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Direct numerical simulations (DNS) are performed to investigate a hypersonic flow over
a compression ramp with a free stream Mach number of 7.7 and a free stream Reynolds

number of 4.2 x 10° based on the flat plate length. The DNS results are validated by
comparison with experimental data and theoretical predictions. It is shown that even in the
absence of external disturbances, streamwise heat flux streaks form on the ramp surface
downstream of reattachment, and that they are non-uniformly distributed in the spanwise
direction. The surface heat flux exhibits a low-frequency unsteadiness, which propagates
in the streamwise direction. Additionally, the unsteadiness of the heat flux streaks
downstream of reattachment is coupled with a pulsation of the reattachment position. By
conducting a dynamic mode decomposition (DMD) analysis, several oscillatory modes,
characterised by streamwise low-frequency periodicity, are revealed in the separation
bubble flow. The DNS results are further explained by a global stability analysis (GSA).
Particularly, the flow structure of the leading DMD modes is consistent with that of the
oscillatory unstable modes identified by the GSA. It is therefore concluded that the global
instabilities are responsible for the unsteadiness of the considered compression ramp flow.

Key words: boundary layer separation, shock waves

1. Introduction

Hypersonic flow over a compression ramp is a canonical case of shock-wave/boundary-layer
interaction (SWBLI) and has been of great interest for more than half a century.
Fundamental investigations of compression ramp flow contribute to the understanding of
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the flow around control surfaces, engine inlets, body flaps, junctions, etc., of hypersonic
vehicles. Under certain conditions, the ramp-induced pressure rise leads the boundary
layer to separate ahead of the corner, forming a separation bubble and a complex shock
system. Although the geometry of a compression ramp is two-dimensional, experiments
(de Luca et al. 1995; Simeonides & Haase 1995; Chuvakhov er al. 2017; Roghelia
et al. 2017a,b) and numerical simulations (Ohmichi & Suzuki 2013; Cao, Klioutchnikov
& Olivier 2019a) showed the presence of streamwise streaks in the vicinity of flow
reattachment. The streamwise streaks manifest themselves in variations of surface heat
flux, wall pressure, skin friction, etc., and they can usually persist for a certain distance
post-reattachment until transition to turbulence occurs (Simeonides & Haase 1995;
Roghelia et al. 2017b).

The presence of streamwise streaks or associated streamwise vortices was also found
for other configurations such as a hollow cylinder flare (Benay et al. 2006), a double
wedge (Yang et al. 2012), oblique SWBLI (Hildebrand et al. 2018) and scramjet forebody
(Matsumura, Schneider & Berry 2005). Many studies have focused on the physical
mechanism responsible for the formation of the streamwise streaks. Early studies proposed
leading edge imperfections as a source of disturbances which are amplified downstream,
forming the streamwise vortices. However, Matsumura et al. (2005) and Roghelia et al.
(2017b) demonstrated the presence of heat flux streaks on the compression ramps with
a well-prepared sharp leading edge. Additionally, Roghelia et al. (2017a) reported an
almost identical wavelength on the compression ramps at two facilities for similar flow
conditions and model configuration. This suggests that external disturbances (for example,
induced by leading edge imperfections, free stream turbulence and surface roughness)
can be an excitation but cannot explain the matching streaks observed in different
facilities.

On the other hand, the experimentally or numerically observed heat flux striation
phenomenon has been often attributed to the formation of Gortler-like vortices supported
by the concave flow curvature in the reattaching flow regions (de Luca et al. 1995;
Simeonides & Haase 1995; Navarro-Martinez & Tutty 2005; Roghelia et al. 2017a,b;
Cao et al. 2019a). The estimated favourable Gortler number near reattachment provides
evidence for the significance of centrifugal instability. Recently, utilising an input—output
analysis, Dwivedi et al. (2019) were able to analyse the formation of streamwise streaks
as a result of the amplification of external disturbances in a compression ramp flow.
It was shown that baroclinic effects arising from the interactions of base-flow density
gradients with spanwise gradients of pressure perturbations play a dominant role in
triggering the streamwise streaks. Therefore, baroclinic effects and centrifugal effects
are two potential mechanisms that can amplify upstream disturbances, leading to vortical
structures (Zapryagaev, Kavun & Lipatov 2013).

In addition to these two effects, more attention is turned to instabilities in the separation
bubble flow and their connection to the streamwise streaks. It is known that beyond
a critical condition (for instance a critical turn angle of the ramp), a two-dimensional
flow bifurcates to a three-dimensional one due to global instabilities (Theofilis, Hein &
Dallmann 2000; Robinet 2007; Hildebrand et al. 2018; Sidharth et al. 2018). By performing
global linear stability analysis for a double wedge flow, Sidharth et al. (2018) showed that
in the absence of external disturbances, the three-dimensionality in the separation bubble
results in temperature streaks on an adiabatic wall, and the instabilities are intrinsic to
the separation bubble flow. A significant contribution of the separation bubble flow to
the wavelength selection mechanism of the streamwise streaks was also demonstrated
by Dwivedi et al. (2019). Furthermore, for a steady-state base flow at a higher turn
angle, Sidharth er al. (2018) found a family of globally unstable modes including an
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oscillatory one. This mode exhibits streamwise periodicity in the separation bubble.
Several unsteady modes were also revealed for a compression ramp flow over a heated wall
(Sidharth et al. 2017). These results indicate that for a base flow far beyond the bifurcation
point, unsteady effects are present.

The experimentally observed streamwise streaks usually exhibit a time-averaged
behaviour due to the utilised measurement techniques such as oil flow visualisation,
infrared imaging and temperature sensitive paint (Simeonides & Haase 1995; Yang et al.
2012; Roghelia et al. 2017a). As a result, investigation of the unsteadiness of streamwise
streaks is scarce. Zapryagaev et al. (2013) and Kavun, Lipatov & Zapryagaev (2019)
analysed the wall pressure fluctuations in the reattachment region for a compression
ramp flow at a free stream Mach number of 6 and revealed two local maxima in the
spectra of pressure fluctuations. The lower one had a Strouhal number of 0.64 and was
interpreted by the longitudinal pulsation of the reattachment position (Kavun et al. 2019).
Cao et al. (2019a), Cao, Klioutchnikov & Olivier (2019b) performed direct numerical
simulations (DNS) to investigate compression ramp flows at a free stream Mach number
of 7.7. Unsteady flow features were uncovered both for the separation bubble flow and
for the surface heat fluxes downstream of reattachment. However, the relation between
the instability of separation bubble flow and the downstream unsteady streaks is still not
clear.

