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Using highly resolved direct numerical simulations we examine the statistical properties
of the local energy flux rate Π�(x) towards small scales for three isotropic turbulent
magnetohydrodynamic flows, which differ in strength and structure of the magnetic field.
We analyse the cascade process in both kinetic and magnetic energy, disentangling the
different flux contributions to the overall energy dynamics. The results show that the
probability distribution of the local energy flux develops long tails related to extreme
events, similar to the hydrodynamic case. The different terms of the energy flux display
different properties and show sensitivity to the type of the flow examined. We further
examine the joint probability density function between the local energy flux and the
gradients of the involved fields. The results point out a correlation with the magnetic
field gradients, showing, however, a dispersion much stronger than what is observed in
hydrodynamic flows. Finally, it is also shown that the local energy flux shows some
dependence on the local amplitude of the magnetic field. The present results have
implications for subgrid-scale models, which we discuss.
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1. Introduction

Most stellar objects from stars to galaxies are made of hot gas in an ionized state. The
magnetohydrodynamic (MHD) equations give the simplest description of the dynamics
involved (Goldstein, Roberts & Matthaeus 1995; Battaner 1996; Biskamp 2003; Verma
2004; McKee & Ostriker 2007; Bruno & Carbone 2013; Galtier 2016) and give a
general framework relevant for dynamo and many plasma phenomena (Davidson 2002;
Brandenburg & Subramanian 2005; Landau et al. 2013). At large Reynolds numbers
(small dissipation parameters) the MHD turbulent dynamics becomes turbulent sharing
many features with hydrodynamic turbulence. The key idea is the existence of cascade
processes, meaning that inviscid invariants are transferred across scales so that they
are efficiently dissipated at the smallest scales (Monin & Yaglom 1975; Frisch 1995;
Alexakis & Biferale 2018). This idea sketched by Richardson was at the basis of the
phenomenological statistical theory by Kolmogorov (1941) and Kraichnan (1971) and is
the cornerstone of our understanding of turbulence. Different theories have been proposed
that attempt to describe quantitatively the behaviour of MHD turbulence (Iroshnikov
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2 A. Alexakis and S. Chibbaro

1964; Kraichnan 1965). Yet, MHD turbulence displays an even more complex behaviour
than the hydrodynamic one with diverse regimes and recently new theories have been
proposed (Goldreich & Sridhar 1995; Boldyrev 2006; Beresnyak 2011). A variety of
methods have been applied in MHD to test and constrain existing theories. Two-point
correlation functions have led to some constraints on third-order structure functions
(Politano & Pouquet 1998; Galtier 2009). Scale-by-scale analysis in Fourier space that
has been extensively used in hydrodynamics (Chen, Chen & Eyink 2003; Verma 2004;
Alexakis, Mininni & Pouquet 2007; Domaradzki, Teaca & Carati 2009; Teaca, Carati &
Andrzej Domaradzki 2011; Verma 2019) has been applied with some success in MHD as
well (Dar, Verma & Eswaran 2001; Alexakis, Mininni & Pouquet 2005; Mininni, Alexakis
& Pouquet 2005; Teaca et al. 2009; Verma 2022).

New insights into cascade physics have been obtained by analysing the scale-by-scale
budgets of energy of filtered fields, including the fluctuations of the flux (Eyink &
Sreenivasan 2006; Dubrulle 2019). Notably, these kinds of complex tools have been
used to get insights into the physical mechanisms in two- and three-dimensional fluid
turbulence (Piomelli et al. 1991; Liu, Meneveau & Katz 1994; Chen et al. 2006; Eyink
2005; Eyink & Aluie 2009) and, more recently, scale-by-scale filtering analysis has been
started to be applied also to MHD turbulence to highlight and understand some specific
processes (Eyink et al. 2013; Galtier 2018; Bian & Aluie 2019). The interest of such
tools is witnessed by their use in many other problems such as two-fluid plasma models
(Camporeale et al. 2018), hybrid kinetic models (Cerri & Camporeale 2020), gyro-kinetics
(Teaca et al. 2021) and full-kinetic systems (Eyink 2018; Yang et al. 2022). More generally,
this kind of approach seems promising to go beyond standard statistical information and to
access energetic processes, which are usually the most important for applications, and are
nowadays commonly used in a variety of cases (Danaila et al. 2001; Casciola et al. 2003;
Sorriso-Valvo et al. 2007; Cimarelli, De Angelis & Casciola 2013; Valori et al. 2020;
Innocenti et al. 2021). Our work follows this path in order to get similar understanding for
MHD turbulence.

