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A kinetic model and corresponding high-order macroscopic model for the accurate
description of rarefied polyatomic gas flows are introduced. The different energy
exchange processes are accounted for with a two term collision model. The proposed
kinetic model, which is an extension of the S-model, predicts correct relaxation of
higher moments and delivers the accurate Prandtl (Pr) number. Also, the model has
a proven linear H-theorem. The order of magnitude method is applied to the primary
moment equations to acquire the optimized moment definitions and the final scaled set
of Grad’s 36 moment equations for polyatomic gases. At the first order, a modification
of the Navier–Stokes–Fourier (NSF) equations is obtained. At third order of accuracy,
a set of 19 regularized partial differential equations (R19) is obtained. Furthermore,
the terms associated with the internal degrees of freedom yield various intermediate
orders of accuracy, a total of 13 different orders. Thereafter, boundary conditions for
the proposed macroscopic model are introduced. The unsteady heat conduction of a
gas at rest is studied numerically and analytically as an example of a boundary value
problem. The results for different gases are given and effects of Knudsen numbers,
degrees of freedom, accommodation coefficients and temperature-dependent properties
are investigated. For some cases, the higher-order effects are very dominant and the
widely used first-order set of the NSF equations fails to accurately capture the gas
behaviour and should be replaced by the proposed higher-order set of equations.

Key words: mathematical foundations, micro-/nano-fluid dynamics, rarefied gas flow

1. Introduction

The Knudsen number, Kn, is a measure illustrating the degree of rarefaction in a
gas, therefore it is used to characterize processes in kinetic theory. It is defined as
the ratio of molecular mean free path or time to the characteristic length or time of
the system (Kn = λ/L0 = τ/τ0). At the low Knudsen range (Kn < 0.01), the flow is
in the continuum regime and the classical Navier–Stokes–Fourier (NSF) equations are
valid (Karniadakis, Beskok & Aluru 2006). However, in the transition flow regime,
i.e. at intermediate Knudsen numbers, the equations of conventional hydrodynamics
fail in the description of the gas behaviour. Flows in micro-electro-mechanical
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438 B. Rahimi and H. Struchtrup

systems (MEMS) and high vacuum systems are in this regime (Gad-el Hak 2001;
Rahimi & Niazmand 2014). Boltzmann (1872) proposed a transport equation which
models the evolution of the velocity distribution function over time and space. This
equation, known as the Boltzmann equation, was a breakthrough in the kinetic
theory and offered accurate description of the gas flow for all Kn numbers. However,
solving the Boltzmann equation directly, deterministically or stochastically, is usually
expensive and cumbersome. As an alternative to the Boltzmann equation, kinetic
theory provides macroscopic models for not too large Knudsen numbers (Struchtrup
2005b). Macroscopic models are derived as approximations to the Boltzmann equation.
These models offer high computational speed and explicit equations for macroscopic
variables, which are helpful for understanding and analysing the flow behaviour (Rana,
Torrilhon & Struchtrup 2013).

Macroscopic models are classically obtained by Chapman–Enskog (CE) method and
Grad’s moments method. Using the CE method, Nagnibeda & Kustova (2009) studied
the strong vibrational non-equilibrium in diatomic gases (Kustova & Nagnibeda 1996)
and reacting mixture of polyatomic gases for different cases with regards to the
characteristic time of the microscopic processes (Chikhaoui et al. 1997; Kustova
& Nagnibeda 1998; Kustova, Nagnibeda & Chauvin 1999; Chikhaoui et al. 2000),
and derived the first-order distribution function and governing equations. Cai & Li
(2014) extended the numerical regularized moment method of arbitrary order (NRxx)
model to polyatomic gases using the ellipsoidal-statistical-Bhatnagar–Gross–Krook
(ES-BGK) model of Andries et al. (2000) and Brull & Schneider (2009). Arima
et al. (2012) developed a generalized macroscopic 14 field theory for the polyatomic
gases, based on the methods of extended thermodynamics (Müller & Ruggeri 2013;
Ruggeri & Sugiyama 2015). Tantos, Valougeorgis & Frezzotti (2015), Tantos et al.
(2014) studied steady state heat transfer between parallel and coaxial cylinders using
a BGK type model of Holway (1966) and DSMC simulations. The Burnett equations
for monatomic gases in cylindrical coordinates obtained by the CE method are given
by Singh & Agrawal (2014). Also, Sone (2012) developed systematic asymptotic
solutions of the Boltzmann equation, and at small Knudsen numbers, an interesting
phenomenon named the ghost effect was observed.

Recently, as a first attempt in the field, Rahimi & Struchtrup (2014a,c,b) developed
a high-order macroscopic model for description of rarefied polyatomic gases using
order of magnitude method. The proposed model consists of 18 regularized PDEs for
third order of accuracy. This model is obtained using a simple BGK collision model,
which is known to give incorrect Prandtl number and relaxation times for higher
moments. Also, there was no boundary theory given for the polyatomic macroscopic
model. In the present paper, we shall address these issues by introducing a generalized
kinetic model and its boundary condition.

Our proposed kinetic model, which is an extension of the Rykov (1975) and
Shakhov (1968) models, predicts correct relaxation of heat fluxes and delivers the
accurate Prandtl number. In the model proposed here, the number of free relaxation
parameters is increased to total of four to allow proper relaxation times for four
higher moments compared to one and two parameters of the Shakhov and Rykov
models, respectively.

We use the order of magnitude method (Struchtrup 2004, 2005a, 2012; Struchtrup
& Torrilhon 2013) to derive a macroscopic model (the regularized set of equations)
from the proposed kinetic equation. This method bridges between the CE and Grad
moments method by using Knudsen number orders, and identifies the appropriate
moment definitions and moment equations required for a given order.
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The procedure of the order of magnitude method is as follows (Rahimi & Struchtrup
2014a):

(i) Construct large moments hierarchy: a system of moment equations using the
Grad’s method with arbitrary choice of definition and number of moments is
constructed.

(ii) Reconstructing moments: apply the CE method on the moments and determine
their leading-order terms. Define new moment definitions, using linear combination,
based on the goal of having minimal number of moments in each order of
magnitude.

(iii) Full set of equations: using the equations of old moments definitions, the set
of new moments equations is constructed. Apply the CE method on the new
moments to determine their leading order.

(iv) Model reduction: the full set of equations is rescaled considering the obtained
order of the new moments. Then, the model can be reduced to any desired order
of accuracy.

For the first time, the present paper establishes a theory of boundary conditions
for the obtained regularized moment equations based on physical and mathematical
requirements of the system. We use the recipe originally given by Grad (1949) based
on the kinetic accommodation model of Maxwell (1879), which here is generalized
for polyatomic gases. This gives a certain number of boundary conditions for the set
of regularized equations, so that we can explore the confined fluid problems, e.g. flow
in microchannels.

We lay out the foundation of the kinetic theory of polyatomic gases in the
next chapter. The two term collision operator is discussed and the generalized
Shakhov-BGK model is introduced. The general moments equation for polyatomic
gases is introduced and the system of Grad’s 36 moments equations is constructed
in § 3, which is item 1 in the above list. The CE method is applied, leading-order
terms are determined and the new set of moments is reconstructed in § 4, which is
item 2 in the list. Model reduction, item 4 in the list, is done in the § 5 and the
regularized equations for different orders of accuracy are presented. The theory of
kinetic boundary condition is given in § 6 and corresponding macroscopic boundary
conditions are introduced. Section 8 presents stationary heat conduction analysis. The
unsteady heat conduction problem is solved numerically and the linear steady case
is solved analytically. The obtained results from the proposed macroscopic model is
compared with direct simulation Monte Carlo (DSMC) simulations and Holway and
Andries kinetic results to show the good accuracy of the proposed model. Also, it is
shown that the NSF equations could not produce accurate results and different effects
on the gas, e.g. Knudsen numbers and degrees of freedom, are investigated. Final
conclusions are given in § 10.

2. Kinetic model
A collection of numerous interacting particles is called a gas in kinetic theory. These

particles are described by their position, xi, velocity, ci and their internal energy,

eint = I2/δ, (2.1)

in a seven-dimensional space known as phase space at time, t. Here, I is the internal
energy parameter which is non-negative; δ is the measure of excitation of internal
energy levels and non-translational degrees of freedom (DoF) of the gas. At a fully
excited internal DoF, δ is an integer. However, internal energy levels are usually
partially excited and δ is a fractional number. As temperature rises, that is increasing
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the internal energy of the gas to higher levels, the value of δ continuously increases.
Therefore, δ is a temperature-dependent continuous variable in our model, as given
in (2.12).

By introducing the particle or velocity distribution function f (x, c, I, t), the number
of molecules in a phase space element dx1 dx2 dx3 dc1 dc2 dc3 dI is

dN = f (x, c, I, t) dx dc dI. (2.2)

The evolution of the particle distribution functions is determined by the Boltzmann
equation, which is a nonlinear integro-differential equation written as (external forces
are ignored)

∂f
∂t
+ ck

∂f
∂xk
= S. (2.3)

The left- and right-hand sides indicate free flight and particle collisions, respectively.
The collision term, S, which is quadratic in distribution function, would take complex
integral form (Nagnibeda & Kustova 2009; Kremer 2010) which is difficult to work
with and costly in computing resources. Therefore, having simpler models to replace
the Boltzmann collision term which could preserve the basic relaxation properties and
give the correct transport coefficients is of more interest. We introduce a generalized
S-model for polyatomic gases in § 2.2 to achieve this.

2.1. Macroscopic quantities
The macroscopic properties such as mass density, momentum, energy and pressure are
moments of the distribution function. Other moments that have physical interpretations
are the pressure tensor and heat flux vector. General moment definition based on the
trace free part of the central moment is

uς,Ai1...in =m
∫∫

(I2/δ)AC2ςC<i1Ci2 . . .Cin>f dc dI, (2.4)

where
A= 0, 1, 2, 3, . . .
ς = 0, 1, 2, 3, . . . .

}
(2.5)

The basic and most important moments are:

Density ρ = m
∫∫

f dc dI =
∫
ρI dI = u0,0, (2.6a)

Velocity ρvi = m
∫∫

ci f dc dI or 0=m
∫∫

Ci f dc dI = u0,0
i , (2.6b)

Stress σij = m
∫∫

C<iCj>f dc dI = u0,0
ij , (2.6c)

Translational energy ρutr = 3
2

p=m
∫∫

C2

2
f dc dI = 1

2
u1,0, (2.6d)

Internal energy ρuint = m
∫∫

I2/δ f dc dI =
∫

I2/δρI dI = u0,1, (2.6e)

Translational heat flux qi,tr = m
∫∫

Ci
C2

2
f dc dI = 1

2
u1,0

i , (2.6f )

Internal heat flux qi,int = m
∫∫

CiI2/δ f dc dI = u0,1
i . (2.6g)
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Here, Ci = ci − vi, is the peculiar particle velocity and ρI =m
∫

f dc is the density of
molecules with the same internal energy. Moreover, utr and uint are the translational
energy and energy of the internal DoF, respectively, while qi,tr and qi,int are the
translational and internal heat flux vectors.