Direct numerical simulation is an ideal tool to investigate the intrinsic instability and
unsteadiness in a compression ramp flow because it has the advantage of creating a
nearly disturbance-free environment. By using DNS, one can study a naturally generated
three-dimensional flow field without adding external noise. Additionally, global stability
analysis (GSA) has been proven to be useful in understanding the instability mechanisms
of laminar separation bubbles (Robinet 2007; Theofilis 2011; Sidharth et al. 2017, 2018;
Hildebrand et al. 2018). It considers the linear stability of small-amplitude perturbations
superposed on a steady base flow without assumptions on the spatial variation of the base
flow and the directionality of perturbation waves (Sidharth et al. 2018). This makes GSA
suitable for studying the stability of flows with separation. In view of this, we focus on
the laminar separated compression ramp flow which is globally unstable. Particularly,
we employ DNS and GSA to investigate the flow unsteadiness triggered by the global
instability.

In this paper, we consider the compression ramp flow experimentally investigated by
Roghelia et al. (2017b). By performing GSA, we show that global unstable modes, both
stationary and oscillatory, exist in the separation bubble flow, which is verified by DNS.
The contribution of global instability to the formation of streamwise streaks is confirmed.
The flow unsteadiness is shown to have its origin in the separation bubble flow. The present
paper extends the studies on the intrinsic instability of a fluid dynamic system (Sidharth
et al. 2017, 2018; Hildebrand et al. 2018) and provides more physical insights into the
unsteadiness in a laminar separated flow.

The paper is organised as follows. Details about the numerical methodology, the flow
conditions and the compression ramp geometry are given in § 2, where the validation
of the DNS solver and grid convergence are also discussed. Section 3 provides a
detailed description of the flow establishment and an extensive comparison between
the DNS results and the GSA predictions. In §4, the unsteady features are shown
separately for the surface heat flux post-reattachment and the flow near reattachment.
The unsteady flow structures in the separation bubble flow are analysed in §5 by
employing dynamic mode decomposition (DMD). Concluding remarks are provided
in § 6.
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2. Numerical methodology
2.1. DNS

Direct numerical simulations with a robust shock capturing feature are applied to study
the hypersonic compression ramp flow problem. The three-dimensional Navier—Stokes
equations for unsteady, compressible flow are considered in curvilinear coordinates in
conservative non-dimensional form,

8U+8F+3G+8H_8F”+8G”+8H“

ar 9 an  dc  OE an ac
Here, U is the solution vector, F, G and H are the inviscid fluxes, and F*, G* and H"
denote the viscous fluxes. Here U, F and F" are defined as
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(2.3a—d)

and &, , , are the metric coefficients and J the determinant of the Jacobian matrix of the
transformation of the Cartesian coordinates x, y and z into the curvilinear coordinates
&E(x,y,2), n(x,y,2) and ¢ (x, y, z). Here t™ and ¢* are the transformed shear stress tensor
and heat flux vector, respectively. The total energy e* is defined as

u*2+v*2+w*2+ T p_*
2 y —1p*

et =

(2.4)

Note that other flux terms are not shown due to their similar form (Gageik, Klioutchnikov
& Olivier 2015). The system of equations is closed by the perfect gas law relating the
density p, the pressure p and the temperature 7. Sutherland’s law is used to determine the
viscosity . The ratio of specific heats y and the Prandtl number Pr used in the simulations
are 1.4 and 0.71, respectively. The non-dimensional variables are normalised using the free
stream parameters: p* = p/poo, U* = U/Uoo, P* = P/Poc, €* = e/u>, and T* = T/Tw.
The flat plate length L is used as the reference length.

In terms of the numerical methods, time integration is performed by an explicit
third-order total variation diminishing (known as TVD) Runge-Kutta scheme. A
weighted essentially non-oscillatory (known as WENO) finite difference scheme of fifth
order is applied for the discretisation of the inviscid fluxes, based on the work of
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Ms Rexo ho Too Poo Uoo Ty
— (m~") MIkg™)  (K)  (Pa) (ms™') (K
7.7 4.2 x 100 1.7 125 760 1726 293

Table 1. Flow conditions at the shock tunnel TH2 (Roghelia et al. 2017b).

Jiang & Shu (1996). A sixth-order central difference scheme is used to approximate
the viscous fluxes. Details about the numerical schemes may be found in Hermes,
Klioutchnikov & Olivier (2012) and Gageik er al. (2015). The DNS solver has been
validated and successfully applied for many cases and especially in studying hypersonic
compression ramp flows (Klioutchnikov, Cao & Olivier 2017; Cao et al. 2019a,b; Cao,
Klioutchnikov & Olivier 2020).

2.2. Compression ramp configuration, flow condition and mesh resolution

The numerically considered flow conditions and compression ramp geometry are mainly
based on those used in the experimental campaign carried out in the hypersonic Aachen
shock tunnel TH2 at the Shock Wave Laboratory of RWTH Aachen University (Roghelia
et al. 2017a,b). The compression ramp comprises a flat plate with a sharp leading edge
followed by a ramp with a deflection angle of 15°. The lengths of the flat plate and the
ramp are both 100 mm. Table 1 lists the flow conditions at the shock tunnel TH2, which are
adopted from Roghelia ef al. (2017b). The free stream Mach number (M) and Reynolds

number (Reso, 1) are 7.7 and 4.2 x 10°, respectively. The total enthalpy hq is relatively
low allowing the use of the perfect gas assumption. Due to the short running time of the
shock tunnel (Roghelia et al. 2017b), an isothermal wall condition is applied, and the wall
temperature (7},) is given by 293 K.