Such an understanding of the cascade process is paramount for astrophysical and
industrial applications for the following reason. While the numerical solution of the
fundamental equations is in principle possible, the vast range of scales excited in such
objects prohibits any direct numerical calculation that resolves all the scales down to the
dissipation ones. However, if all scales are not properly resolved, the numerical approach
is tantamount to applying a coarse-graining to the initial problem discarding a part of
the information, related to the small scales not resolved. As a result all simulations
of astrophysical flows require some modelling of smaller unresolved scales that are
responsible for the energy dissipation. Such modelling will thus have to compensate
the energy transfers between resolved and unresolved scales so that it correctly captures
the energy dissipation of the flow. The construction of such models requires a deep and
quantitative understanding of how turbulence transfers energy to small scales.

This practice of computing only large scales and to put forward approximate models
at small scales is referred to as large-eddy simulation (LES), and has a long history in
fluid turbulence in particular for practical applications (Leonard 1975; Germano 1992;
Meneveau & Katz 2000; Pope 2000; Sagaut 2001; Lesieur, Métais & Comte 2005).
In hydrodynamic turbulence the development and testing of such models are thus well
advanced. A particular class of hydrodynamic models quantify the dissipation energy by
an eddy-viscosity term whose coefficient depends on the gradients of the resolved flow
(Smagorinsky 1963; Germano et al. 1991; Germano 1992), and many studies have been
devoted in quantifying this dependence (Vreman, Geurts & Kuerten 1994, 1997; Borue &
Orszag 1998; Meneveau & Katz 2000).
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Local fluxes in MHD turbulence 3

In MHD, LES is less developed and tested than in fluid turbulence. At the same time the
complexity of MHD is increased as more channels exist for the energy to be transferred
to smaller scales and since there are two fields involved there are more possibilities for
the dependence of the eddy-viscosity term. A convenient way to assess subgrid models
is through direct numerical simulation (DNS), which is, however, more difficult than in
hydrodynamics and only recently have DNS been made available with sufficient resolution
allowing for an inertial range to be present. Yet, Smagorinski-like models have been
adapted through formal analogy in MHD since the 1990s (Theobald, Fox & Sofia 1994;
Müller & Carati 2002; Verma & Kumar 2004; Bian et al. 2021). These models still
represent the only available strategy for subgrid modelling (Miesch et al. 2015), and they
have been recently generalized even to compressible (Chernyshov, Karelsky & Petrosyan
2014; Vlaykov et al. 2016; Grete et al. 2017) and relativistic (Viganò, Aguilera-Miret &
Palenzuela 2019; Carrasco, Viganò & Palenzuela 2020) MHD.

Although DNS has been used to partially assess the validity of such closures (Agullo
et al. 2001; Miesch et al. 2015; Kessar, Balarac & Plunian 2016), a thorough analysis
is still needed, given the importance of the problem. Notably, in the last few years, new
analysis of this kind of modelling has been made possible by the use of scale-by-scale
analysis (Buzzicotti et al. 2018; Linkmann, Buzzicotti & Biferale 2018; Biferale et al.
2019; Alexakis & Chibbaro 2020). In these works, it has been pointed out that a deeper
understanding of the cascade process, including fluctuations, is valuable also to improve
modelling.

The purpose of this work is to shed some light in this direction by examining different
MHD turbulence flows and the statistical properties of the local energy flux towards
smaller scales, bringing to MHD this original approach already applied to hydrodynamic
turbulence. In particular, we analyse the scale-by-scale budgets of kinetic and magnetic
energy of highly resolved DNS. This allows one to provide new information on the cascade
process, including fluctuations, and thus to go beyond usual investigation of the validity of
subgrid models. As a final introductory comment, it is worth emphasizing that our goal is
not to put forward and/or test some specific model but rather to get some insights into the
modelling via DNS.

2. Theoretical formulation
2.1. Main equations

We begin by considering the MHD equations in the incompressible non-relativistic limit,
given as (Biskamp 2003)

∂u
∂t

+ u · ∇u = −∇p + b · ∇b + ν∇2u, (2.1)

∂b
∂t

+ u · ∇b = b · ∇u + η∇2b, (2.2)

∇ · v = 0, ∇ · b = 0, (2.3a,b)

where the modified pressure p is given by p = P/ρ + b2/2, b = B
√

4πρ, where ρ is the
mass density, u(x, t) is the flow velocity, P(x, t) is the thermal pressure, B(x, t) is the
magnetic induction field, ν is the viscosity and η is the magnetic diffusivity.

2.2. Scale-by-scale analysis
A considerable amount of work in analysing the transfer of energy among scales has been
performed in Fourier space with significant results (Verma 2004; Alexakis et al. 2005;
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Mininni et al. 2005; Alexakis et al. 2007; Domaradzki et al. 2009; Teaca et al. 2009, 2011;
Verma 2019, 2022). This kind of approach while useful in understanding and quantifying
the scale-by-scale energy budget of turbulence, does not allow one to simply link the
related energy transfers with local properties of the flow and thus limits the applicability
to subgrid-scale models.