Regarding the energies, utr and uint, the classical equipartition theorem (Reif 2009)
states that in full thermal equilibrium, and with δ fully excited internal DoF, each
DoF contributes an energy of (1/2)θ to the energy of a particle, where θ = (kb/m)T
is temperature in specific energy units. Therefore the energy in equilibrium, for fully
excited internal DoF, can be written as

u= utr|E + uint|E =
(

3
2
+ δ

2

)
θ, (2.7)

where utr|E = (3/2)θ is the contribution from translational energy and uint|E = (δ/2)θ
is the contribution from the internal DoF.

In non-equilibrium processes, translational energy and internal energies cannot
be described by a single temperature, rather at least two distinct temperatures are
required. Furthermore, the equipartition theorem as stated above is only valid when the
internal DoF are either fully excited or frozen. Typically, for polyatomic gases, some
internal DoF are only partially excited, with the degree of excitation determined by
temperature. Therefore, δ is not an integer, but a continuous function of temperature,
that has integer values only for fully excited internal DoF. For convenience we
introduce the translational temperature θtr and the internal temperature θint which are
defined through the energies as

utr = 3
2
θtr and uint = δ(θint)

2
θint. (2.8a,b)

We note that these temperatures are not measurable temperatures as in the equilibrium
case, but rather convenient quantities to use instead of the energies utr and uint. In
thermal equilibrium, both temperatures agree, and are equal to the thermodynamic
temperature, θtr = θint= θ . With these definitions, the ideal gas law in non-equilibrium
reads p= ρθtr.

Just as we defined temperatures for the energies utr and uint, we can define an
overall temperature θ for the total energy. Similar to θtr and θint, the temperature θ is
a measure for energy, and not a measurable temperature. By definition, in equilibrium
θ is the thermodynamic temperature of the gas

u=
(

3
2
+ δ(θ)

2

)
θ = 3

2
θtr + δ(θint)

2
θint. (2.9)

The function δ can be found from measurements of specific heat in equilibrium as

Cv = du
dθ
= 3+ δ(θ)+ θ dδ(θ)

dθ
2

. (2.10)

We will use third-order polynomial function for constant volume specific heat,

Cv =C0 +C1θ +C2θ
2 +C3θ

3; (2.11)
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the coefficients Cα can be determined from tabulated data, and are available in
databases (Borgnakke & Sonntag 2009). From (2.10) and (2.11) we find δ(θ) as a
polynomial of the same order,

δ(θ)= 2C0 − 3+C1θ + 2
3

C2θ
2 + C3

2
θ 3. (2.12)

From the definition of the overall temperature (2.9) we find a relation for δ evaluated
at θ and θint, δ(θ) = δ(θint)(θint/θ) − (3/2)((θ − θtr)/θ). From now on, we shall
consider mainly states not far from equilibrium, so that θint/θ w 1� (θ − θtr)/θ holds.
For convenience, we shall ignore the small difference between δ(θint) and δ(θ), and
will have only the latter appear in our equations.

In equilibrium the three temperatures agree, θtr|E = θint|E = θ , while in non-
equilibrium they will differ. We define the non-equilibrium part of the temperature,
named the dynamic temperature, as

1θ = θ − θtr. (2.13)

The first 36 raw moments are listed as,

Φ36 = {ρ, vi, θ, 1θ, σij, qi,tr, qi,int, u1,0
ij , u2,0, u0,1

ij , u1,1, u0,0
ijk }. (2.14)

2.2. Generalized S-model
The state of molecules and the distribution function will be changed by interaction
between molecules (collisions). Different exchange processes occur on different
characteristic time scales. In all collisions, the translational energy is exchanged
between particles. However, only in some of the collisions is internal energy
exchanged as well. These differences, and their relation to the macroscopic time
scale, is a key feature for defining the state of a gas as being in non-equilibrium or
equilibrium. The macroscopic time scale, which is the time needed for any changes
to happen in the dynamics of the gas, is the reference time scale here. In cases
when there are two different microscopic characteristic time scales, one smaller than
and one comparable to, the macroscopic time scale, both rapid equilibrium and
slow non-equilibrium processes exist in the gas. The case with a smaller time scale
is associated with many collisions within the macroscopic time scale and results
in a rapid equilibrium process. On the other hand, the case with a comparable
time scale results in a slow non-equilibrium process. Also, all the processes with
characteristics time much larger than macroscopic time scale appear to be frozen
during the macroscopic time scale. While in every collision the translational energy
is exchanged between molecules, internal energy is only exchanged in some of
the collisions. Therefore, the translational microscopic time, τtr, is smaller than the
internal microscopic time, τint.

To model the collision term, we use a two term BGK-type collision operator,

∂f
∂t
+ ck

∂f
∂xk
= Str + Sint, (2.15a)

Str = − 1
τtr
( f − ftr), (2.15b)

Sint = − 1
τint
( f − fint). (2.15c)

The first term, Str, describes elastic collisions between particles, i.e. collisions in which
the particles only exchange translational energy. The relaxation time τtr is the inverse
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average collision frequency for this type of collision, which leads to a relaxation to
the distribution function ftr. The second term, Sint, describes inelastic collisions, i.e.
collisions in which the particles exchange internal and translational energies at the
same time. The relaxation time τint is the inverse average collision frequency for this
type of collision, which leads to a relaxation to the distribution function fint.

In the standard BGK model (Bourgat et al. 1994; Andries et al. 2000; Rahimi &
Struchtrup 2014a), the targeted distributions, ftr and fint are chosen as the Maxwellian
equilibrium distributions ftr0 and fint0 , respectively, which are given by

ftr0 =
ρI

m

(
1

2πθtr

)3/2

exp
[
− 1

2θtr
C2

]
, (2.16)

fint0 =
ρ

m
1

(2π)3/2θ (δ+3)/2

1

Γ

(
1+ δ

2

) exp
[
−1
θ

(
C2

2
+ I2/δ

)]
. (2.17)

Here, ftr0 is the equilibrium distribution for particles with frozen internal DoF. Also,
fint0 is the full equilibrium distribution for the gas, which experienced full exchange
of the translational and internal energies.

However, the equations for moments σij, qi,tr, qi,int, u1,0
ij , u2,0, u0,1

ij , u1,1 and u0,0
ijk

corresponding to the original BGK model, have the form of (Rahimi & Struchtrup
2014a)

∂uς,Ai1...in

∂t
+ · · · =−

[
1
τtr
+ 1
τint

]
uς,Ai1...in, (2.18)

with the same relaxation time for all of them. This could not predict the correct
relaxation of the higher moments and the Prandtl number. Shakhov (1968) proposed a
modified BGK model for a monatomic gases to obtain the correct Pr number. Rykov
(1975) introduced a model to diatomic molecules with rotational movements and Wu
et al. (2015) extended this to polyatomic gases. Here, we introduce a generalized and
modified S-model for polyatomic gases by obtaining ftr and fint which provide the
correct Pr number and distinct relaxation times for higher moments.

The relaxation times of the Boltzmann collision term for Maxwell molecules in
the case of a monatomic gases for some higher moments are presented in table 1
(Truesdell & Muncaster 1980; Torrilhon, Au & Struchtrup 2003). The relaxation time
of u1,0

ij is close to the relaxation time of σij, but for other moments the differences are
considerable and should not be ignored. Therefore, we obtained distribution functions,
ftr and fint, in order to predict distinct relaxation of these higher moments and their
internal moment counterparts {qi,tr, qi,int, u2,0, u1,1} by introducing four free relaxation
parameters, Rqtr , Rqint , Ru2,0 and Ru1,1 . The resulting relaxation time for these higher
moments from our proposed model are shown in table 2 and compared with the
relaxation of the BGK model. Values of these relaxation parameters will be obtained
using fitting to experimental and DSMC simulation data. It should be pointed out
here that two relaxation parameters, Rqtr and Rqint , are analogies to the Pr number
(5.11). The microscopic relaxation in our model is independent of molecular velocity.
In this sense the behaviour of our model is similar to the behaviour of Maxwell
molecules. This basically influences the molecular velocity distribution function, but
the physically meaningful moments are not influenced (Gallis & Torczynski 2011).
The procedure and final form of the distribution functions are given in appendix A,
along with some important features of the proposed model, e.g. recovering Maxwellian
functions in equilibrium and the linear H-theorem.
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σij qi u2,0 u1,0
ij

τ Pr τ 2
3τ

7
6τ

TABLE 1. Maxwell molecule relaxation times.

Moment qtr qint u2,0 u1,1

Relaxation time GS model Rqtrν Rqintν Ru2,0ν Ru1,1ν

Relaxation time BGK model ν ν ν ν

TABLE 2. Relaxation times for higher moments based on four new free parameters and
comparison with the BGK model.

3. Moment equations
Moment methods replace the kinetic equation by a finite set of differential equations

for the moments of the distribution function. Therefore, the moment equations can
be used to approximately describe an ideal gas flow. Also, increasing the number of
moments typically leads to a better approximation (Müller & Ruggeri 2013).

3.1. General moment equation
The moment equations are obtained by taking weighted averages of the kinetic
equation. Multiplying the kinetic equation (2.15a) with m(I2/δ)AC2ςC<i1Ci2 . . . Cin>
and subsequent integration over velocity space and the internal energy parameter
gives the general moment equation as

Duς,Ai1...in

Dt
+ 2ςuς−1,A

i1...ink
Dvk

Dt
+ 2ςuς−1,A

i1...inkj
∂vj

∂xk
+ n

2n+ 1
2ςuς,Aj<i1...in−1

∂vj

∂xin>

+ ∂uς,Ai1...ink

∂xk
+ 2ς

n+ 1
2n+ 3

uς,A<i1...in

∂vk>

∂xk
+ n

2n+ 1
∂uς+1,A

<i1...in−1

∂xin>

+ 2ς
n

2n+ 1
uς,A<i1...in−1

Dvin>

Dt
+ n− 1

2n− 1
nuς+1,A

<i1...in−2

∂vin−1

∂xin>
+ nuς,A<i1...in−1

Dvin>

Dt

+ uς,Ai1...in

∂vk

∂xk
+ n

2n+ 1
n− 1
2n− 1

2ςuς+1,A
<i1...in−2

∂vin−1

∂xin>
+ nuς,Ak<i1...in−1

∂vin>

∂xk

= 1
τtr

[
uς,Ai1...in|E,tr − uς,Ai1...in

]
+ 1
τint

[
uς,Ai1...in|E,int − uς,Ai1...in

]
. (3.1)

Here, the relation uς,A〈i1...in〉k = uς,Ai1...ink + (n/(2n+ 1))uς+1,A
<i1...in−1

δin>k is used (Struchtrup
2005b).

