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We study the time-asymptotic behaviour of solutions to the Navier—Stokes equations
for a one-dimensional viscous polytropic ideal gas in the half-line. Using a local
representation for the specific volume, which is obtained by using a special cut-off
function to localize the problem, and the weighted energy estimates, we prove that
the specific volume is pointwise bounded from below and above for all z, ¢ and that
for all ¢ the temperature is bounded from below and above locally in x. Moreover,
global solutions are convergent as time goes to infinity. The large-time behaviour of
solutions to the Cauchy problem is also examined.

1. Introduction

We study the large-time behaviour of solutions to the following initial boundary-
value problem in the half-line,

Up = Vg, (1.1)
Vg 0

Vg = Oy <0’ = ,u; — Ra>, (1.2)

cy by = [A%} + oV, (1.3)

together with the initial conditions
(u(z,0),v(x,0),0(x,0)) = (uo(z),vo(z),00(x)), =z €12, (1.4)
and the boundary conditions
vlop =0,  Oulon =0, (1.5)

where 2 = (0, 00). The system (1.1)—(1.3) describes the motion of a one-dimensional
viscous polytropic ideal gas in {2 in Lagrangian coordinates, where u, v and 6 are
the specific volume, the velocity and the absolute temperature, respectively, o is
the stress and u, R, cy, A are positive constants.

Since the first work of Kazhikhov and Shelukhin [13] on the global existence
for the equations of a one-dimensional viscous gas with large initial data, signifi-
cant progress has been made on the mathematical aspect of the initial and initial
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boundary-value problems for (1.1)—(1.3). For initial boundary-value problems in
bounded domains, the existence and uniqueness of global (generalized) solutions
and the regularity have been proved. Furthermore, the global solution is asymptot-
ically stable as time tends to infinity (see, for example, [1,2,4,14,16-18,21] and the
references cited therein).

For the Cauchy problem (1.1)—(1.4) with 2 = R and the initial boundary-value
problem for (1.1)-(1.5) (in unbounded domains), Kazhikhov and Shelukhin [12,13]
(also cf. [2,6,7,20]) proved that if ug — 1,vg,00 —1 € H', ug,0y > 0 on 2, and ug,
vo, B are compatible with (1.5), then there exists a unique (generalized) solution of
(u, v, 0) with u,0 > 0 such that, for any T > 0,

u—1,0,0 —1€ L>((0,T), H),
u € Loo((OaT)aLQ)a (16)
Ut, etaurtavrxaerz € LQ((O,T), L2)a

and the regularity holds. The time-asymptotic behaviour as t — oo of the solu-
tion has been studied under some smallness conditions on the initial data (see,
for example, [5,8,10,11,15,19], among others). However, the large-time behaviour
of the solution in the case of large data was not known until 1999. In 1999, the
author [9] used a special cut-off function to derive a local representation for u(x,t)
and the new estimates for 6(x,t) and o(x,t) to obtain some partial results on the
large-time behaviour of solutions.

The present paper is a continuation of the work [9]. In this paper we improve
the results of [9] on the problem (1.1)-(1.5). The improvement is the threefold.
We prove the pointwise boundedness of u(z,t) from below and above for all (z,t)
and the local in z pointwise boundedness of 6(x,t) for all t. The convergence of
v(z,t) in the H'-norm is shown. The large-time behaviour of 6(z,t) is obtained.
We point out that Feireisl and Petzeltovd recently [3] studied the unconditional
stability of stationary flows driven by large time-independent external forces for the
system (1.1)—(1.3) with the heat conductivity A tending to infinity with growing
internal energy. They proved that the global solution converges to the stationary
flow determined uniquely by the external forces as ¢ — co. Moreover, from [3], one
can see how the temperature and external forces influence the asymptotic behaviour
of the solution. Unfortunately, here we cannot deal with the case of external forces,
since the boundedness of domains in [3] is essential in the arguments of [3].

To state the main result we define

1 [* 1 [k
u () := —/ u(z,t)dz, 01(t) := —/ 0(x,t)dx, (1.7)
Kk Jo Kk Jo
then the main result of this paper reads as follows.

THEOREM 1.1. Let k > 0 be an arbitrary but fized integer. Let ug — 1,0 — 1,
V0, (V0)2/ug € HY and ug,0y > 0 on §2. Then, for the initial boundary-value prob-
lem (1.1)-(1.5), we have

a < u(

< 16} for all (z,t) € 2 x [0, 00),
Cr(k) < 6(

Ca(k)  for all (x,t) € [0,k] % [0, 00)

)
)

NN

x,t
x,t
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and
[[(w(t) = ui(t), v(t),0() — 1 ()l 2oy = 0 ast — oo, (1.8)

where a, B are positive constants independent of t and Cy(k) and Cy(k) are positive
constants that depend on k but not on t.

