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This paper presents a two-dimensional (2-D) cavity-by-cavity description of a
convective instability near a lined wall with low dissipation due to the coupling
of hydrodynamic modes with resonance of the wall. For a liner consisting of an
array of deep cavities periodically placed along a duct containing a mean shear
flow, the acoustic and hydrodynamic disturbances are described by the linearized
Euler equations. The Bloch modes and the scattering matrix of periodic cells
are used to examine the instability over the liner. The unstable Bloch mode is
due to the coupling of a hydrodynamic mode in the shear flow with the cavity
resonance. It is demonstrated that even when all the transverse modes are stable in
the duct–cavity system, i.e. when the Kelvin–Helmholtz instability of the shear flow
over the cavities does not occur, such an instability over the liner can still exist. The
unstable Bloch wave, excited by the incident sound wave at the upstream part of the
liner, convectively grows along the liner, and regenerates sound near the downstream
edge of the liner with a sound level higher than the incident sound level. It is shown
that a homogenized approach, where the wall effect is described by a homogeneous
impedance, can also explain the unstable behaviour above the liner. It reveals that a
small wall resistance and a small and positive reactance are two necessary conditions
for such an instability.
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1. Introduction

Liners are widely used to mitigate noise emissions from ducts. In most of the
practical applications, from air conditioning systems to aero-engines, a flow is present
in the duct. The interaction between flow and sound in the vicinity of a lined wall
is complex and, therefore, a precise description of the flow–acoustic coupling near a
liner still attracts a lot of attention (Zhang & Bodony 2012, 2016; Tam et al. 2014;
Khamis & Brambley 2016, 2017). Surprisingly, under certain circumstances, instead
of being attenuated, the sound can be amplified by a liner with a grazing flow. Indeed,
it was observed that the transmission coefficient of a plane wave propagating through
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Cavity-by-cavity description of liner instability 127

a liner in the flow direction can have a peak in amplitude larger than unity near
the resonance frequency of the liner (Brandes & Ronneberger 1995; Ronneberger
& Jüschke 2007; Aurégan & Leroux 2008). Such a sound amplification appears at
high flow velocities when the liner has a low resistance. The fluctuating fields, the
convection velocity and the growth rate of these unstable surface modes have been
measured with optical technics (Marx et al. 2010). Those measurements have shown
that the unstable disturbance near the lined wall increases exponentially along the
liner with a relatively low amplification rate. Since no saturation mechanism appears
experimentally, a linear approach to this problem seems possible. It can also be
noted that such convectively unstable modes may also exist above porous materials
(Aurégan & Singh 2014; Alomar & Aurégan 2017). In this case, the behaviour of
unstable disturbances is more complex due to a slight flow inside the porous material
which leads to separation on the downstream end of the material.

Many theoretical works have been performed on sound propagation in a lined duct
with flow (Tester 1973; Koch & Mohring 1983; Rienstra 2003; Brambley & Peake
2006). A uniform mean flow was often assumed. To account for the effect of the
infinitely thin vortex sheet on liner surface, the Ingard–Myers impedance boundary
condition, which requires the continuity of particle displacement across the vorticity
sheet, is enforced (Ingard 1959; Myers 1980). With a uniform flow assumption plus
the Ingard–Myers condition, a convective unstable mode (Tester 1973) and a surface
unstable mode (Rienstra 2003) have been detected. However, some problems linked
to the Ingard–Myers condition have been revealed: for instance, it is ill posed in
the time domain (Brambley 2009), and it can over-predict sound attenuation by over
10 dB compared to the results from the linearized Euler equations (Gabard 2013).
To overcome the problem of ill posedness, profiles with small but finite-thickness
boundary layers were taken into account in the impedance boundary conditions
(Brambley 2011; Rienstra & Darau 2011; Khamis & Brambley 2016). These models
are able to predict an absolutely or convectively unstable mode over the lined wall.
In the modelling of the flow–acoustic coupling near the lined wall, the importance of
taking into account viscosity was demonstrated (Aurégan, Starobinski & Pagneux
2001; Marx & Aurégan 2013; Khamis & Brambley 2017). Including turbulent
viscosity leads to more accurate predictions of the growth rate and the velocity
shape of the unstable surface mode above a liner. Also, the instability over the liner
is influenced by the spatial development of the mean flow along the lined duct (Marx
et al. 2010; Xin et al. 2016). All these efforts, however, are based on the assumption
of a homogeneous impedance of the liner whereas in practice, this liner is constituted
by a large number of small holes.

The limitations of the continuous impedance model in describing liners with flow
have been revealed recently. It was first observed in experiments that two different
impedances were measured according to whether the wave was propagating in the
direction of flow or whether it was propagating against the flow (Renou & Aurégan
2011). Since a uniform flow was assumed, the Ingard–Myers boundary condition
was used in the impedance eduction from the experimental data. It could therefore
be argued that the difference between these two impedances could be due to the
imprecision of the impedance boundary condition. However, even taking into account
the actual shear flow profile, the difference between the two impedances cannot be
eliminated (Dai & Aurégan 2016). The fact that liner impedance depends on flow
direction has been verified in many laboratories, using different eduction methods and
impedance boundary conditions (Spillere, Cordioli & Bodén 2017), and even using
the linearized Navier–Stokes equations for wave propagation (Weng et al. 2018).
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128 X. Dai and Y. Aurégan

From these experimental and theoretical works, we can draw the conclusion that
the complex flow–acoustic coupling over the liner cannot be fully described by the
currently used boundary conditions that involve a single quantity: an equivalent liner
impedance.