Two mesh cases (Gl and G2) are considered for a grid-convergence study. The
mesh resolution, i.e. the number of grid points in streamwise (x), wall-normal (y) and
spanwise (z) directions, is 1080 x 240 x 480 and 1600 x 320 x 240 for cases G1 and G2,
respectively. As shown in figure 1, the mesh is clustered near the leading edge (left) and
the wall (bottom). The mesh spacing at the wall is Ay = 8 x 107° m for case G1 and
Ay =5 x 107% m for case G2, yielding a non-dimensional wall-distance at the position

immediately upstream of separation of y:g o~ 0.3 and 0.2, respectively. It is noted that
the upstream flat plate boundary layer is laminar with a thickness of 1.38 mm at the
separation position. The number of grid points inside the boundary layer at the separation
position is 75 for case G1 and 118 for case G2. In the spanwise direction, the mesh is
uniformly distributed. The spanwise length of the physical domain for cases G1 and G2 is
100 mm and 30 mm, respectively, while in the experiments the model span was 200 mm.
Therefore, the mesh resolution for case G2 is higher than for case G1 in all three directions.
Preliminary two-dimensional simulations showed that the converged steady-state flow
fields are almost identical for both cases. Results for the three-dimensional simulations
are compared below.

2.3. Boundary and initial conditions

In terms of the conditions at the numerical inlet boundary, twenty grid points are placed up
to 1 mm ahead of the leading edge to establish the free stream. The free stream condition
is also prescribed at the upper computational boundary. An extrapolation condition is used
at the outflow boundary. For the no-slip wall, isothermal conditions are specified with the
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Figure 1. Mesh distribution in x—y plane for case G1 (each 10th point is shown).

wall temperature being 293 K. Periodic boundary conditions are applied in the spanwise
direction.

To accelerate the computation, the three-dimensional simulations are initialised by
duplicating the two-dimensional converged solution in the spanwise direction. Initial
values of the spanwise velocity component (w) are only imposed at the first time step. In
particular, random values ranging from w/us = —0.01 to w/us, = 0.01 are introduced
for the first twenty grid points normal to the wall at 0.5 < x/L < 1.5. These initial
disturbances dissipate quickly but speed up the formation of three-dimensionality. It has
been demonstrated by Cao er al. (2019b) that when the spanwise velocity component
was initially set to zero, three-dimensionality still occurred in the flow field due to the
amplification of the low-level disturbances resulting from numerical round-off errors.
Moreover, the wavelength of the heat flux streaks remained unaltered compared with the
case with initial random values for w.

2.4. Run time of simulations

In the three-dimensional simulations, a fully developed flow field is established within
3.5 ms (or fus/L = 60), as shown in §3.1. For maintaining consistency, the
non-dimensional time scale (fuo,/L) is used in the following. It should be noted that
fitoo/L = 0 corresponds to the beginning of the three-dimensional simulations. In order
to study the unsteady effects in the flow field, we extend the simulation for case G1 up to
oo /L = 130 to cover many cycles of the unsteadiness. A great number of instantaneous
DNS data are collected so as to perform statistical analysis. The sampling time interval for
collecting the data is Atus,/L = 0.03.

2.5. Validation and grid independence

Although the DNS solver has been validated previously (Cao et al. 20194, 2020), it is
worth comparing the numerical results with the experimental results of Roghelia et al.
(2017b). Figure 2(a) shows the comparison for the surface pressure coefficient (Cp,) and
the wall Stanton number (St), which is defined as

St = D , 2.5)
PoollocCp (Taw — Tw)

where g, is the surface heat flux, ¢, is specific heat capacity and T, is the adiabatic
wall temperature. The time-averaged data are taken along the line of symmetry of the
model. In general, the DNS results (e.g. the separation bubble length, the magnitudes
of pressure and heat flux) agree well with the experimental data. The discrepancy in
the pressure upstream of separation may result from a limited lower resolution of the
installed pressure transducers in the experiments, because in this region the pressure
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Figure 2. (a) Comparison of the DNS results with experimental (exp.) data (Roghelia ef al. 2017b) for the
surface pressure coefficient and wall Stanton number along the model’s line of symmetry. (b) Comparison of
the boundary layer profiles from the DNS data with the similarity solution of the boundary-layer equations.
The vertical coordinate represents the non-dimensional wall-normal distance n = y/x+/Rey.

magnitude is very small. Furthermore, the laminar boundary layer profiles upstream
of separation are compared with the theoretical solution of the compressible flat plate
boundary layer equations (Anderson 2006) in figure 2(b). Despite the slight differences
resulting from the viscous interaction at the leading edge, which results in a streamwise
pressure gradient, the achieved agreement is very good.

The grid independence is discussed in the following. Figure 3 provides the comparison
of the three-dimensional simulation results. Figures 3(a) and 3(b) show the instantaneous
distribution of the wall Stanton number for cases G1 and G2, respectively. The positions
where the skin friction coefficient (Cy) is zero are also shown to highlight the separation
and reattachment positions. As the streamwise streaks are non-uniformly distributed in the
spanwise direction, their wavelengths vary between 4 ~ 6 mm, which is consistent with
the experimental results (Roghelia et al. 2017b). Furthermore, the standard deviation of
the spanwise Stanton number variation at x/L = 1.5 with respect to the spanwise-averaged
value is 30 % for both cases. Therefore, the comparable wavelength and amplitude between
cases G1 and G2 indicates that the spanwise resolution for case G1 is sufficient to resolve
the streamwise streaks, and the chosen spanwise model length has no significant influence
on the results. Figure 3(c) shows the streamwise distribution of the spanwise-averaged
wall Stanton number and surface pressure coefficient for both cases. The almost identical
pressure distribution indicates the same positions of separation and reattachment. In fact,
the deviation of the separation bubble length is less than 1 %. The minor discrepancy for
the Stanton number can be attributed to the difference in the spanwise model length. In
summary, the excellent agreement between the DNS results and the experimental data as
well as the theoretical predictions confirms the reliability of the DNS solver, and the mesh
resolution for case G1 is sufficient to resolve the flow phenomenon of interest.

