment to determine what central terms are mentioned in
common contexts like “valve” and “pressure.” Similarly
Yang et al. (2005) automatically derived a thesaurus of design
terms. Liang et al. (2012) extracted terms that are characteristic
for product components such as “print cartridge” and “ink drop
generator” for an inkjet printhead design. They also present a
method to identify sentences within product development doc-
umentation that are used for describing problems or solutions.
Li and Ramani (2007) proposed an extraction method that uses
some predefined ontology that represents domain knowledge
about the texts to be analyzed. Given this, it is possible to build
more sophisticated application ontologies that contain detailed
information on the relations of mentioned concepts.

4.6. Computing objective functions

ML methods were also used to determine the components of
objective functions f(x, c) ¼ [ f1(x, c), f2(x, c), . . . , fk(x, c)]T .
Instead of describing each objective function manually, regres-
sion or classification methods may be used to derive objective
functions from existing examples of good design solutions.

Both Kwong et al. (2011) and Yang and Chen (2014) use
regressed functions to describe the relation between customer
requirements and engineering characteristics in the context of
QFD. This information is crucial for assessing the potential
customer satisfaction with the chosen engineering character-
istics. The known satisfaction with existing products has been
used to obtain estimates for this objective function.

In addition to these approaches, there has been an ongoing
interest in the field of engineering design to discover relations
between the structural and behavioral properties of designs.
Such methods could be used to automate the formulation of
fitness functions. Ivezic and Garrett (1998) employed artifi-
cial neural networks (ANNs) to determine a regressed func-
tion. This function predicts behavioral aspects (e.g., deflec-
tion) and realization characteristics (e.g., construction time)
of bridge designs from their structural properties (e.g., geom-
etry, material, expected load). Using knowledge of the ex-
pected behavior, designers are able to evaluate whether the
design objectives can be met. Reich and Barai (1999) and
Neocleous and Schizas (2002) also used ANNs. Their goal
was to determine relations between the characteristics of pro-
peller designs and their performance. Skibniewski et al.
(1997) and Szczepanik et al. (1995) proposed rule induction
methods that predict the manufacturing effort of beam de-
signs and estimate the weight of designs.

4.7. Learning metamodels for evaluation

The goal is to identify an alternative objective function f 0(x, c)
that is equivalent or at least approximate to f(x, c). This new

Automating evolutionary design exploration 345

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


objective function models the details inherent in the compo-
nents of f(x, c) ¼ [ f1(x, c), f2(x, c), . . . , fk(x, c)]T on a more
abstract level. Here, the underlying aim is either to apply the
same functions to a wider range of problems or to perform
the optimization more efficiently. In certain domains, for in-
stance, using exact evaluation functions for the selection of
individuals can become very costly, for example, if simulations
are to be computed or marketing interviews have to be con-
ducted. Therefore, more abstract evaluation schemes like per-

formance heuristics or approximations can help to make solv-
ing the problem more practicable.

Perez and Behdinan (2002) and Lin (2003) both employed
ANNs to learn a classification from existing evaluations. If
enough evaluation results have been generated, then the
neural network is trained and used as a replacement for the
costly evaluation function.

There is a range of further ML applications that learn ab-
stract meta-models from existing descriptions of relations.

Table 7. Summary of machine learning/natural language processing approaches to the support of parameterization and configuration

Target of Config./Param.

Concept (References) Patterns Constants
Design

Variables
Objective

Func.
Constraint

Func.

Iteratively adjust constants of
Objective functions (Parmee & Bonham, 1999;

Parmee, 2002) 3 †

Constraint functions (Ren & Papalambros, 2011) 3 †

Extract information on design variables and
associated attributes from design documentation
(Ghani et al., 2006; Wong et al., 2008; Raju
et al., 2009; Wu et al., 2009) 1, 2 † † †

Group attributed solutions to discover
Design variables (Xu et al., 2006) 1 †

New objective and constraint functions (Reich &
Fenves, 1991; Veerappa & Letier, 2011) 2 † †

Identify which problem elements belong together by
Analyzing how problem elements interact with

each other during optimization (Matthews et al.,
2006; Bandaru & Deb, 2013) 1, 2, 3 † † †

Examining what elements were used in
combination over different problem
formulations (Sarkar et al., 2008) 1, 2, 3 † † †

Extracting semantic relations among elements from
design documentation (Dong & Agogino, 1997;
Yang et al., 2005; Li & Ramani, 2007; Wong
et al., 2011; Liang et al., 2012) 1, 2, 3 † † †

