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Abstract Let f be a holomorphic self-map of the unit ball in dimension 2, which does not have an
interior fixed point. Suppose that f has a Wolff point p with the boundary dilatation coefficient equal
to 1 and the non-tangential differential dfp = id. The local behaviours of f near p are quite diverse, and
we give a detailed study in many typical cases. As a byproduct, we give a dynamical interpretation of
the Burns–Krantz rigidity theorem. Note also that similar results hold on two-dimensional contractible
smoothly bounded strongly pseudoconvex domains.
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1. Introduction

Consider a holomorphic self-map f of B2 := {(z1, z2) ∈ C
2 : |z1|2 + |z2|2 < 1}, which does

not have an interior fixed point. It is well known that there exists a unique boundary
point p, called the Wolff point, such that the iterates fk converge uniformly on compact
subsets to p (see e.g. [2]). We will always assume that the non-tangential limit of dfz
exists at p and denote it by dfp (see e.g. [1,3]). Let λ ≤ 1 be the boundary dilatation
coefficient of f at p (see e.g. [8]).

When λ < 1 or λ = 1 but dfp �= id, the situation is much better understood (see e.g. [6]
and the references therein). Therefore, we will focus on the case where λ = 1 and dfp = id.
The main purpose of this paper is to give a detailed local analysis in many typical cases,
which shows very diverse behaviours of f near p.
Suppose that f has e1 = (1, 0) as its Wolff point and dfe1 = id. We need the following

notions of regularity of f at e1 (cf. [6,9]). (See also [4,5], where universal holomorphic
models and iteration properties are established with no regularity assumptions at the
Wolff point.)
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We say that f belongs to Cm(e1), m ≥ 2, if it can be written as

f(z1, z2) =

(
z1 +

∑
2≤j+k≤m

cjkz
j
2(z1 − 1)k + ε1(z1, z2),

z2 +
∑

2≤j+k≤m

djkz
j
2(z1 − 1)k + ε2(z1, z2)

)
, εi = o(‖(z1 − 1, z2)‖m).

Similarly, we can define Cm+ε(e1), 0 < ε < 1, by assuming εi = O(‖(z1 − 1, z2)‖m+ε).
The order of f is defined as

min{j + k : cjk �= 0 or djk �= 0}.
Note that, by the Burns–Krantz rigidity theorem [11], the order of f �= id is either 2 or 3.
We say that f belongs to Dm(e1), m ≥ 2, if it can be written as

f(z1, z2) =

(
z1 +

∑
j+k≥2,j+2k≤m

cjkz
j
2(z1 − 1)k + ε1(z1, z2),

z2 +
∑

j+k≥2,j+2k≤m

djkz
j
2(z1 − 1)k + ε2(z1, z2)

)
, εi = o(|z1 − 1|m/2).

Similarly, we can define Dm+ε(e1), 0 < ε < 1, by assuming εi = O(|z1 − 1|(m+ε)/2). One
can readily check that C2m(e1) ⊂ D2m(e1) ⊂ Cm(e1).
Let σ be the Cayley transform which sends the unit ball to the Siegel upper half-plane

H
2 := {(z, w) ∈ C

2 : Imw > |z|2} and e1 to the origin, i.e.

(z, w) = σ(z1, z2) =

(
z2

1 + z1
, i

1− z1
1 + z1

)
.

Set F := σ ◦ f ◦ σ−1. Then, the regularity of f at e1 naturally translates to the regularity
of F at 0. And one can readily check that for f ∈ Cm(e1) we have

F (z, w) =

(
z +

∑
2≤j+k≤m

ajkz
jwk + ε′1(z, w), w +

∑
2≤j+k≤m

bjkz
jwk + ε′2(z, w)

)
, (1.1)

where ε′i = o(‖(z, w)‖m).
For our purpose, it is more convenient to work in the right half-plane H2 := {(x, y) ∈

C
2 : Rex > |y|2}. Set

(x, y) = ϕ(z, w) = (−iw,−z),
and F̃ := ϕ ◦ F ◦ ϕ−1. Then, from (1.1), we have

F̃ (x, y) =

(
x+

∑
2≤j+k≤m

(−1)j+1ik+1bjkx
kyj + ε̃1(x, y),

y +
∑

2≤j+k≤m

(−1)j+1ikajkx
kyj + ε̃2(x, y)

)
, (1.2)

where ε̃i = o(‖(x, y)‖m).
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Consider the automorphism of H2 of the form

(u, v) = ψ(x, y) =

(
1

x
,
y

x

)
,

which sends the origin to the infinity. Set G := ψ ◦ F̃ ◦ ψ−1. Then G has ∞ as an
attracting fixed point. Denote (un, vn) = Gn(u, v).
Recall that the well-known Julia’s lemma (see e.g. [16]) says that the holosphere

E(α) =

{
(z1, z2) ∈ B

2 :
|1− z1|2

1− |z1|2 − |z2|2 < α

}
, 0 < α < 1,

is invariant under f . One can readily check that this implies that G leaves E(R) invariant,
where

E(R) = {(u, v) ∈ H2 : Reu > |v|2 +R}, R =
1

α
> 1.

This fact will be used throughout the paper when estimating the higher-order terms.
In this paper, we give a detailed analysis of the asymptotic behaviour of f near the

Wolff point. Our main results are as follows.