3. Flow establishment and global instability
3.1. Flow establishment

To characterise the growth of three-dimensionality with respect to the base flow obtained
from the two-dimensional simulation, we consider the temporal evolution of the spanwise
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Figure 3. Comparison of the DNS results for the two mesh cases. Instantaneous (fu, /L = 66) distribution of
the wall Stanton number is shown for (a) case G1 and (b) case G2. Black lines denote isolines of zero skin

friction coefficient. (¢) Streamwise distribution of the spanwise-averaged surface pressure coefficient and wall
Stanton number at the same instant of time.

velocity component (w/us) in the flow field. In particular, the absolute value of the
spanwise velocity in a z—y plane is calculated as follows:

NY N,

oy = N;VZ DD w/uso)?y, (3.1)

j=1 k=1

where N, and N, are the number of grid points in the wall-normal and spanwise directions,
respectively. Figure 4 shows the temporal evolution of o, at x/L = 1.04. As seen, the
initialised random value damps to the order of 107> at the very beginning (fus/L < 1).
Then, an exponential growth stage takes place and ends at approximately fus,/L = 12.
Subsequently, the spanwise velocity grows progressively until reaching the asymptotic
level at approximately fuoo/L = 50 ~ 60. The reason for showing o, at x/L = 1.04 is
given as follows.

By examining o,, at all x positions, it is found that the largest quantity occurs at
x/L = 1.04 during the exponential growth stage. The streamwise distribution of o, at
fuso/L =9 and 12 is presented in figure 5, where these instants of time have been
chosen exemplarily for the exponential growth stage. Note that the separation bubble is
located at 0.59 < x/L < 1.26. Therefore, the three-dimensionality is mainly confined in
the separation bubble at the exponential growth stage.

In the following, the flow features during the flow establishment period are analysed.
Figure 6 shows the distribution of spanwise velocity on the x—y plane at z/L = 0.46 and on
the z—y plane at x/L = 1.04 for tus, /L = 9. Consistent with figure 5, the spanwise velocity
perturbations (three-dimensionality) are mainly generated in the separation bubble. In
addition, a periodic spanwise flow pattern is found in the separation bubble (see figure 6b).
On average, the spanwise wavelength of this flow pattern is approximately 6.7 mm. It will
be shown later that the global instability with respect to the base flow is responsible for
this spanwise modulation. After experiencing the exponential growth stage, the flow in the
separation bubble is going to saturate, and the regular spanwise modulation is modified
significantly. Figure 7 presents the distribution of spanwise velocity at fuso/L = 51
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Figure 4. Temporal evolution of o, (from (3.1)) at x/L = 1.04. The red dashed line represents the growth
rate predicted by GSA, which is shown later.
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Figure 5. Streamwise distribution of o, (from (3.1)) at fus, /L = 9 (dashed line) and 12 (solid line).
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Figure 6. Instantaneous distribution of spanwise velocity on (a) the x—y plane at z/L = 0.46 and (b) the z—y
plane at x/L = 1.04 at fu /L = 9. Here S and R denote the separation and reattachment positions, respectively.
Dashed line indicates the centre position of the shear layer (the position for maximum velocity gradient du/dy).

and 100. It is apparent that the spanwise velocity distribution is generally irregular and
different at these two instants of time. It implies that the saturated flow is unsteady, as
shown below.

Figure 8 presents six instantaneous distributions for the wall Stanton number. The
isolines of zero skin friction coefficient are shown to highlight the separation and
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Figure 7. Instantaneous distribution of spanwise velocity on (a,c) the x—y plane at z/L = 0.5 and (b,d) the
z—y plane at x/L = 1.04 for the time instants of (a,b) fu~/L = 51 and (c¢,d) tuso/L = 100. The dashed line
indicates the centre position of the shear layer.

reattachment positions. At fus,/L = 0 (figure 8a), the initial flow field is a simple
extrapolation of the two-dimensional converged solution. At fus,/L =9 (figure 8b), the
flow is undergoing the exponential growth stage, and a spanwise variation of surface heat
flux occurs inside and downstream of the separation bubble. Distinct streamwise heat flux
streaks can be observed in the vicinity of flow reattachment at fu~,/L = 21 (figure 8c¢),
whose spanwise wavelength is approximately 3.4 mm. Subsequently, at fus,/L = 51, 100
and 120, the surface heat flux streaks are non-uniformly distributed in spanwise direction,
which is consistent with the experimental observations for naturally developed streaks
(Simeonides & Haase 1995; Chuvakhov et al. 2017; Roghelia et al. 2017a,b). The streak
pattern at these three instants of time looks similar but not identical, indicating an unsteady
behaviour of the flow over the ramp. It is further noted that for the fully developed flow, the
reattachment line becomes meandering, indicating a three-dimensional flow reattachment.
Note also that the size of the separation bubble is slightly increased due to the occurrence
of the three-dimensionality.

To identify the fluctuation of the surface heat flux, the temporal history of the
wall Stanton number at x/L = 1.5 and z/L = 0.5 is clearly presented in figure 9.
Interestingly, the wall Stanton number starts to fluctuate at approximately fuoo/L = 12,
which corresponds to the end of the exponential growth stage. This fluctuation confirms
the presence of unsteady heat flux streaks on the wall, as demonstrated in figure 8. On
the basis of the above analyses, it is concluded that after an initial exponential growth
of three-dimensionality and a subsequent flow saturation stage, the flow field reaches
the quasi-steady state prior to fus,/L = 60. Therefore, it is appropriate to study the flow
unsteadiness for the time period of fu~, /L = 60 to approximately 130, because this period
of time covers a sufficient number of fluctuations (see figure 9). Before characterising
the flow unsteadiness, the evolution of three-dimensionality in the flow field is further
explained by performing a GSA.