The first objective of the present paper is, therefore, to examine the validity of
the homogenized approach in describing the instability above a liner. To this end,
a discrete approach of the aeroacoustic instability over a liner is developed. As
sketched in figure 1, deep narrow cavities are periodically located along a duct
containing a mean shear flow (period W = L+ S). The spacing between the adjacent
cavities S is small compared to the size L of the cavity and very small compared
to the acoustical wavelength. This liner can be seen as a two-dimensional (2-D)
version of the ones used in the previous experiments (Aurégan & Leroux 2008;
Marx et al. 2010). The acoustic and hydrodynamic disturbances are described by
the linearized Euler equations (LEEs). To be able to describe the instability that
appears in the experiments, some damping is required in the system. This is done
artificially by adding a resistive layer at the inlet of the cavities and by adding an
artificial damping to the hydrodynamic modes. This rough description of the viscous
and turbulent effects only provides a qualitative comparison with the experiments,
but it allows a better understanding of the mechanisms involved. For such a periodic
system, the wave propagation can be calculated using the Floquet–Bloch theorem,
which states that the field can be split into a 2-D periodic field modulated by a wave
part of wavenumber kB. The Bloch wave and the scattering matrix of the system
can be used to study the instability over the liner due to flow–acoustic coupling.
Section 2 explains the multimodal method used to compute the scattering in one-cell
and multi-cell liners and the calculation of the Bloch waves is described. Using this
model, the results of the periodic approach are presented and analysed in § 3.1. It
is first demonstrated that the aeroacoustic instability in the duct results from the
coupling of a hydrodynamic mode in the boundary layer with the acoustic resonance
of the cavities. Such an aeroacoustic instability can occur even if all transverse modes
of the duct–cavity system are stable. It is also demonstrated that for the unstable
behaviour of the configuration shown in figure 1, a homogenized method based on
an equivalent wall impedance is a reasonable approximation to the complete Bloch
analysis. In § 3.2, a case where each periodic cell consists of two cavities of different
depths is considered. It is found that a small depth difference can suppress the
unstable behaviour above the liner, and explanations from both the Bloch and the
homogenized point of view are given.

2. Numerical model
2.1. Modal scattering in one cell

In an inviscid perfect fluid when the nonlinear effects are neglected, the propagation
of small disturbances about a steady mean flow can be described by the linearized
Euler equations (LEEs): (

∂

∂t
+M0f

∂

∂x

)
u+M0

df
dy
v =−

∂p
∂x
, (2.1)(

∂

∂t
+M0f

∂

∂x

)
v =−

∂p
∂y
, (2.2)(

∂

∂t
+M0f

∂

∂x

)
p=−

(
∂u
∂x
+
∂v

∂y

)
, (2.3)
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FIGURE 1. (Colour online) (a) Sketch of flow–acoustic coupling over a liner, (b) a
periodic unit of the discrete model.

where all the quantities have been put in dimensionless form using:

p=
p∗

ρ∗0 c∗20
, (x, y)=

(
x∗

H∗
,

y∗

H∗

)
, (u, v)=

(
u∗

c∗0
,
v∗

c∗0

)
,

ω=
ω∗H∗

c∗0
, M0 =

U∗0
c∗0
, t=

t∗c∗0
H∗

,

 (2.4)

where ρ∗0 is the mean density, c∗0 is speed of sound, U∗0 and M0 are the average mean
velocity and Mach number in the duct with the profile prescribed by the function
f (y) = M(y)/M0, u∗ and v∗ are the velocity disturbance in respectively the x- and
y-direction, p∗ is the pressure disturbance, ω∗ is the angular frequency. In this paper,
all the quantities with a star are quantities with dimensions while all the quantities
without star are dimensionless quantities.

The variables are sought in the form:

p= P(y) exp(−ikx) exp(iωt),
v = V(y) exp(−ikx) exp(iωt),

}
(2.5)

where i2
=−1 and k is dimensionless wavenumber. Equation (2.2) is written in terms

of these new variables as:

i(ω−M0fk)V =−
dP
dy
. (2.6)

Removing the axial velocity from (2.1) and (2.3) leads to:

(1−M2
0 f 2)k2P+ 2ωM0fkP−ω2P−

d2P
dy2
=−2iM0

df
dy

kV. (2.7)

This formulation of the equation is close to the classical Pridmore-Brown equation
(Pridmore-Brown 1958) which is obtained when the value of V extracted from (2.6)
is inserted in (2.7).

A unit cell of the duct–cavity system is split into two zones denoted by Roman
numerals, I and II, in figure 1(b). A shear flow is assumed in the duct, and its velocity
profile is considered to be unchanged along the duct where y< 1. The flow velocity
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130 X. Dai and Y. Aurégan

inside the cavities, where y> 1, is zero. To solve this problem of linear propagation
in a shear flow, the multimodal method is used (Kooijman et al. 2008; Kooijman,
Hirschberg & Aurégan 2010), where the disturbances in the ducts are expressed as
a linear combination of acoustic modes and hydrodynamic modes. Equations (2.6)
and (2.7) are discretized in the y-direction by taking N1 equally spaced points in
zone I, N2 equally spaced points in zone II.