Theorem 1.1. Let f be a holomorphic self-map of the ball B2 with Wolff point e1
and dfe1 = id. Assume that f ∈ D5(e1), where f has order 2 and is non-degenerate at e1.
Let G be the associated self-map of the right half-plane H2 with ∞ as the Wolff point.
Then, the following cases can occur:

(1) un ∼ rn + int, vn ∼ v, t ∈ R\{0}, rn = o(n), rn � |v|2;
(2) un ∼ rn + int, vn ∼ v log n, t ∈ R\{0}, v ∈ C\{0}, rn = o(n), rn � log2 n;

(3) un ∼ rn + int, vn ∼ v eis logn, s, t ∈ R\{0}, v ∈ C\{0}, rn = o(n), rn � |v|2;
(4) un ∼ n, vn ∼ s, s ≥ 0;

(5) un ∼ n, vn ∼ ns, 1
2 ≥ s > 0;

(6) un ∼ n, vn ∼ s log n, s > 0;

(7) un ∼ mn, vn ∼ √
lmn, m > 0, 1 ≥ l > 0.

Theorem 1.2. Let f be a holomorphic self-map of the ball B2 with Wolff point e1 and
dfe1 = id. Assume that f ∈ D7(e1) and f has order 3. Let G be the associated self-map of
the right half-plane H2 with ∞ as the Wolff point. Then, the following cases can occur:

(1) un ∼ √
n, vn ∼ s, s ≥ 0;

(2) un ∼ √
n, vn ∼ ns, 1

4 ≥ s > 0;

(3) un ∼ √
n, vn ∼ s log n, s > 0;

(4) un ∼ √
mn, vn ∼ 4

√
lmn, m > 0, 1 ≥ l > 0.
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Remark 1.3. Similar results hold for holomorphic self-maps of two-dimensional
contractible smoothly bounded strongly pseudoconvex domains.

Remark 1.4. When f has order 2 and is degenerate at the Wolff point, the local
dynamics are more complicated and we do not have a complete classification at this
moment (cf. Remark 3.3).

In § 2, we study order 2 maps and prove Theorem 1.1. In § 3, we study order 3 maps
and prove Theorem 1.2. In § 4, we study order 4 maps and give a dynamical interpreta-
tion of the Burns–Krantz rigidity theorem. In § 5, we give a brief discussion of strongly
pseudoconvex domains.

2. Order 2 maps

Assigning weight 2 to w (respectively, x) and weight 1 to z (respectively, y), we say that
the term zjwk (respectively, xkyj) is of weighted order 2k + j. Denote by Ow(m) terms
with weighted order at least m.
By [10, Theorem 3.1, 10, Remark 3.2], we have the following.

Lemma 2.1. Let F be a holomorphic self-map of the Siegel upper half-plane with the
origin as its boundary fixed point and dF0 = id. Assume that F ∈ D5(0) and the order
of F is 2. Then

F (z, w) = (z + a11zw + a02w
2 + a30z

3 +Ow(4),

w + b02w
2 + b21z

2w + b40z
4 +Ow(5)), (2.1)

with Im b02 ≥ 0, Im a11 ≥ 0, and

Im b02(2Im a11 − Im b02) ≥ (Re a11 − Re b02)
2. (2.2)

We say that F is non-degenerate at 0 (i.e. f is non-degenerate at e1) if b02 �= 0.
Otherwise, we say that F is degenerate at 0. It will be clear that the non-degeneracy
is preserved under the normalization below (Lemmas 2.2 and 2.3).

It is well known that the group Φ of automorphisms of H2 fixing the origin consists of
the following two types of map (see e.g. [17]):

φ0(z, w) = (λ eiθz, λ2w), λ > 0, θ ∈ R,

and

φ1(z, w) =

(
z + aw

1− 2iāz − (r + i|a|2)w,
w

1− 2iāz − (r + i|a|2)w
)
, a ∈ C, r ∈ R.

We can use the group Φ to normalize F (z, w) as follows.

Lemma 2.2. Let F be as in Lemma 2.1, with Im b02 = 0. Then, under φ1, F can be
normalized as

F (z, w) = (z + (t+ is)zw + γw2 +O(3), w + tw2 +O(3)), (2.3)

where t ∈ R, γ = 0 if s �= 0, and γ = a02 if s = 0.
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Proof. From (2.2) and Im b02 = 0, we get that Re a11 = Re b02. Set a11 = t+ is. Set
(z′, w′) = φ1(z, w) and F ′ = φ1 ◦ F ◦ φ−1

1 . Then one can readily check that F ′(z′, w′)
takes the form

F ′(z′, w′) = (z′ + (t+ is)z′w′ + (a02 − isa)w′2 +O(3), w′ + tw′2 +O(3)).

If s �= 0, then setting a = a02/is we get γ = 0. If s = 0, then γ = a02. �

Lemma 2.3. Let F be as in Lemma 2.1, with Im b02 > 0. Then, under φ1, F can be
normalized as

F (z, w) = (z + a11zw + γw2 +O(3), w + b02w
2 +O(3)), (2.4)

where γ = 0 if and only if a02 = 0 and a11 = b02. Under φ0, F can be further normalized
as

F (z, w) = (z + (s+ iα)zw + βw2 +O(3), w + (t+ i)w2 +O(3)), (2.5)

where s, t ∈ R, β ≥ 0 with β = 0 if and only if γ = 0, and α ≥ 1
2 with α = 1

2 only if s = t.

Proof. Set (z′, w′) = φ1(z, w) and F
′ = φ1 ◦ F ◦ φ−1

1 . Then one can readily check that
F ′(z′, w′) takes the form

F ′(z′, w′) = (z′ + a11z
′w′ + (a02 − a(a11 − b02))w

′2 +O(3), w′ + b02w
′2 +O(3)).