3.2. GSA with respect to the two-dimensional base flow

The present DNS results show that three-dimensionality occurs without any external
forcing disturbances, which indicates that the two-dimensional ramp flow under the current
condition is intrinsically unstable to three-dimensional perturbations. It is therefore of
interest to perform a GSA to facilitate a better understanding of the formation and
development of the three-dimensionality.
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Figure 8. Instantaneous distribution of wall Stanton number at (a) fuso/L = 0, (b) tuso/L =9, (¢) tuso /L =
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Figure 9. Temporal history of the wall Stanton number at x/L = 1.5 and z/L = 0.5.
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To this end, a global stability solver is constructed with the linearised compressible
Navier-Stokes equations written in the conservative form and discretised using a
second-order finite-volume method. Specifically, a modified Steger—Warming scheme
(MacCormack 2014) is combined with a central scheme using an improved Ducros shock
sensor (Hendrickson, Kartha & Candler 2018) to compute the inviscid Jacobians. The
flux-vector splitting method is activated near discontinuities to eliminate numerical noise,
whereas the central scheme is used in smooth regions to ensure adequate numerical
accuracy. Details of the inviscid and viscous Jacobians can be found in Sidharth et al.
(2018).

The two-dimensional converged solution is used as the base flow. If we further assume
that the three-dimensional perturbations are periodic in the z-direction, the vector of the
perturbed conservative variables U’ can be expressed as

Ulx,y,z) = f](x, y) expl—i(w, + iw;)t + ifz] + complex conjugate, 3.2)

where U is the eigenfunction, w, is the angular frequency, w; is the growth rate and B
is the spanwise wavenumber. A mode is unstable when w; > 0, and stable when w; < 0.
Here w, = 0 indicates a stationary mode, whereas w, # 0 represents an oscillatory mode.
The corresponding frequency and spanwise wavelength are defined by

wy 27

= —, 3.3a,b
B z B (3.3a,b)

f

The eigenvalue problem resulting from substituting (3.2) into the linearised
Navier—Stokes equations is solved using the implicit restarted Arnoldi method
implemented in ARPACK (Sorensen et al. 1996-2008). The shift—invert approach is
adopted to efficiently explore the eigenvalue spectra, in which the inversion step is
calculated using the lower—upper decomposition implemented in SuperL.U (Li et al. 1999).
Note that periodicity in the z-directions is implemented analytically, which means that the
Jacobians are complex matrices.

Four unstable modes have been identified with the corresponding growth rates and
frequencies plotted in figure 10 as a function of A,. The most unstable mode (mode 1)
occurs at A;/L = 0.066. A closer examination of the spectrum reveals that mode 1 is
stationary for A;/L < 0.105 and becomes oscillatory for larger A,. By contrast, modes
2 and 3 are oscillatory with their growth rates peaking at A;/L = 0.070 and 0.079,
respectively. Mode 4 is a stationary mode, which is most unstable at A;/L = 0.349. Modes
1 and 4 essentially belong to the same branch of eigenvalues.

Figure 11 shows the eigenvalue spectrum at A,/L = 0.066. Grid independence was
verified by increasing the grid nodes in the x- and y-directions simultaneously by a
factor of 1.5. At this spanwise wavelength, mode 1 is stationary, indicating that the
perturbation amplitudes increase monotonically with time until nonlinear saturation. The
non-dimensional frequencies of modes 2 and 3 are 0.224 and 0.579, respectively.

Concerning the DNS results, the flow behaviour is well predicted by the GSA. In the
GSA, small-amplitude perturbations are assumed to grow exponentially in time (Theofilis
2011; Sidharth er al. 2018). By comparing the growth rate of the most unstable mode
(mode 1) with the growth of spanwise velocity perturbation (o,,) resulting from DNS in
figure 4, it is obvious that after an initial adaption before fun,/L = 3, the growth rate
resulting from DNS agrees well with the GSA prediction. It indicates that the growth of
three-dimensionality prior to fus,/L = 12 is dominated by the stationary global unstable
mode. Another piece of direct evidence can be found in figure 6(b), where the spanwise
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Figure 11. Eigenvalue spectra at A,/L = 0.066 obtained using different grids.

wavelength of the periodic flow pattern coincides with the wavelength of mode 1 (1,/L =
0.060).

Although the growth rate of modes 2 and 3 is smaller than that of mode 1, hints regarding
their presence in the DNS results can be found by performing a fast Fourier transform
for the spanwise velocity field on a wall-parallel plane (y,/L = 0.0018) at tus,/L = 9.
Figure 12 shows the resulting power spectral density (PSD) contour as a function of
the non-dimensional spanwise wavelength and streamwise location. A dominant spanwise
wavelength can be found near A;/L ~ 0.066 corresponding to mode 1. Mode 2 cannot be
clearly distinguished from mode 1 due to their similar wavelengths. The PSD concentrated
at A;/L ~ 0.09 corresponds to mode 3. At this instant, DNS also shows the second
harmonics of modes 1-3 with A;/L ranging from 0.033 to 0.04. It is interesting to note
that the streamwise surface heat flux streaks at fuo, /L = 9 and 21 (see figure 8b,c) exhibit
a wavelength of A,/L =~ 0.033, which is consistent with the second harmonic of the
wavelength of mode 1. Since the early growth of the three-dimensionality is dominated
by mode 1, the footprints of modes 2—4 may be better observed at the later growth stage.

At the late stage (e.g. after tus,/L = 60), the saturated flow has already modified the
base flow. However, if the base flow is not far beyond the bifurcation point, the wavelength
of the streaks obtained by DNS will match that predicted by GSA (Sidharth et al. 2017,
2018). As seen in figure 8(d—f), the wavelength of the streaks varies in the vicinity of
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Figure 12. The PSD of the spanwise velocity on a wall-parallel plane (y,/L = 0.0018) obtained from DNS at
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Figure 13. Time-averaged distribution of the spanwise velocity component at different planes: (a) wall-parallel
plane at y, /L = 0.009; (b) z—y plane at x/L = 1.04; (c) x—y plane at z/L = 0.6. The density gradient atz/L = 0
is shown in panel (@) to highlight the position of the separation bubble.