3.2. Conservation laws
Conservation laws for mass (ς = A= n= 0), momentum (ς = A= 0, n= 1) and the
balance laws for translational (ς = 1, A = n = 0) and internal (ς = 0, A = 1, n = 0)
energies are obtained from the general moment equation (3.1) as

Dρ
Dt
+ ρ ∂vi

∂xi
= 0, (3.2a)
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Dvi

Dt
+ 1
ρ

∂σij

∂xj
+ ∂θtr

∂xi
+ θtr

ρ

∂ρ

∂xi
= 0, (3.2b)

3
2
ρ

Dθtr

Dt
+ ∂qi,tr

∂xi
+ σij

∂vj

∂xi
+ ρθtr

∂vi

∂xi
= 3ρ
τint

(θ − θtr)

2
, (3.2c)

ρ
D
δ

2
θint

Dt
+ ∂qi,int

∂xi
=−3ρ

τint

(θ − θtr)

2
. (3.2d)

The conservation of the total energy results from summation of the balance laws for
translational and internal energies as

ρ
3+ δ + θ dδ

dθ
2

Dθ
Dt
+ ∂qi,int

∂xi
+ ∂qi,tr

∂xi
+ σij

∂vj

∂xi
+ ρ(θ −1θ)∂vi

∂xi
= 0. (3.2e)

Therefore, the balance law for dynamic temperature (2.13) is obtained as

ρ
D1θ

Dt
+ 2

3+ δ + θ dδ
dθ

∂qi,int

∂xi
−

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

) ∂qi,tr

∂xi
−

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)σij
∂vj

∂xi

−
2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)ρ(θ −1θ)∂vi

∂xi
=− ρ

τint
1θ. (3.2f )

3.3. Balance laws

Moment equations for stress tensor, σij = u0,0
ij , translational heat flux, qi,tr = (1/2)u1,0

i

and internal heat flux, u0,1
i = qi,int, which are present in the conservation laws, are

obtained from the general moment equation (3.1) as

Dσij

Dt
+ ∂u0,0

ijk

∂xk
+ 4

5
∂q<i,tr

∂xj>
+ 2σk<i

∂vj>

∂xk
+ σij

∂vk

∂xk

+ 2ρ[θ −1θ ]∂v<i

∂xj>
=−

[
1
τtr
+ 1
τint

]
σij, (3.3a)

Dqi,tr

Dt
− 5

2
[θ −1θ ]

[
∂σij

∂xj
+ ρ ∂θ

∂xi
− ρ ∂1θ

∂xi

]
+ σik

[
∂1θ

∂xk
− ∂θ

∂xk
− [θ −1θ ]∂ ln ρ

∂xk
− 1
ρ

∂σkj

∂xj

]
+ 1

2
∂u1,0

ik

∂xk
+ 1

6
∂u2,0

∂xi
+ u0,0

ijk
∂vj

∂xk
+ 7

5
qi,tr

∂vk

∂xk
+ 7

5
qk,tr

∂vi

∂xk

+ 2
5

qj,tr
∂vj

∂xi
− 5

2
[θ 2 − 2θ1θ +1θ 2] ∂ρ

∂xi
=−Rqtr

[
1
τtr
+ 1
τint

]
qi,tr, (3.3b)

Dqi,int

Dt
− δθ + 31θ

2

[
∂σij

∂xj
+ ρ ∂θ

∂xi
− ρ ∂1θ

∂xi
+ ρ[θ −1θ ]∂ ln ρ

∂xi

]
+ ∂u0,1

ik

∂xk

+ 1
3
∂u1,1

∂xi
+ qk,int

∂vi

∂xk
+ qi,int

∂vk

∂xk
=−Rqint

[
1
τtr
+ 1
τint

]
qi,int. (3.3c)
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These equations contain the higher moments u1,0
ij , u2,0, u0,0

ijk , u0,1
ij and u1,1, for which

full moment equations are obtained from (3.1) with the appropriate choices for ς
and A. Choosing all moments mentioned so far as variables will construct a set of
equations for 36 moments listed in (2.14).

Set of 36 moments equations contain higher moments, {u1,0
ijk , u2,0

i , u0,0
ijkl, u0,1

ijk , u1,1
i },

under the space derivatives. We need constitutive equations for these higher moments
to close the system of equations with only 36 variables. The generalized Grad’s
distribution function (B 1) for polyatomic gases (see appendix B) is used to obtain
constitutive equations as

u1,0
ijk = 9θu0,0

ijk , u2,0
i = 28θqi,tr, u0,0

ijkl = 0,

u0,1
ijk =

δ

2
θu0,0

ijk , u1,1
i = (5qi,int + δqi,tr)θ.

 (3.4)

Substituting these equations into the balance laws for the moments u1,0
ij , u2,0, u0,0

ijk , u0,1
ij

and u1,1, results in

Du1,0
ij

Dt
− u0,0

ijk 2 [θ −1θ ]
∂ ln ρ
∂xk
− 28

5
[θ −1θ ] q<i,tr

∂ ln ρ
∂xj>

+ 7u0,0
ijk
∂θ

∂xk
+ 2u0,0

ijk
∂1θ

∂xk
+ 28

5
q<i,tr

∂θ

∂xj>

+ 28
5

q<i,tr
∂1θ

∂xj>
+ 9θ

∂u0,0
ijk

∂xk
+ 2

5
28θ

∂q<i,tr

∂xj>
+ 6

7
u1,0
<ij
∂vk>

∂xk

+ 4
5

u1,0
j<i
∂vj

∂xj>
+ 2u1,0

k<i
∂vj>

∂xk
+ u1,0

ij
∂vk

∂xk
+ 14

15
u2,0 ∂v<i

∂xj>

− 2
1
ρ

u0,0
ijk
∂σkl

∂xl
− 28

5
1
ρ

q<i,tr
∂σj>l

∂xl
=−

[
1
τtr
+ 1
τint

]
u1,0

ij , (3.5a)

Du2,0

Dt
− 8qk,tr[θ −1θ ]∂ ln ρ

∂xk
+ 28θ

∂qk,tr

∂xk
− 8

qk,tr

ρ

∂σkj

∂xj

+ 20qk,tr
∂θ

∂xk
+ 8qk,tr

∂1θ

∂xk
+ 4u1,0

kj
∂vj

∂xk
+ 7

3
u2,0 ∂vk

∂xk

= Ru2,0

τtr
[(15ρ[θ 2 − 2θ1θ +1θ 2])− u2,0] + Ru2,0

τint
[(15ρθ 2)− u2,0], (3.5b)

Du0,0
ijk

Dt
− 3

σ<ij

ρ

∂σk>l

∂xl
+ 3

7
∂u1,0

<ij

∂xk>
− 3σ<ij

∂θ

∂xk>

− 3[θ −1θ ]σ<ij
∂ ln ρ
∂xk>

+ 3σ<ij
∂1θ

∂xk>
+ 3u0,0

l<ij
∂vk>

∂xl

+u0,0
ijk
∂vl

∂xl
+ 12

5
q<i,tr

∂vj

∂xk>
=−

[
1
τtr
+ 1
τint

]
u0,0

ijk , (3.5c)

Du0,1
ij

Dt
− 2q<i,int

1
ρ

∂σj>k

∂xk
− 2

[θ −1θ ]
ρ

q<i,int
∂ρ

∂xij>
+ δ

2
θ
∂u0,0

ijk

∂xk
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+u0,0
ijk
θ

2
∂δ

∂xk
+ δ

2
u0,0

ijk
∂θ

∂xk
+ 2δ

5
q<i,tr

∂θ

∂xj>
+ 2q<i,int

∂1θ

∂xj>

+ 2θ
∂q<i,int

∂xj>
+ 2δ

5
θ
∂q<i,tr

∂xj>
+ 2

5
θq<i,tr

∂δ

∂xj>
+ 2u0,1

k<i
∂vj>

∂xk

+u0,1
ij
∂vk

∂xk
+ 2

3
u1,1 ∂v<i

∂xj>
=−

[
1
τtr
+ 1
τint

]
u0,1

ij , (3.5d)

Du1,1

Dt
− 2

qk,int

ρ

∂σkj

∂xj
− 2qk,int[θ −1θ ]∂ ln ρ

∂xk
+ 2qk,int

∂1θ

∂xk

+ (3qk,int + δqk,tr)
∂θ

∂xk
+ 5θ

∂qk,int

∂xk
+ δθ ∂qk,tr

∂xk

+ θqk,tr
∂δ

∂xk
+ 2u0,1

kj
∂vj

∂xk
+ 5

3
u1,1 ∂vk

∂xk

= Ru1,1

τtr

[
3ρ
[
δ

2
θ + 3

2
1θ

]
[θ −1θ ] − u1,1

]
+ Ru1,1

τint

[(
3
δ

2
ρθ 2

)
− u1,1

]
. (3.5e)

These balance laws, along with the conservation laws (3.2f ), form a closed set of
36 equations associated with the variables listed in (2.14).

Applying the order of magnitude method to this set of 36 moment equations will
ensure that the minimum number of moments with optimized definitions are used for
any wanted order of accuracy in terms of the powers of the Knudsen numbers. This
method, in the first step, applies the CE expansion on the moment equations to find
their leading-order terms. Then, new moment definitions are constructed such that only
those which are linearly independent have the same order of accuracy. This will give
the minimum number of moments at a certain order of accuracy. The CE expansion
is carried out and new optimized moment definitions are obtained in the next section.