It is obvious that a02 − a(a11 − b02) = 0 for all a if and only if a02 = 0 and a11 = b02.
Now assume that Im b02 > 0. Set (z′′, w′′) = φ0(z

′, w′) and F ′′ = φ1 ◦ F ′ ◦ φ−1
1 . Then

one can readily check that F ′′(z′′, w′′) takes the form

F ′′(z′′, w′′) = (z′′ + λ−2a11z
′′w′′ + γλ−3 eiθw′′2 +O(3), w′′ + λ−2b02w

′′2 +O(3)).

Thus, taking λ = (Im b02)
1/2 and θ = −Argγ when γ �= 0, and θ = 0 when γ = 0, one gets

the desired normal form. Note that α = Im a11/Im b02, and thus by Lemma 2.1 we have
α ≥ 1/2 with α = 1/2 implying Re a11 = Re b02, i.e. s = t. �

By Lemma 2.1 and (1.2), we can write F̃ as

F̃ (x, y) = (x+ ib02x
2 + b21xy

2 − ib40y
4 +Ow(5),

y + ia11xy + a02x
2 + a30y

3 +Ow(4)). (2.6)

Then G takes the form

G(u, v) =

(
u

(
1− ib02

1

u
− b21

v2

u2
+ ib40

v4

u3
+ μ(u, v)

)
,

v

(
1 + i(a11 − b02)

1

u
+ a02

1

vu
+ (a30 − b21)

v2

u2
+ ib40

v4

u3

)
+ ν(u, v)

)
,
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where

μ(u, v) = O

(
v

u2
,
1

u2
,
v3

u3
,
v5

u4

)
,

and

ν(u, v) = O

(
v2

u2
,
v

u2
,
1

u2
,
v4

u3
,
v6

u4

)
.

For (u, v) ∈ E(R) with R large, one can readily check that

μ(u, v) = o

(
1

u

)
, ν(u, v) = o

(
1

u

)
+ o

(
1

vu

)
. (2.7)

In this section, we always assume that F is non-degenerate at 0. And, for simplicity,
we first assume that a30 = b21 = b40 = 0.
First, consider the case Im b02 = 0. Then, by Lemma 2.2, we can write F̃ as

F̃ (x, y) = (x+ itx2 +Ow(5), y + (it− s)xy + γx2 +Ow(4)), t �= 0.

Thus, G takes the form

G(u, v) =

(
u

(
1− it

1

u
+ μ(u, v)

)
, v

(
1− s

1

u
+ γ

1

uv

)
+ ν(u, v)

)
. (2.8)

Since for |u| large, μ(u, v) = o(1/u), we have

Imun ∼ −nt, Reun = o(n). (2.9)

If s = 0, then G takes the form

G(u, v) =

(
u

(
1− it

1

u
+ μ(u, v)

)
, v

(
1 + a02

1

uv

)
+ ν(u, v)

)
.

If a02 = 0, then from (2.7), we have

vn ∼ v. [Theorem 1.1(1)] (2.10)

If a02 �= 0, then from (2.7) and (2.9), we have

vn ∼ ia02
t

log n. [Theorem 1.1(2)] (2.11)

If s �= 0, then G takes the form

G(u, v) =

(
u

(
1− it

1

u
+ μ(u, v)

)
, v

(
1− s

1

u

)
+ ν(u, v)

)
.

From (2.7) and (2.9), one can readily check that

log vn ∼ log v + i

(
− s

t
log n

)
. [Theorem 1.1(3)] (2.12)
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Remark 2.4. Consider the following holomorphic automorphism of H2:

τt(z, w) = (z, w + t), t ∈ R\{0}.

Then, conjugating with the Cayley transform which sends (1, 0) on ∂B2 to (0, 0), τt
induces a holomorphic automorphism ft of B

2 with (−1, 0) as its Wolff point. Conjugating
ft with the Cayley transform which sends (−1, 0) on ∂B2 to (0, 0), we get the following
holomorphic automorphism of H2 with (0, 0) as its Wolff point:

Ft(z, w) =

(
z

1− tw
,

w

1− tw

)
.

The corresponding Gt(u, v) is of the form

Gt(u, v) = (u− it, v).

From the structure of the isotropy group Φ, we know that Ft(z, w) are the only auto-
morphisms of H

2 tangent to the identity at the origin. Therefore, we will say that
holomorphic self-maps F of H2, whose associated map G has asymptotic behaviour as in
Theorem 1.1(1), are of automorphic type. All other holomorphic self-maps of H2 are
of non-automorphic type. This dichotomy is similar to the one-dimensional case (cf.
[7]), where the notion of a hyperbolic step is used. For instance, for a typical orbit of
automorphic type of the form (un, vn) ∼ (1 + int, 0), one can readily check that the limit
of the Kobayashi distance between (un, vn) and (un+1, vn+1) is

lim
n→∞ dκH2

((un, vn), (un+1, vn+1)) =
1

2
ln

√
4 + t2 + t√
4 + t2 − t

,

which is positive for t ∈ R\{0}.

Next, consider the case Im b02 > 0. Then, by Lemma 2.3, we can write F̃ as

F̃ (x, y) = (x+ (−1 + it)x2 +Ow(5), y + (−α+ is)xy + βx2 +Ow(4)), β ≥ 0, α ≥ 1
2 .