The spacing between interior points in all segments is 1h = H/N1 = (H + D)/N2,
and the first and last points are taken 1h/2 from the duct walls. Since the problem
under study is known to lead to slope discontinuities in the profile of hydrodynamic
modes, a low-order numerical scheme is used to solve the problem: the second-order
centred finite difference method. The following generalized eigenvalue problem
coming from (2.6) and (2.7) and using Q= kP is formed in each of the segments:

k

I −M2
0f 2 2iM0f a 0

0 iM0f 0
0 0 I

Q
V
P

=
−2ωM0f 0 ω2I + D2

0 iωI D1
I 0 0

Q
V
P

 , (2.8)

where I is the identity matrix, f , f 2 and f a are diagonal matrices with on the diagonal
the values of f , f 2 and df /dy at the discrete points in the ducts. Q, V, and P are the
column vectors giving respectively the value of Q(y), V(y) and P(y) at the discrete
points. D1 and D2 are matrices for the first- and second-order differential operators
with respect to y. The boundary condition dp/dy = 0 on the duct walls is taken
into account in the differential operator matrices by introducing ghost points outside
the duct walls. Solving the eigenvalue problem (2.8) (using the eig function of
MATLAB) gives the eigenmodes and the corresponding wavenumbers in each zone.
In the zone I, 3N1 modes are found, including N1 acoustic modes propagating or
decaying (evanescent modes) in the +x direction, N1 acoustic modes propagating or
decaying in the −x direction and N1 hydrodynamic modes propagating in the +x
direction. In zone II, the mean flow velocity and its derivative are zero at discrete
points where y > 1. The last N2 − N1 rows and columns of the middle parts in the
matrices in (2.8) and the last N2 − N1 elements of V are skipped, corresponding to
the no-flow part of this segment. Thus, there are N2 acoustic modes propagating or
decaying both in the +x direction and in the −x direction, and N1 hydrodynamic
modes propagating in the +x direction in zone II.

To mimic the effects of a resistive sheet like a wire mesh or to mimic the cavity
resistance due to thermo-viscous effects, a resistance R denoted by the red dashed
lines in figure 1(b) is introduced at the mouth of each cavity. This resistance induces
a pressure jump at y= 1 for 0< x< L in zone II formulated as,

1py=1 = Rvy=1 for 0< x< L. (2.9)

The nth eigenvectors of (2.8) in the zone j is t(Qj
n, Vj

n, Pj
n), where Qj

n, Vj
n and Pj

n
are the mode profiles of q (note q= i∂p/∂x), v and p, respectively. In each zone, the
column vectors giving respectively the values of Q(y), P(y) and V(y) are written as
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a linear combination of the modes:

Qj(x)=
N∑

n=1

Cj
nQj

n exp(−ikj
nx),

Pj(x)=
N∑

n=1

Cj
nPj

n exp(−ikj
nx),

Vj(x)=
N∑

n=1

Cj
nVj

n exp(−ikj
nx),


(2.10)

where Cj
n is the coefficient of the nth mode in zone j and N = 3N1 in zone I and

N = 2N2 +N1 zone II.
The modes in each duct segment are then matched using the continuity of pressure

p, velocity v and ∂p/∂x at the interfaces between zones I and II, and ∂p/∂x= 0 on
the vertical walls inside the cavity. The continuity and wall conditions can be put in
the form of a large matrix that links all the incoming waves in the cell to outgoing
waves and to all the internal variables. From this large matrix, the scattering matrix
is written: (

C+2
C−1

)
= S

(
C+1
C−2

)
, (2.11)

where vectors C±1 (respectively C±2 ) contain the duct mode coefficients for x = 0
(respectively x = W) for waves going in the flow direction (respectively for wave
propagation opposite to the flow) and

S =

(
T+ R−

R+ T−

)
, (2.12)

where T+(2N1× 2N1), R+(N1× 2N1), T−(N1×N1) and R−(2N1×N1) are transmission
and reflection matrices with and against the mean flow.

2.2. Modal scattering of several cells

The scattering matrix for two adjacent cells can be obtained from the scattering
matrices of the single cells S(1) and S(2) by:

S(1+2)
=

(
T+(2)ET+(1) R−(2) + T+(2)R−(1)FT−(2)

R+(1) + T−(1)R+(2)ET+(1) T−(1)FT−(2)

)
, (2.13)

where
E = (I − R−(1)R+(2))−1,

F = (I − R+(2)R−(1))−1.

}
(2.14)

The above iterative scattering matrix algorithm is used to obtain the scattering matrix
of the periodic system shown in figure 1.
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2.3. Bloch modes of the periodic system
Since the governing equations, the boundary conditions and the geometry are
W-periodic along x (where W =L+ S is the period), the Floquet–Bloch theorem states
that any quantities φ(x, y) can be written as φ(x, y) = φB(x, y)e−ikBx, meaning that
φ(x, y) is split into a field φB(x, y) which is W-periodic along x superimposed on an
exponential part in the x-direction involving only the Bloch wavenumber kB (Bradley
1994; Nennig et al. 2012; Schmid, de Pando & Peake 2017). This decomposition
leads to φ(x +W, y) = φB(x +W, y)e−ikB(x+W)

= φB(x, y)e−ikB(x+W)
= φ(x, y)e−ikBW . On

the upstream and downstream boundaries of a unit cell, x= 0 and x=W for example,
the relation between the qualities is φ(W, y)= φ(0, y)e−ikBW , which can be written in
a vectorial form: (