Computing objective functions by
Relating engineering characteristics to

requirements (Kwong et al., 2011; Yang &
Chen, 2014) 3 †

Relating structural attributes to behavioral
attributes (Szczepanik et al., 1995; Skibniewski
et al., 1997; Ivezic & Garrett, 1998; Reich &
Barai, 1999; Neocleous & Schizas, 2002) 3 †

Learning metamodels for evaluation in order to
Replace costly evaluation functions (Perez &

Behdinan, 2002; Lin, 2003) 2 †

Broaden the applicability of evaluation functions
by abstracting from existing relations (Bhatta &
Goel, 1994; Chabot & Brown, 1994; Reffat &
Gero, 2000) 2 †

Restrict the feasible design space with respect to
identified

Chunks (Moss et al., 2004; Mukerjee & Dabbeeru,
2012) 4 † † †

Design rules (Gero et al., 1994; Forouraghi, 1999;
Hanna, 2007; Yogev et al., 2010) 4 † † †

J.R. Eichhoff and D. Roller346

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


A knowledge compilation approach was taken by Chabot and
Brown (1994). Their system learned the abstract restriction “x
surrounds y” from relations among the diameters of different
components. Bhatta and Goel (1994) used instance-based
learning to generalize functional relations of two designs to
yield an abstract principle solution. Given a functional and
behavioral description of a sulfuric acid cooler and a nitric
acid cooler, the model of a generic heat exchanger is derived.
Using a hierarchical clustering method (Reffat & Gero, 2000)
grouped geometric restrictions (e.g., symmetry, adjacency)
with respect to their joint use within floor plan designs.
In addition, Wang and Shan (2006) provide a comprehensive
overview over metamodeling techniques in optimization that
go beyond the herein discussed ML/NLP approaches.

4.8. Learning patterns of good design

Here, the idea is to investigate the inverse relation of the over-
all objective function f(x, c). ML methods are used to deter-
mine combinations of value assignments for subsets of x that
cause f(x, c) to drop considerably. These promising value
combinations are called chunks. Introducing a bias toward
the selection of known chunks can help to solve similar opti-
mization problems better and/or faster. This bias can be
implemented in different ways:

† Change some variables of x to constants c whose values
correspond to those of a desired chunk.

† Introduce additional constraints gi(x, c) and/or hj(x, c)
that restrict x to value combinations of known chunks.

† Use special generation methods that tend to choose val-
ues of known chunks for x.

Moss et al. (2004) extended the A-Design method (Camp-
bell et al., 1999) to identify well performing patterns in solu-
tions. These chunks are then reused in new problems to gen-
erate candidates during optimization. As a result, the system’s
efficiency and effectiveness are incrementally increased. Mu-
kerjee and Dabbeeru (2012) use dimension reduction to iden-
tify chunks. In this case, the learned chunks decide whether a
design is feasible or not. By analyzing communication proto-
cols of designers, their approach was able to assign a natural
language symbol to these learned relations (e.g., the parts of a
construction “fit tight”).

Finding appropriate designs for a set of required engineering
characteristics has been in the scope of various ML-based ap-
proaches. Starting from the problem of finding a frame geome-
try with optimal load characteristics, Hanna (2007) applied the
SVM technique to learn a classification that conversely identi-
fies adequate frame constructions for given loads. Forouraghi
(1999) used multivariate regression trees to determine variant
groups that optimally fulfill a goal function. These groups de-
fine ranges for design variables that should be obeyed in order
to optimize the objective functions. Both Gero et al. (1994) and
Yogev et al. (2010) draw upon the idea that ML can be seen as a
search for hypotheses that best explain the data. They make use

of GAs to search for production rules for a shape grammar. The
language produced by the shape grammar then defines the set of
reasonable shapes to choose from.

Table 7 provides a summary of the discussed approaches to
configuration and parameterization. It further depicts how
these relate to the patterns of problem formulation that could
be observed from the reviewed applications of evolutionary
optimization.

5. CONCLUSION

We presented a short yet comprehensive overview of GA/GP-
based engineering design optimization approaches from var-
ious phases of design exploration, that is, requirement model-
ing, function modeling, principle modeling, modularization,
and preliminary embodiment design. Although several com-
monalities can be observed, each of the discussed problems
was required to be set up according to the requirements and de-
signing rationale that are specific for the project and engineering
domain. In order to integrate this spectrum in a computational
framework that spans multiple design phases, additional
mechanisms are needed for facilitating the automatic configura-
tion and parameterization of optimization problems.