To analyse the local-in-space scale-by-scale dynamics, we use the local filtering
approach (Germano 1992). We introduce a filter such that

ã�(x) =
∫

dr3 G�(r)a(x + r), (2.4)

where G(r) is a smooth filtering function, spatially localized and such that
∫

dr3 G(r) =
1 and

∫
dr3 |r|2G(r) ≈ 1. The function G� is rescaled with � as G�(r) = �−3G(r/�).

Applying this filter to the MHD equations, one obtains (Aluie 2017)

∂tũ� + (ũ� · ∇)ũ� = −∇p̃� + (b̃� · ∇)b̃� − ∇ · (τ uu
� − τ bb

� ) + ν∇2ũ�, (2.5)

∂tb̃� + (ũ� · ∇)b̃� − (b̃� · ∇)ũ� = −∇ · (τ ub
� − τ bu

� ) + η∇2b̃�, (2.6)

∇ · b̃� = ∇ · ũ� = 0. (2.7)

Here τ uu
� , τ bb

� , τ ub
� and τ bu

� are the subscale stress tensors which describe the force exerted
on scales larger than � by fluctuations at scales smaller than �. They are defined as

τ uu
� = (̃uu)� − ũ�ũ�, τ bb

� = (̃bb)� − b̃�b̃�, (2.8a,b)

which are the subscale Reynolds stress and the subscale Maxwell stress, respectively, and
finally

τ ub
� = (̃ub)� − ũ�b̃�, τ bu

� = (̃bu)� − b̃�ũ� (2.9a,b)

are cross-field tensors for which one is the transpose of the other, τ bu
� = [τ ub

� ]T.
Using this notation we can write an equation for the large-scale energy densities

Ẽu = 1
2 |ũ|2 and Ẽb = 1

2 |b̃|2 as

∂tẼu
� + ∇ · J u = −Π uu

� − Π bb
� + WL − Du, (2.10)

∂tẼb
� + ∇ · J b = −Π bu

� − Π ub
� − WL − Db, (2.11)

where the currents J u,J b are given by

J u
j = (

1
2 |ũ|2 + p̄

)
ũj + (τ uu

�,ij − τ bb
�,ij)ũi − ν 1

2∂j|ũ|2, (2.12)

J b
j =

(
1
2 |b̃|2

)
ũj + (τ ub

�,ij − τ bu
�,ij)b̃i − (ũ · b̃)b̃j − η(b̃ × ∇ × b̃) (2.13)

and express the transport of energy in space. The rate of work done on the flow originating
from the Lorentz force is given by

WL = ũib̃j∂jb̃i. (2.14)

This term is responsible for the transfer of kinetic energy to magnetic energy in the large
scales. The viscous and Ohmic energy dissipation rates are given by

Du = ν(∂jũi)(∂jũi) and Db = η(∇ × b̃) · (∇ × b̃) (2.15a,b)

and express the rate that energy is dissipated by viscous and Ohmic effects, respectively.
These terms can be shown to be negligible if the filter scale is large and the
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viscous/resistive coefficients are small (Aluie 2017). Finally the four fluxes in scale space
Π uu

� ,Π bb
� ,Π ub

� and Π bu
� , explicitly given by

Π uu
� = −τ ub

�,ij∂iũj = −[ ˜(uiuj)�
− ũ�,iũ�,j]∂iũj, (2.16)

Π bb
� = +τ bb

�,ij∂iũj = +[ ˜(bibj)�
− b̃�,ib̃�,j]∂iũj, (2.17)

Π ub
� = −τ ub

�,ij∂ib̃j = −[ ˜(uibj)�
− ũ�,ib̃�,j]∂ib̃j, (2.18)

Π bu
� = +τ bu

�,ij∂ib̃j = +[ ˜(biuj)�
− b̃�,iũ�,j]∂ib̃j, (2.19)

express the rate of gain (if Π� < 0) or loss (if Π� > 0) of energy of the large scales to the
small filtered-out scales. Their sum gives the total energy flux:

Π�(x) = Π uu
� (x) + Π bb

� (x) + Π ub
� (x) + Π bu

� (x). (2.20)

The fluxes are chosen so that they are invariant under Galilean transformations u →
u + U0 and also under b → b + B0 for any flow realization u, b, where U0, B0 are
constant in space vector fields. The importance of Galilean invariance has been noted
in the past (Speziale 1985; Aluie & Eyink 2009, 2010). We note, however, that while the
defined fluxes are invariant under b → b + B0, the MHD equations are not. Therefore,
the introduction of a constant B0 in the dynamics of the MHD equations will alter the
statistical behaviour of the fields u, b and as a result of the fluxes as well.

The fluxes in (2.16)–(2.19) comprise the main object of the present work.