4. Optimizing moment definitions
For the proposed polyatomic kinetic model (2.15a), we have two different relaxation

times corresponding to two different mean free paths and two distinct Knudsen
numbers, Kntr = τtr/τ0 and Knint = τint/τ0. The expansion parameter in the CE method
is the Knudsen number, of which we have two, Kntr and Knint, to account for
translational and internal energy exchange. Kntr should be less than Knint, because
internal energies are exchanged only in a smaller portion of collisions and τint > τtr.
Considering both Knudsen numbers to be less than unity, we define the internal
smallness parameter ε as

Kntr = ε and Knint = εα. (4.1a,b)

With this, the two Knudsen numbers are replaced by a single smallness parameter,
ε, and a magnifying parameter, α, with 0 < α < 1. The lower limit of the internal
smallness parameter is given by α = 1 and the upper limit is reached when α = 0.
While the ratio of relaxation times τtr/τint depends on the state of the gas, the ratio
τtr/τ0 = ε =Kntr depends on the relevant macroscopic time scale τ0. Accordingly, the
values of both α and ε =Kntr depend on the chosen scale. We (Rahimi & Struchtrup
2014a) show that usually small values of α are relevant and here we only consider
α < 0.25.
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The CE expansion on the moment equations must be performed for both Knudsen
numbers, that is for all powers of ε and εα. Due to the large ratio possible between
the Knudsen numbers, the underlying multiscale problem might require more than a
simple accounting of terms with the same order only. For instance, when Kn2

int'Kntr,
proper accounting to first order in Kntr might require consideration of different orders
in the CE expansion: expansion to first order in Kntr, but to second order in Knint. The
conserved variables, density, velocity and total temperature, have equilibrium values
and hence are at zero order. The remaining variables in the list of (2.14) are expanded
in the smallness parameter ε, where we account series in ε and εα as

ψ = ε0α[ε0ψ (0,0) + ε1ψ (0,1) + ε2ψ (0,2) + ε3ψ (0,3) + · · ·]
+ ε1α[ε0ψ (1,0) + ε1ψ (1,1) + ε2ψ (1,2) + · · ·] + ε2α[ε0ψ (2,0) + ε1ψ (2,1) + · · ·] + · · · ,

(4.2)

where, ψ (a,b) is the moment expansion coefficient at order εaα+b.
The leading-order terms of the moments are found as the first non-vanishing term

in their expansion; we find

O(ε0) : u2,0(0,0) = 15ρθ 2, (4.3a)

O(ε0) : u1,1(0,0) = 3δ
2
ρθ 2, (4.3b)

O(εα) : 1θ (1,0) = τint

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)θ ∂vi

∂xi
, (4.3c)

O(ε1) : q(0,1)i,tr =−
τtr

Rqtr

5
2
ρθ
∂θ

∂xi
, (4.3d)

O(ε1) : u1,0(0,1)
ij =−τtr14ρθ 2 ∂v<i

∂xj>
, (4.3e)

O(ε1) : u0,1(0,1)
ij =−τtrδρθ

2 ∂v<i

∂xj>
, (4.3f )

O(ε1) : σ
(0,1)
ij =−τtr2ρθ

∂v<i

∂xj>
, (4.3g)

O(ε1) : q(0,1)i,int =−
τtr

Rqint

(
δ + θ dδ

dθ

)
2

ρθ
∂θ

∂xi
, (4.3h)

O(ε2) : u0,0(0,2)
ijk =−τtr

(
3
7
∂u1,0

<ij

∂xk>
− 3σ<ij

∂θ

∂xk>
− 3θσ<ij

∂ ln ρ
∂xk>

+ 12
5

q<i,tr
∂vj

∂xk>

)
. (4.3i)

To leading order, the two scalar moments, u2,0(0,0) and u1,1(0,0), are proportional to the
total temperature and density. The heat fluxes, q(0,1)i,tr and q(0,1)i,int , are proportional to each
other, and also the three tensorial moments, σ (0,1)ij , u0,1(0,1)

ij and u1,0(0,1)
ij , are proportional

to each other.
We aim at having the smallest number of moments at each order. Higher-order

replacements for the scalars u2,0 and u1,1 are obtained by subtracting their leading-
order terms (4.3) to define new variables at higher orders as

w2,0 = u2,0 − 15ρθ 2, (4.4a)
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w1,1 = u1,1 − 3
2δρθ

2. (4.4b)

The dynamic temperature, 1θ = θ − θtr, is the only primary variable at order α.
The linear dependent vectors qi,tr and qi,int, which are of first order, can be combined

into one first-order vector, the total heat flux,

qi = qi,tr + qi,int, (4.5a)

and one unique higher-order variable, the heat flux difference, which is defined by
subtracting leading-order terms (4.3) to cancel them in the new variable as

1qi = qi,tr −
5Rqint(

δ + θ dδ
dθ

)
Rqtr

qi,int. (4.5b)

Similarly, the two-tensors can be combined such that only the stress tensor σij is of
first order, while the moments u1,0

ij and u0,1
ij are replaced by higher-order moments as,

u−ij = u1,0
ij −

14
δ

u0,1
ij , (4.6a)

u+ij = u1,0
ij + u0,1

ij −
(14+ δ)

2
θσij. (4.6b)

The second-order moment u0,0
ijk is the only three-tensor in the equations and thus

remains unchanged.
Equations for the new moments are obtained based on their definitions and a linear

combination of the primary moment equations. The above procedure:

(i) applying CE expansion on the moment equations;
(ii) obtaining leading-order term of moments;

(iii) defining new optimized linearly independent moments from linearly dependent
moments;

is repeated until full linearly independent moments are achieved. At the end, we
have defined four new moments as,

B−ij = u+ij −
11
14

δ

δ + 3
u−ij , (4.7a)

B+ij = u+ij + u−ij , (4.7b)

B+ =w1,1 −w2,0 − ( 3
2 [3− δ] + 30

)
ρθ1θ, (4.7c)

B− =w1,1 + 3
10 w2,0 + (9− 3

2 [3− δ]
)
ρθ1θ. (4.7d)

Therefore, we have the final set of 36 optimized moments at different orders as

O(ε0) : ρ, vi, θ, (4.8a)
O(εα) : 1θ, (4.8b)

O(ε2α) : B+, (4.8c)
O(ε1) : σij, qi, B−, (4.8d)

O(ε1+α) : 1qi, B+ij , (4.8e)

O(ε2) : B−ij , u0,0
ijk . (4.8f )

By construction, these variables are linearly independent in their leading orders.
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5. Model reduction
The explicit orders will now be used for model reduction such that in each order

under consideration, only terms up to the corresponding power of ε are kept while all
other terms can be ignored. We require the explicit order of all terms to be clearly
visible in the equations, hence the orders are made explicit with power of ε and εα.
In the next section, ε will be substituted by 1 so that the original form of equations
is recovered. The introduced notation allows us to arrange all terms by their explicit
ε orders.

The scaled conservation laws for mass, momentum and energy read

Dρ
Dt
+ ρ ∂vi

∂xi
= 0, (5.1a)

Dvi

Dt
+ θ ∂ ln ρ

∂xi
+ ∂θ
∂xi
− εα

[
∂1θ

∂xi
+1θ ∂ ln ρ

∂xi

]
+ ε1

[
1
ρ

∂σij

∂xj

]
= 0, (5.1b)

3+ δ + θ dδ
dθ

2
ρ

Dθ
Dt
+ ρθ ∂vi

∂xi
− εα

[
ρ1θ

∂vi

∂xi

]
+ ε1

[
∂qi

∂xi
+ σij

∂vj

∂xi

]
= 0. (5.1c)

The remaining scaled equations are presented in appendix C. While the expansion
series (4.2) contains all mixed powers of ε and εα, the final equations only contain
some terms. We are interested in terms up to ε3, and find only sets of equations at
the following powers:

{ε0, εα, ε2α, ε1, ε1+α, ε1+2α, ε1+3α, ε2−α, ε2, ε2+α, ε2+2α, ε2+3α, ε2+4α, ε3}. (5.2)

5.1. A recipe for choosing the set of equations
The relaxation of the internal DoF leads to various ordering sequences for different
values of α, which differ in particular in the terms associated with the dynamic
temperature 1θ . The accounting of these terms, which depends on the value of α
and the accuracy under consideration, needs great care. In order to decide which set
of equations we need to consider for a particular problem, the relaxation times, their
ratios and characteristic time or length scale must be known. Therefore, the particular
problem under consideration determines which set of equations should be used. This
choice depends on the values of both Knudsen numbers: if the value of Kntr is rather
small while Knint is relatively large, one will choose a model with high power in εα
and low power in ε; these are models with internal corrections to the NSF equations.
On the other hand, if both Knudsen numbers are small, one can use a lower accuracy
model, like the refined NSF equations. In problems when both Knudsen numbers are
large, particularly for order-unity values of Kntr, a higher order of accuracy is an
essential choice, e.g. one would choose the third-order R19 equations.

The following sections will discuss different sets of equations based on the desired
order of accuracy in the powers of ε. For this, we will consider the increasing
orders as laid out in (5.2) up to third order, but only present four main cases, ε0, ε1,
ε2 and ε3.

5.2. Zeroth order, ε0: Euler equations
We begin the reduction process with considering only the zeroth-order terms in the
conservation laws,

Dρ
Dt
+ ρ ∂vi

∂xi
= 0, (5.3a)
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Dvi

Dt
+ θ ∂ ln ρ

∂xi
+ ∂θ
∂xi
= 0, (5.3b)

3+ δ + θ dδ
dθ

2
ρ

Dθ
Dt
+ ρθ ∂vi

∂xi
= 0. (5.3c)

These equations form a closed set of equations for the variables {ρ, vi, θ}, the Euler
equations for polyatomic gases, with specific heat given in (2.10).

5.3. Order ε1: Refined Navier–Stokes–Fourier equations

For the first order, terms up to ε1 order must be considered in the conservation laws.
Hence, now all terms are relevant in the conservation laws,

Dρ
Dt
+ ρ ∂vi

∂xi
= 0,

ρ
Dvi

Dt
+ ∂ρ(θ −1θ)

∂xi
+ ∂σij

∂xj
= 0,

3+ δ + θ dδ
dθ

2
ρ

Dθ
Dt
+ ∂qi

∂xi
+ ρ(θ −1θ)∂vi

∂xi
+ σij

∂vj

∂xi
= 0.


(5.4)

These equations must be furnished with equations for 1θ , σij, qi at the required order.
To first order, the balance law for 1θ , which is at order εα, with terms up to order
ε1−α must be considered as

ρ
D1θ

Dt
+

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)ρ (1θ − θ) ∂vi

∂xi
=− ρ

τint
1θ, (5.5)

while the leading terms for stress tensor and total heat flux are obtained from (C 1b)
and (C 1c) as

σij =−τtr2ρθ
∂v<i

∂xj>
,

qi =−τtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

2Rqint Rqtr

ρθ
∂θ

∂xi
.


(5.6)

From the conservation laws, we recognize that in a moving gas the pressure is not
just the equilibrium ideal gas pressure ρθ , but p = ρθ − ρ1θ . For this reason, one
often denotes the second term as the dynamic pressure, (Kremer 2010; Arima et al.
2012), Π =−ρ1θ .

These first-order equations for σij and qi are the classical NSF equations, which
relate the stress deviator and heat flux to the gradients of velocity and temperature.
The factors between them are the shear viscosity µ and the heat conductivity κ which
we identify as

µ= τtrρθ and κ = τtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

2Rqint Rqtr

ρθ. (5.7a,b)
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We have internal DoF corrections to the (5.6) by considering order-εα terms from
(C 1b) and (C 1c), which results in corrected shear viscosity and heat conductivity as,

µ= τtrρ(θ −1θ) and κ = τtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

2Rqint Rqtr

ρ(θ −1θ). (5.8a,b)

The obtained relation between relaxation time and the shear viscosity is identical to
that for a monatomic gas. Internal DoF affect the heat conductivity, which differs from
the monatomic gas as extra means of energy transport (internal DoF) are present in
polyatomic gases. Therefore, the heat conductivity (5.8) consists of two parts based
on (4.3d) and (4.3h) as,

κtr = τtr
5

2Rqtr

ρ(θ −1θ), (5.9a)

κint = τtr

(
δ + θ dδ

dθ

)
2Rqint

ρ(θ −1θ). (5.9b)

In the classical Navier–Stokes equations, the dynamic pressure has the form Π =
−ν(∂vi/∂xi) where ν is the bulk viscosity. Comparing with the above, we identify a
relation between relaxation time τint and the bulk viscosity,

υ = τint

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)ρ(θ −1θ). (5.10)

The bulk viscosity is a function of the internal relaxation time, hence it will vanish
in a monatomic gas where no internal energy exchange occurs (δ = 0).