Despite the different nature of the design phases, the for-
mulation of related optimization problems still reduces to de-
fining constants, design variables, objective functions, and
constraint functions. Recurring patterns in problem formula-
tion could be observed from the reviewed applications of evo-
lutionary optimizations. This in turn suggested that methods
targeting these patterns can support the formulation of opti-
mization problems over multiple design phases.

Various methods were reviewed from the fields of ML and
NLP for this purpose. They can be utilized to acquire the in-
formation entities and relations that are needed for configura-
tion and parameterization. Up to now, several of these
methods have been integrated into the representation, evalu-
ation, and generation aspects of GA/GP-based design optimi-
zation. As discussed, there are further applications of ML/
NLP in the field of engineering design that could be used
to expand this support.

REFERENCES

Altshuller, G. (1999). The Innovation Algorithm: TRIZ, Systematic Innova-
tion and Technical Creativity. Worcester: Technical Innovation Center.

Annicchiarico, W., & Cerrolaza, M. (2001). Structural shape optimization 3D
finite-element models based on genetic algorithms and geometric model-
ing. Finite Elements in Analysis and Design 37(5), 403–415.

Azid, I.A., Kwan, A.S.K., & Seetharamu, K.N. (2002). An evolutionary
approach for layout optimization of a three-dimensional truss. Structural
and Multidisciplinary Optimization 24(4), 333–337.

Bagnall, A.J., Rayward-Smith, V.J., & Whittley, I.M. (2001). The next
release problem. Information and Software Technology 43(14), 883–890.

Bai, H., & Kwong, C.K. (2003). Inexact genetic algorithm approach to target
values setting of engineering requirements in QFD. International Journal
of Production Research 41(16), 3861–3881.

Bandaru, S., & Deb, K. (2013). Higher and lower-level knowledge discovery
from Pareto-optimal sets. Journal of Global Optimization 57(2), 281–
298.

Automating evolutionary design exploration 347

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


Bentley, P., & Kumar, S. (1999). Three ways to grow designs: a comparison
of evolved embryogenies for a design problem. Proc. 1st Genetic and
Evolutionary Computing Conf., GECCO’99. San Francisco, CA: Morgan
Kaufmann.

Bentley, P.J., & Wakefield, J.P. (1996). Conceptual evolutionary design by a
genetic algorithm. Engineering Design and Automation 2(3), 119–131.

Bhatta, S.R., & Goel, A.K. (1994). Discovery of physical principles from de-
sign experiences. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 8(2), 113–123.

Blasi, L., Iuspa, L., & Del Core, G. (2000). Conceptual aircraft design based
on a multiconstraint genetic optimizer. Journal of Aircraft 37(2),
351–354.

Bohnenberger, O., Hesser, J., & Männer, R. (1995). Automatic design of
truss structures using evolutionary algorithms. Proc. 1995 IEEE Int.
Conf. Evolutionary Computation, ICEC’95. New York: IEEE.

Campbell, M.I., Cagan, J., & Kotovsky, K. (1999). A-Design: an agent-based
approach to conceptual design in a dynamic environment. Research in
Engineering Design 11(3), 172–192.

Cerrolaza, M., Annicchiarico, W., & Martinez, M. (2000). Optimization of
2D boundary element models using b-splines and genetic algorithms.
Engineering Analysis With Boundary Elements 24(5), 427–440.

Chabot, R., & Brown, D.C. (1994). Knowledge compilation using constraint
inheritance. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 8(2), 125–142.

Chapman, C.D., Saitou, K., & Jakiela, M.J. (1994). Genetic algorithms as an
approach to configuration and topology design. Journal of Mechanical
Design 116(4), 1005–1012.

Chen, T.Y., & Chiou, Y.H. (2013). Structural topology optimization using
genetic algorithms. Proc. 2013 World Congr. Engineering, WCE’13.
Hong Kong: Newswood Limited.

Crossley, W.A. (1999). Optimization for aerospace conceptual design
through the use of genetic algorithms. Proc. 1st NASA/DoD Workshop
on Evolvable Hardware. Washington, DC: IEEE Computer Society.

Deb, K. (1991). Optimal design of a welded beam via genetic algorithms.
AIAA Journal 29(11), 2013–2015.

