THE JOURNAL OF NAVIGATION (2019), 72, 307-320. © The Royal Institute of Navigation 2018
doi:10.1017/S037346331800067X

Simplification and Event Identification
for AIS Trajectories: the Equivalent
Passage Plan Method

Luis Felipe Sanchez-Heres

(Department of Mechanics and Maritime Sciences, Chalmers University of Technology,
Gothenburg, Sweden)
(E-mail: sanchezheresluis@hotmail.com)

Two pre-processes for Automatic Identification System (AIS) trajectories commonly reported
in the maritime knowledge discovery literature are trajectory simplification and event identifica-
tion. Both pre-processes reduce storage and computational expenses by reducing the number of
data points to be used in an analysis. This paper presents an event identification and trajectory
simplification method based on behaviour identification and translation. Trajectory segments
deemed to correspond to coastal or ocean navigation are translated into equivalent passage
plan segments; a succinct description of the movements and behaviour of the ship. As a tra-
jectory simplification method, it provides two main advantages over commonly used trajectory
simplification methods: more meaningful simplified trajectories with better encoding of basic
behaviours and the possibility to retain interesting behaviours in full resolution. As an event
identification method, it is capable of differentiating between normal ocean or coastal navigating
behaviour and complex or interesting behaviour, such as pilotage, reaction to a traffic conflict,
or an involuntary deviation from the passage plan.
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1. INTRODUCTION. The Automatic Identification System (AIS) was devised to assist
in the prevention of collisions at sea. Through radio messages, vessels broadcast their state
locally and in real-time, improving their visibility to other vessels and vessel traffic ser-
vices. Nevertheless, because of the introduction of AIS receiver networks and AIS message
databases, AIS data is today being used in a wide range of applications.

AIS data applications can be roughly categorised into three broad groups: surveillance,
accident investigation, and knowledge discovery. In surveillance applications, AIS data is
used to detect abnormal or illegal vessel behaviour in real-time or periodically through
deferred processes. For example, de Sauza et al. (2016) presented a methodology to iden-
tify illegal fishing through AIS data, Patroumpas et al. (2015) presented a system capable
of real-time surveillance and Huang et al. (2017) presented a collision warning system. In
accident investigation, AIS data encompassing a small number of vessels for a typically
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short period is analysed to assist in determining the cause of an incident or accident. Wang
et al. (2013) presented an example of this type of analysis. Finally, in knowledge discov-
ery, patterns are inferred from large volumes of AIS data. What a pattern is, depends on
the analysis. For example, Pallota et al. (2013) presented a method for inferring shipping
routes, Rong and Mau (2013) presented a method for inferring ship manoeuvring coeffi-
cients and Kujala et al. (2009) estimated collision probabilities in the Gulf of Finland. Of
the three application groups for AIS data, knowledge discovery is the most diverse, and
arguably, fruitful. Patterns found through knowledge discovery have been used to improve
the application of AIS data on the other groups. For example, fishing areas determined from
a large number of AIS trajectories can be used for surveillance of illegal fishing (Mazzarela
etal., 2014).

All AIS data applications have particular and common challenges. For example, the
limitations and deficiencies of AIS data, such as sampling rate, sensor errors, unreliable
values and malicious modifications pose challenges to surveillance, accident investigation,
and knowledge discovery (Harati-Mokhtari et al., 2007; Hu et al., 2014; Iphar et al., 2015).
For knowledge discovery, one particularly important challenge is handling the volume of
AIS data.

AIS data needs to be pre-processed to reduce computational and storage expense, and to
facilitate the discovery of patterns. Two pre-processes commonly reported in the maritime
knowledge discovery literature are trajectory simplification and event identification. Both
pre-processes reduce storage and computational expense by reducing the number of data
points.

Trajectory simplification reduces the number of entries used to describe a trajectory.
Down sampling and simple trajectory simplification methods based on data point signifi-
cance (Berminghan and Lee, 2017) are commonly used in maritime literature (for example,
Willems et al., 2009; Muthu, 2015; Li et al., 2016; Dhar, 2016; Zhang et al., 2018). Meth-
ods based on data point significance use scoring heuristics to determine whether or not a
data point should be removed. While these methods are simple to implement, one must
carefully consider their use in modern analyses and applications due to their significant
drawbacks and the possible existence of more suitable methods (Feng and Zhu, 2016; Sun
etal., 2016).