Experimental data of viscosities and specific heat (Poling et al. 2001; Borgnakke
& Sonntag 2009; Cramer 2012) will be used to obtain the temperature-dependent
relaxation times, τtr and τint, using (5.10) and (5.8).

The Prandtl number is defined as the dimensionless ratio of specific heat and shear
viscosity over heat conductivity (Struchtrup 2005b),

Pr=
5+ δ + θ dδ

dθ
2

µ

k
. (5.11)

This is a measure of the importance of momentum over thermal diffusivity. Based on
the obtained shear viscosity and heat conductivity definitions (5.8), the Prandtl number
is

Pr=

(
5+ δ + θ dδ

dθ

)
Rqint Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

. (5.12)

The values of the modelling parameters Rqint and Rqtr are restricted by the Prandtl
number and one of them depends on the other one through the Pr number. Viscosity
and heat conductivity values could be used to determine the heat fluxes relaxation
parameters. Therefore, the model provides the freedom to fit two parameters (Ru2,0 and
Ru1,1). These values can be found from fitting to experimental or DSMC simulation
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data for rarefied flows, such as heat conduction, damping of ultrasound, light scattering
experiments or shockwave structure.

What we have obtained here at first order are not the classical NSF equations, since
we have to use the full balance law (5.5) for 1θ (or dynamic pressure). The classical
NSF equations constitute a five variables model for {ρ, vi, θ}, while, the refined NSF
(RNSF) equations obtained have six independent field variables, {ρ, vi, θ, 1θ}.

5.4. Order ε2: refined Grad’s 14 moment equations
The relevant equations at the second order of accuracy are the conservation laws (5.4)
and the dynamic temperature equation with additional terms up to order ε2−α,

ρ
D1θ

Dt
+

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)ρ1θ ∂vi

∂xi
+ 2

3+ δ + θ dδ
dθ

∂qi

∂xi
−

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)ρθ ∂vi

∂xi

−
2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)σij
∂vj

∂xi
− 10Rqint

3
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)

×

∂qi

∂xi
+

Rqtr

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
3
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) (1qi
∂θ

∂xi
− qi

∂θ

∂xi

)

−
2
(
δ + θ dδ

dθ

)
Rqtr

3
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) ∂1qi

∂xi
=− ρ

τint
1θ. (5.13)

For the second order of accuracy, the balance laws for stress and heat flux must
be considered up to first order, because the variables, σij and qi, are at first order,
see (4.8). From (C 1b) and (C 1c) with terms up to order ε1, we have second-order
equations as

Dσij

Dt
+ 4Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

∂q<i

∂xj>
−

4Rqint Rqtr

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2 q<i
∂θ

∂xj>

+ 2σk<i
∂vj>

∂xk
+ σij

∂vk

∂xk
+ 2ρ(θ −1θ)∂v<i

∂xj>
=−

[
1
τtr
+ 1
τint

]
σij, (5.14)

Dqi

Dt
+ σik

5+ δ + θ dδ
dθ

2
∂θ

∂xk
− θ ∂ ln ρ

∂xk

− 2
39
∂B+

∂xi
+ 5

13
∂B−

∂xi

+
1+ 2Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

[qk
∂vi

∂xk
+ qi

∂vk

∂xk

]
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+ 2Rqint qk

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

∂vk

∂xi
−1θ 2 ∂ρ

∂xi
+ θ ∂σik

∂xk

− ρ(θ +1θ)∂1θ
∂xi
+

5+ δ + θ dδ
dθ

2
ρ(θ −1θ) ∂θ

∂xi

=−
[

1
τtr
+ 1
τint

]Rqint Rqtr

(
5+ δ + θ dδ

dθ

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

qi +

(
δ + θ dδ

dθ

)
Rqtr

(
Rqtr − Rqint

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

∆qi

 .
(5.15)

For closing the set of equations we need constitutive equations for B+ and 1qi up
to order ε1−2α from (C 2b) and (C 1d), as

B+ =−39
2
ρ1θ 2 + 3τtr

τint

[
10

Ru2,0
+ 3− δ

2Ru1,1
− 23− δ

2

]
ρθ1θ, (5.16)

1qi =
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

5R2
qint
+
(
δ + θ dδ

dθ

)
R2

qtr

5
2
τtr


1+ 3Rqint(

δ + θ dδ
dθ

)
Rqtr


×
(
ρ (θ +1θ) ∂1θ

∂xi
+1θ 2 ∂ρ

∂xi
+ 2

39
∂B+

∂xi

)

+
(
Rqint − Rqtr

)
Rqtr

ρ (θ +1θ) ∂θ
∂xi

−
[

1+ τtr

τint

]
5Rqint

(
Rqtr − Rqint

)
5R2

qint
+
(
δ + θ dδ

dθ

)
R2

qtr

qi, (5.17)

and for B− at leading order from (C 2a) as,

B− =−3τtr

τint

[
3

Ru2,0
− 3− δ

2Ru1,1
− 3+ δ

2

]
ρθ1θ. (5.18)

With balance laws for stress and heat flux, the second-order equations form a set
of PDEs for the 14 variables {ρ, vi, θ,1θ, σij, qi}. Other authors discuss a 14 moment
set for polyatomic gases, (Ruggeri & Sugiyama 2015) where the equations differ
from what we find. Indeed, our refined Grad’s 14 moment (RG14) equations contain
additional terms of order ε1+2α, which are the terms in the equations for overall
heat flux (C 1c) and the dynamic temperature (5.13) containing B+, 1qi and B−

along with their constitutive equations, (5.16)–(5.18). Therefore, the proposed model
is not a second-order accurate model. Also, the mentioned 14 field theory (Ruggeri
& Sugiyama 2015) contains three nonlinear terms from (C 1c), which according to
our analysis are of orders ε2+α and ε3, respectively. As will be seen below, if one
wishes to have a theory at these orders, there will be additional terms that must be
included.
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The leading-order term of 1qi at order ε1+α from (C 1d) and (C 1c) is obtained as

1qi = τtr

5
(

3+ δ + θ dδ
dθ

)
2
(
δ + θ dδ

dθ

)
Rqtr

ρθ
∂1θ

∂xi
. (5.19)

We name the factor relating the heat flux difference and the gradient of dynamic
temperature the dynamic heat conductivity,

κ∆ = τtr

5
(

3+ δ + θ dδ
dθ

)
2
(
δ + θ dδ

dθ

)
Rqtr

ρθ. (5.20)

5.5. Order ε3: regularized 19 (R19) equations
Finally, we present the equations at third order of accuracy, which are: the
conservation laws (5.4); the full equation for the dynamic temperature (5.13); the
equation for heat flux difference with terms up to order ε2−2α, due to the fact that
1qi is at order ε1+α and first appears in the 1θ equation (5.13) which itself is at
order εα,

D1qi

Dt
+ σik

[
∂1θ

∂xk
+1θ ∂ ln ρ

∂xk

]

+
10Rqint

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(1θ − θ) (1qi − qi)(

δ + θ dδ
dθ

)(
3+ δ + θ dδ

dθ

)(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) ∂vk

∂xk

+
2
(
δ + θ dδ

dθ

)
Rqtr1qj

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) ∂vj

∂xi
+ δ

(42+ 25δ)

7+ 15Rqint(
δ + θ dδ

dθ

)
Rqtr

 ∂B+ij
∂xj

+

 25Rqint + 7
(
δ + θ dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)
(1qi

∂vk

∂xk
+1qk

∂vi

∂xk

)

+ 42
(42+ 25δ)2

7+ 15Rqint(
δ + θ dδ

dθ

)
Rqtr

 dδ
dθ

B+ij
∂θ

∂xj
+ θ ∂σik

∂xk

+ 5
39

1− 10Rqint(
δ + θ dδ

dθ

)
Rqtr

 ∂B−

∂xi
− 5

39

1+ 3Rqint(
δ + θ dδ

dθ

)
Rqtr

 ∂B+

∂xi
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+ 5
2

[
1− Rqint

Rqtr

]
ρ (θ +1θ) ∂θ

∂xi
+ σik

(
5
2

[
1− Rqint

Rqtr

]
∂θ

∂xk
− θ ∂ ln ρ

∂xk

)
+ 2Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

[
qj
∂vj

∂xi
+ qi

∂vk

∂xk
+ qk

∂vi

∂xk

]

+ 5
2

1+ 3Rqint

Rqtr

(
δ + θ dδ

dθ

)
[1θ ∂σij

∂xj
−1θ ∂ρ1θ

∂xi
− ρθ ∂1θ

∂xi

]

=−
[

1
τtr
+ 1
τint

] 5Rqint

(
Rqtr − Rqint

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

qi +

(
δ + θ dδ

dθ

)
R2

qtr
+ 5R2

qint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

1qi

 ,
(5.21)

the equations for stress tensor and total heat flux with terms up to order ε2, because
the variables, σij and qi, are at first order,

Dσij

Dt
+ 4Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

∂q<i

∂xj>
−

4Rqint Rqtr

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2 q<i
∂θ

∂xj>

+
4
(
δ + θ dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) ∂1q<i

∂xj>
+ 2σk<i

∂vj>

∂xk
+ σij

∂vk

∂xk

+ 4Rqint Rqtr(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)2

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
1q<i

∂θ

∂xj>
+ ∂u0,0

ijk

∂xk

+ 2ρ (θ −1θ) ∂v<i

∂xj>
=−

[
1
τtr
+ 1
τint

]
σij, (5.22)

Dqi

Dt
+ σik

5+ δ + θ dδ
dθ

2
∂θ

∂xk
− θ ∂ ln ρ

∂xk

− σik

ρ

∂σkj

∂xj

+
1+ 2Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

[qk
∂vi

∂xk
+ qi

∂vk

∂xk

]
− 2

39
∂B+

∂xi

+ 5
13
∂B−

∂xi
+ 2Rqint qk

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

∂vk

∂xi
−1θ 2 ∂ρ

∂xi

+ θ ∂σik

∂xk
− ρ (θ +1θ) ∂1θ

∂xi
+

5+ δ + θ dδ
dθ

2
ρ (θ −1θ) ∂θ

∂xi
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+
2
(
δ + θ dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) [1qk
∂vi

∂xk
+1qi

∂vk

∂xk
+1qk

∂vk

∂xi

]