REMARK 1.2. Theorem 1.1 still holds for the Cauchy problem (1.1)-(1.4) with
2 = R, when the initial specific volume and initial temperature are even func-
tions and the initial velocity is a odd function. This can easily be verified by using
the reflection of solutions and the uniqueness.

In the proof of theorem 1.1, the derivation of pointwise boundedness of u(x,t)
is similar to that in [9]. The estimate of derivatives of v and 6, however, is differ-
ent. In [9], the time-asymptotics of 6 was not obtained due to the lack of spatial
derivative estimates of 6. In this paper we control first v, in L>([0,00), L% ) and
0; in L?([0,00), L) by the L>([0,00), L )-norm of 0,, and then 6, by v; and 6,
by using the estimate deduced by the second law of thermodynamics and delicate
weighted energy estimates. This process enables us to be able to close the estimate
for vy, 0, 0., but requires (vg)./ug € H', and consequently gives the uniform in ¢
boundedness of the derivatives of (u,v,6) by applying Gronwall’s inequality. From
the boundedness of the derivatives, theorem 1.1 follows. We shall prove theorem 1.1
in §3. In §2 we derive uniform pointwise bounds of u(z,t).

NOTATION 1.3. Let G be a domain in R. Let m > 0 be a non-negative integer and
let 1 < p < oo. By W™P(G) we denote the usual Sobolev space defined over G with
norm || - [lym.r (), Wm™2(G) = H™(G) with norm [l zrm (> and WOoP(G) = LP(G)
with norm || - || Lr(¢y. For simplicity, we also use the following abbreviations:

LP=1r(2), H"=H"2), |-ller=1ll-lzey, M- llam =1 llam )

| - || stands for the norm in L?(£2). LP(I, B) (respectively, || - |[z»(r,5)) denotes
the space of all strongly measurable, pth-power integrable (essentially bounded if
p = 00) functions from I to B (respectively, its norm), where I C R is an interval,

B a Banach space. For a vector-valued function f = (fi,..., fm) and a normed
space X with the norm ||| - |||, f € X means that each component of f is in X; we
put [[[£lll == [llf2lll + - -+ [l £l

The same letter C' (sometimes used as C'(k) to emphasize the dependence of C
on k) will denote various positive constants that do not depend on the time ¢.
2. Pointwise estimates of u

In this section we prove the uniform upper and lower boundedness of u(x,t). We
begin with the following lemma (the proof of which can be found in [9]), which
embodies the dissipative effects of viscosity and thermal diffusion.

LEMMA 2.1.

(i) There is a positive constant ey, independent of t, such that

/ (z,t dx—|—/ /(AUOQ 9>dxds vt > 0, (2.1)
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where
U(z,t) == {3v> + R(u —logu — 1) + ¢y (0 — log§ — 1)}(z, t). (2.2)

(ii) Let ay, ag be two (positive) Toots of the equation y—logy—1 = ep/ min{ R, cy }.
Then, fori=20,1,2,...,

i+1 i+1
a1 < / u(x,t)dx,/ O(xz,t)dx < ag, t =0, (2.3)

and, for each t > 0, there are points a;(t),b;(t) € [i,i + 1] such that
a7 < u(ai(t),t), H(bl(t),t) < Qo, t 2 0. (24)

Next we derive a local representation of u by using a cut-off function. Let & € 2
be arbitrary but fixed. Let ¢ € W>°(R) be defined by

1, z < [~]—|—1
o) =K [7]|+2—z, [Z]+1<z<[2]+2, (2.5)
0, x> [z ]—|—2

where [x] denotes the largest integer that is less or equal to z. For simplicity, we
denote I := ([z] — 1,[Z] + 1) N 2.

We multiply (1.2) by ¢ to obtain [pv]; = [0@]: — 0. Integrating this over (z,00)
(x € I) with respect to x, recalling (1.1) and the definition of ¢ and o, we arrive at

0o . 0o . 0 [Z]+2 B
—/ [vplidy = o +/ op, dy = pllogul, — R —/ oy, t)dy, wel.