2.3. Filters
Although we formulate our filtering procedure in physical space, since we will be working
in periodic domains it is useful to define the filters through their Fourier transforms:

Ĝq(k) =
∫

G�(x)eik·x dx, (2.21)

where q = 1/� is the wavenumber corresponding to the filter length �, not to be confused
with the Fourier wavenumber k. For the first filter we consider a Gaussian kernel:

Ĝq(k) = exp
[
− k2

2q2

]
. (2.22)

For an infinite domain this filter corresponds to the Gaussian filter in real space G�(r) =
exp(− 1

2 r2/�2)/(2π�2)3/2. We note that this filtering is not a projection and in general
(̃ũ�)� �= ũ�. The second filter we consider is a sharp spectral filter such that

ũ�(x, t) =
∑
|k|<q

û(k, t)eik·x. (2.23)

This filtering is a projector (̃ũ�)� = ũ� and is based on a Galerkin truncation for all
wavenumbers larger than the given cutoff q = 1/�. With regard to the representation of
energy fluxes, this filter has been shown in the past not to be optimal as it leads to wider
fluctuations of the local energy flux (Buzzicotti et al. 2018; Alexakis & Chibbaro 2020),
something that as we show also holds in MHD.
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3. Subscale stress modelling

In this section, we provide some information about typical modelling strategies. Our
work focuses on fundamental issues, which allows us to build a precise framework and to
point to possible applications. In a simulation for which only the large smoothed-out fields
ũ, b̃ are followed dynamically the effect of the small unresolved scales on the resolved
scales needs to be captured by modelling the subscale stress tensors τ uu

� , τ ub
� , τ bu

� , τ bb
� . In

hydrodynamics, perhaps the simplest such model is formed by assuming that τ uu takes the
form

τ uu
�,ij = νe

�,ijkl∇kũl, (3.1)

where the eddy-viscosity tensor νe is a function of space and time and needs to be
prescribed from the filtered field ũ in order for the filtered equations to be closed. It
needs to satisfy 〈∇iũjν

e
�,ijkl∇kũl〉 = ε > 0 and acts thus on average as a sink of energy.

Furthermore, the divergence of ∇ · τ uu
� is not necessarily zero so its projection to

divergence-free vector fields needs to be considered by adding p′ = ∇−2∇i∇jτ
uu
�,ij to the

pressure. Since the system is Galilean invariant νe cannot depend on the values of ũ but
only on its gradients ∇ũ,∇∇ũ, . . .; thus in the simplest case νe

� is just a function of ∇ũ. If
we further assume that isotropy is present at the small scales, νe[∇ũ] will only depend on
the invariants (under rotations and reflections) of the strain tensor ∇ũ. In the now classical
Smagorinsky approach the subscale Reynolds stress tensor is modelled as (Smagorinsky
1963)

τ uu
�,ij −

1
3
τ uu

�,kk = νe
� S̃ij = νe

2
(∂iũj + ∂jũi), (3.2)

where S̃ is the symmetric part of the filtered strain tensor. Here νe is a scalar defined as
(Smagorinsky 1963)

νe
� = c�2|S̃| = c�2

√
S̃ijS̃ij, (3.3)

where � is the filtering length scale and c is the Smagorinsky constant, an order-one
non-dimensional coefficient. Equation (3.3) gives the only combination of � and |S̃| with
dimensions of viscosity. We note that in general νe

� depends on space and needs to be taken
into account for the pressure so that the divergence-free condition for ũ is satisfied.

This model implies that the flux of energy to small scales is given by

Π�(x) = c�2|S̃|3. (3.4)

After Smagorinsky’s work other models that also take into account the antisymmetric part
of the stress tensor


̃ij = 1
2(∂iũj − ∂jũi) (3.5)

have been developed. Approximating the subscale stress with its extreme local expression,
the nonlinear Clark model is obtained (Meneveau & Katz 2000):

τ uu
� ≈ 1

3 C2�
2(S̃

2
� + Ω̃

2
� + Ω̃�S̃� − S̃�Ω̃�), (3.6)

where both strain and vorticity participate in the dynamics (Tennekes & Lumley 1990;
Misra & Pullin 1997; Borue & Orszag 1998), and leads to modelled local energy flux:

Π� ≈ 1
3 C2�

2[−Tr(S̃
3
�) + 3 Tr(S̃�Ω̃

2
�)]. (3.7)

The development and assessment of such models have been often guided by a priori
analysis (Piomelli et al. 1991; Meneveau 1994; Borue & Orszag 1998; Meneveau &
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Katz 2000), that is, studying the filtered DNS field properties rather than resorting to actual
LES. Following this approach, in Alexakis & Chibbaro (2020) we have demonstrated that
there is indeed a strong correlation between Π� and |S̃| verifying the Smagorinsky relation
(3.4) for the mean value of Π�, although strong fluctuations in Π� were also measured
making Π� not a strictly positive quantity.