C+2
C−2

)
= e−ikBW

(
C+1
C−1

)
. (2.15)

The scattering relation given by (2.11) can be rewritten as,

M1

(
C+1
C−1

)
=M2

(
C+2
C−2

)
, (2.16)

where

M1 =

(
T+ 0
−R+ I

)
, M2 =

(
I −R−

0 T−

)
. (2.17a,b)

Using (2.15) and (2.16), a generalized eigenvalue problem for a unit cell of the liner
is found:

M1

(
C+1
C−1

)
= e−ikBWM2

(
C+1
C−1

)
. (2.18)

The eigenvalue problem (2.18) gives the Bloch wavenumbers kB. Each eigenvector
contains the coefficients of the modes solved in (2.8), the combination of which gives
a Bloch mode of the cell.

3. Results
Calculations in the following are carried out on an array of 2-D cells sketched in

figure 1. Each cell consists of a deep narrow cavity attached to a short duct containing
a mean shear flow. The geometrical parameters are: H∗= 15 mm, D∗= 55 mm, L∗=
1 mm and S∗=0.2 mm. The Mach number averaged over the cross-section is M0=0.1
and the velocity profile is given by a simple polynomial law with a unity average
value,

f = f0(1− ym) with f0 =
m+ 1

m
, (3.1)

where the parameter m= 10 is used in the present calculations. At the mouth of each
cavity a thin sheet with a normalized resistance R=0.0175 has been added. This value
has been empirically chosen so that the global cell instability exists (see discussion of
figure 7) while the unstable modes over the cavities are suppressed. The number of
the discrete points in the duct is 600, so 1800 transverse modes are solved from (2.8)
in the duct.
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FIGURE 2. (Colour online) Transmission coefficients in (a) and against (b) the flow
direction. The peak of |T+| for the liner with 30 cells occurs at ω= 0.4310 (1573 Hz).
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x

FIGURE 3. (Colour online) Iso-colour plots of the real part of the pressure for a plane
sound wave incidence at frequencies (a) ω = 0.4266 (1557 Hz) and (b) ω = 0.4310
(1573 Hz). Note that the fields are only plotted for the duct and part of the liner cavities.

3.1. Instability near the acoustic resonance
The transmission coefficients for a plane wave propagating through one and several
cells in the ±x-directions are shown in figure 2. Without flow, |T±| of a single cell
shows a minimum at the resonance frequency. This minimum is larger than zero
because of the resistive sheet. The liner with 30 cells stops the sound transmission
more effectively at resonance than a single cell. With flow, minimums of |T±| around
resonance still happen for one or several cells. The symmetry of sound propagation
in the ±x-direction, however, is broken by the convective effect and the flow–acoustic
interaction near the liner. More interestingly, a narrow hump is observed in |T+| with
flow. Especially, the amplitude can be larger than unity, which means the incident
plane sound wave is amplified as it passes through the periodic cells. Figure 3
shows the pressure fields in the duct–liner system for a plane wave incidence from
the upstream duct. At the peak frequency of the hump shown in figure 2(a), a
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surface wave excited by the sound wave at the upstream part of the liner is observed
in figure 3(b). It convectively grows over the liner and regenerates sound near the
downstream edge of the liner. In this case, the incident plane wave is transformed into
an unstable hydrodynamic wave that is amplified as it propagates though the lined
segment. At the downstream edge, this hydrodynamic wave generates an acoustic
wave whose level is higher than the incident level. At a slightly lower frequency,
ω= 0.4266 (1557 Hz), figure 3(a) also shows a surface wave over the liner. However,
it decreases along the liner and no sound amplification is observed. So, the incident
sound wave is stopped by the liner due to acoustic resonance. The results of the
fields over the surface of the liner bear interesting resemblance to particle image
velocimetry (PIV) experiments (Marx et al. 2010). Such a convectively growing
surface wave and the associated sound amplification, first observed in experiments,
were attributed to hydrodynamic instabilities (Ronneberger & Jüschke 2007; Aurégan
& Leroux 2008; Marx et al. 2010).