[Z]+1
(2.6)
We integrate (2.6) over (0,t) with respect to ¢t and then take the exponential on
both sides of the resulting equation to deduce that

1 1 R ["0(z,s) } _
_ b4 > .
B v @ uled) exp{ . dsp, xz€l, t=0, (2.7)

where

B0 = wo(e) | 1 / Oo(w(y)—v(y,t))@(y)dy},

v e[ [ ot}

Multiplying (2.7) by Rf(x,t)/p and integrating over (0,t), we infer

Substituting the above identity into (2.7), we obtain a local representation of u(zx, t)
in a neighbourhood of Z,

_ R (' B(x, )Y (t) eads zel
u(z,t) = Bz, )Y (t) + ,U/o —B(%S)Y(S)e( ,8)ds, xzel, t=0. (2.8)

https://doi.org/10.1017/50308210500001815 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001815

Remarks on asymptotic behaviour 631

Now with the help of the local representation (2.8) and the new estimates for 6,
o obtained in [9], we are able to derive the uniform bounds on u(x,t).

LEMMA 2.2. There are positive constants C1, Ca, independent of t, such that
Ci <u(x,t) <Cy VYref, t=0. (2.9)

Proof. The idea of the proof is the same as that of lemma 2.4 in [9]. The only
difference in the argument is that instead of deriving bounds of u(z,t) for z € 2,
in [9], we derive here upper and lower bounds of u(z,t) for x € I, and the bounds of
u(x,t) are shown to be independent of . Thus, if we use (2.1), (2.3), (2.4) and (2.8),
replace the interval [k+1, k+2] (respectively, £2;) in the proof of lemma 2.4 in [9] by
[[Z] +1, [Z] 4 2] (respectively, I), then we obtain, by the completely same arguments
as used for (2.14)—(2.24) in the proof of lemma 2.4 in [9], that

Ci <u(z,t)<Cy forallzel, t=>0, (2.10)

where C'7, Cy are positive constants that do not depend on Z. In fact, C;, Cy depend
only on the measure of the interval I, i.e. Cy = C1(|I]), Cy = Co(|1]).

In particular, the estimate (2.10) gives C7 < u(Z,t) < Csq for all ¢ > 0. Because
# € 2 is arbitrary and Cy, Oy are independent of , we conclude that (2.9) holds.
The proof is complete. O

REMARK 2.3. From the proof of lemma 2.2, we easily see that if we consider the
Cauchy problem (1.1)—(1.4) with 2 = R, then (2.9) still remains valid.

3. Proof of theorem 1.1

We have proved the uniform lower and upper boundedness of u in theorem 1.1
(i.e. lemma 2.2) in § 2. In this section we apply the results obtained in § 2 and the
weighted energy method to derive bounds for derivatives of (u, v, §). As mentioned
in §1, we first estimate vy, 6; by 0, and then 6, by v; and 6,.

Let ¢ € WH*°(R) be defined by

1, r <k,
Y(x)=qk+1—2, k<ze<k+1,
0, > k41

Using lemma 2.1 and (2.9), we can obtain the following lemma, the proof of which
is completely the same as that of lemmas 3.1 and 3.2 in [9], and therefore will be
omitted here.

LEMMA 3.1.

t t

max v%(-,s)ds, max [0(-,5) — 0(s)]*ds < C  for allt >0,
o [0k+1] 0 [0k+1]

t
/ ui(x,t)w(x)dx—k/ / u2¢pdzds < C for allt >0,
Q 0 Jo

where O(t) := 0(bo(t),t) and bo(t) is the same as in lemma 2.1.
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Now we multiply (1.2) by ¥v and integrate the resulting equation over (2, inte-
grate by parts with respect to & and use the boundary conditions (1.5) to obtain

1 2 2 Wz «
14 [ 2ydn = —/ (uﬂ 2 w +R—w —Reium>

If we integrate the above equation over (0,t), use (2.9), lemmas 2.1 and 3.1, we
obtain

¢
/’UQT/)dJJ—F/ /vzwdxds
2 0 Jao
t kel ¢
SC/ / |vrv|dxds—|—0/ /(|9x|—|—9|um|)|v|1/)dxds
o Jo 0 Jao
¢ pktl g, ¢ 92
<C+C/ / (—I+v29> dxds—|—/ /(—I+uiw+92v2w> dxds
0 Jo uf 0 Jo\ub?