Thus, G takes the form

G(u, v) =

(
u

(
1 + a

1

u
+ μ(u, v)

)
, v

(
1 + b

1

u
+ β

1

uv

)
+ ν(u, v)

)
, (2.13)

where Re a = 1 and Re b = 1− α ≤ 1
2 .

Remark 2.5. In [6], Bayart gave three examples to illustrate the diverse behaviours
of G near infinity: [6, Example 5.13] corresponds to taking a = 1, β = 1

10 and b = 0 in
(2.13); and [6, Example 5.14] corresponds to taking a = 1, b = λ and β = 0 in (2.13).
Note, however, that [6, Example 5.12] is not a self-map of H2, and it can not be modified
by only changing the coefficients to exhibit the desired behaviour. See the discussion at
the end of this section.
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Assume that a and b are real. Then a = 1, b ≤ 1
2 , and we have

(u1, v1) =

(
u

(
1 +

1

u
+ μ(u, v)

)
, v

(
1 + b

1

u
+ β

1

uv

)
+ ν(u, v)

)
. (2.14)

Since for |u| large, μ(u, v) = o(1/u), we have

un ∼ n. (2.15)

For the estimate of |vn|, we consider the following three typical cases.

Case 1. b < 0. Since for |u| large, ν(u, v) = o(1/u, 1/vu), we have

v1 = v

(
1 +

(
β

v
+ b

)
1

u
+ o

(
1

u
,
1

vu

))
. (2.16)

From (2.16), we have

Re v1 = Re v +Re

(
β + bv

u

)
+ o

(
v

u
,
1

u

)
. (2.17)

Since un ∼ n, we have Re v1 > Re v if β + bRe v > 0, i.e. Re v < −β/b, and Re v1 < Re v
if β + bRe v > 0, i.e. Re v > −β/b. Therefore, we get

lim
n→∞Re vn = −β

b
. (2.18)

From (2.16), we also have

|v1|2 = |v|2 + 2Re (u(βv + b|v|2))
|u|2 + o

(
v2

u
,
v

u

)
. (2.19)

Since un ∼ n, we have |v1| > |v| if βRe v + b|v|2 > 0, i.e. |v|2 < −(β/b)Re v, and |v1| < |v|
if βRe v + b|v|2 < 0, i.e. |v|2 > −(β/b)Re v. Therefore, we get

lim
n→∞ |vn|2 + β

b
Re vn = 0. (2.20)

Combining (2.18) and (2.20), we get

lim
n→∞ vn = −β

b
. [Theorem 1.1(4)] (2.21)

Remark 2.6. Under the conditions a = 1 and b �= 0, F̃ takes the form

F̃ (x, y) = (x− x2 +O(3), y + (b− 1)xy + βx2 +O(3)).

One can readily check that [1 : −β/b] is a non-degenerate characteristic direction for F̃
at (0, 0) with director equal to −b (see e.g. [15]).

Case 2. b > 0. In this case, (2.17) and (2.19) still hold.
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From (2.17), we have Re v1 > Re v if β + bRe v > 0, i.e. Re v > −β/b, and Re v1 < Re v
if β + bRe v > 0, i.e. Re v < −β/b. Therefore, we get lim

n→∞ |Re vn| = ∞ and

Re v1 = Re v

(
1 + b

1

u
+ o

(
1

u

))
.

Hence, we have

|Re vn| ∼ nb. (2.22)

From (2.19), we have |v1| > |v| if βRe v + b|v|2 > 0, i.e. |v|2 > −(β/b)Re v, and |v1| <
|v| if βRe v + b|v|2 < 0, i.e. |v|2 < −(β/b)Re v. Therefore, we get lim

n→∞ |vn| = ∞ and

|v1| = |v|
(
1 + b

1

u
+ o

(
1

u

))
.

Hence, we have

|vn| ∼ nb. (2.23)

Combining (2.22) and (2.23), we get

vn ∼ nb. [Theorem 1.1(5)] (2.24)

Case 3. b = 0 and β > 0. In this case, we have

v1 = v +
β

u
+ o

(
1

u

)
. (2.25)

Since un ∼ n, we get

vn ∼ β log n. [Theorem 1.1(6)] (2.26)

Note that if limn→∞(|vn|2/|un|) = 0, then v2/u2 = o(1/u) and v4/u3 = o(1/u), hence
the above discussion is still valid without assuming c = d = e = 0.

We next consider the case where limn→∞(|vn|2/|un|) > 0. Note that this implies that
limn→∞ |vn| = ∞ and 1/uv = o(1/u). We only consider the case where c, d and e are
real. Then, from (2.13) and (2.7), we have

(u1, v1) =

(
u

(
1 +

1

u
+ c

v2

u2
+ d

v4

u3
+ o

(
1

u

))
,

v

(
1 + b

1

u
+ e

v2

u2
+ d

v4

u3
+ o

(
1

u

)))
. (2.27)

Thus,

v21
u1

=
v2

u

(
1 +

(
(2b− 1) + (2e− c)

v2

u
+ d

v4

u2

)
1

u
+ o

(
1

u

))
. (2.28)

Set γ = 2e− c, δ = 2b− 1, w = v2/u and L(w) = dw2 + γw + δ. Anticipating
limn→∞(v2n/un) = l with 0 < l ≤ 1, we need

L(l) = 0, L(w) > 0 for 0 < w < l, L(w) < 0 for w > l.
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Thus, we get