Event identification removes portions of the trajectory deemed of no interest. In other
words, only the interesting trajectory segments are analysed. Event identification may also
be considered a knowledge discovery process, and its results may also be the input for
another knowledge discovery process. In addition to arrival and departure from ports, com-
monly identified events in the maritime literature are basic vessel behaviours such as slow
down, stop, and turn (Pallota et al., 2013; Cazzanti and Pallota, 2015; Patroumpas et al.,
2015; Qi and Zheng, 2016), and complex behaviours such as fishing and traffic conflicts
(Mazzarela et al., 2014; Olindersson and Janson, 2015; Wu et al., 2016).

This paper presents the Equivalent Passage Plan (EPP) method for trajectory simplifi-
cation and event identification. The EPP method is based on the following idea. During
coastal and ocean navigation, the trajectory of a ship is essentially a sequence or fixed-
course legs and course change manoeuvres because the ship is closely following its passage
plan. Thus, trajectory segments deemed to correspond to coastal or ocean navigation can be
translated into EPP segments. Doing so greatly simplifies the trajectory without degrading
the description of the behaviour. Trajectory segments that are not deemed to correspond
to coastal or ocean navigation, can be retained in full resolution or simplified with another
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Figure 1. Simple example of the idea behind the EPP method.

method. Figure 1 presents a simple example of this idea. The loop turn at the bottom of
the trajectory cannot be classified as ocean or coastal navigation, so it is not translated. Its
identification is valuable because it shows a change in behaviour, and therefore may be of
special interest for the analyst. Furthermore, with the EPP method, this trajectory segment
can be kept in full resolution for detailed analysis while the rest of the trajectory is sim-
plified. The two main contributions of this method to marine traffic knowledge discovery
literature are:

e The EPP method is a novel trajectory simplification method based on behaviour
identification and translation. Compared to down sampling and other methods based
on data point significance, the EPP method has two main advantages: first, it ren-
ders more meaningful simplified trajectories that correctly encode basic behaviour,
and second, it allows for the retention, in full resolution, of trajectory segments
corresponding to complex or interesting behaviour.

e The EPP method is also a novel event identification method capable of differen-
tiating between normal ocean or coastal navigating behaviour and other types of
behaviour, such as pilotage, reaction to a traffic conflict, or an involuntary deviation
from the passage plan.

The paper is organised as follows: Section 2 presents the general formulation of the
EPP method, and Section 3 presents a comparison of it against a trajectory simplifica-
tion algorithm based on data point significance. Section 4 summarises the benefits and
limitations of the EPP method.

2. METHOD DESCRIPTION. The EPP method takes as its input a ship trajectory
described by a list of points. Each point is a {longitude, latitude, timestamp} tuple and
corresponds to an individual AIS message in a set. A set of AIS messages describing a
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Figure 2. Step-by-step simplification of an AIS ship trajectory with the EPP method.

trajectory consist of consecutive AIS messages with identical Maritime Mobile Service
Identity (MMSI) number and less than ten minutes of delay between them.

To fully describe the on-surface movements of a ship, a trajectory must capture the tem-
poral changes of the ship’s velocity, orientation, and location. The input trajectory to the
EPP method describes only temporal changes in location. The reason for this is that despite
AIS having the capacity to describe temporal speed and orientation changes (heading, rate
of turn, speed and course over ground), this information can seldom be used as it is often
missing or unreliable (Harati-Mokhtari et al., 2007). Nevertheless, the ship’s course, orien-
tation and velocity can be approximated by assuming that the ship moves forward with a
constant speed along a thumb line joining any two adjacent points. Thus, for each trajec-
tory segment defined by a pair of adjacent points, the ship’s velocity, orientation and course
can be calculated, and for each pair of these two-point segments, a course change can be
determined.

Figure 2 shows how a ship trajectory is simplified with the EPP method. The steps
shown in the figure are:

(1) Segment the trajectory into three basic behaviours: stop, fixed-course sailing, and
turn.

(2) Identify basic behaviour segments corresponding to coastal and ocean navigation and
translate them into EPP segments.

(3) If possible or desired, simplify the rest of the trajectory with another method.