In MHD, a similar type of modelling is considerably more difficult. First of all there
are three subscale turbulent stresses that need to be modelled: τ uu

� , τ ub
� and τ bb

� . In past
literature these dependencies are modelled based on the symmetric and antisymmetric
parts of the stress tensors of the two fields:

S̃ul,ij = 1
2(∂iũj + ∂jũi), Ω̃ul,ij = 1

2(∂iũj − ∂jũi), (3.8a,b)

S̃bl,ij = 1
2(∂ib̃j + ∂jb̃i), Ω̃bl,ij = 1

2(∂ib̃j − ∂jb̃i). (3.9a,b)

An in-depth discussion of different models used can be found in Müller & Carati (2002)
and Miesch et al. (2015). Furthermore, although the system is still Galilean invariant, it is
not invariant under transformation b → b + B0, where B0 is a constant in space magnetic
field. The statistics of the subfilter-scale fields can depend on the local value of b̃ and as
a result so will the relevant eddy viscosities that attempt to model their effect. Finally, in
the presence of helicity the small scales are known to transfer energy to the large scales in
a mean way by the alpha dynamo mechanism that modelling needs to take into account.

Given the large number of the properties of the smoothed fields that the modelling of
the subscale turbulent stresses can depend on, it is important to try to limit the possibilities
identifying the parameters that play the most important role. This is what we attempt to
do in the following sections using DNS for which the turbulent stresses can be directly
measured. Thus, we need to stress that we do not test a posteriori any proposed model.
Instead we are trying a priori to find relations that hold between the local energy flux and
the gradients of the flow so that they can be used in the construction of new models.

4. Numerical simulations
4.1. Numerical set-up

To investigate the local energy fluxes described before, we use the results from DNS
using the pseudo-spectral code GHOST (Mininni et al. 2011) evolving the MHD equations
(2.1)–(2.3a,b) in a cubic triple periodic domain of side L = 2π so that |k| = 1 gives
the smallest non-zero wavenumber. The forcing is limited only to wavenumbers with
|k| � kf = 2 in all cases and is random and delta-correlated in time so that the mean
energy injection rate ε = 〈u · f u〉 + 〈b · f b〉 = 1 is independent of the flow state. All
runs have the same energy injection rate and unit Prandtl number with ν = μ = 0.0001.
The involved Reynolds number based on the input parameters ε, L and ν is given by
Re = ε1/3k4/3

f /ν that is thus fixed to Re = 3968. The resolution was fixed for all runs at
N = 1024 grid points in each direction that was sufficient for the flow to be well resolved
so that an exponential decrease of the energy spectrum is observed at large k. No artificial
dissipation was used.

Four different cases were considered. In the first, no magnetic forcing was introduced
and the magnetic field was set identically to zero b = 0 so that the flow reduced to a
hydrodynamic run, repeating essentially the results of Alexakis & Chibbaro (2020). This
run is used as a reference to identify the differences of MHD from hydrodynamic runs and
is referred to in the subsequent figures as ‘hydro’. The remaining three runs were designed
to have different levels of magnetic energy as in Alexakis (2013). The second run was
thus a dynamo run. No magnetic forcing was used but an initial small magnetic field was
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introduced that was amplified by the turbulent motions until a steady state was reached
where the magnetic energy fluctuated around a mean value. We note that the forcing was
mirror-symmetric so no helicity is injected in the system. A result of the absence of helicity
and the randomness of the flow is that magnetic energy is concentrated in the small scales.
This run is referred to in the figures as ‘dynamo’. In the third run a magnetic forcing was
also used of equal magnitude to the mechanical flow. The resulting flow at steady state
has magnetic energy at equipartition with the kinetic energy at all scales. The helicity
and magnetic helicity injection rate for this flow are also set to zero. Results from this
run are referred to as ‘moderate’. Finally the fourth flow was also both mechanically and
magnetically forced but in this case the magnetic helicity was weak but not zero. This leads
to the formation of a slowly growing large-scale helical magnetic field. As a result this flow
has magnetic energy that exceeds the kinetic energy of the flow. This run is referred to in
the figures as ‘strong’.

It is worth noting that all the statistics we present in the following are obtained through
time-averaging over a large amount of samples during the steady state to ensure statistical
convergence. Whenever possible, several field realizations have been used also to average
over space, because of spatial homogeneity.

4.2. Energy spectra and magnetic field
Figure 1 shows the resulting time-averaged energy spectra for the four runs at the steady
state. For the dynamo run in particular, analysis is made at the state such that magnetic
energy no longer grows. All runs show energy spectra compatible with a k−5/3 power-law
exponent. The magnetically forced runs moderate and strong have equipartition magnetic
energy across wavenumbers except for k = 1 in the strong case for which magnetic
energy is larger. For the dynamo run the magnetic energy is weaker than kinetic at small
wavenumbers but the reverse is true for large wavenumbers. This behaviour is typical
for randomly forced non-helical small-scale dynamos (Schekochihin et al. 2004; Moll
et al. 2011; Brandenburg, Sokoloff & Subramanian 2012). Dynamo flows with steady
non-helical forcing, like Taylor–Green flows for example (Ponty et al. 2008), produce
spectra closer to those of the moderate run. This figure points out also that a quasi-inertial
range is roughly displayed over about a decade between k = 4 and k = 64, as standard
with the present resolution.