Dong, A., & Agogino, A.M. (1997). Text analysis for constructing design
representations. In Artificial Intelligence in Design ’96 (Gero, J.S., &
Sudweeks, F., Eds.), pp. 21–38. Dordrecht: Kluwer Academic.

Ferguson, S., Kasprzak, E., & Lewis, K. (2009). Designing a family of recon-
figurable vehicles using multilevel multidisciplinary design optimization.
Structural and Multidisciplinary Optimization 39(2), 171–186.

Forouraghi, B. (1999). On utility of inductive learning in multiobjective ro-
bust design. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 13(1), 27–36.

Fujita, K. (2002). Product variety optimization under modular architecture.
Computer-Aided Design 34(12), 953–965.

Gerber, D., & Lin, S.-H.E. (2012). Designing-in performance through para-
meterization, automation, and evolutionary algorithms: “H.D.S. BEA-
GLE 1.0.” Proc. 17th Int. Conf. Computer-Aided Architectural Design
Research in Asia, CAADRIA’12, pp. 141–150, Chennai, India, April
25–28, 2012.

Gero, J.S., Louis, S.J., & Kundu, S. (1994). Evolutionary learning of novel
grammars for design improvement. Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing 8(2), 83–94.

Ghani, R., Probst, K., Liu, Y., Krema, M., & Fano, A. (2006). Text mining for
product attribute extraction. ACM SIGKDD Explorations Newsletter 8(1),
41–48.

Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and
iterative approach. Information and Software Technology 46(4),
243–253.

Grierson, D.E., & Pak, W.H. (1993). Optimal sizing, geometrical and topo-
logical design using a genetic algorithm. Structural and Multidiscipli-
nary Optimization 6(3), 151–159.

Güroğlu, S. (2005). An Evolutionary Methodology for Conceptual Design.
Ankara: Middle East Technical University Press.

Hajela, P. (1990). Genetic search—an approach to the nonconvex optimiza-
tion problem. AIAA Journal 28(7), 1205–1210.

Hamda, H., Jouve, F., Lutton, E., Schoenauer, M., & Sebag, M. (2002). Com-
pact unstructured representations for evolutionary design. Applied Intel-
ligence 16(2), 139–155.

Hanna, S. (2007). Inductive machine learning of optimal modular structures:
estimating solutions using support vector machines. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing 21(4),
351–366.

Hassan, R.A., & Crossley, W.A. (2003). Multi-objective optimization of
communication satellites with two-branch tournament genetic algorithm.
Journal of Spacecraft and Rockets 40(2), 266–272.

Holland, J.H. (1992). Genetic algorithms. Scientific American 267(1),
66–72.

Hornby, G.S. (2004). Functional scalability through generative representa-
tions: the evolution of table designs. Environment and Planning B: Plan-
ning and Design 31(4), 569–587.

Hutcheson, R.S., Jordan, Jr., R.L., Stone, R.B., Terpenny, J.P., & Chang, X.
(2006). Application of a genetic algorithm to concept variant selection.
Proc. ASME 2006 Int. Design Engineering Technical Conf. Computers
and Information in Engineering Conf., IDETC/CIE’06. New York: ASME.

Ivezic, N., & Garrett, Jr., J.H. (1998). Machine learning for simulation-based
support of early collaborative design. Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing 12(2), 123–139.

Jakiela, M.J., Chapman, C., Duda, J., Adewuya, A., & Saitou, K. (2000).
Continuum structural topology design with genetic algorithms. Computer
Methods in Applied Mechanics and Engineering 186(2–4), 339–356.

Jármai, K., Snyman, J.A., Farkas, J., & Gondos, G. (2003). Optimal design of
a welded I-section frame using four conceptually different optimization
algorithms. Structural and Multidisciplinary Optimization 25(1), 54–61.

Jenkins, W.M. (1992). Plane frame optimum design environment based on ge-
netic algorithm. Journal of Structural Engineering 118(11), 3103–3112.

Jin, Y., & Li, W. (2006). Design concept generation: a hierarchical coevolu-
tionary approach. Journal of Mechanical Design 129(10), 1012–1022.

Kaveh, A., & Kalatjari, V. (2002). Genetic algorithm for discrete-sizing op-
timal design of trusses using the force method. International Journal for
Numerical Methods in Engineering 55(1), 55–72.

Keane, A.J., & Brown, S.M. (1996). The design of a satellite boom with en-
hanced vibration performance using genetic algorithm techniques. Proc.
2nd Conf. Adaptive Computing in Engineering Design and Control,
ACEDC’96, pp. 107–113, Plymouth, UK, March 26–28.