In step 1, the trajectory is segmented into basic behaviours with an algorithm based on
the work of Buchin et al. (2011). The algorithm uses three main functions TEST, SPLIT
and SEGMENT. Figures 3 and 4 present pseudocodes for these functions. The function
TEST accepts a trajectory segment (a subset of points) as input and returns 7rue if the
entire segment and any subsegment of it is identified as one of the basic behaviours (stop,
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function TEST(subtrajectory)
courses +— courses calculated from subtrajectory
course_changes + course changes calculated from courses
if length(subtrajectory) = 1 then
return True
end if
if all vertices in subtrajectory are enclosable in a circle of radius r then
return True > Stop behaviour
end if
if the range of values in courses < d degrees then
return True > Fixed course behaviour
end if
if course_changes does not contain a set of k adjacent course changes
with values < d degrees then
return True > Turn manoeuvre behaviour
end if
return False
end function

Figure 3. Pseudocode of the TEST function.

fixed-course sailing, or turn manoeuvre) and False otherwise. A trajectory segment can be
identified as a stop if all its points can be enclosed by a circle small enough to guarantee
a lack or near lack of movement. A trajectory segment can be identified as fixed-course
sailing when the courses calculated from each pair of adjacent points segments are within
a narrow range of values and cannot be identified as a stop. A possible description of a turn
manoeuvre is a trajectory segment that does not contain fixed-course segments and is not
a stop. For this algorithm, this specification is too restrictive. If used, a trajectory segment
corresponding to the transition between turning directions (for example, a ship turning
to port starts turning to starboard) is identified as a fixed-course segment. This issue is
resolved by allowing sets of maximum k adjacent segments, that would be identified as
fixed-course segments. Stop, fixed-course and turn are not the only basic behaviours that
can be identified, but they are the most convenient due to their simplicity.

The SEGMENT function takes a full trajectory as input and returns a list of trajectory
segments corresponding to the basic behaviours. The segmentation consists of calling the
SPLIT function until the trajectory cannot be split into more basic behaviours.

The SPLIT function is a modified binary search algorithm. It takes a trajectory segment
as input and returns 7, the index of the first point in the given trajectory segment where
there is a transition between basic behaviours (that is, the function TEST returns True for
[0 : i] and False for [0 : i+ 1]). In Figure 3, the first if-statement warrants an explanation.
The if-statement returns 7rue when the trajectory consists of only one point. This condi-
tion is necessary so that the SPLIT function works correctly. Because the SPLIT function
is a binary search algorithm, the TEST function must be monotonic, so it cannot return
False for the trajectory segment [0 : 1] and True for [0 : 2]. The if-statement resolves this
problem.

In step 2, the identification and translation is done with a TRANSLATE function. This
function encodes what is considered as coastal and ocean navigation and the desired level
of detail for the EPP. The level of detail can be defined through two questions: How accu-
rate should the EPP describe the ship’s path (spatial accuracy) and how accurate should
the EPP capture the ship’s location in time (temporal accuracy)? In this implementation of
the EPP method, the ship trajectory segments deemed to correspond to coastal or ocean
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function SEGMENT(trajectory)
segments ¢ new List
current « trajectory
loop
i ¢ SPLIT(current)
segments.insert(current(0 : i])
if i + 1 = length(current) then
break
else
current + current(i : end)
end if
end loop
return segments
end function

function SPLIT(trajectory)
split + False
first « 1
last «length(trajectory)
while first < last AND NOT split do
i + (first + last) DIV 2
passa < TEST(trajectory|0 : i)
passp < TEST(trajectoryl0: i+ 1))
if pass4 AND NOT passp then
split + True
else
if pass4 AND passp then
first —i1+1
else
last < i—1
end if
end if
end while
return ¢
end function
Figure 4. Pseudocode of the SEGMENT and SPLIT functions.

navigation are meant to be used in route planning analyses where detailed information of
the ship’s turns is not necessary, and neither is the exact location of the ship along the route
at a given time; therefore, the EPP segments do not need to capture these details. Figure 5
presents the conditions and manner in which this implementation of the TRANSLATE
function identifies stops and behaviour corresponding to coastal or ocean navigation, and
then translates them into stop points and EPP segments. The identification is done through
the basic behaviours described by the TEST function. EPP segments are sets of fixed-course
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Figure 5. Visual explanation of the mapping performed by the TRANSLATE function.

behaviours and turn manoeuvres that can be considered to be normal or uneventful course
change manoeuvres. Therefore, not all turn manoeuvres are translated. This is why, in
Figure 5, only one turn manoeuvre is translated. Unnecessarily wide or very large course
change manoeuvres are seldom normal or uneventful. Furthermore, if a trajectory starts
or ends with a turn manoeuvre, it is impossible to know whether it was a normal course
change manoeuvre. To address this issue, such turn manoeuvres at the beginning or end of
a trajectory are not translated. Untranslated turn manoeuvres may correspond to pilotage,
collision avoidance manoeuvres or course corrections. A pseudocode for the TRANSLATE
function is not presented here for brevity. Interested readers are referred to the actual code
hosted in the following repository: https://github.com/LuisFe/EPP.