+ 168
(42+ 25δ)2

B+ij
dδ
dθ
∂θ

∂xj
+ 4δ
(42+ 25δ)

∂B+ij
∂xj
+1θ ∂σij

∂xj
+ σik

(
∂1θ

∂xk
+1θ ∂ ln ρ

∂xk

)
+ 7

(
1

(14+ δ)2 −
24

(42+ 25δ)2

)
dδ
dθ

B−ij
∂θ

∂xj
+ 7 (3+ δ) (14+ 3δ)
(14+ δ)(42+ 25δ)

∂B−ij
∂xj
+ u0,0

ijk
∂vj

∂xk

=−
[

1
τtr
+ 1
τint

]Rqint Rqtr

(
5+ δ + θ dδ

dθ

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

qi +

(
δ + θ dδ

dθ

)
Rqtr

(
Rqtr − Rqint

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

1qi

,
(5.23)

equation for B+ with terms up to order ε2−2α, due to the fact that B+ is at order ε2α

and first appears in the σij and qi equations, which themselves are at order ε1,

DB+

Dt
− 8θσij

∂vj

∂xi
+

2
(
δ + θ dδ

dθ

)
Rqtr − 40Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk

∂xk

+


50Rqint Rqtrθ

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2 +
(
5Rqint + 3Rqtr

) (
δ + θ dδ

dθ

)
− 100Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr



× qk
∂θ

∂xk
−

2− 50Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

 θqk
∂ ln ρ
∂xk
− 20

39
B−
∂vk

∂xk

+ 85
39

B+
∂vk

∂xk
+

3
(

23− δ − θ dδ
dθ

)
3+ δ + θ dδ

dθ
ρ1θ 2 ∂vi

∂xi
+

26− 78

3+ δ + θ dδ
dθ

 ρθ1θ ∂vi

∂xi

=− 1
τtr

(
9
2

Ru1,1 + 15Ru2,0

)
ρ1θ 2 − 1

τint

[
3
2
((3− δ) Ru1,1 + 20Ru2,0 − (23− δ)) ρθ1θ

]
−
[

1
τtr
+ 1
τint

] (
3Ru1,1 + 10Ru2,0

13
B+ + 10

13
(Ru1,1 − Ru2,0) B−

)
, (5.24)

and the balance law for B− with terms up to order ε1, because B+ is at order ε1 and
first appears in the σij and qi equations, which themselves are at order ε1,
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DB−

Dt
+ 12

5
θσij

∂vj

∂xi
+

12Rqint + 2
(
δ + θ dδ

dθ

)
Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk

∂xk
− 2

13
B+
∂vk

∂xk

+


(
5Rqint + 3Rqtr

) (
δ + θ dδ

dθ

)
+ 30Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

−
2Rqtr Rqintθ

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2

 qk
∂θ

∂xk

− 2

1+ Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

 θqk
∂ ln ρ
∂xk
− 3ρ1θ 2 ∂vi

∂xi
+ 71

39
B−
∂vk

∂xk

=− 1
τtr

9 (Ru1,1 − Ru2,0)

2
ρ1θ 2 − 1

τint

(
3
2
(3+ δ + [3− δ] Ru1,1 − 6Ru2,0) ρθ1θ

)
−
[

1
τtr
+ 1
τint

] (
10Ru1,1 + 3Ru2,0

13
B− +

[
3 (Ru1,1 − Ru2,0)

13
B+
])

. (5.25)

These 19 PDEs are closed with the constitutive equations for B+ij up to 1− α order,
because B+ij is at order ε1+α and first appears in the σij and qi equations, which
themselves are at order ε1,

B+ij = −
1[

1
τtr
+ 1
τint

]
2

 (70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) − 14− δ
δ

 θ ∂q<i

∂xj>

− 4 (70− 19δ)
39δ

B−
∂v<i

∂xj>
+ (14− δ)θ dδ

dθ − δ(14+ δ)
δ

(
3+ δ + θ dδ

dθ

) θσij
∂vk

∂xk

− 2

 (70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) − 14− δ
δ

 θq<i
∂ ln ρ
∂xj>

− 2(42+ 25δ)
39δ

B+
∂v<i

∂xj>
+ 2Rqint

 14+ δ + θ dδ
dθ

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

− θ
10
(
7Rqint + 2 (7+ 3δ) Rqtr

) dδ
dθ
+ 14Rqtrθ

(
dδ
dθ

)2

+ (70+ 23δ) Rqtrθ
d2δ

dθ 2

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)2


× q<i

∂θ

∂xj>
+ 4θ

(
2σk<i

∂vk

∂xj>
+ 2σk<i

∂vj>

∂xk
+ σij

∂vk

∂xk

)
− (42+ 25δ)

δ
ρθ1θ

∂v<i

∂xj>

 ,
(5.26)
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and for u0,0
ijk and B−ij at their leading orders, due to the fact that they are at order ε2

and first appear in the σij and qi equations, which themselves are at order ε1,

u0,0
ijk =−τtr

3θ
∂σ<ij

∂xk>
− 3θσ<ij

∂ ln ρ
∂xk>

+ 12Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

q<i
∂vj

∂xk>

 , (5.27)

B−ij = −τtr

6(14+ δ)
7 (3+ δ) θ

(
σk<i

∂vj>

∂xk
+ σk<i

∂vk

∂xj>
− 2

3
σij
∂vk

∂xk

)

+ 2(14+ δ)Rqint

(3+ δ)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2

(
5Rqint

[
3+ δ + θ dδ

dθ

]

+Rqtr

[
(3+ δ) δ + (7+ 2δ) θ

dδ
dθ
+
((

dδ
dθ

)2

+ 2
d2δ

dθ 2

)
θ 2

])
q<i

∂θ

∂xj>

+ 2(14+ δ)
3 (3+ δ) B−

∂v<i

∂xj>
−

2(14+ δ)
(

3Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)
(3+ δ)

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) θq<i
∂ ln ρ
∂xj>

+ 2
(14+ δ)

(
3Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)
(3+ δ)

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) θ
∂q<i

∂xj>

 . (5.28)

This is the set of original regularized 19 (R19) equations corresponding to the third
order of accuracy.

Next, we will introduce new forms of the balance and constitutive equations
to replace (5.24)–(5.28) in the set of R19 equations. New forms eliminate some
derivatives by substitution with stress tensor, heat flux and dynamic temperature
while keeping the current order of accuracy. The new form requires the same number
of boundary conditions for both linear and nonlinear cases, while this is not the
case for the original R19 equations. Also, the boundary conditions needed for the
new form of R19 equations are clear; and they are derived and presented in the
next section. However, the exact type of boundary conditions needed for the original
nonlinear R19 equations are not clear. The boundary conditions will be discussed
further in the coming section.

5.5.1. Transformation of equations
The balance laws for B+ and B− and the constitutive equations in the set of R19

equations can be rewritten using the leading-order heat flux difference, NSF stress and
viscosities as

σNSF
ij = −2µ

∂v<i

∂xj>
= σij +O(ε1+α)+ · · · , (5.29a)

qNSF
i = −κ ∂θ

∂xi
= qi +O(ε1+α)+ · · · , (5.29b)
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460 B. Rahimi and H. Struchtrup

κ∆
∂1θ

∂xi
= 1qi +O(ε1+2α)+ · · · , (5.29c)

1θNSF = υ

ρ

∂vi

∂xi
=1θ +O(ε2α)+ · · · , (5.29d)

in a way that we still keep the proper order of accuracy. The balance laws take the
form of

DB+

Dt
− 2

20Rqint −
(
δ + θ dδ

dθ

)
Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

θ

[
∂qk

∂xk
− qk

∂ ln ρ (θ −1θ)
∂xk

]

+


26− 78

3+ δ + θ dδ
dθ

 ρθ1θ + 3
(

23− δ − θ dδ
dθ

)
3+ δ + θ dδ

dθ

ρ1θ 2 + 85
39

B+ − 20
39

B−



× ∂vk

∂xk
−


50Rqint Rqtrθ

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2 +
(5Rqint + 3Rqtr)

(
δ + θ dδ

dθ

)
− 100Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr



× qkqk

κ
+ 2

20Rqint −
(
δ + θ dδ

dθ

)
Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

θ

θ −1θ
[

qkqk

κ
+ qk1qk

κ∆

]
+ 4θ

σijσij

µ

=− 1
τtr

(
9
2

Ru1,1 + 15Ru2,0

)
ρ1θ 2 − 1

τint

[
3
2
((3− δ)Ru1,1 + 20Ru2,0 − (23− δ))ρθ1θ

]
−
[

1
τtr
+ 1
τint

] (
3Ru1,1 + 10Ru2,0

13
B+ + 10

13
(Ru1,1 − Ru2,0) B−

)
, (5.30)

DB−

Dt
− 2

6Rqint +
(
δ + θ dδ

dθ

)
Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

θ

(θ −1θ)
[

qkqk

κ
+ qk1qk

κ∆

]

−


(5Rqint + 3Rqtr)

(
δ + θ dδ

dθ

)
+ 30Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

−
2Rqtr Rqintθ

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2

 qkqk

κ

− 6
5
θ
σijσij

µ
−
(

3ρ1θ 2 − 71
39

B− + 2
13

B+
)
∂vk

∂xk

+ 2
6Rqint +

(
δ + θ dδ

dθ

)
Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

θ

[
∂qk

∂xk
− qk

∂ ln ρ (θ −1θ)
∂xk

]
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=− 1
τtr

9 (Ru1,1 − Ru2,0)

2
ρ1θ 2 − 1

τint

(
3
2
(3+ δ + [3− δ] Ru1,1 − 6Ru2,0) ρθ1θ

)
−
[

1
τtr
+ 1
τint

] (
10Ru1,1 + 3Ru2,0

13
B− +

[
3 (Ru1,1 − Ru2,0)

13
B+
])

. (5.31)

The new constitutive equations for B+ij , B−ij and u0,0
ijk in the set of R19 equations after

some manipulation become

B+ij = −
11+

2
(
δ + θ dδ

dθ

)
µ

3
(

3+ δ + θ dδ
dθ

)
v

 ρθ

2 (70− 19δ) B− + (42+ 25δ)B+

39δ
σij

+ (42+ 25δ)
2δ

ρθ1θσij − 2Rqint

 14+ δ + θ dδ
dθ

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

− θ
10
(
7Rqint + 2 (7+ 3δ) Rqtr

) dδ
dθ
+ 14Rqtrθ

(
dδ
dθ

)2

+ (70+ 23δ) Rqtrθ
d2δ

dθ 2

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)2



× µ

κ
q<iqj> +

 (14− δ)θ dδ
dθ
− δ(14+ δ)

δ
(

3+ δ + θ dδ
dθ

) + 28
3

 µ
υ
ρθ1θσij − 8θσk<iσj>k



+ 2µ

1+
2
(
δ + θ dδ

dθ

)
µ

3
(

3+ δ + θ dδ
dθ

)
v

 (70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) − 14− δ
δ

 q<i

ρ (θ −1θ)