A;/L =~ 0.04, which is close to the second harmonics of modes 1-3. Furthermore, the
time-averaged flow (averaged from fus,/L = 60 to 130) exhibits a spanwise wavelength
of A;/L ~ 0.33, as shown in figure 13. Surprisingly, this wavelength agrees well with the
most unstable wavelength of mode 4. Note that mode 4 is a stationary mode, and hence it
can be better extracted from the time-averaged flow. Note also that the wavelength of the
stationary mode 1 is very close to that of the oscillatory modes 2—3. Thus, mode 1 is not
distinguished in the time-averaged flow. It is seen in figure 13 that the large-scale spanwise
periodicity is confined in the separation bubble. This flow structure is typical of vortical
cells moving away from the wall at the centre of a vortex pair (upwash) or towards the wall
at the position between two vortex pairs (downwash). In summary, footprints of the global
modes revealed by the GSA are well observed in the DNS data.

Figure 14 shows the contours of the real part of the spanwise velocity perturbation
W/uso for modes 1-4 at their most unstable wavelengths (i.e. A,/L = 0.066, 0.070,
0.079 and 0.349). Note that a sponge layer was implemented from x/L = 1.9 to damp
the perturbations to zero and allow the use of a simple extrapolation condition at the
outflow boundary (Mani 2012). For mode 1, most of the perturbations are confined in
the downstream half of the separation region, which stretch farther downstream through
the reattaching shear layer. It is indicated that these two flow regions are closely coupled
with each other. This mode shape is identical to the flow structure captured by the DNS
(see figure 6a). A similar eigenfunction was also reported by Sidharth et al. (2017)
for a heated ramp flow. By contrast, modes 2—4 are present in the entire separation
region. Notably, modes 2 and 3 exhibit streamwise periodicity in the upstream half of the
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Figure 14. Real parts of the spanwise velocity perturbation w/u, for (@) mode 1 at 1;/L = 0.066; (b) mode
2 atA;/L = 0.070; (c¢) mode 3 at A;/L = 0.079; (d) mode 4 at A;/L = 0.349. The separation and reattachment
points are marked with circles.

separation bubble, indicating travelling spanwise oblique perturbations associated with
temporal oscillations (Sidharth et al. 2018).

4. Unsteady features downstream of reattachment

Due to the presence of global unstable modes (both stationary and oscillatory),
the saturated flow exhibits complicated unsteady features. In the following, the flow
unsteadiness near and downstream of reattachment is studied based on the DNS data.

4.1. Spatio-temporal distribution of the surface heat flux downstream of reattachment

For illustration of the unsteady surface heat flux, an animation showing wall
Stanton number snapshots between fus,/L = 60 and fu~,/L = 130 is available in the
supplementary movie available at https://doi.org/10.1017/jfm.2020.1093. It is seen that the
position, intensity and thickness of the streaks vary irregularly with time, which clearly
demonstrates the unsteady behaviour of the surface heat flux. Moreover, some streaks are
emerging, while some others disappear. The movement of the streaks seems to have a
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Figure 15. Relative standard deviation of the wall Stanton number for all spanwise positions at x/L = 1.5.

connection to the movement of the reattachment line. In the following, statistical analyses
are performed to characterise the unsteady behaviour of the surface heat flux.

Considering the temporal fluctuation of the surface heat flux downstream of
reattachment, its relative standard deviation can be determined as follows:

N

1 _
— Z(St,- — 5
St = M 4.1
_ = , ,

where St denotes the time-averaged value, and N is the number of sampling points. The
relative standard deviation St for all spanwise positions at x/L = 1.5 is presented in
figure 15. It is clear that St is not constant in the spanwise direction. We note that this
spanwise variation is related to the coherent structure shown in figure 13. For example, the
strongest fluctuation has a St value of 57 % and is located at z/L 0.87, corresponding

to the upwash position in a vortex pair. However, the lowest St is found at z/L = 0.68,
corresponding to the downwash position between two vortex pairs. This result indicates
a direct influence of the separation bubble flow on the downstream heat flux fluctuation,
which suggests that the unsteadiness in the reattached flow may be traced back to the
separation bubble.

To identify a possible transport direction of the flow unsteadiness, a two-point
spatio-temporal correlation is employed to evaluate the fluctuation quantities of the wall
Stanton number (St = St — St),

Ry (7) = St/ (¢) - St (t + r)’ 4.2)

NSRS

where the subscript n denotes the reference point x/L = 1.5, z/L = 0.5; m corresponds to
the position varying in streamwise or spanwise direction; and t is the time delay.

Figure 16 shows the calculated correlation maps. It is apparent that a strong correlation
exists in the streamwise direction, whereas the correlation in the spanwise direction is
quite weak. It means that the primary propagation direction of the unsteadiness is in the
streamwise direction. The linear slope of the main structure shown in figure 16(a) by
the solid black line indicates the travelling speed of the unsteadiness, which is evaluated
approximately by 0.7uqo.
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Figure 16. Two-point temporal correlation maps for the wall Stanton number in (a) the streamwise direction
and (b) the spanwise direction. Reference point is located at x/L = 1.5, z/L = 0.5.
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Figure 17. (a) Power spectral density of the wall Stanton number signal at x/L = 1.5 and z/L = 0.5.
(b) Power spectral density map for all spanwise positions at x/L = 1.5.

In terms of the fluctuation frequency, the PSD of the wall Stanton number signal shown
in figure 9 is firstly considered. Note that the calculation is performed for the time period
of tuxo/L = 60 ~ 130 with a sampling frequency of 0.57 MHz. Welch’s method (Welch
1967) is employed for the spectral estimation with seven segments and 50 % overlap. A
Hamming window is used for weighting the data on each segment prior to fast Fourier
transform processing. The above setting yields the length of an individual segment being
17.5L/u~. The resulting PSD is shown in figure 17(a). It is seen that the surface heat
flux signal has a broadband low-frequency feature, and the dominant non-dimensional
frequencies (fL/ux) are lower than 1 and approximately centred at fL/us, = 0.15.

Figure 17(b) provides the PSD contour for the wall Stanton number by considering all
spanwise positions at x/L = 1.5. The low-frequency characteristic holds at all spanwise
positions, though a spanwise variation of amplitude exists. In general, groups of high
amplitude are present at certain spanwise positions. This is consistent with the spanwise
variation of the relative standard deviation shown in figure 15. It is noted that the
frequencies of modes 2 and 3 found by the previous GSA are 0.224 and 0.579, respectively,
which are covered by the broadband spectrum for the wall Stanton number.