To explore the root cause of such an instability, the shear layer instability in zone
II is first examined by looking the wavenumbers of the acoustic and hydrodynamic
modes deduced from (2.8). With a shear flow, in addition to the classical modes,
neutral hydrodynamic modes (Brambley, Darau & Rienstra 2012) appear. They result
from the singularities of the Pridmore-Brown equation (Pridmore-Brown 1958) when
ω − Mk = 0, thus they form a continuous hydrodynamic spectrum on the real axis,
ω/Mmax < k < ω/Mmin, where M is the non-dimensional mean flow velocity. Under
certain conditions, an unstable hydrodynamic mode can occur, which is known as the
Kelvin–Helmholtz instability (Schmid & Henningson 2000). The Briggs–Bers causality
criterion is used to distinguish an unstable hydrodynamic mode from an acoustic mode
decaying in the −x direction (Briggs 1964; Bers 1983). For that, in the exp(i(ωt− kx))
convention, a negative imaginary part is added to the frequency ω and the modes with
wavenumbers that are in the lower complex plane when Im(ω)→−∞ propagate in
the +x direction, while the modes with wavenumbers that are in the upper complex
plane when Im(ω)→−∞ propagate in the −x direction. The Briggs–Bers criterion
states that, if one of the modes crosses the real axis while the imaginary part of
the frequency Im(ω) ranges from −∞ to 0, it means that this mode is convectively
unstable. The wavenumbers of the acoustic and hydrodynamic modes in zone II are
plotted by circles in figure 4 when the frequency is real. It can be noted that the
continuous line of hydrodynamic modes on the real axis has been transformed into
a set of points because of the discretization of the problem. When the resistance
R= 0, see figure 4(a), one unstable mode with a high amplification rate appears. This
unstable mode is stabilized when a resistive sheet is added, as shown in figure 4(b).
It should be noted that the unstable mode is gradually stabilized by increasing R.
However, it can be observed that several neutral modes are now slightly out of the
real axis. This effect is due to the discretization and those modes tend to the real
axis when the number of discretization points is increased. To avoid this numerical
instability and to mimic the effect of turbulence that dissipates quickly the coherent
hydrodynamic waves, an artificial damping is added to all the hydrodynamic modes
by adding to their wavenumbers kh a negative imaginary part −iεRe(kh). The effect of
this artificial damping on the sound amplification is presented in figure 11(a) of the
Appendix. For all the results presented in this paper (except in figures 4 and 10 where
ε= 0 and in figure 11 where the effect of ε is studied), a damping with ε= 0.06 was
added to the hydrodynamic modes in zones I and II. This value has been empirically
chosen to be the smallest value that stabilizes all the discrete hydrodynamic modes,
in the frequency range of sound amplification shown in figure 2(a).
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FIGURE 4. (Colour online) Tracing of the eigenvalues in zone II: Re(ω) is kept constant
0.4310 (1573 Hz) while Im(ω) runs from 0 (results are denoted by the circles) to −0.2740
(results are denoted by the triangles). (a) No resistive sheet and (b) a resistive sheet R=
0.0175 is introduced at the opening of the cavity. The small arrows indicate the direction
of the variation of the eigenvalues for the increasing negative part of ω.
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FIGURE 5. (Colour online) (a) Bloch wavenumbers kB of one cell for frequency sweep
from ω = 0.2740 to 0.4932 (1000–1800 Hz). The arrows in (a) denote the direction of
the variation of the modes with increasing frequency. The red squares indicate the kB at
frequency ω = 0.4310 (1573 Hz), which is the peak frequency of |T+| for 30 cells in
figure 2. (b) The relative errors of |ku

B| and |T±| for 30 cells at frequency ω = 0.4310
(1573 Hz).

The aeroacoustic behaviour of one cell, consisting of zones I and II, can be
determined by the Bloch wavenumbers kB which are obtained from the eigenvalue
problem (2.18). Note that in the calculations of |T±| in this paper the wave reflection
by the sudden changes from hard to lined to hard duct are included, whereas in
Bloch mode analysis, an infinitely long periodic structure is considered. Figure 5(a)
gives the variation of kB when the frequency goes from ω = 0.2740 to 0.4932. It
can be seen that one of the cell’s hydrodynamic modes is emerging from the line
of attenuated hydrodynamic modes and it is passing through the real axis to become
amplified. This unstable Bloch mode is observed in a very limited range of frequencies
(0.4277<ω< 0.4332) near the quarter wavelength (λ/4) resonance of the cavity. The
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FIGURE 6. (Colour online) Iso-colour plots of the amplitude of the periodic part of (a)
pressure and (b) v-velocity when the unstable Bloch mode propagates in the lined duct.
(c,d) Show respectively the amplitudes of the periodic part of pressure and v-velocity as
a function of x, the lines denote quantities at two different y-positions: black thin lines
for y= 1−1h/2, and red thick lines for y= 0.9590. (e, f ) Present the comparison of the
periodic part of p and v-velocity averaged along x on one cell (solid lines) and obtained
from (3.2) (dashed lines). The horizontal dashed lines represent the y-position of the peak
of vorticity (y= yc= 0.9590), where the mean flow velocity equals the wave velocity of ku

B.
The calculations are made at frequency ω= 0.4310. Note that the fields are only plotted
for the duct and part of the liner cavities. Also note that the short-wavelength oscillations
very close to y= 1 observed in (d) are due to the spurious numerical modes caused by
the discontinuity at the interface between the two zones at y= 1 (same in figure 9d).

maximum amplification rate of the Bloch unstable mode, i.e. the maximum in the
imaginary part of ku

B, happens at the same frequency as the peak of |T+| for 30
cells in figure 2. The relative errors of the calculations are shown in figure 5(b),
where the errors are defined as |ku

B(N1)− ku
B(N1R)|/|ku

B(N1R)| with the reference result
computed with N1R = 1920 (same for T±). It is interesting to note that, even when
all the transverse modes are stable in zones I and II (the hydrodynamic modes have
been stabilized by the artificial damping in zones I and II), a cell instability can still
occur. It should also be noted that the upstream-propagating acoustic wave identified
by k−B0 is strongly attenuated when the instability occurs (k−B0 = −17.56 + 100.8i at
frequency ω = 0.4310). This means that the global instability that consists of the
unstable hydrodynamic wave and the first left-running acoustic mode described in
lined duct by Pascal, Piot & Casalis (2017) does not occur in our system.