×
[

qj>

κ
+ 1qj>

κ∆

]
− 2

1
µ
+

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)
v

 (70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)

− 14− δ
δ

 1
ρ

[
∂q<i

∂xj>
− q<i

∂ ln ρ (θ −1θ)
∂xj>

]
, (5.32)
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B−ij = −
1
ρθ

[
−6(14+ δ)

7 (3+ δ) θσk<iσj>k − (14+ δ)
3 (3+ δ)B

−σij

− 2(14+ δ)Rqint

(3+ δ)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2

(
5Rqint

[
3+ δ + θ dδ

dθ

]

+Rqtr

[
(3+ δ) δ + (7+ 2δ) θ

dδ
dθ
+
((

dδ
dθ

)2

+ 2
d2δ

dθ 2

)
θ 2

])
µ

κ
q<iqj>

]

+µ
2(14+ δ)

(
3Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)
(3+ δ)

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) q<i

ρ (θ −1θ)
[

qj>

κ
+ 1qj>

κ∆

]

−µ
2(14+ δ)

(
3Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)
(3+ δ)

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) 1
ρ

(
∂q<i

∂xj>
− q<i

∂ ln ρ (θ −1θ)
∂xj>

)
,

(5.33)

u0,0
ijk =

6Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

q<iσjk>

ρθ
+ 3µ

σ<ij

ρ (θ −1θ)
[

qk>

κ
+ 1qk>

κ∆

]

− 3
µ

ρ

(
∂σ<ij

∂xk>
− σ<ij

∂ ln ρ (θ −1θ)
∂xk>

)
, (5.34)

where the microscopic time scales are substituted by viscosities and specific heat using
(5.8).

6. Kinetic boundary condition
In this section, we introduce a kinetic boundary condition using the idea of two

distinguished exchanged processes, internal and translational. Then we incorporate this
condition to obtain the corresponding macroscopic boundary conditions. Having the
macroscopic boundary conditions will enable us to solve boundary value problems,
e.g. stationary heat transfer, using the macroscopic models introduced above.

The microscopic wall boundary condition prescribes the distribution function
of the particles reflected from the wall when the distribution function of the
incoming particles towards the wall is known. The most common used model is
the Maxwell (1879) accommodation model. Maxwell proposed that the gas particles
are reflected from the wall specularly or diffusivity. A portion χ , where χ is the
wall accommodation coefficient, of the particles hit the wall and accommodate at the
wall so that they are reflected with the equilibrium distribution of the wall. The other
portion, 1 − χ , is reflected specularly. In this case, the normal component of the
velocity changes sign and the distribution function describing the reflected particles
is akin to the incoming particles distribution function with corresponding transformed
velocities, i.e. f ∗(c)= f (c− 2(n · c)n).

For polyatomic particles that are diffusively reflected, we have two Maxwellian-type
equilibrium distribution functions (2.16) and (2.17) corresponding to only translational
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energy equilibrium and total energy equilibrium. We adopt the generalized Grad’s 36
distribution function (B 1) and its corresponding form as the phase density ( f ∗), for
incoming and specularly reflected particles. We introduce the wall boundary condition
as the velocity distribution function in the infinitesimal precinct of the wall,

f̃ (c)=
{
χ [(1− ζ )ftr,w(c, I)+ ζ fint,w(c, I)] + (1− χ)f ∗|36(c, I) n · (c− vw)� 0,
f|36(c, I) n · (c− vw)≺ 0,

(6.1)

where the two wall accommodation coefficients, ζ and χ , are specifying the level
of accommodation of the particle on the wall. Full accommodation is specified by
ζ = 1 and χ = 1, partial accommodation for particles only accommodated transla-
tionally identified by ζ = 0 and χ = 1 and the pure specularly reflected particles are
described by χ = 0. Moreover, n is the wall-normal pointing towards the gas.

Wall boundary conditions for gases must obey a number of requirements, most
importantly proper normalization and reciprocity (Sharipov 2003). The above
is a variant of the Maxwell boundary conditions and obeys these requirements.
Normalization implies that the number of particles is conserved, and this is ensured
here by adjusting the densities for the wall Maxwellians, ftr,w and fint,w, accordingly,
see (7.6). The distribution used on the wall are Maxwellian distributions which are
normalized and the Grad’s distribution is an expansion on the Maxwellian distribution,
which are designed to ensure conservation of the particle number, as will be seen
in (7.6). This means the kernel is normalized and the number of particles hitting
the wall is the same as that of reflecting particles and the normalization condition is
satisfied (Sharipov 2003).

7. Macroscopic boundary condition

For obtaining boundary conditions for our field of macroscopic equations, we do
the similar procedure as we did to obtain the balance law for moments: we multiply
the wall distribution function (f̃ ) by corresponding velocity and internal parameter
functions and take the integral over velocity and internal parameter space. This will
give us the relations between the macroscopic properties at the wall and the wall
properties given in the wall equilibrium distribution functions, ftr,w and fint,w. We define
peculiar velocity based on average velocity, C = c − Vgas, and slip velocity as Vs =
Vgas−Vw. This will give us the integral of the weighted wall distribution function as,∫

Ψ (C, I)f̃ (C) dC dI

=
∫∫

C·n≺0
[Ψ (C, I)+ (1− χ)Ψ (C− 2(n · C)n, I)]f|36(C, I) dC dI

+χ
[∫∫

C·n�0
Ψ (Cw − Vs, I)[(1− ζ )ftr,w(Cw, I)+ ζ fint,w(Cw, I)] dCw dI

]
, (7.1)

where, Cw =C+ Vs. We consider that n= (0, 1, 0) and Vw = (Vw, 0, 0).
For any velocity and internal parameter function, Ψ (C, I), a relation between the

corresponding moment and the wall properties could be obtained from (7.1). In order
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464 B. Rahimi and H. Struchtrup

to have meaningful boundary conditions, Grad (1949) discussed the argument of
specular reflection such that the velocity function should be odd in the normal
component of the particle velocity. This is due to the fact that the even polynomials
at the wall boundary condition will produce identities and are uncontrollable. Also,
the theory of balance laws states that, at the boundary, we need to prescribe fluxes
not variables (Torrilhon & Struchtrup 2008). Considering a two-dimensional process
in the x–y plane, the flux moments corresponding to odd powers in the y component,
n= (0, 1, 0), of the particle velocity are

uΨ =
{
vy, σxy, qy, 1qy, B−xy, u0,0

xxy, u0,0
yyy

}
. (7.2)

Therefore, the corresponding velocity and internal parameter function, Ψ , for two-
dimensional R19 equations occurring in the y-direction is obtained as,

Ψ =

Cy,CxCy,Cy

(
C2

2
+ I2/δ

)
,

CxCy

([
1− 11

14
δ

δ + 3

]
C2 +

[
1+ 11

δ + 3

]
I2/δ − 14+ δ

2
θ

)
,

Cy

C2

2
− 5Rqint(

δ + θ dδ
dθ

)
Rqtr

I2/δ

 ,Cy

(
CyCy − 3

5
C2

)
,Cy

(
CxCx − 1

5
C2

) .

(7.3)

The general boundary condition (7.1) is used here to obtain macroscopic boundary
conditions for different functions in Ψ .

The first condition is obtained by considering Ψ =Cy. For this we rewrite the part
representing incoming particles as

f|36(c)= χ [(1− ζ )f|36(c)+ ζ f|36(c)] + (1− χ)f|36(c). (7.4)

So, we have three identity relations,

−(1− χ)
∫∫

C·n≺0
Cyf|36 dC dI = (1− χ)

∫∫
C·n�0

Cyf ∗|36 dC dI, (7.5a)

−χ(1− ζ )
∫

C·n≺0
Cyf|36 dC = χ(1− ζ )

∫
C·n�0

Cyftr,w dC, (7.5b)

−χζ
∫∫

C·n≺0
Cyf|36 dC dI = χζ

∫∫
C·n�0

Cyfint,w dC dI, (7.5c)

which state that the flux of molecules towards the wall is the same as that
leaving for all three reflection types, pure specular, partial accommodation and
full accommodation. The first identity is always true based on the definition of f ∗|36
and f|36, (B 1). The second identity gives us a relation for ρI,w as,
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ρI,w

√
θw = −

exp
[
− I2/δ

θw

]
Γ

(
1+ δ

2

)
840δ
√

2θ (δ+5)/2

70
√

2δ
13

θ

21B− + 5B+

+ 78

 (3+ δ) (14+ 27δ)
(14+ δ)(42+ 25δ)

B−yy −
2δ

42+ 25δ
B+yy

+

(
δ + θ dδ

dθ

)√
2πθRqtr(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) (1qy − qy
)+ θ (2ρ [21θ − θ ]− σyy

)


− 140I2/δ

 12
(
δ + θ dδ

dθ

)√
πRqtr(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)√θ(1qy − qy)+ 168
√

2δ (3+ δ)
(14+ δ)(42+ 25δ)

×B−yy +
20
√

2
13

B− + 6
√

2
13

B+ − 18
√

2δ
(42+ 25δ)

B+yy +
18
√

2
(42+ 25δ)

ρθ1θ


 ,

(7.6)

and the third one gives us,

Υ = ρw

√
θw =− (14− δ)(3+ δ)

2(14+ δ)(42+ 25δ)θ 3/2
B−yy +

1
156

B+ − B−

θ 3/2

− δ

2(42+ 25δ)θ 3/2
B+yy +

1
2
σyy√
θ
+ 1

2
√
θ
ρ(2θ −1θ). (7.7)

Choosing different Ψ functions from (7.3) we obtain boundary condition for the
stress tensor,

σxy =− χ

2− χ

√
2
π

Υ Vs +
5Rqint qx +

(
δ + θ dδ

dθ

)
Rqtr1qx

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)√
θ

+ u0,0
xyy

2
√
θ

 , (7.8)

the boundary condition for the total heat flux,

qy = − χ

(2− χ)

√
2

πθ

[
Υ

2

√
θ
[
(4+ δζ ) (θ − θw)− (1− ζ ) (δθ + 31θ)− V2

s

]
+ (3+ δ) (140+ δ (32+ δ)+ (14− δ)δζ )

4(14+ δ)(42+ 25δ)
B−yy +

[(1− ζ ) δ − 4]
312

B+

+ δ (4− δ (1− ζ ))
4 (42+ 25δ)

B+yy −
(2+ δ (1− ζ ))

4
θ
(
ρ1θ − σyy

)
+ (56− δ (1− ζ ))

312
B− + δ (1− ζ )

2
ρθ 2

]
, (7.9)
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the boundary condition for heat flux difference 1qy,