4.2. Unsteady flow reattachment

Since the flow reattachment directly influences the downstream reattached flow, it is
necessary to study the unsteadiness near reattachment. Figure 18 shows the temporal
history of the spanwise-averaged reattachment position and the particular reattachment
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Figure 18. Temporal history of reattachment positions in comparison with wall Stanton number. The black
solid line corresponds to the reattachment position for the plane of symmetry (z/L = 0.5) and the red solid line
to the spanwise-averaged reattachment position. The dashed line is the wall Stanton number signal shown in
figure 9.

position on the plane of symmetry (z/L = 0.5), in comparison with the downstream wall
Stanton number signal. Unlike the pulsation of the reattachment point at z/L = 0.5, the
spanwise-averaged reattachment point is nearly invariant, indicating a steady state for the
spanwise-averaged separation bubble. It should be mentioned that the spanwise-averaged
separation position also maintains temporarily invariant. This can be observed in the
supplementary animation. Therefore, the well known breathing of the separation bubble in
turbulent SWBLI (Priebe & Martin 2012; Clemens & Narayanaswamy 2014; Pasquariello,
Hickel & Adams 2017) is absent here. Note however, that the separation bubble size in the
present case is much larger than those in the turbulent flow.

By comparing the temporal distribution of the reattachment position at z/L = 0.5 and
the downstream wall Stanton number, a generally opposite trend is apparent in figure 18;
when the reattachment position moves downstream, the Stanton number decreases, and
vice versa. This opposite trend reveals a close link between flow reattachment and the
downstream surface heat flux streaks, which can be explained by showing the streamline
topology at reattachment. For the flow reattachment with accompanying streamwise
streaks, Ginoux (1971) and Inger (1977) proposed a three-dimensional topology of the
limiting streamline near reattachment, which was further improved by Cao et al. (2019a)
and Kavun et al. (2019). As shown in figure 19(a), a series of singularities (nodes and
saddle points) are distributed along the reattachment line, and nodes are located upstream
of saddle points, which is confirmed by the present DNS results (see figures 8 and 195). In
addition, this streamline topology is similar to that induced by global instability (Sidharth
et al. 2018). This similarity suggests a continuous influence of global instability on the
saturated flow. Downstream of a saddle point, the flow is forced to coalesce, resulting
in a lift-up effect of the reattached boundary layer. As a result of a three-dimensional
reattaching shear layer and this flow topology at reattachment, a hot streak (large S7) is
always located downstream of a node and a cold streak (small St) downstream of a saddle
point. Therefore, the pulsation of the reattachment position is accompanied by a variation
of the downstream surface heat flux. In addition, the spectra of the reattachment position
signal are the same as that of the wall Stanton number due to its opposite behaviour.

The above analyses revealed the unsteady behaviour of the streamwise heat flux streaks
and their connection to the flow reattachment. It is shown that the surface heat flux are
coupled with the pulsation of reattachment line, oscillating at relatively low frequencies.
These results indicate that the unsteadiness originates from the three-dimensional
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Figure 19. (a) Streamline topology near reattachment proposed by Cao et al. (2019a). (b) Streamlines on a
near-wall plane (y,/L = 0.0008) embedded in the wall Stanton number contour at fu.,/L = 100. Here N and
S denote nodes and saddle points, respectively.

separation bubble. As revealed by the GSA performed earlier, two oscillatory global modes
exist in the separation bubble with respect to the two-dimensional base flow. Hence, one
may conceive that the unsteadiness in the saturated separation bubble flow is triggered
by the global instability. In what follows, the separation bubble flow with respect to its
saturated state is examined in an attempt to uncover its instability.

5. Dynamic mode decomposition of the separation bubble flow

Dynamic mode decomposition, developed by Schmid (2010), is a data processing
algorithm that extracts coherent spatial structures sharing the same temporal frequency.
The extracted dynamic modes are a reduced-order representation of the underlying flow
field. The resulting eigenvalues w; encode the temporal frequency and growth/decay rate
of the DMD modes. As a post-processing procedure for selecting DMD modes and
eigenvalues, sparsity-promoting dynamic mode decomposition (SPDMD) has recently
been developed by Jovanovi¢, Schmid & Nichols (2014) to achieve a desirable trade-off
between the quality of approximation and the number of modes that are used to
approximate the given flow fields. It facilitates the selection of the dynamically most
important modes of the underlying flow field. For the detailed algorithm of processing
the mode decomposition and selection please refer to Schmid (2010) and Jovanovic et al.
(2014).

We subsequently perform DMD for the fully saturated separation bubble flow. In
particular, the instantaneous fields of the spanwise velocity component (w/uq,) for the
plane of symmetry are decomposed. The database, extracted from fus,/L = 100 ~ 130,
includes 1000 snapshots which are equispaced by a time interval of Atus,/L = 0.03. This
yields a frequency resolution of 0.033 < fL/uy < 16.7. The spectrum of the eigenvalues
obtained from the standard DMD algorithm is shown in figure 20(a). The resulting modes
are symmetric about the real axis due to the real-valued input data. It is apparent that
almost all eigenvalues reside on the unit circle. This is expected for a statistically stationary
system as the growth/decay rate is nearly zero.
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Figure 20. Spectrum of the eigenvalues obtained from the standard DMD (circles) and the modes selected by
SPDMD (red triangles) for a subset of (a) Ny, = 36, (b) N5 = 22 and (c) Ny, = 5. The green line represents
the unit circle.