At a glance, the EPP method may bear some resemblance to trajectory simplification
methods based on data point significance. One such method was presented by Dhar (2016).
In his algorithm, data points describing course changes or speed above a threshold value
are deemed as significant and retained. All other data points are discarded. The result of
using changes in heading as a significance scoring heuristic is a simplified trajectory that
ignores small changes and represents turn manoeuvres above the threshold value with one
or several data points. Similarly, the TEST function also contains a threshold value for
course changes, but its use and the end result is significantly different. The TEST function
describes how to segment the trajectory, but not how to simplify it. The plot labelled “After

https://doi.org/10.1017/5037346331800067X Published online by Cambridge University Press


https://github.com/LuisFe/EPP
https://doi.org/10.1017/S037346331800067X

314 LUIS FELIPE SANCHEZ-HERES VOL. 72

step 17 in Figure 2 shows the identified behaviours in different colours. At this point in the
EPP method, the trajectory has not been simplified to any extent. Step 2 is where simplifi-
cation may take place, as the TRANSLATE function only simplifies segments deemed to
correspond to coastal or ocean navigation or stops. The result of this method is a trajectory
that may be simplified to different extents. Turn manoeuvres, for example, are described
as waypoints if they are part of coastal or ocean navigating behaviour and retained in full
resolution otherwise.

Without any further simplification of the non-translated trajectory segments, the mag-
nitude of the simplification achieved through the EPP method is primarily limited by the
portion of the trajectory that corresponds to coastal and ocean navigation, as well as stops.
Secondary limitations are the complexity of the trajectory and the desired details to be cap-
tured by the EPP segments. For example, a course change manoeuvre can be represented in
an EPP segment as a waypoint or as an arc. In this implementation, course changes are rep-
resented as waypoints, but other implementations of this method could easily have higher
levels of detail.

3. RESULTS AND DISCUSSION. This section presents comparisons between ship tra-
jectories processed with the EPP method and two trajectory simplification methods based
on data point significance and a discussion of the advantages and drawbacks of the EPP
method.

The first comparison is with the Douglas-Peucker (DP) line simplification algorithm
(Douglas and Peucker, 1973). The DP algorithm was used for two reasons. First, it is
commonly used to simplify AIS trajectories (Willems et al., 2009; Muthu, 2015; Li et al.,
2016; Dhar, 2016; Zhang et al., 2018). Second, the resulting simplified trajectories exhibit
some of the expected drawbacks from trajectory simplification methods based on data point
significance.

The DP algorithm simplifies lines described by polylines according to a threshold
parameter 7. If the distance between a point and a line passing through two other points is
smaller than 7, the point is deemed insignificant and thus removed. This means that the DP
algorithm can simplify a complex line to different levels. The higher the value of 7, the sim-
pler the line becomes. For AIS trajectory simplification with the DP algorithm, there is no
standard value for the v parameter. The value depends on the analysis and the trajectories.
Some research, however, has tried to create guidelines (Zhang et al., 2016).

Figures 68 present comparisons between the EPP method and the DP algorithm. For
each of the example trajectories, the DP algorithm could have easily rendered simplified
trajectories with higher or lower resolution than the ones shown since the level of simpli-
fication depends on the value of the T parameter. The 7 value used for each trajectory was
chosen as follows. First, the Hausdorff distance, a numerical measure of line similarity,
was used to determine the similarity between the simplified trajectories obtained from both
methods and the original trajectories. Then, for each example trajectory, the v parameter
was adjusted so that the simplified trajectory obtained from the DP algorithm had the same
similarity value as the one obtained from the EPP method. This procedure guarantees that
the simplified trajectories obtained from both methods describe at an equivalent level of
detail the on-surface movements of the ship.

The second comparison is with the Open Window Spatiotemporal Algorithm (OPW-SP)
presented by Meratnia and Rolf (2004). This algorithm was used because it is a trajectory
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Figure 6. Comparison between simplified trajectories obtained with the EPP method and the DP algorithm for
an AIS ship trajectory that can be fully translated into an EPP. (Original trajectory shown in light grey.)