δ < 0, d < 0, γ2 > 4dδ,
−γ −

√
γ2 − 4dδ

2d
= l ≤ 1. (2.29)

Note also that limn→∞(v2n/un) = l implies that un ∼ (1 + cl + dl2)n. Thus, we need

m := 1 + cl + dl2 > 0. (2.30)

Therefore, for b, c, d and e satisfying (2.29) and (2.30), we have the estimates

un ∼ mn, vn ∼
√
lmn. [Theorem 1.1(7)] (2.31)

Example 2.7. Set b = 1
4 , c = 4, d = −8 and e = 9

2 . Then γ = 5, δ = − 1
2 and L(w) =

−8w2 + 5w − 1
2 has a positive root l = 1

2 . Thus, (2.27) takes the form

(u1, v1) =

(
u

(
1 +

1

u
+ 4

v2

u2
− 8

v4

u3
+ o

(
1

u

))
,

v

(
1 +

1

4

1

u
+

9

2

v2

u2
− 8

v4

u3
+ o

(
1

u

)))
,

and we have the estimates

un ∼ n, vn ∼
√
n

2
.

3. Order 3 maps

By [10, Lemma 3.3], we have the following.

Lemma 3.1. Let F be a holomorphic self-map of the Siegel upper half-plane with the
origin as its boundary fixed point and dF0 = id. Assume that F ∈ D7(0) and the order
of F is 3. Then

F (z, w) = (z + a12zw
2 + a03w

3 + a31z
3w + a50z

5 +Ow(6),

w + b03w
3 + b22z

2w2 + a41z
4w + b60z

6 +Ow(7)), (3.1)

with Im b03 = 0, and

1
2b03 ≤ Re a12 ≤ 3

2b03, (3b03 − 2Re a12)(2Re a12 − b03) ≥ 16(Im a12)
2.

We say that F is non-degenerate at 0 (i.e. f is non-degenerate at e1) if b03 > 0. If
b03 = 0, then we say that F is degenerate at 0. Unlike the order 2 case, we can actually
show that F must be non-degenerate if F is not the identity map.

Lemma 3.2. Let F be as in Lemma 3.1 with 0 being its Wolff point. Then F is
non-degenerate at 0.

Proof. Write F (z, w) = (F1(z, w), F2(z, w)) and g(w) := F2(0, w). Then F (0, w) =
(F1(0, w), g(w)) with Im g(w) > |F1(0, w)|2 ≥ 0. Thus, g is a holomorphic self-map of
{Imw > 0} with w = 0 as its boundary fixed point.
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Suppose that F is degenerate at 0. Then we have g(w) = w +Ow(7) = w + o(3) near
w = 0. By the Burns–Krantz rigidity theorem, we must have g(w) ≡ w.

Write f(z1, z2) = (f1(z1, z2), f2(z1, z2)) = σ−1 ◦ F (z, w) ◦ σ and h(z1) := f2(z1, 0).
Then one can readily check that g(w) ≡ w gives f1(z1, 0) ≡ z1. Since f is a holomorphic
self-map of the unit ball, this implies that lim sup|z1|→1 |h(z1)| = 0. By the maximum
modulus principle, we get h(z1) ≡ 0. But this means that all points with z2 = 0 are fixed
by f , a contradiction. �

Remark 3.3. A similar argument to that used in Lemma 3.2 shows that in the order
2 case b02 and b03 can not both be zero in (2.1).

As in the previous section, we can normalize F (z, w) using Φ as follows.

Lemma 3.4. Let F be as in Lemma 3.1 with 0 being its Wolff point. Then, under φ1,
F can be normalized as

F (z, w) = (z + a12zw
2 + γw3 +O(4), w + b03w

3 +O(4)), (3.2)

where γ = 0 if and only if a03 = 0 and a12 = b03. Under φ0, F can be further normalized
as

F (z, w) = (z + (α+ is)zw2 − iβw3 +O(4), w + 1
2w

3 +O(4)), (3.3)

where s ∈ R, β ≥ 0 with β = 0 if and only if γ = 0, and 1
4 ≤ α ≤ 3

4 with α = 1
4 or 3

4 only
if s = 0.

Proof. Set (z′, w′) = φ1(z, w) and F
′ = φ1 ◦ F ◦ φ−1

1 . Then one can readily check that
F ′(z′, w′) takes the form

F ′(z′, w′) = (z′ + a12z
′w′2 + (a03 − a(a12 − b03))w

′3 +O(4), w′ + b03w
′3 +O(4)).

It is obvious that a03 − a(a12 − b03) = 0 for all a if and only if a03 = 0 and a12 = b03.
Note that b03 > 0 by Lemma 3.2. Set (z′′, w′′) = φ0(z

′, w′) and F ′′ = φ1 ◦ F ′ ◦ φ−1
1 .

Then one can readily check that F ′′(z′′, w′′) takes the form

F ′′(z′′, w′′) = (z′′ + λ−4a12z
′′w′′2 + γλ−5 eiθw′′3 +O(4), w′′ + λ−4b03w

′′3 +O(4)).