t t k+1
<C+C max v*(-,s)ds + C max (0 — 0)? / v? dzds
0 [O k+1] 0 [O k+l] 0
<C forallt >0, (3.1)

where § = () is the same as in lemma 2.1. Noting that k is arbitrary, we replace
k by k+ 1 in the definition of ¥ and use (3.1) to obtain

t k1
/ / vidads < C YVt >0. (3.2)
o Jo

In the sequel we derive bounds of v; and 6, by 0,,.
Multiplying (1.2) by uwvs® and integrating over (0,t) x §2, we integrate by parts
and use (2.9) to deduce that

t
/ /uvfw?’dxds—ké,u/ v da
0 Jo Q
t
<C+ C/ / {(|Uﬂcumvt| + [0z v¢] + |9urvt|)w3 + |vat¢x|1/)2} dzds,
0 /0

which, by the Cauchy—Schwarz inequality and (3.1), as well as lemma 3.1, yields

t
//v?w?’dxds—k/ v2® da
0 Ja Q

t
<C+ C/ / {(v2u2 + 0% + 0*u2)y® + 024} dxds
t

C—|—C/ / (v2u? 4 02)y* deds + C max ((9—@)24—1)/ u?® dads
0 [0k+1] 0

SC—FC’/ m@xvidﬂ/ uiwdxds—FC/ / 024)% dads. (3.3)
0o £ Q 0 Jo
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Here, the second term on the right-hand side of (3.3) can be bounded as follows,
using lemma 3.1, Sobolev’s imbedding theorem (Wt < L), and (3.1) and (1.2):

¢
/m@xvidﬂ/ uiwdxds
0o £ 7]
¢
< C/ max{(c? + (0 — 0)? + 1)1/)2}/ u?4p dads
0o £ 7]
¢
<C+ C/ / (022 + oo |p? + o%Y|9,]) dx/ uep dxds
0 Jo Q

t
SC—FC// oy +ec?y?)d /uiwdxds
0 Jo o)

t
cor O [ [wreo-a2 s npas [ uvasas
€Jo Jo 2
t
—|—Ce/ / in?’dx/ u?e) dzds
0 Jo Q

¢
< g—!—Ce/ /vfw?’dxds. (3.4)
€ 0 J

Inserting (3.4) into (3.3) and taking e suitably small, one gets

t t
/ /vfwf”dxds+/ vipdde < C+C/ / 6243 deds, t = 0. (3.5)
0 2 2 0 2

On the other hand, with the help of lemma 2.1 and (2.9), one has

/ / 0243 dzds < c/ / 0> (— + 9%6) dxds

<C+C max (0 — 6)? e%p dxds+0//92w dzds
0 0k+1

and

t
//eiwﬁdxds
0 2
2,/,6 2,/,6
C//ew 0—0) dxds—|—0//9w dzds
u92
2,/,6
SC/{/ +/ }9”% (0 —6)*dzds + C
{r|0<1} (zlo>1}) ub

C// dxds+0// 024°(0 — 0)* dzds + C
(elo<1) uf? (2]0>1}

<C+C max (6 — 0)? 921/)6 dzds.
0 [0,k+1]

Therefore,

t t
/ / 6243 deds < C + C/ max (6 —0)? [ 62¢%dxds.
0 0 0 [0,k+1] 0
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Multiplying the above inequality by 2C and adding the resulting inequality to (3.5),
we find that

t
/ /(v?—k@i)w?’dxds—k/ v2y3 da
0 Jo Q

t
<C+C [ max (§—0)? egzpﬁ deds Vt=0.  (3.6)
o [0,k+1]

Next we estimate v; in L>((0,00), L ). We differentiate (1.2) with respect to ¢
and then multiply the resulting equation by v;%° in L2((0,t) x £2). If we integrate
by parts and make use of (2.9), we deduce

—/vtwdx C — u// “wdds

+0/ /{v?ﬂ—|9t|+9|vr|}\vm|w6dxds
0 N

t
+c/ /{|vm|+vz+ 104] + 0o, ol dads,
0 N

which, by (3.1), yields

t
/vfwﬁdx—k/ /v?zwﬁdxds
[0 0o Ja

t
<C+ C/ / {(v3 4607 + 0%02)p° + v2ep*} dads

C—|—C/ /{92—|—v )08 4 viy }dxds—!—C/ max ( 9—@)2/viw3dxds
0k+1] 0
(3.7)

for all ¢ > 0. The term fo J, vip®dads in (3.7) can be bounded similarly to (3.4)
as follows, using (3.1), Wbt < L° and (1.2):