Kicinger, R., Arciszewski, T., & De Jong, K. (2005a). Evolutionary compu-
tation and structural design: a survey of the state-of-the-art. Computers
and Structures 83(23–24), 1943–1978.

Kicinger, R., Arciszewski, T., & De Jong, K. (2005b). Evolutionary design of
steel structures in tall buildings. Journal of Computing in Civil Engineer-
ing 19(3), 223–238.

Kicinger, R., Arciszewski, T., & De Jong, K. (2005c). Parameterized versus
generative representations in structural design: an empirical comparison.
Proc. 7th Genetic and Evolutionary Computing Conf., GECCO’05.
New York: ACM.

Kita, E., & Tanie, H. (1999). Topology and shape optimization of continuum
structures using GA and BEM. Structural and Multidisciplinary Optimi-
zation 17(2–3), 130–139.

Koumousis, V.K., & Georgiou, P.G. (1994). Genetic algorithms in discrete
optimization of steel truss roofs. Journal of Computing in Civil Engineer-
ing 8(3), 309–325.

Koza, J.R. (1992). Genetic Programming: On the Programming of Compu-
ters by Means of Natural Selection. Cambridge, MA: MIT Press.

Kwong, C.K., Luo, X.G., & Tang, J.F. (2011). A methodology for optimal
product positioning with engineering constraints consideration. Interna-
tional Journal of Production Economics 132(1), 93–100.

Lewis, P.K., Murray, V.R., & Mattson, C.A. (2011). A design optimization
strategy for creating devices that traverse the Pareto frontier over time.
Structural and Multidisciplinary Optimization 43(2), 191–204.

Li, H., & Azarm, S. (2002). An approach for product line design selection
under uncertainty and competition. Journal of Mechanical Design
124(3), 385–392.

Li, Z., & Ramani, K. (2007). Ontology-based design information extraction
and retrieval. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 21(2), 137–154.

Liang, Y., Liu, Y., Kwong, C.K., & Lee, W.B. (2012). Learning the “whys”:
discovering design rationale using text mining—an algorithm perspec-
tive. Computer-Aided Design 44(10), 916–930.

Lin, J.-J. (2003). Constructing an intelligent conceptual design system using
genetic algorithm. Journal of Materials Processing Technology 140(1–
3), 95–99.

Liu, C.-H. (2010). A group decision-making method with fuzzy set theory
and genetic algorithms in quality function deployment. Quality & Quan-
tity 44(6), 1175–1189.

Mahdavi, S.H., & Hanna, S. (2003). An evolutionary approach to microstruc-
ture optimisation of stereolithographic models. Proc. 2003 Congr. Evolu-
tionary Computation, CEC’03. New York: IEEE.

J.R. Eichhoff and D. Roller348

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


Marler, R.T., & Arora, J.S. (2004). Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimization
26(6), 369–395.

Matthews, P.C., Standingford, D.W.F., Holden, C.M.E., & Wallace, K.M.
(2006). Learning inexpensive parametric design models using an aug-
mented genetic programming technique. Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing 20(1), 1–18.

Mehrjerdi, Y.Z. (2010). Quality function deployment and its extensions.
International Journal of Quality & Reliability Management 27(6), 616–640.

Moss, J., Cagan, J., & Kotovsky, K. (2004). Learning from design experience
in an agent-based design system. Research in Engineering Design 15(2),
77–92.

Muc, A., & Gurba, W. (2001). Genetic algorithms and finite element analysis
in optimization of composite structures. Composite Structures 54(2–3),
275–281.

Mukerjee, A., & Dabbeeru, M.M. (2012). Grounded discovery of symbols as
concept–language pairs. Computer-Aided Design 44(10), 901–915.

Nakanishi, Y., & Nakagiri, S. (1996). Optimization of frame topology using
boundary cycle and genetic algorithm. JSME International Journal Ser-
ies A: Solid Mechanics and Material Engineering 39(2), 279–285.

Namgoong, H., Crossley, W.A., & Lyrintzis, A.S. (2012). Morphing airfoil
design for minimum drag and actuation energy including aerodynamic
work. Journal of Aircraft 49(4), 981–990.

Neocleous, C.C., & Schizas, C.N. (2002). Artificial neural networks in esti-
mating marine propeller cavitation. Proc. 2002 Int. Joint Conf. Neural
Networks, IJCNN’02. New York: IEEE.