Thus, taking λ = (2b03)
1/4 and θ = −Argγ − π/2 when γ �= 0 or θ = 0 when γ = 0, one

gets the desired normal form. Note that α = Re a12/2b03, and thus by Lemma 3.1 we
have 1

4 ≤ α ≤ 3
4 with α = 1

4 or 3
4 implying Im a12 = 0, i.e. s = 0. �

By Lemma 3.1 and (1.2), we can write F̃ as

F̃ (x, y) = (x− b03x
3 + ib22x

2y2 + b41xy
4 − ib60y

6 +Ow(7),

y − a12x
2y + ia03x

3 + ia31xy
3 + a50y

5 +Ow(6)). (3.4)

By Lemma 3.4, F̃ takes the form

F̃ (x, y) = (x− 1
2x

3 + b̃22x
2y2 + b̃41xy

4 + b̃60y
6 +Ow(7),

y − (α+ is)x2y + βx3 + ã31xy
3 + ã50y

5 +Ow(6)), (3.5)

where 1
4 ≤ α ≤ 3

4 .
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Suppose s = 0. Then G(u, v) takes the form

G(u, v) =

(
u

(
1 +

1

2u2
+ a1

v2

u3
+ a2

v4

u4
+ a3

v6

u5
+ μ(u, v)

)
,

v

(
1 +

(
1

2
− α

)
1

u2
+

β

vu2
+ b1

v2

u3
+ b2

v4

u4
+ a3

v6

u5

)
+ ν(u, v)

)
, (3.6)

where

μ(u, v) = O

(
v

u3
,
1

u3
,
v3

u4
,
v5

u5
,
v7

u6

)
,

and

ν(u, v) = O

(
v2

u3
,
v

u3
,
1

u3
,
v4

u4
,
v6

u5
,
v8

u6

)
.

Set b = 1
2 − α. Then − 1

4 ≤ b ≤ 1
4 . Consider first the case a1 = a2 = a3 = b1 = b2 = 0.

Then G(u, v) takes the form

G(u, v) =

(
u

(
1 +

1

2

1

u2
+ μ(u, v)

)
, v

(
1 + b

1

u2
+ β

1

vu2

)
+ ν(u, v)

)
.

Set z = u2. Then G(u, v) induces G̃(z, v) of the form

G̃(z, v) =

(
z + 1 + μ̃(z, v), v + b

v

z
+ β

1

z
+ ν̃(z, v)

)
, (3.7)

where

μ̃(z, v) = O

(
v

z1/2
,

1

z1/2
,
v3

z
,
v5

z3/2
,
v7

z2

)
,

and

ν̃(z, v) = O

(
v2

z3/2
,
v

z3/2
,

1

z3/2
,
v4

z2
,
v6

z5/2
,
v8

z3

)
.

Therefore, by the discussion in the previous section, we have the following cases.

Case 1. − 1
4 ≤ b < 0.

zn ∼ n, vn ∼ −β
b
. [Theorem 1.2(1)]

Case 2. 0 < b ≤ 1
4 .

zn ∼ n, vn ∼ nb. [Theorem 1.2(2)]

Case 3. b = 0 and β > 0.

zn ∼ n, vn ∼ β log n. [Theorem 1.2(3)]

Note that if limn→∞(|vn|2/|un|) = 0, then v2/u3 = o(1/u2), v4/u4 = o(1/u2) and v6/u5 =
o(1/u2); hence, the above discussion is still valid without assuming a1 = a2 = a3 = b1 =
b2 = 0.
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Let us next consider the case where limn→∞(|vn|2/|un|) > 0. Note that this implies
that limn→∞ |vn| = ∞ and 1/vu2 = o(1/u2). We only consider the case where a1, a2, a3,
b1 and b2 are all real. Then, from (3.6), we have

G(u, v) =

(
u

(
1 +

1

2

1

u2
+ a1

v2

u3
+ a2

v4

u4
+ a3

v6

u5
+ o

(
1

u2

))
,

v

(
1 + b

1

u2
+ b1

v2

u3
+ b2

v4

u4
+ a3

v6

u5
+ o

(
1

u2

)))
.

Thus,

v21
u1

=
v2

u

(
1 +

((
2b− 1

2

)
+ (2b1 − a1)

v2

u
+ (2b2 − a2)

v4

u2
+ a3

v6

u3

)
1

u2
+ o

(
1

u2

))
.

Set c0 = 2b− 1
2 , c1 = 2b1 − a1, c2 = 2b2 − a2, w = v2/u and L(w) = a3w

3 + c2w
2 +

c1w + c0. Then, for a positive root l of L(w) with L′(l) < 0, we have limn→∞(v2n/un) = l.
Note that c0 < 0. Then, it is easy to see that such an l exists only if a3 < 0 or a3 = 0 and
c2 < 0 and it is unique. For such an l, we get the following estimates:

zn ∼ mn, m = 1 + 2(a1 + a2 + a3)l > 0,

vn ∼
√
l
√
mn, 0 < l ≤ 1. [Theorem 1.2(4)]

Remark 3.5. In [13, Example 4], Huang gave a family of holomorphic self-maps of
B
2 with (1, 0) as the Wolff point as follows:

f(z1, z2) =

(
z1 + a(1− z1)

2

1 + a(1− z1)2
,

z2
1 + a(1− z1)2

)
, a > 0.

Then one can readily check that f(z1, z2) induces F (z, w) of the form

F (z, w) = (z(1 + 4aw2 +O(3)), w(1 + 4aw2 +O(3))).