Figure 6(a,b) shows the periodic fields for ω = 0.4310 when the unstable Bloch
wave propagates through the lined duct with the maximum amplification. This
unstable Bloch mode presents a sharp peak of vorticity at yc = 0.9590. At this
position the mean velocity is M0f (yc) = 0.03763 that is equal to the wave velocity
that can be computed from the wavenumber ku

B = 11.453+ 1.949i. This indicates that
this wave is convected by the mean flow and it could be called a hydrodynamically
unstable mode.
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FIGURE 7. (Colour online) Real (a) and imaginary (b) parts of the wall impedance Zw
that is computed using (3.2) for ω= 0.4310. The blue thick lines correspond to Zw = Zu

w
and the black thin lines to Zw = 0.

Some inhomogeneous effects in the x-direction are present very close to the mouths
of the cavities (y> 0.98) and they are shown by the black thin lines in figure 6(c,d).
Nevertheless, at vertical position y= yc the quantities displayed by the red thick lines
are nearly constant. It means that, except very near the wall, the periodic field of
the unstable mode is nearly independent of x and that any field can be written with
a transverse mode form: φ(x, y)= φT(y)e−ikBx. In this case, equations (2.6) and (2.7)
can be easily solved using a new variable Y , such as dP/dy= YP, whose variations
are given by

dY
dy
=−Y2

−
2M0kB

ω−M0fkB

df
dy

Y − (ω−M0kBf )2 + k2
B. (3.2)

Equation (3.2) can be integrated from y= 0 where Y = 0 to y= 1. When Y is known,
the pressure P can be found by integrating dP/dy = YP and all the other variables
can be deduced from those values. In figure 6(e, f ), the values obtained by this
integration is favourably compared to the values obtained by the Bloch method. This
approximated method helps to understand the coupling of this hydrodynamic mode
with the λ/4 resonance of the cavity. The value of Y at the wall is directly linked to
an equivalent impedance of the wall by Zw =−iω/Y(1). For ω= 0.4310 and kB = ku

B,
the impedance is Zu

w = 0.0219 + 0.0132i which can be compared to the impedance
without flow of the cavity Zm = (W/L)(R − i/tan(ωD)) = 0.0210 + 0.0113i. Thus Zw

(which only depends, at given frequency and wavenumber, on the Mach number and
on the shape of the profile) is a reasonable approximation of the impedance that
must be put on the wall to sustain an unstable hydrodynamic mode. By studying
the variation of Zw when the wavenumber kB is slightly varied around the value
obtained by the Bloch computation ku

B (see figure 7), it can be seen that an increase
in the resistance R induces a decrease of the amplification Im(kB) and that for each
frequency there is a maximum resistance over which no unstable mode can exist.
In the present case, this maximum resistance is 0.0285. This maximum resistance is
always very small and that is why in most of the practical applications where the
dissipation is much higher, this instability does not appear. One way of increasing the
wall resistance is to increase the spacing S between the cavities so that the percentage
of open area is decreased. The effect of S on the sound amplification is presented
in figure 11(b) of the Appendix. It is shown that an increase in S, i.e. an increase
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in the equivalent wall resistance, can mitigate or suppress the sound amplification.
The imaginary part of Zw is also small compared to 1 and always positive around ku

B.
With a cavity or a Helmholtz resonator this kind of small value can only be obtained
near the resonance of the wall (p ' 0). The positive value of the imaginary part of
Zw means that instability occurs for frequencies slightly higher than the resonance
frequency because the imaginary part of the impedance of a cavity always increases
from −∞ when ω→ 0 and is 0 at the wall resonance.

The above analysis using (3.2) is valid here because the vorticity of the mode is
concentrated far from the wall. The results can differ if this vorticity mode interact
strongly with the axial non-uniformities due to the side walls of the cavities. In this
case the full Bloch analysis cannot be simplified.

The instability occurring in this system of small cavities is then due to a vorticity
mode that is regularly amplified by the resonance of the cavities and it transfers
some energy from the mean flow to the perturbations. This mechanism is quite
different from those which cause whistling or amplification of sound in cavities, side
branches, corrugated pipes or Helmholtz resonators studied by Tam & Block (1978),
Ziada & Shine (1999), Nakiboglu et al. (2011), Nakiboglu, Manders & Hirschberg
(2012), Nakiboglu & Hirschberg (2012), Yamouni, Sipp & Jacquin (2013), Dai, Jing
& Sun (2015) and Golliard et al. (2016). Ziada & Shine (1999) and Nakiboglu
& Hirschberg (2012) studied the hydrodynamic interference between multiple side
branches or cavities and its effect on the Strouhal number. Sound amplification
in those situations occurs when the length of the cavity opening is approximately
equal to an integer multiplied by the unstable wavelength thus the Strouhal number
Src = ωL/(2πMc) is around 1, 2, 3, . . . , where Mc is the convection velocity of the
instability wave. For the present case, Mc calculated from the real part of the Bloch
wavenumber at the peak amplification is 0.3763M0, which gives us Src = 0.1215 and
the wavelength of the unstable mode is not linked to the length of a single cavity or
cell (here this wavelength is approximately 7 times the length of a cell).

It can also be noted that along the system of 30 cells computed for figures 2 and 3,
the unstable Bloch mode is amplified by a factor of more than 80 while the acoustic
wave is amplified only by a factor of approximately 2. This means that the transfers
from the incident plane acoustic mode to the hydrodynamic unstable mode and from
the hydrodynamic unstable mode to the transmitted plane acoustic mode are rather
inefficient.