Object Management Group. (2012). OMG System Modeling Language
(OMG SysML

TM
). Needham: Object Management Group.

Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2007). Pahl/Beitz Kon-
struktionslehre: Grundlagen erfolgreicher Produktentwicklung. Metho-
den und Anwendung, 7th ed. Berlin: Springer.

Parmee, I.C. (1998). Evolutionary and adaptive strategies for efficient search
across whole system engineering design hierarchies. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 12(5), 431–445.

Parmee, I.C. (2002). Improving problem definition through interactive evolu-
tionary computation. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 16(3), 185–202.

Parmee, I.C., & Bonham, C.R. (1999). Cluster-oriented genetic algorithms to
support interactive designer/evolutionary computing systems. Proc. 1999
Congr. Evolutionary Computation, CEC’99. New York: IEEE.

Perez, R.E., & Behdinan, K. (2002). Effective multi-mission aircraft concep-
tual design optimization using a hybrid multi-objective evolutionary
method. Proc. 9th AIAA/ISSMO Symp. Multidisciplinary Analysis and
Optimization. Reston, VA: AIAA.

Pham, D.T., & Yang, Y. (1993). A genetic algorithm based preliminary de-
sign system. Journal of Automobile Engineering 207(2), 127–133.

Qiu, S.L., Fok, S.C., Chen, C.H., & Xu, S. (2002). Conceptual design using
evolution strategy. International Journal of Advanced Manufacturing
Technology 20(9), 683–691.

Rafiq, M.Y., & Rustell, M.J.F. (2011). Building information modelling
driven by the evolutionary computing. Proc. 18th European Group for
Intelligent Computing in Engineering Workshop, EG-ICE’11, Twente,
The Netherlands, July 6–8.

Rajan, S.D. (1995). Sizing, shape, and topology design optimization of
trusses using genetic algorithm. Journal of Structural Engineering 121(10),
1480–1487.

Rajeev, S., & Krishnamoorthy, C.S. (1997). Genetic algorithms-based meth-
odologies for design optimization of trusses. Journal of Structural Engi-
neering 123(3), 350–358.

Raju, S., Shishtla, P., & Varma, V. (2009). A graph clustering approach to
product attribute extraction. Proc. 4th Indian Int. Conf. Artificial Intelli-
gence, IICAI’09, pp. 1438–1447, Tumkur, India, December 16–18.

Reffat, R.M., & Gero, J.S. (2000). Computational situated learning in design.
In Artificial Intelligence in Design ’00 (Gero, J.S., Ed.), pp. 589–610.
Dordrecht: Kluwer Academic.

Reich, Y., & Barai, S.V. (1999). Evaluating machine learning models for
engineering problems. Artificial Intelligence in Engineering 13(3), 257–272.

Reich, Y., & Fenves, S.J. (1991). The formation and use of abstract concepts
in design. In Concept Formation Knowledge and Experience in Unsuper-
vised Learning (Fisher, Jr., D.H., Pazzani, M.J., & Langley, P., Eds.), pp.
323–353. San Francisco, CA: Morgan Kaufmann.

Ren, Y., & Papalambros, P.Y. (2011). A design preference elicitation query as
an optimization process. Journal of Mechanical Design 133(11), 111004-1
–111004-9.

Roth, G.L., & Crossley, W.A. (1998). Commercial transport aircraft concep-
tual design using a genetic algorithm based approach. Proc. 7th AIAA/
USAF/NASA/ISSMO Symp. Multidisciplinary Analysis and Optimiza-
tion. Reston, VA: AIAA.

Sarkar, S., Dong, A., & Gero, J.S. (2008). Learning symbolic formulations in
design optimization. Proc. 3rd Int. Conf. Design Computing and Cogni-
tion, DCC’08. Dordrecht: Springer ScienceþBusiness Media.

Schnier, T., & Gero, J.S. (1996). Learning genetic representations as alterna-
tive to hand-coded shape grammars. In Artificial Intelligence in Design
’96 (Gero, J.S., & Sudweeks, F., Eds.), pp. 39–57. Dordrecht: Kluwer
Academic.

Schoenauer, M. (1996). Shape representations and evolution schemes. Proc.
5th Annual Conf. Evolutionary Programming, Evolutionary Program-
ming. Cambridge, MA: MIT Press.

Schon, D.A. (1992). Designing as reflective conversation with the materials
of a design situation. Research in Engineering Design 3(3), 131–147.