4. Order 4 maps

By the well-known Burns–Krantz rigidity theorem (see [11]), we know that the only
holomorphic self-map of the unit ball tangent to the identity at the Wolff point of order
greater or equal to 4 is the identity. In this section, we give a dynamical interpretation
of this rigidity phenomenon.
For this purpose, suppose that there exist holomorphic self-maps of the unit ball tangent

to the identity at the Wolff point of order equal to 4 which is not the identity. Then,
similar to Lemmas 2.1 and 3.1, we have the following lemma, whose proof we defer to the
appendix.
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Lemma 4.1. Let F be a holomorphic self-map of the Siegel upper half-plane with the
origin as its boundary fixed point and dF0 = id. Assume that F is of order 4. Then

F (z, w) = (z + a13zw
3 + a04w

4 +O(5), w + b04w
4 +O(5)), (4.1)

with Im b04 ≥ 0, Im b04 ≥ 2Im a13, a50 = a41 = a60 = 0 and b50 = b41 = b32 = b60 = b51 =
b70.

By Lemma 4.1 and (1.2), we can write F̃ as

F̃ (x, y) = (x− ib04x
4 − b23x

3y2 + ib42x
2y4 + b61xy

6 − ib80y
8 +Ow(9),

y − ia13x
2y − a04x

4 − a32x
2y3 + ia51xy

5 + a70y
7 +Ow(8)). (4.2)

In this section, we only consider the case Im b04 > 0. For simplicity, we assume that b04
and a13 are purely imaginary and b23 = b42 = b61 = b80 = a32 = a51 = a70 = 0.

Since Im b04 ≥ 2Im a13, by a scaling of the form (x, y) 
→ (ax,
√
a eiθy) with a > 0,

F̃ takes the form

F̃ (x, y) = (x+ 1
3x

4 +Ow(9), y + αx3y − βx4 +Ow(8)), (4.3)

where α ≤ 1
6 and β ≥ 0 with β = 0 if and only if a04 = 0.

Then G(u, v) takes the form

G(u, v) =

(
u

(
1− 1

3u3
+ o

(
1

u3

))
, v

(
1−

(
1

3
− α

)
1

u3
− β

vu3
+ o

(
1

u3
,

1

vu3

)))
. (4.4)

Set b = 1
3 − α. Then b ≥ 1

6 . Set z = −u3. Then G(u, v) induces G̃(z, v) of the form

G̃(z, v) =

(
z

(
1 +

1

z
+ o

(
1

z

))
, v + b

v

z
+ β

1

z
+ o

(
1

z
,
1

vz

))
. (4.5)

Therefore, we have the estimates zn ∼ n and vn ∼ nb. Thus, we get un ∼ n1/3 eiπ/3 or
un ∼ n1/3 e−iπ/3.
Since the limiting behaviour of un is not unique, there is more than one attracting

basin at the Wolff point, which is impossible since the whole B
2 is the attracting basin.

Remark 4.2. For order 5 or higher maps, a similar analysis will provide the same
contradiction.

5. Strongly pseudoconvex domains

In this section, let D be a two-dimensional contractible smoothly bounded strongly
pseudoconvex domain and f a holomorphic self-map of D without any interior fixed
point.
First, it is known that the Wolff–Denjoy theorem holds on D (see e.g. [14]). Thus,

there exists a unique Wolff point p on the boundary of D for f . Moreover, a version of
Julia’s lemma in terms of small and large horospheres holds on D at p (see e.g. [1,14]).
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Second, it is also known that the Julia–Wolff–Carathéodory theorem holds on D (see
e.g. [3]). Thus, the non-tangential differential of f at p, dfp, exists. We assume that
dfp = id.

Third, by [12], there exists a holomorphic embedding ρ of D̄ into B2 such that ρ(D̄) ∩
B2 = e1 and ρ(D) is tangent to B

2 at e1 with ρ(p) = e1. Set Ω = ρ(D).
Finally, [10, Theorem 3.1, 10, Lemma 3.3] are stated for holomorphic maps between

two strongly pseudoconvex domains, using the Chern–Moser normal forms. However, for
holomorphic self-maps of a strongly pseudoconvex domain, the Chern–Moser components
cancel each other and thus Lemmas 2.1 and 3.1 also hold on Ω.

Therefore, a similar local analysis can be carried out on Ω, yielding a version of
Theorems 1.1 and 1.2 for two-dimensional contractible smoothly bounded strongly pseu-
doconvex domains. Since the proof of Lemma 3.2 depends on D = B

2, we need to add
the assumption of non-degeneracy in Theorem 1.2 in the generalized version.

Appendix A

In this appendix, we prove Lemma 4.1.
First, we recall two lemmas from [10], adapted to our setting.

Lemma A.1. Let p(x1, x2) be a weighted homogeneous polynomial of degree d
in (x1, x2) ∈ R

2 with weight (ν1, ν2), i.e. p(t
ν1x1, t

ν2x2) = tdp(x1, x2). Let r be a real
function satisfying

r(x1, x2) = o((|x1|1/ν1 + |x2|1/ν2)d), (x1, x2) → (0, 0).

Suppose that p(x) + r(x) ≥ 0 for x = (x1, x2) in a neighbourhood of 0. Then p(x) ≥ 0.
Furthermore, if p0(x1, x2) is the non-trivial bihomogeneous component of p of minimal
degree in x1 (or in x2), then also p0(x) ≥ 0.

Lemma A.2. Let p(z, z̄) =
∑

k pkz
kz̄d−k be a homogeneous real-valued polynomial of

degree d for z ∈ C. Assume that p(z, z̄) ≥ 0 in a neighbourhood of 0. Then,

(1) if d is odd, then p ≡ 0;

(2) if d is even, then ps ≥ 0 for s = d/2;

(3) if d = 2s and ps = 0, then p ≡ 0.