3.2. Bloch mode stabilization by using cavities with different depths
We know from the previous experiments (Aurégan & Leroux 2008; Marx & Aurégan
2013) that the hydrodynamic instability over a liner that consists of identical cavities
can be suppressed by increasing the damping of the system or by increasing the
spacing between cavities. The effects of these parameters on such an instability
are qualitatively replicated in the previous subsection, where the validity of the
homogenized approach has also been verified. In this subsection, we examine a liner
that consists of different cavities.

Starting from the case studied in § 3.1, we slightly increase the depth of one cavity
out of two and slightly decrease the depth of the other cavity by the same amount so
that the average remains the same, see figure 8(a). Thus, we consider 15 periodic cells,
each of which consists of two cavities of different depths. The sound amplification
is progressively suppressed by increasing the difference d between the depths of
the two cavities, see figure 8(b). A very small difference in depth (around 1 %)
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FIGURE 8. (Colour online) Flow–acoustic coupling in a liner with 15 periodic cells, each
of which consists of two cavities with different depths: D1 = D− d and D2 = D+ d, as
sketched in (a). (b) Presents |T+| for a plane wave incident at the liner as a function
of d. (c) Shows the variation of the Bloch wavenumbers kB for d increasing from 0 to
0.0667 (d∗ = 1 mm). In (c), the arrow indicates the direction of the variation of kB for
the increasing d, the red squares denote kB when d = 0 and the black crosses denote kB
when d= 0.0667. The calculations are at a frequency of ω= 0.4310.

completely destroys the instability. The Bloch fields of the amplitudes of p and v for
3 periodic cells when d = 0.04 are presented in figure 9. The chosen Bloch mode,
with a wavenumber kB = 10.056− 0.3252i, is the one that is progressively stabilized
by increasing d, see figure 8(c). The periodic decrease of the disturbances from cell
to cell is demonstrated in the pressure and the velocity fields. It is also shown that
the hydrodynamic disturbances grow when passing the smaller cavity, but reduce
in the segment with the deeper cavity. In the case of identical cavities, the phase
relation between the vorticity and the vertical velocity is such that some energy can
be transferred from the mean flow to the perturbations. In the two depths case, there
is a phase difference in the vertical velocities from two adjacent tubes. Near the
resonance, this phase difference increases quickly when the depth changes. Therefore,
the energy transfer can no longer be positive for the two adjacent cavities.

In figure 10 the homogenized results are compared to the complete Bloch analysis.
For this, we first used the Bloch mode wavenumbers to compute the homogeneous
impedances by integrating (3.2). In figure 10(a,b), the real and imaginary part of the
impedance obtained from the unstable hydrodynamic Bloch mode ku

B (circles) and
the least attenuated acoustic modes in the ±x-directions k±B1 (crosses and points) are
presented. They are close to each other for d < 0.04. For d > 0.04, the impedance
deducted from ku

B becomes almost constant but we can note that, for these d
values, the mode reaches the hydrodynamic continuum where the wavenumbers
no longer depend on impedance. The impedance values deduced are therefore
questionable. In the same figures, the educed impedances are compared to the
average impedance (triangles) without flow over one cell: Zav = 2W/L/(1/Z1 + 1/Z2),
where Z1 = R − i/tan(ωD1) and Z2 = R − i/tan(ωD2). The predicted and educed
resistances correspond reasonably well for d < 0.04. There is a larger difference in
reactance. When d = 0, the velocity is almost the same in each successive cavity.
When d increases, there is a velocity difference between successive cavities and
part of the fluid passes by turning from one cavity to the next. This results in
an additional effective mass that could explain the difference between predicted
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FIGURE 9. (Colour online) Iso-colour plots of the amplitudes of (a) pressure and (b) v-
velocity for three periodic cells when the Bloch mode (kB= 10.056− 0.3252i) propagates
in the lined duct. The vertical dashed lines denote the boundaries of the periodic cells.
Each cell consists of two cavities with different depths: D1 = D − d and D2 = D + d,
where d = 0.04 (d∗ = 0.6 mm). (c,d) Show the amplitudes of pressure and v-velocity as
a function of x at two different y-positions: black thin lines for y = 1 − 1h/2, and red
thick lines for y= 0.9525 where the mean flow velocity equals to the wave velocity of kB.
The calculations are at a frequency of ω = 0.4310. Note that the fields are only plotted
for part of the duct and the liner cavities.

and induced reactances. The transmission coefficient calculated using the impedance
educed from ku

B is shown in figure 10(c) and it is compared to the full Bloch approach.
It indicates that the homogenized approach approximates the full Bloch analysis when
the impedance educed from unstable Bloch mode is used to describe the lined wall.
The good agreement of the results in the unstable regime shows that the homogenized
approach is a very good first approximation for the unstable behaviour over a liner
even if the tubes are of different heights. The disappearance of the unstable mode
when d increases is therefore simply related to the increase in equivalent resistance
which is in line with the results in figure 7(a). Note that the average impedance Zav

and the impedances educed from k+B1 and k−B1 can also predict the trend of stabilization
by the increasing d. However, a large discrepancy in the calculated transmission
coefficients is observed even though Zav is very close to the educed impedance when
d is close to zero. For d= 0, the difference between Zav and the educed impedance is
1.9 % for resistance and 2.6 % for reactance. This difference induces a 7 % change in
the amplification Im(ku

B) and, due to the exponential amplification, a 61 % increase in
the transmission coefficient. This example shows the very large sensitivity of the peak
in the transmission coefficient to a very precise description of the wall condition.
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FIGURE 10. (Colour online) Educed resistance (a) and reactance (b) from the Bloch
modes, as a function of d for the liner sketched in figure 8(a). (c) Comparison of the
transmission coefficients obtained by the Bloch and the homogenized approaches. In (a,b),
circles, crosses and dots are impedances respectively educed from the Bloch modes ku

B, k+B1
and k−B1 using (3.2), triangles denote Zav . In (c), squares denote the Bloch approach, circles,
crosses, dots and triangles denote the homogenized approach with wall impedances educed
from ku

B, k+B1, k−B1 and given by Zav respectively. The calculations are at a frequency of
ω= 0.4310. Note that no damping is added to the hydrodynamic modes in the calculation
of this figure, i.e. ε = 0.