The SPDMD algorithm is processed to facilitate the selection of dynamically important
modes. The number of the retained DMD modes (Ny,) resulting from the SPDMD
is controlled by a user-defined parameter, which is a measure of preference between
approximation quality and solution sparsity (Jovanovi¢ et al. 2014). It is found that to
reduce the performance loss to 16 %, a subset of Ny, = 36 modes has to be included. These
modes nearly cover all the modes in the low-frequency region, as shown in figure 20(a).
The associated frequencies (fL/us) for these modes range from O to 1.6. This result
indicates that the considered unsteady flow has a broadband spectrum. This is consistent
with the PSD analysis for the downstream flow (see, for example, figure 17). If the number
of selected modes are reduced to 22 (figure 20b), 50 % of the total energy is covered and the
associated frequency range is 0 ~ 0.9. The five most energetic modes shown in figure 20(c)
cover 20 % of the energy among all the modes. These modes are labelled as MO, M1,
M2, M3 and M4. The associated frequencies are fL/us = 0, 0.07, 0.15, 0.30 and 0.47,
respectively. It is noted that these modes yield a typical representation of the considered
data sequence. By examining the mode shape for all the 36 modes in figure 20(a), we
found that they share similar flow structures compared with modes M0-M4.

Figure 21 shows the real part of modes M0, M1, M3 and M4. The mode MO has a
zero frequency and hence is related to the time-averaged flow. For the other modes, the
shown contours represent the fluctuations w'/u, associated with a particular frequency.
It is apparent that streamwise periodic structure exists in the separation bubble flow. This
structure is consistent with the shape of modes 2 and 3 shown in figure 14(b,c) as well
as that of the oscillatory unstable mode found by Sidharth et al. (2018). Additionally, the
length scale of the periodic structure decreases with increasing frequency. It is noted that
these structures are mainly located at the upstream half of the recirculation bubble. The
core of the recirculation bubble is located at x/L = 1.04.

Furthermore, figure 22 illustrates the position of the periodic structure with respect to
the shear layer. Specifically, two isolines of the streamwise velocity (#/us = 0.1 and
0.9) are utilised to cover the main part of the shear layer in figure 22(a). Then, the two
lines are embedded in the contour for mode M4, as shown in figure 22(b). Note that
for a better visualisation, the scales of the horizontal and vertical coordinates are set to
be independent. It is clear that the shear layer is able to entrain the periodic structure
downstream. This shear layer entrainment is the key to connect the unsteadiness of the
separation bubble flow to the reattached flow, which causes the pulsation of reattachment
position and the low-frequency heat flux fluctuation downstream of reattachment. In fact,
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Figure 21. The DMD modes visualised by contours of spanwise velocity component (w/u«o). Panels (a—d)
correspond to the real part of modes MO, M1, M3 and M4. Here R denotes the reattachment point.
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Figure 22. (a) Two isolines for u/u~, = 0.1 and u/u~, = 0.9 embedded in the contour of the velocity gradient
du/dy which highlights the shear layer. (b) The same isolines as in panel (¢) embedded in the contour showing
the real part of mode M4.

figure 21(a,b) provides obvious evidence for the entrainment of the shear layer, where
the spanwise velocity perturbation is persistently stretched downstream of reattachment.
As aforementioned, the unsteadiness of the surface heat flux is featured by a propagation
speed of 0.7us. This speed is the convective speed at which the shear layer transports
the unsteadiness downstream. Therefore, it is concluded that the intrinsic instability in the
separation bubble is responsible for the unsteadiness of the considered compression ramp
flow.
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6. Concluding remarks
In the present work, a hypersonic compression ramp flow with a free stream Mach number

of 7.7 and a free stream Reynolds number of 4.2 x 10° based on the flat plate length
has been numerically investigated. The DNS results agree well with experimental data in
terms of the time-averaged wall pressure and surface heat flux distributions as well as the
wavelength of the observed heat flux streaks. Grid-convergence has been achieved for a
mesh resolution of 124 million grid points regarding the flow phenomenon of interest.

It was shown that in the absence of external disturbances, streamwise heat flux streaks
form on the ramp surface downstream of reattachment. The streaks are non-uniformly
distributed in the spanwise direction, which is consistent with experimental observations
(Simeonides & Haase 1995; Chuvakhov et al. 2017; Roghelia et al. 2017a,b). The
DNS results indicate that the considered compression ramp flow initially undergoes
an exponential growth stage and subsequently a stage of nonlinear saturation until the
quasi-steady state is achieved. At the exponential growth stage, the flow behaviour is in
good agreement with GSA predictions. Particularly, the mode shape, growth rate and
spanwise wavelength of the three-dimensional perturbation are identical with those of the
most unstable mode identified by GSA. The footprints of the global unstable modes are
also observed in the saturated flow.

The saturated flow was shown to be unsteady. Downstream of reattachment, the
surface heat flux exhibits a strong fluctuation associated with a broadband spectrum.
The dominating frequencies are concentrated on the low-frequency region. Moreover,
the fluctuation of the heat flux and therewith the unsteadiness of the heat flux streaks is
coupled with a pulsation of the reattachment position. The downstream flow unsteadiness
was shown to originate from the separation bubble flow.

Dynamic mode decomposition (standard DMD and SPDMD) was then employed to
analyse the dominant oscillatory modes in the saturated separation bubble flow. The
identified modes having strongest influence on the given snapshot sequence are also
characterised by low frequencies similar to those found by the PSD analysis. These
oscillatory modes exhibit streamwise periodicity in the separation bubble. This flow
structure is linked to the downstream reattached flow by the shear layer above the
separation bubble. The oscillatory modes extracted by DMD share similar flow structures
with the oscillatory modes found by the present GSA as well as the low-frequency
oscillatory mode found by Sidharth et al. (2018) for a separated double wedge flow.
Therefore, it can be concluded that the unsteadiness of the considered hypersonic
compression ramp flow has its origin in the intrinsic instabilities of the fluid dynamic
system.

While centrifugal and baroclinic effects play an important role in amplifying
external disturbances and generating streamwise streaks (Zapryagaev et al. 2013;
Dwivedi et al. 2019), the present analyses demonstrate that in the absence of forced
external disturbances, the spanwise interval between the surface heat flux streaks
downstream of the separation region agrees well with the higher harmonics of the
most unstable global modes. Therefore, the importance of instabilities in the separation
bubble in the formation of downstream heat flux streaks, which has been extensively
investigated by Sidharth et al. (2017, 2018) for different geometries, is confirmed. The
three-dimensionality and unsteadiness triggered by the global instabilities of the dynamic
system may destabilise the flow and cause transition to turbulence in a more complex
manner, which deserves further investigation.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2020.1093.
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