Shang, Y., Huang, K.Z., & Zhang, Q.P. (2009). Genetic model for conceptual
design of mechanical products based on functional surface. International
Journal of Advanced Manufacturing Technology 42(3–4), 211–221.

Simpson, T.W. (2004). Product platform design and customization: status
and promise. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 18(1), 3–20.

Simpson, T.W., & D’Souza, B.S. (2004). Assessing variable levels of platform
commonality within a product family using a multiobjective genetic algo-
rithm. Concurrent Engineering: Research and Applications 12(2), 119–129.

Skibniewski, M., Arciszewski, T., & Lueprasert, K. (1997). Constructability
analysis: machine learning approach. Journal of Computing in Civil En-
gineering 11(1), 8–16.

Soh, C.K., & Yang, J. (1996). Fuzzy controlled genetic algorithm search for
shape optimization. Journal of Computing in Civil Engineering 10(2),
143–150.

Soh, C.K., & Yang, Y. (2000). Genetic programming-based approach for
structural optimization. Journal of Computing in Civil Engineering
14(1), 31–37.

Sun, G., & Yao, S. (2012). A framework for an evolutionary computation ap-
proach to supporting concept generation. Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting 56(1), 1972–1976.

Sutcliffe, A., Chang, W.-C., & Neville, R. (2002). Optimizing system require-
ments with evolutionary computation. Proc. 2002 Congr. Evolutionary
Computation, CEC’02. Washington, DC: IEEE Computer Society.

Szczepanik, W., Arciszewski, T., & Wnek, J. (1995). Empirical performance
comparison of two symbolic learning systems based on selective and con-
structive induction. Proc. Workshops at the 14th Int. Joint Conf. Artificial In-
telligence, IJCAI’95, pp. 203–214, Montreal, Canada, August 19–25, 1995.

Tai, K., & Akhtar, S. (2005). Structural topology optimization using a genetic
algorithm with a morphological geometric representation scheme. Struc-
tural and Multidisciplinary Optimization 30(2), 113–127.

Tang, J., Fung, R.Y.K., Xu, B., & Wang, D. (2002). A new approach to qual-
ity function deployment planning with financial consideration. Compu-
ters & Operations Research 29(11), 1447–1463.

Turrin, M., von Buelow, P., & Stouffs, R. (2011). Design explorations of per-
formance driven geometry in architectural design using parametric mod-
eling and genetic algorithms. Advanced Engineering Informatics 25(4),
656–675.

Veerappa, V., & Letier, E. (2011). Understanding clusters of optimal solu-
tions in multi-objective decision problems. Proc. 19th IEEE Int. Require-
ments Engineering Conf., RE’11. Washington, DC: IEEE Computer
Society.

Verein Deutscher Ingenieure. (1993). Methodik zum Entwickeln und Kon-
struieren technischer Systeme und Produkte (VDI 2221). Berlin: Beuth.

Wang, G.G., & Shan, S. (2006). Review of metamodeling techniques in sup-
port of engineering design optimization. Journal of Mechanical Design
129(4), 370–380.

Wang, H., Zhu, X., Wang, H., Hu, S.J., Lin, Z., & Chen, G. (2011). Multi-
objective optimization of product variety and manufacturing complexity
in mixed-model assembly systems. Journal of Manufacturing Systems
30(1), 16–27.

Wang, L.-F., & Tang, A.-P. (2011). Collaborative optimization design of re-
inforcement concrete bridge considering aseismic requirements. Proc.
2011 Int. Conf. Electric Technology and Civil Engineering, ICETCE’11.
New York: IEEE.

Wang, S.Y., & Tai, K. (2005). Structural topology design optimization using
genetic algorithms with a bit-array representation. Computer Methods in
Applied Mechanics and Engineering 194(36–38), 3749–3770.

Automating evolutionary design exploration 349

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372


Wong, T.-L., Bing, L., & Lam, W. (2011). Normalizing web product attributes
and discovering domain ontology with minimal effort. Proc. 4th ACM Int.
Conf. Web Search and Data Mining, WSDM’11. New York: ACM.

Wong, T.-L., Lam, W., & Wong, T.-S. (2008). An unsupervised framework
for extracting and normalizing product attributes from multiple web sites.
Proc. 31st Annual Int. ACM SIGIR Conf. Research and Development in
Information Retrieval, SIGIR’08. New York: ACM.