4. Conclusion
The aeroacoustic instability over a low resistance liner with a grazing flow is

studied by a two-dimensional (2-D) cavity-by-cavity approach using the multimodal
method in combination with the Bloch theory. The mean shear flow over the liner
is assumed unaltered in the streamwise direction and the acoustic and hydrodynamic
disturbances are described by the linearized Euler equations with artificial damping.
Such an instability was first observed in experiments and has been investigated by
many homogenized methods based on an equivalent wall impedance.

We first consider a liner of 30 periodic cells, each of which consists of a deep
narrow cavity attached to a short duct containing a mean shear flow. A sound
amplification of the incident plane wave in the upstream duct is predicted by the
present discrete model. The amplification happens in a very limited frequency range
that is slightly higher than the resonance frequency of the cavities. At the amplification
frequencies, a hydrodynamic surface wave is excited by the sound wave at the
upstream part of the liner. After a convective growth over the liner, it regenerates
sound near the downstream edge of the liner at a level higher than this incident
level. The effects of an artificial damping and of the spacing between cavities on the
sound amplification are estimated. The results obtained with this periodic analysis
are very similar to the previous experimental results. Nevertheless, due to the large
sensitivity of the instability to the relevant parameters, such as the dissipations and
the longitudinal inhomogeneity of the mean flow, quantitative comparisons with
experiments is rather difficult.

The liner instability is demonstrated by the present Bloch approach. From the
variation of the Bloch wavenumbers as a function of frequency, we can see that
one of the hydrodynamic modes emerges from the line of attenuated hydrodynamic
modes and crosses the real axis to become amplified. This unstable Bloch mode
appears in a very limited range of frequencies near the quarter-wavelength (λ/4)
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FIGURE 11. (Colour online) Effects of the dissipation of the hydrodynamic modes (a) and
the length of spacing between the adjacent cavities (b) on the sound amplification in the
periodic liner with 30 cells. In (a), the calculations are made with the default geometrical
parameters but different artificial damping factor ε. In (b), ε = 0, while the length of
spacing S is varied.

resonance of the cavity. The maximum amplification rate of the Bloch unstable mode,
i.e. the maximum in the imaginary part of the Bloch wavenumber, occurs at the
same frequency as the maximum in the acoustic transmission coefficient. One of the
interesting results of this analysis is to show that even when all the transverse modes
are stable in the duct–cavity system (the hydrodynamic transverse modes have been
stabilized by artificial damping), a global cell instability can still occur. This means
that the Kelvin–Helmholtz instability over the cavities is not a necessary condition
for the hydrodynamic instability over the liner and the related sound amplification.

This instability is due to a vorticity mode that is regularly amplified by the
resonance of the cavities and it transfers some energy from the mean flow. The
unstable Bloch mode has a sharp peak of vorticity at a transverse position in the flow
duct, where the mean velocity is equal to the wave velocity computed from the Bloch
wavenumber. It means that this wave is convected by the mean flow and it could be
called a hydrodynamic unstable mode. The periodic part of the pressure, velocity and
vorticity at the position of the vorticity peak is nearly constant, which suggests that a
homogenized method based on an equivalent wall impedance can be used to describe
the behaviour of such unstable mode. The homogenized model reveals that a small
wall resistance and a small and positive reactance are two necessary conditions for
the liner instability.

In a case where each periodic cell consists of two cavities of different depths, it is
shown that a small depth difference can completely suppress the unstable behaviour
above the liner. A homogenized approach can also correctly model the hydrodynamic
instability in this case and it reveals that, for the Bloch mode stabilization, increasing
the depth difference is equivalent to increasing the resistance of the lined wall.
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Appendix. Effects of the artificial damping and the spacing between cavities on
sound amplification

As mentioned in § 3.1, some artificial damping has been added to the hydrodynamic
modes in the calculations. To analyse its effect on propagation, we calculated
|T+| of 30 cells with the same geometry but for different dissipation rates on the
hydrodynamic modes of zones I and II. It is shown in figure 11(a) that an increase
in the dissipation factor ε of the hydrodynamic waves leads to a clear reduction
in sound amplification. This effect has already been observed in Marx & Aurégan
(2013) and shows the importance of having dissipation to correctly predict the peak
amplitude. Also, to verify that our model can explain the experimental observation
that the peak is very sensitive to the percentage of open area (POA) (Aurégan &
Leroux 2008), the spacing between the cavities S has been varied and the results are
shown in figure 11(b). They show that the peak value is highly dependent on the
POA (division by 20 when the spacing is doubled). This effect can be interpreted as
being related to the increase in coating resistance with the decrease in POA in the
continuous impedance approach (see figure 7).
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