In figure 2, it is possible to get some qualitative insights into the different cases studied.
Notably, the visualization of the magnetic energy permits one to observe the structure
of the large scales, through its space distribution. The dynamo case displays very little
dispersion of the magnetic field amplitude, and energy is concentrated in flux tubes. The
moderate case shows a larger distribution and some regions of intense field. Finally the
strong case shows a much more widely distributed energy, with some regions characterized
by large values of the magnetic field, and in particular large-scale structures are visible.
To give a quantitative picture, we also show in figure 2 the probability distribution of
the magnetic amplitude |b| for the three MHD cases examined. In the dynamo case the
maximum is at small |b|, with a peaked distribution. The width of the distribution increases
in the other two cases, with a broad distribution for the strong case. In this last case, the
tails appear substantial.

5. Statistics of the local energy flux

The local energy fluxes Π uu
� (x), Π ub

� (x), Π bu
� (x), Π bb

� (x) and Π�(x) were calculated for
the four different runs at their steady state. Figure 3 shows the probability density function
(p.d.f.) for the four different runs using a sharp spectral filter and Gaussian filter for a filter
length q = 32, which corresponds to a value at around the end of the inertial range.
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FIGURE 1. Energy spectra for the four different cases examined.

As in hydrodynamics, in MHD the sharp spectral filter leads to a wider and more
symmetric p.d.f. of Π�. Interestingly, the pure hydro curve presents the strongest tails,
while with the Gaussian filter the profiles were found always similar. Considering the
representation of the fluxes, the sharp filter is thus found to enhance fluctuations displaying
many negative events, making it more difficult to use directly in LES. The reason for this
behaviour is the fact that the sharp filter is not localized in space and not positive-definite.
For this reason, it appears less useful for the analysis of the energy fluxes and it is
abandoned in the following. In this sense, the present analysis confirms previous results
obtained in the pure hydrodynamic case (Buzzicotti et al. 2018; Alexakis & Chibbaro
2020).

The Gaussian filter leads for all four cases to a skewed p.d.f. with non-Gaussian
(stretched exponential) tails. The tails for all cases extend to values a hundred times
more than the mean value 〈Π�〉 = 1, implying that, although rare, these events can play a
significant role in the dynamics. The most notable result when comparing the four different
cases is that the dynamo run has weaker tails than the other flows. It turns out hence
that the dynamo dynamics suppresses efficiently extreme energy flux fluctuations. Small
differences are experienced between the moderate and strong cases, indicating that fluid
fluctuations are not affected by the large helical magnetic field, which is present only in
the strong case. It is possible to observe just a slight increase in the probability of negative
events with respect to positive ones. Still, not much difference is found either comparing
the moderate or strong cases with the hydro case.

The statistical behaviour of the energy flux Π� is further studied in figure 4. Here we
present the p.d.f. of the flux Π� at different scales � = 1/q, for the four different cases.
The hydro results are given for comparison. The first remark is that, as said above, the
dynamo case is quite different from the others, with more shrunken distributions, though
the distribution remains tailed and skewed. All the cases display similar changes on going
towards smaller scales. The profiles are much less wide in the large-scale range q = 8, 16,
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FIGURE 2. Visualizations of the magnetic energy density for the dynamo case (top left), the
moderate case (top right) and the strong case (bottom left). The bottom-right panel shows the
p.d.f. of |b| for the three different MHD flows examined.

FIGURE 3. The p.d.f. of the total nonlinear flux Π�(x) at q = 32 for a sharp spectral filter on
the left and a Gauss filter on the right, for the four different runs.
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FIGURE 4. The p.d.f. of the energy flux for different q for the three MHD cases. In the top-left
panel, the hydro case is also plotted for comparison.

notably for q = 8. Then, the distributions are basically indistinguishable for q = 32, 64,
which are more or less in the far inertial range, and finally the tails are again reduced for
q = 128, which is in the dissipation range. As expected, intermittency is maximum at the
end of the inertial range. Slight differences between the moderate case and the strong case
can be detected, yet are not significant.