EPP method DP algorithm

Figure 7. Comparison between simplified trajectories obtained with the EPP method and the DP
algorithm for an AIS ship trajectory that contains an approach to a port and a stop. (Original trajectory
shown in light grey.)

simplification algorithm based on data point significance that considers the temporal
dimension, in contrast with the DP algorithm that does not. In the OPW-SP algorithm, a
trajectory point is discarded if it does not inform of a speed change over a certain threshold
or if its removal renders a simplified trajectory that describes a similar location at the same
time within a distance error. Figure 9 presents a comparison between the EPP method and
the OPW-SP algorithm using different speed and distance error thresholds. As one would
expect, the higher thresholds render a more simplified trajectory.
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Figure 8. Comparison between simplified trajectories obtained with the EPP method and the DP
algorithm for an AIS ship trajectory that contains a course correction manoeuvre. (Original trajectory

shown in light grey.)
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Figure 9. Comparison between simplified trajectories obtained with the EPP method and the OPW-SP
algorithm with different speed and distance error thresholds. (Original trajectory shown in light grey.)

3.1. EPP renders more meaningful simplified trajectories. Figures 69 present tra-
jectories simplified with the EPP method and the DP and OPW-SP algorithms. With the
EPP method, line segments and points (that is, rhumb lines and waypoints in the EPP)
of translated segments correspond to fixed-course sailing and course change manoeuvres,
respectively. With the DP and OPW-SP algorithms this correspondence is not guaranteed.
Figure 6 presents a trajectory that could be translated entirely into an EPP. At a glance, the
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simplified trajectories obtained with the EPP method and the DP algorithm look very sim-
ilar, but closer examination shows that the EPP method provides superior correspondence
between the simplified trajectory and the underlying behaviours. The same issue can be
observed in Figure 9. The line segments and points of the simplified trajectories rendered
by the OPW-SP algorithm do not correspond to fixed-course sailing and turn manoeuvres
regardless of the level of simplification. The simplified trajectories obtained with the DP
and OPW-SP algorithms approximate the originals, but the underlying behaviour is lost.

Figures 7 and 9 illustrate another important difference. The EPP method can recognise
stops; the DP and OPW-SP algorithms cannot. In the figures, the ends of the simplified
trajectory can be interpreted as stops only because they end at a shore. A stop without such
context would be essentially erased by the DP and OPW-SP algorithms.

Simplifying AIS trajectory segments to EPP segments consisting of waypoints and stops
is similar, but not equal, to reducing it into sequences of critical points as proposed by
Potroumpas et al., (2015). The EPP segments provide a different encoding of the behaviour
that is more suitable for some types of analyses (for example, route planning analyses).

Overall, the DP and OPW-SP algorithms simplify trajectories without regard to the
underlying behaviour, rendering simplified trajectories where each point only describes
the position of the ship in time and space. The EPP method, on the other hand, simpli-
fies the trajectory according to the identified behaviours, rendering a simplified trajectory
that encodes the underlying behaviours: each point describes more than just the position
of the ship in time and space. This characteristic is particularly valuable for the analysis of
individual ship trajectories since the behaviour is highlighted.

3.2. EPP can identify interesting behaviour and can keep it at full resolution.
Figures 7-9 show a fundamental difference between the methods: the EPP method can
treat segments of the trajectory differently according to their underlying behaviour, while
the DP and OPW-SP algorithms cannot. In some cases, this difference may be a significant
advantage. Segments that cannot be deemed to correspond to coastal and ocean naviga-
tion may be of great interest for knowledge discovery. Questions such as: does abnormal
behaviour happen? where does it happen? why does it happen? and what kind of behaviour
is it? may be unanswerable if the simplification algorithm oversimplifies the trajectory.

In Figure 7, the ship is entering a port and changing its course constantly, a behaviour
typical of pilotage. With the EPP method, port entry is deemed not to correspond to ocean
or coastal navigation, so it is stored in full resolution, enabling detailed analysis in the
future. The DP algorithm, on the other hand, greatly simplifies the port approach with the
current value. If the value of was changed in order to reduce the simplification, the whole
trajectory would be stored at a higher resolution, and not only the port entry.