Now, we prove Lemma 4.1. Write

F (z, w) = (f1(z, w), f2(z, w)) =

(
z +

∑
j≥4

pj(z, w), w +
∑
j≥4

qj(z, w)

)
,

where pj(z, w) and qj(z, w) are homogeneous of degree j. Write w = u+ iv.
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Since F maps H2 into itself, we must have

Im f2(z, w) ≥ |f1(z, w)|2 when Imw ≥ |z|2.

This implies that

∑
j≥4

Im qj(z, u+ i|z|2) ≥ 2
∑
j≥4

Re (zp̄j(z, u+ i|z|2)) +
∣∣∣∣
∑
j≥4

pj(z, u+ i|z|2)
∣∣∣∣
2

. (A.1)

Considering weighted order 4 terms in (A.1) and applying Lemma A.1, we have

Im (b40z
4) ≥ 0,

which clearly implies that

b40 = 0. (A.2)

Considering weighted order 5 terms in (A.1) and applying Lemma A.1, we have

Im (b50z
5) + Im (b31(u+ i|z|2)) ≥ 2Re (ā40zz̄

4).

Applying Lemma A.1 again, we have

Im (b31z
3u) ≥ 0, (A.3)

and

Im (b50z
5) + Im (ib31z

3|z|2) ≥ 2Re (ā40zz̄
4). (A.4)

From (A.3), we have

b31 = 0. (A.5)

Combining (A.4) and (A.5) and applying Lemma A.2, we have

b50 = 0, a40 = 0. (A.6)

Considering weighted order 6 terms in (A.1) and applying Lemma A.1, we have

Im (b60z
6) + Im (b41z

4(u+ i|z|2)) + Im (b22z
2(u+ i|z|2)2)

≥ 2Re (ā50zz̄
5) + 2Re (ā31zz̄

3(u− i|z|2)). (A.7)

Applying Lemma A.1 again, we have

Im (b22z
2u2) ≥ 0, (A.8)

and

Im (b60z
6) + Im (ib41z

4|z|2) ≥ 2Re (ā50|z|2z̄4)− 2Re (iā31|z|4z̄2). (A.9)

From (A.8), we have

b22 = 0. (A.10)
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Applying Lemma A.2 to (A.9), we have

Im (b60z
6) = 0, (A.11)

Re (iā31z
2z̄4) = 0, (A.12)

and

Im (ib41z
5z̄) = 2Re (ā50zz̄

5). (A.13)

From (A.11) and (A.12), we have

b60 = 0, a31 = 0. (A.14)

Putting (A.10) into (A.7) and applying Lemma A.1, we have

Im (b41z
4u) ≥ 0. (A.15)

From (A.15), we have

b41 = 0. (A.16)

Combining (A.13) and (A.16), we have

a50 = 0. (A.17)

Considering weighted order 7 terms in (A.1) and applying Lemma A.1, we have

Im (b70z
7) + Im (b51z

5(u+ i|z|2)) + Im (b32z
3(u+ i|z|2)2) + Im (b13z(u+ i|z|2)3)

≥ 2Re (ā60zz̄
6) + 2Re (ā41zz̄

4(u− i|z|2)) + 2Re (ā22zz̄
2(u− i|z|2)2). (A.18)

Applying Lemma A.1 again, we have

Im (b13zu
3) ≥ 0,

which implies that

b13 = 0. (A.19)

Putting (A.19) into (A.18) and applying Lemma A.1, we have

Im (b32z
3u2) ≥ 2Re (ā22zz̄

2u2),

which, by Lemma A.2, implies that

b32 = 0, a22 = 0. (A.20)

Putting (A.20) into (A.18) and applying Lemma A.1, we have

Im (b51z
5u) ≥ 2Re (ā41zz̄

4u),

which, by Lemma A.2, implies that

b51 = 0, a41 = 0. (A.21)
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Putting (A.21) into (A.18) and applying Lemma A.1, we have

Im (b70z
7) ≥ 2Re (ā60zz̄

6),

which, by Lemma A.2, implies that

b70 = 0, a60 = 0. (A.22)

Considering weighted order 8 terms in (A.1) and applying Lemma A.1, we have

Im (b80z
8) + Im (b61z

6(u+ i|z|2)) + Im (b42z
4(u+ i|z|2)2)

+ Im (b23z
2(u+ i|z|2)3) + Im (b04(u+ i|z|2)4)

≥ 2Re (ā70zz̄
7) + 2Re (ā51zz̄

5(u− i|z|2))
+ 2Re (ā32zz̄

3(u− i|z|2)2) + 2Re (ā13zz̄(u− i|z|2)3). (A.23)

Applying Lemma A.1 again, we have

Im (b04u
4) ≥ 0,

which implies that

Im b04 ≥ 0. (A.24)

Putting u = t|z|2 into (A.23) and applying Lemma A.2, we have

Im (b04(t+ i)4) ≥ 2Re (ā13(t− i)3). (A.25)

Writing out (A.25) into a polynomial of t, we have

Im b04t
4 + (4Re b04 − 2Re a13)t

3 − (6Im b04 − 6Im a13)t
2

− (4Re b04 − 6Re a13)t+ (Im b04 − 2Im a13) ≥ 0. (A.26)

From (A.24) and (A.26), we have

Im b04 ≥ 2Im a13. (A.27)

Combining (A.2), (A.5), (A.6), (A.10), (A.14), (A.16), (A.17), (A.19), (A.20), (A.21),
(A.22), (A.24) and (A.27), Lemma 4.1 is proven.
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