Now, we turn our attention to the four different components of the total energy flux
Π�(x). In figure 5 we compare all the terms Π uu

� (x), Π ub
� (x), Π bu

� (x) and Π bb
� (x) composing

Π� as given by (2.16)–(2.19). The fluxes show different behaviour in the three different
cases examined. The first striking observation is that in all cases the pure hydrodynamic
flux is the smallest one, resulting in less than 10 % of the total flux, something that has
already been observed (Alexakis 2013) in past simulations. Most notably, it shows the
least important negative fluctuations. It was not possible to infer that from looking only at
the total flux Π�, which is found in figure 2 to be similar in the hydro and all the MHD
cases. In the moderate and strong cases, the hydrodynamic flux Π uu

� is basically the same
as the cross-magnetic hydro flux Π ub

� , while the two are different for the dynamo case. As
a consequence, in all cases the terms found to be dominant are Π bu

� and Π bb
� , that is, the

blue and red lines, and correspond to more than 70 % of the flux. Therefore, the coupling
magnetic term contributing to the kinetic energy flux dominates the pure hydro term. Since
the total flux in the hydro case is very similar, except for the dynamo case, it appears that
the cascade readjusts to distribute much of the flux in this term, although the total kinetic
flux remains unchanged. It is interesting to remark also that in the strong case, where both
the velocity and the magnetic fields are fully developed, there is a nice symmetry between
the two fluxes, with Π uu

� ≈ Π ub
� and Π bu

� ≈ Π bb
� . That points to two very similar cascade

processes and could be related to the equipartition of the magnetic and kinetic energy
cascade recently conjectured in Bian & Aluie (2019). While for the moderate case this
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FIGURE 5. The different components of the energy flux for q = 32. The total flux is also
plotted for comparison. The three MHD cases are considered.

symmetry appears also holding apart from the extreme events, the dynamo case breaks it
underlying different physics of the cascade process.

Finally, it is useful to note that all the terms, and hence the total flux, are production
terms, that is, the flux is on average positive towards smaller scales, even though there
may be a significant local negative flux. We note also that in the dynamo case there is
a mean transfer of kinetic energy to magnetic energy by both the Π bb

� flux and the WL
term in the large scales (that we do not examine here). This may alter the transfer balance
between the different cases. Concerning the negative fluxes, it is important to remark that,
unlike the positive tails, the negative parts of the p.d.f.s are basically the same for all
components. This is most notably true for the strong case, but also in the other two cases
the differences are limited to the region of extremely rare events, where statistical errors
may be substantial. This shows that a change in large-scale amplitude of the magnetic field
can affect the smaller-scale forward cascade process.

6. Joint p.d.f.s
6.1. Field gradients

In order to help the construction of subgrid-scale models that are based on the gradients
of the resolved fields, we need to reveal what correlation exists between the gradients and
the local energy flux. In figure 6 we present the joint p.d.f.s between Π� and the modulus
squared of the symmetric and antisymmetric stress tensors Ω2

u,�, Ω2
b,�, S2

u,� and S2
b,�. The

results are for a given wavenumber in the inertial range q = 32.
The results obtained for the pure hydrodynamic configuration are shown for comparison

in figure 6(a). In this case, the energy flux is essentially uncorrelated with the
antisymmetric part of the strain Ω� with high-probability events for a given Ω�

concentrated around Π� = 0. On the other hand, a visible correlation is observed with
the modulus of the symmetric part of the strain tensor S�, with high-probability events for
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(a)

(b) (c) (d )

FIGURE 6. Joint p.d.f.s of Π� (for q = 32) with the modulus of the different strain rates for
(a) hydrodynamic case, (b) dynamo case, (c) moderate case and (d) strong case. From top to
bottom the examined strain is Ω2

u,�, S2
u,�, Ω2

b,� and S2
b,�. The colour map is logarithmic covering

ten orders of magnitude with bright colours indicating high probability. The yellow dashed line
indicates the Smagorinsky scaling Π� ∝ Ω

3/2
� and Π� ∝ S3/2

� .
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FIGURE 7. Joint p.d.f. of the local flux Π and the local amplitude of the magnetic field b for
the three cases: dynamo (left), moderate (centre) and strong (right).

a given S� concentrated around a non-zero value of Π� that increases with S�. The yellow
line corresponds to the Smagorinsky scaling of (3.4). The flux Π� is concentrated around
this line giving support to the Smagorinsky model.

Such correlations are less clear for the MHD results. For the dynamo case in the Π�–Ωu�

diagram, high-probability events are concentrated around Π� = 0 again. For the Π�–Su�

diagram, a much weaker correlation is observed compared with the hydro case. The
probability density shows long tails with large Π� for small Su� indicating that Su� is not
dominant in driving the cascade. A stronger correlation is observed with Ω2

b,� and S2
b,�.

High-probability events are aligned with the Smagorinsky scaling (yellow dashed line)
but the spread is much higher than in the hydro case. The fact that the correlations with
Ω2

b,� and S2
b,� look very similar indicates that neither of the two alone is an optimal proxy

to estimate the energy flux to the small scales.
The lack of correlation of Π� with the velocity gradients is even more clear for the

moderate and strong cases. For these cases no correlation is seen either with Ω2
u,� or with

S2
u,�. Although there is some correlation with the magnetic field gradients Ω2

b,� and S2
b,�

with the maximum of probability (for fixed Ω2
b,� or S2

b,�) following the Smagorinsky scaling
(yellow dashed line), the spread is very large with highly probable negative flux events that
become more frequent for the strong field case. This indicates that although there is some
correlation with the magnetic field gradients, modelling the subscale stresses with Ω2

b,�

and S2
b,� alone is still missing important ingredients.