In Figure 8, the EPP algorithm does not translate a manoeuvre by the ship to adjust its
course, so it is retained at full resolution. The DP method, on the other hand, disregards it
with the used value. If a smaller value had been used, the manoeuvre would not have been
erased, but it would not have been identified either.

In Figure 9, one can appreciate that these issues apply also to the OPW-SP algorithm.
With 500 metres and 10 knots as thresholds, the OPW-SP algorithm disregards the manoeu-
vre at the northernmost section of the trajectory. This manoeuvre is not disregarded when
100 metres and 0.5 knots are used as thresholds, but it is not identified either and it leads to
a higher resolution in the entire trajectory.

An important detail is that the current implementation of the EPP method does disregard
speed changes in the translated segments. The OPW-SP algorithm does not. Nevertheless,
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as mentioned in Section 2, the EPP method disregards the temporal dimension in the
translated segments by design. Future implementations could identify speed changes by
modifying the TEST function.

If AIS ship trajectories are to be used in detailed trajectory analyses (for example, Wang
et al., 2013), being able to identify and retain complex trajectories in full resolution is of
great advantage. The semantic method proposed by Potroumpas et al. (2015) does not have
this capacity. Furthermore, the EPP method is more than just a trajectory simplification
method, it is an event identification method.

3.3. Limitations and performance of the EPP method. The main limitation of the
EPP method is that it is only suitable for AIS trajectories of ships that engage in coastal or
ocean navigation. If a ship’s trajectories cannot be deemed to correspond to coastal or ocean
navigation, there will be no simplification or event identification beyond stops. Pilot boats
are a good example. This type of vessel does not sail with a fixed-course over relatively
long distances, so no segments of their trajectory can be translated to EPP segments.

Depending on the application, the data reduction capacity of the EPP method may be
also a considerable limitation. Without the use of complementary trajectory simplifica-
tion methods (see step 3 in Section 2), the only case when the EPP method can achieve
data reduction comparable to trajectory simplification methods based on data point signif-
icance is when a ship trajectory consists only of coastal and ocean navigation behaviour.
Figure 6 presents such a case. In it, the DP algorithm and the EPP render simplified tra-
jectories consisting of 18 and 20 points respectively. If the ship trajectory includes other
types of behaviour, the data reduction achieved through the EPP will be smaller because
of the retention of segments at full resolution (see Figures 7, 8 and 9). Even if a comple-
mentary simplification method is used, the data reduction of the EPP method will still be
smaller than other methods. The EPP method is also slower than the DP algorithm, but
faster than the author’s implementation of the OPW-SP algorithm. As a simple compari-
son, in a computer with a 1.7 GHz processor, the EPP method takes around 5 seconds to
identify behaviours and simplify 2,000 AIS messages, the DP algorithm takes between 0.17
and 1.1 seconds depending on the threshold value, and the OPW-SP algorithm takes around
10 seconds.

Overall, if more meaningful simplified trajectories or the identification of poten-
tially abnormal behaviour is of no interest, the EPP method is not a suitable trajectory
simplification algorithm.

4. CONCLUSIONS. The EPP method is a novel trajectory simplification and event
identification method based on behaviour identification and translation. It has two main
advantages over trajectory simplification methods based on data point significance. First,
the simplified trajectories are more meaningful. Trajectory segments deemed to corre-
spond to coastal and ocean navigation are translated to EPP segments. The EPP segments
themselves express that the displayed trajectories correspond to normal ocean or coastal
navigation, while the encoding guarantees correspondence between waypoints in the EPP
segments and course change manoeuvres, as well as thumb lines and fixed-course sailing.
Non-behaviour-based methods do not provide this guarantee, as they do not account for
underlying behaviour in the simplification. Second, the EPP method can treat segments of
the trajectory differently according to their underlying behaviour. This characteristic can be
used to identify complex and interesting behaviours from being unidentified or erased due
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to simplification. When this characteristic is exploited, the EPP method works as an event
identification method, and as such, it is the first one capable of differentiating between nor-
mal ocean or coastal navigating behaviour and other types of behaviour, such as pilotage,
reaction to a traffic conflict, or an involuntary deviation from the passage plan. The main
limitation of the EPP method is that a ship trajectory will not be simplified unless the ship
engages in coastal or ocean navigation. Despite its advantages, if more meaningful sim-
plified trajectories or the identification of complex and abnormal behaviour is of interest,
the EPP method is not a suitable trajectory simplification algorithm because of lower data
reduction capabilities, longer running time, and higher implementation effort.
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