Woon, S.Y., Querin, O.M., & Steven, G.P. (2001). Structural application of a
shape optimization method based on a genetic algorithm. Structural and
Multidisciplinary Optimization 22(1), 57–64.

Wu, B., Cheng, X., Wang, Y., Guo, Y., & Song, L. (2009). Simultaneous
product attribute name and value extraction from web pages. Proc. 2009
IEEE/WIC/ACM Int. Joint Conf. Web Intelligence and Intelligent Agent
Technology, WI-IAT’09. Washington, DC: IEEE Computer Society.

Wu, Z., Campbell, M.I., & Fernández, B.R. (2008). Bond graph based auto-
mated modeling for computer-aided design of dynamic systems. Journal
of Mechanical Design 130(4), 041102–041102-11.

Xu, Q.L., Ong, S.K., & Nee, A.Y.C. (2006). Function-based design synthesis
approach to design reuse. Research in Engineering Design 17(1), 27–44.

Yang, M.C., Wood III, W.H., & Cutkosky, M.R. (2005). Design information
retrieval: a thesauri-based approach for reuse of informal design informa-
tion. Engineering With Computers 21(2), 177–192.

Yang, Z., & Chen, Y. (2014). Fuzzy optimization modeling approach for
QFD-based new product design. Journal of Industrial Engineering
2014, 1–8.

Yang, Y., & Soh, C.K. (2002). Automated optimum design of structures using
genetic programming. Computers and Structures 80(18–19), 1537–1546.

Yogev, O., Shapiro, A.A., Member, S., & Antonsson, E.K. (2010). Compu-
tational evolutionary embryogeny. IEEE Transactions on Evolutionary
Computation 14(2), 301–325.

Zhang, Y., Finkelstein, A., & Harman, M. (2008). Search based requirements
optimisation: existing work and challenges. In Requirements Engineer-
ing: Foundation for Software Quality, 14th Int. Working Conf., REFSQ’08
(Paech, B., & Rolland, C., Eds.), LNCS Vol. 5025, pp. 88–94. Berlin:
Springer.

Zhang, Y., Harman, M., & Mansouri, S.A. (2007). The multi-objective next
release problem. Proc. 9th Genetic and Evolutionary Computing Conf.,
GECCO’07. New York: ACM.

Julian Eichhoff is a doctoral student at the Institute of Com-
puter-Aided Product Development Systems at the University
of Stuttgart. He received BS and MS degrees in computer sci-
ence from Furtwangen University. His research focuses on in-
tegrating machine learning methods with computer-aided de-
sign, formal design representations, and design automation.
From 2009 to 2012 he participated in the project Re-Use of
Semantic Product Knowledge in New Product Design Pro-
cesses under Prof. Wolfgang Maass at Furtwangen Univer-
sity.

Dieter Roller is a Professor, the Chair of Computer Science
Fundamentals, and the Director of the Institute of Computer-
Aided Product Development at the University of Stuttgart. He
is an Honorary Professor at the University of Kaiserslautern
and serves on the board of trustees of the Technische Akade-
mie Esslingen. He is Chairman of several national symposia,
congresses, and workshops in product development and auto-
mation. Dr. Roller gained comprehensive industrial experi-
ence as a former research and development manager with
worldwide responsibility for computer-aided design technol-
ogy within an international computer company.

J.R. Eichhoff and D. Roller350

https://doi.org/10.1017/S0890060415000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000372

	A survey on automating configuration and parameterization in evolutionary design exploration
	Abstract
	INTRODUCTION
	PHASES OF DESIGN EXPLORATION
	EVOLUTIONARY DESIGN EXPLORATION
	Requirement modeling
	Quality function deployment (QFD)
	3.1.2. Next release problem (NRP)
	Optimize specific requirement models

	Function modeling
	Optimization of function structure
	Model consistency
	Uniqueness of elements and function structure size
	Change from initial population
	Physical compatibility

	Principle modeling
	Optimization of principle solution combination
	Optimization of component combination
	Optimization of parametric product templates

	Modularization
	Preliminary embodiment design
	Topology optimization
	Shape optimization
	Sizing optimization
	Unified embodiment optimization


	CONFIGURATION AND PARAMETERIZATION
	Methods supporting parameterization
	Methods supporting configuration
	Product attribute extraction
	Clustering solutions with similar attributes
	Discovering relationships
	Computing objective functions
	Learning metamodels for evaluation
	Learning patterns of good design

	CONCLUSION
	REFERENCES