6.2. Local magnetic field
We pursue the analysis of the statistical phenomenology of the cascade process looking
at correlations between the flux and the magnetic field. Figure 7 shows the joint p.d.f. of
Π� and b̃ for the different cases examined. The three cases display different distributions,
yet with similar characteristics. Generally speaking, the maximum probability of the flux
as well as most extreme values of it are obtained in the region around the average value
of the magnetic field. Furthermore, the larger the average magnetic field, the wider the
distribution. In this concern, it is interesting to note that the isolines are almost flat over
a large range, indicating that in such a large region the flux distribution, and therefore
the cascade process, is basically independent of the value of the magnetic field. That is
particularly true for the strong case.

More insight is gained by looking at the p.d.f. of the energy flux conditioned on the
knowledge of the magnetic field amplitude. This corresponds at looking at ‘slices’ of
figure 7 for fixed values of b̃ and allows a more clear look at the extreme events. The
results are displayed in figure 8. Seen this way some differences can be noted between the
three different cases. For the dynamo case there is a monotonic increase of the tails of
the distribution with respect to increasing magnetic field. Both negative and positive tails
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FIGURE 8. Conditioned p.d.f., i.e. probability of having flux Π� given the magnetic field
amplitude |b|. In the dynamo case, large |b| enhances large fluctuations.

are wider when related to a larger magnetic field amplitude. In this case large values of b̃
indicate more extreme events.

In the moderate case, the probability distribution seems to be almost insensitive to
changes in the magnetic field amplitude. The distribution would point to an energy
cascade somewhat independent of the magnetic field amplitude. Some small differences
are actually present in the distributions, but they are not much more important than
statistical errors.

For the strong case, the negative tails increase monotonically with the amplitude of
the magnetic field. The positive tails, on the other hand, are monotonically decreased by
increasing the magnetic field. Therefore, in strongly magnetized flows, large |b| reduces
extreme direct cascade fluctuations, while increasing inverse cascade fluctuations. In this
sense, the skewness of the distribution seems to be affected by the amplitude of the
magnetic field. It appears that in regions of very large magnetic field the distribution is
made symmetric. Possibly this behaviour occurs because locally in regions of large b̃
turbulence transitions to a wave turbulence regime that has weaker forward energy flux or
by rendering the flow locally quasi-two-dimensional. This effect, however, would require
further investigation to be fully understood, and to assess possible finite-size effects.

7. Conclusions

In this work we have analysed the statistics of the local energy flux for three different
MHD flows. A scale-by-scale analysis in physical space has been carried out that allows
us to access relevant information on the energy cascade process that could help the
construction of subgrid-scale models.

First, we have found that a Gaussian filter should be preferred to a spectral one with
regard to the representation of the energy fluxes, a result previously obtained for fluid
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turbulence. Then, the results of the total energy flux showed some similarities with the
hydrodynamic case with Π� showing a skewed distribution with large tails. However, the
dynamo case displays clear differences with respect to the other two cases. This is actually
a general feature detected for all observables. On the other hand, moderate and strong cases
display overall similar trends and profiles, as revealed by the fluxes computed at different
scales.

The analysis of the different components of the energy flux has highlighted that the
magnetic field plays a dominant role in the forward cascade. Specifically, the term related
to the work made against the subscale Reynolds stress is negligible. This is a key
information for modelling. The negative part of the flux, that is, the backscatter flux,
is instead basically the same for all components. Moreover, the study of the correlation
between the energy flux and the different strain and rotation tensors has indicated that:
(i) while results give some support to Smagorinski-like closure, at variance with pure
hydrodynamic turbulence, MHD energy flux cannot be globally recovered with a simple
formula and several eddy viscosities should be used; (ii) as pointed out in previous works,
the vorticity tensor has little correlation and can be omitted from modelling, at least as
a first approximation; (iii) contrarily to what is commonly used, we have found that the
magnetic strain tensor Sb,� contribution is not negligible with respect to the antisymmetric
rotation Ωb,� one, with regard to the entire flux, so both Sb,� and Ωb,� need to be used
to model subscale stresses; and finally (iv) we have found that the presence of a large
magnetic field has an impact on the local shape of the energy flux, and the flux in regions
of very high magnetic field has reduced forward fluctuations. New thorough studies would
be needed to confirm this result, notably with different magnetic field strength.

Present results indicate new directions for optimizing subgrid-scale models in MHD
turbulent flows. Many open questions still remain that future research should address.
In particular the correlation between the local energy flux Π� and physically motivated
combinations of the tensors Ωu,�,Ωb,�, Su,�, Sb,� would be a next step. Theoretical work
in the same spirit as in the Clark model (Meneveau & Katz 2000) can also help in this
direction. We plan to address these issues in our future work.
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