t
//vﬁwﬁdxds
0o Ja

¢
<C [ max{c?+ (0 —0)*+ 1}1/)3/ v dads
0 zEL? 2
¢

<C+C max (0 — 6)? /viw?’dxds
0 [0 k+l 0

t
23 3 2,2 9.3
t

<C+C max (6 — 0)? /viwgdxds
0 [0 k+l 0

k+1
—|—C/ {/ vfwﬁdx—k/ O'le‘}/ v dads
0 Q

k1
C+C/ { max (0 — )2—|—/ vidx}/(viw?’—kvfd)ﬁ)dxds. (3.8)
Ok+1] 0 Q
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Inserting (3.8) into (3.7), we thus conclude that

t
/v?wﬁdx—k/ /v?zwﬁdxds
2 0 Jo

¢
<C+ C/ / {6245 + v23} dads

k+1
—|—C/ { max_( )2—|—/ vidx}/(viw?’—kvfd)ﬁ)dxds.
Ok+1] 0 2
(3.9)

Now, multiplying (1.3) by u1% in L?((0,t) x £2), integrating by parts and apply-
ing (2.9), one finds that

t t
0/ / Gfd)ﬁdxds+%/@/ i/ 6245 dzds
0 Jo o dt Jg

¢
< / / {vam/)ﬁ - K&ugﬂ/)ﬁ - 6/€9x1/151/)x}9t dzds,
0 /2 u
whence

t t
/ / 624 dads +/ 025 dx < C + c/ / {002 + 0%u2)p® 4 0243} dads.
0 2 2 0 2

(3.10)
Using (3.8) and (3.1), we easily obtain

¢
/ / o?v2y® dzds
0 Jo
¢ ¢ -
SC/ /vﬁwﬁdxds—FC/ {max(9—9)2—|—1}w3/ v dads
0o £ 2

k+1
C—|—C/ { max ( )2—|—/ vidx}/(viwg—kvfd)ﬁ)dxds, (3.11)
Ok+1] 0 2

while, by lemma 3.1 and (1.3) and (3.11),
[ [ fol (8}
e e [2]
[ fwanes [ [[4T i
<< / | et dnas e /0 | s asas
e / {gr}j_)i] 92 + /O kvadx} /Q (026% 4 0205 duds.

(3.12)

° dzds
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Substituting (3.11) and (3.12) into (3.10) and taking € appropriately small, we infer
that

t
/ / 624% dzds + / 6245 dx
0 2 2
t
<C+0/ / 6243 dzxds
k+1
—|—C/ { max ( )2—|—/ vidx}/(viwg—kvfd)ﬁ)dxds.
Ok+1] 0 2

(3.13)
Therefore, (3.6) + (3.9) x € + (3.13) x /¢, with € appropriately small, yields

t
/ / {ofe® + 029° + v ¥ + 079} dads + / {oi0® + v’ + 02¢° Mz, t) da
0 2

k+1
<C+ C/ { max (0 — 0)* + / v2 dx} / {02 + 070 + 024°} dads.
0 k+1] 0 7
(3.14)

Applying Gronwall’s inequality to (3.14) and using lemma 3.1 and (3.2), we obtain

t
[ [ 1wz =000+ @2 + @0t baas + [ 207+ @+ 020 @ de < ©
0 J 2

(3.15)
for all ¢ > 0. Hence, from (1.2) and (1.3), (3.15), (3.4), lemma 3.1, and (3.11)
and (3. 12) it follows that

// v2, 4+ 02,)v°% dzds

< C/ / {0 +02u2 4+ (0 — 0)*u2 +uZ + 02 + 07 + 0?02 + 02u2 }9% dads
0 Jo
<C vtz (3.16)
By lemma 3.1, (3.15), (3.16) and the identity

/ 0,0.40° do = — / 012010 dz — 8 / 0,040 1), da,
(9] (9] 2

we see that

which gives
||(ur(t)avr(t)a er(t))HLz(O,k) — 0 ast— oo. (3-17)

We apply Poincaré’s inequality and (3.17) to obtain (1.8). To complete the proof of
theorem 1.1, it remains to prove the upper and lower boundedness of 6. By (2.3), we
see that a; < 61(t) < ag for any t > 0. Hence, from (1.8) and Sobolev’s imbedding
theorem, we get

C7'<l(x,t)<C forallze€0,k], t=Tp, (3.18)

https://doi.org/10.1017/50308210500001815 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001815

Remarks on asymptotic behaviour 637

where Tj is a (large) constant. On the other hand, from the proof in [2,13], we have
1/(Ce®t) < 0(x,t) < Ce®* for all (z,t) € 2 x [0,00), which, combined with (3.18),
implies the local lower and upper bounds of 6. This complete the proof of theo-
rem 1.1.
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