1qy = χ

(2− χ)Rqtr

(
δ + θ dδ

dθ

)√ 2
πθ

5 (40− δ) Rqint − 12
(
δ + θ dδ

dθ

)
Rqtr

312
B−

+
5 (12+ δ) Rqint + 12

(
δ + θ dδ

dθ

)
Rqtr

312
B+

+
5δRqint − 6

(
δ + θ dδ

dθ

)
Rqtr

4
θσyy − δ

5 (6+ δ) Rqint + 6
(
δ + θ dδ

dθ

)
Rqtr

4(42+ 25δ)
B+yy

+
10δRqint − 8

(
δ + θ dδ

dθ

)
Rqtr

4
ρθ 2 +

5 (6− δ) Rqint + 12
(
δ + θ dδ

dθ

)
Rqtr

4
ρθ1θ

+ [3+ δ]
5δ (42+ δ) Rqint − 6(14− δ)

(
δ + θ dδ

dθ

)
Rqtr

4(14+ δ)(42+ 25δ)
B−yy

+ Υ
2

√
θ

[(
δ + θ dδ

dθ

)
Rqtr V

2
s − 15Rqint (1− ζ ) 1θ

−
(

5δRqint − 4
(
δ + θ dδ

dθ

)
Rqtr

)
θ +

(
5δζRqint − 4

(
δ + θ dδ

dθ

)
Rqtr

)
(θ − θW)

],
(7.10)

the boundary condition for B−xy,

B−xy =
χ

(2− χ)

√
2
π

3(14+ δ)
14 (3+ δ)

 37
(
δ + θ dδ

dθ

)
Rqtr

15
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)√θ1qx

−
14
(
δ + θ dδ

dθ

)
Rqtr + 33Rqint

3
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)√θqx − 1
2

√
θu0,0

xyy

−Υ Vs

(
V2

s − θ + 7 (1− ζ ) 1θ − (18+ 7ζ δ)
3

[θ − θW]
) , (7.11)

the boundary condition for u0,0
yyy,

5u0,0
yyy =

χ

(2− χ)

√
2

πθ

[
(−14+ δ) (3+ δ)
(14+ δ) (42+ 25δ)

B−yy −
δB+yy

42+ 25δ
− 2

(
B+ − B−

)
195

− 7σyy + 2ρ1θ
5

θ −Υ
√
θ

5

(
3V2

s − 2 [θ − θW]
)]
, (7.12)
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L

x

FIGURE 1. General stationary heat conduction schematic. Top and bottom walls are at
different temperatures, θWT , θWB.

and the boundary condition for u0,0
xxy,

u0,0
xxy =

χ

(2− χ)

√
2

πθ

[
(−14+ δ) (3+ δ)
(14+ δ) (42+ 25δ)

B−xx −
δB+xx

42+ 25δ
+
(
B+ − B−

)
195

+ θ
5

(
ρ1θ + σyy − 5σxx

)+Υ √θ
5

(
4V2

s − [θ − θW]
)]
. (7.13)

8. One-dimensional stationary heat conduction
Next, one-dimensional heat transfer within a stationary polyatomic gas is studied

using numerical and analytical methods to solve nonlinear and linear systems.
Specifically, for the set of R19 and the RNSF equations. We consider unsteady
heat conduction which is homogeneous in y and z directions. The gas is confined
between two infinite plates and is stationary, i.e. v = 0, as shown in figure 1. The
walls are at different temperatures and the flow properties and variables depend only
on the x-direction. We study different gases and different test case scenarios.

The equilibrium rest state {ρ0, θ0} is used to non-dimensionalize all quantities and
equations. Specifically, we set

x̄i = xi

τ0
√
θ0
= xi

L
, t̄= t

τ0
, τ̄int = τint

τ0
, τ̄tr = τtr

τ0
, ρ̄ = ρ

ρ0
− 1,

θ̄ = θ

θ0
− 1, 1θ̄ = 1θ

θ0
, σ̄ij = σij

ρ0θ0
, q̄i = qi

ρ0
√
θ0

3 , 1q̄i = 1qi

ρ0
√
θ0

3 ,

ū0,0
ijk =

u0,0
ijk

ρ0
√
θ0

3 , B̄+ij =
B+ij
ρ0θ

2
0
, B̄−ij =

B−ij
ρ0θ

2
0
, B̄+ = B+

ρ0θ
2
0
, B̄− = B−

ρ0θ
2
0
.


(8.1)

Note that the dimensionless relaxation times, τ̄int and τ̄tr, are the Knudsen numbers.
From now on, the overbars are dropped to avoid any unnecessary complexity in stating
equations. The dimensionless set of R19 equations describing the considered problem
consists of energy and momentum conservation,

∂ρ

∂x
+ ∂ (θ −1θ)

∂x
+ ∂σ11

∂x
= 0, (8.2)
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3+ δ + (1+ θ) dδ
dθ

2
(1+ ρ) ∂θ

∂t
+ ∂q
∂x
= 0, (8.3)

and 11 equations for {1θ, σ11, q, 1q, B+, B−, B+ij , B−ij , u0,0
ijk } which are presented in

appendix D.

8.1. Refined NSF equations
For this case, the RNSF equations (5.4)–(5.6), reduce to

∂ρ

∂x
+ ∂θ
∂x
= 0, (8.4a)

3+ δ + (1+ θ) dδ
dθ

2
(1+ ρ) ∂θ

∂t
+ ∂q
∂x
= 0, (8.4b)

1θ = 0, (8.4c)
σ11 = 0, (8.4d)

q=−τtr

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

2Rqint Rqtr

(1+ ρ) (1+ θ) ∂θ
∂x
. (8.4e)

8.2. Boundary conditions
For obtaining the boundary conditions, we consider the steady state condition with 11
variables,

Φ = {θ, 1θ, q, 1q, B+, B−, B+11, B−11, ρ, σ11, u0,0
111

}
, (8.5)

and write the system of equations as

B(Φ)
∂Φ

∂y
= P(Φ)Φ. (8.6)

The number of boundary conditions which must be described is the number of
variables of the system (11) minus the number of multiplicity of the zero eigenvalues
of the matrix A(Φ) (Torrilhon & Struchtrup 2008). Calculation of the eigenvalues
shows that the matrix A(Φ) possesses a zero eigenvalue with a multiplicity of
4. Therefore, we need to prescribe a total number of 7 boundary conditions for
regularized 19 equations. Four associated null spaces of the matrix A(Φ) give
relations which describe B+, B−, B+11 and B−11 as functions of the rest of the variables
of (8.5). Therefore, only 7 independent variables remain. Based on this reduced 7
field of variables of Φ, we have the velocity and internal energy parameter functions
corresponding to the fluxes with odd powers in the normal velocity component (q,
1q and u0,0

111) as

Ψ =

C1

(
C2

2
+ I2/δ

)
,C1

C2

2
− 5Rqint(

δ + θ dδ
dθ

)
Rqtr

I2/δ

 ,C1

(
C1C1 − 3

5
C2

) .

(8.7)
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The microscopic boundary condition along with the Ψ function (7.1) are used
to obtain 6 macroscopic boundary conditions which correspond to the boundary
conditions for q, 1q and u0,0

111 (7.9), (7.10) and (7.12), on each wall, and are given
in appendix D.

Here, the fluid is considered to be stationary and the flow which exists due to
the density changes in the unsteady state is ignored. We apply the prescribed mass
condition as the seventh boundary condition to update the density during the unsteady
processes as ∫ L/2

−L/2
ρ dx= ρ0L. (8.8)

If we were to allow gas movements and convection to be a part of the problem,
the conservation of mass and normal velocity of gas on the wall would replace the
prescribed mass condition. Here we are interested in only stationary heat conduction,
therefore all the velocities are set to zero; and the prescribed mass condition (8.2)
is solved by the trapezoidal rule along with conservation of momentum to gain the
distribution of density at each time step in the unsteady processes.

Also, the boundary condition for the RNSF equations along with the prescribed
mass condition is the temperature jump condition obtained from (D 10) at order ε1 as,

θ − θw = nyτtr
(2− χ)
χ

√
πθ

2

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

(4+ δζ )Rqint Rqtr

∂θ

∂x
. (8.9)

8.3. Numerical scheme
The finite difference method is used to discretize our system of equations with central
difference scheme in spatial discretization and first-order explicit discretization in time.
The steady state condition is

|θ n+1
m/2 − θ n

m/2|
|θ n

m/2|
6 10−6. (8.10)

For RNSFs temperature jump boundary condition (8.9), second-order backward and
forward finite difference discretizations are used.

8.4. Linear and steady case
First, we study the steady linearized set of equations with small disturbances from an
equilibrium ground state {ρ0, v

0
i =0, θ0}. The set of linear steady equations are reduced

to 5 coupled equations for Φ = {1q, q, u0,0
111, σ11, 1θ}. Equations for the rest of the

variables {ρ, θ, B+, B−} are functions of coupled variables. The solution of the set of
coupled equations, A5×5(∂Φ/∂x)=B5×5Φ, is obtained using the eigenvalue method as

Φ(x)=
5∑

n=1

Cnϑneλnx, (8.11)

where, λ and ϑ are eigenvalues and eigenvectors of the coefficient matrix, A−1B. The
solution for the remaining variables are obtained by integrating of their equations.
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FIGURE 2. (Colour online) Comparison of temperature and density profiles for Kn
numbers equal to 0.071 and 0.71 with tint/ttr = 1. Results shown are obtained from: R19
equations (blue dashed line); RNSF equations (black line); DSMC method (red triangles).

9. Results
We first compare the results of our proposed models with the direct simulation

Monte Carlo method data of Tantos et al. (2015). Comparison between numerical
solution of the R19, the RNSF equations and DSMC results are shown in figure 2.
Dimensionless wall temperatures are deviations of ±0.0476 from the reference
temperature at 350 K. We investigate two different reference Kn numbers, 0.071
and 0.71, which represent slip and transition flow regimes, respectively. Relaxation
parameters are set to Rqtr = Ru2,0 = 0.72 and Ru1,1 = Rqint = 0.7537 in order to have
Prandtl number equal to 0.73, the same as the DSMC simulation, based on (5.12).
Changing the values of Rqtr so that they remain close to 3/2 will fine tune the
results. However, if we lift this restriction and let Rqtr be lower and Rqint higher
than the 3/2 value, the influence on the results will be considerable, especially on
moments corresponding to internal-translational interactions. Also, the number of
excited internal DoF is set to 2, the same as the DSMC simulation. The DSMC
simulation is performed by considering identical translational-rotational relaxation
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0.1 0.5 1.0 5.0 10.0 50.0 100.0

FIGURE 3. (Colour online) Comparison of total heat flux as a function of reference
pressure, ranging from continuum to transition regime. Results shown are obtained from:
R19 equations (black line); RNSF equations (blue dashed line); DSMC (red triangles).

rates, therefore we used tint/ttr = 1. It is evident from figure 2 that there is a good
agreement between the DSMC and the R19 results. In contrast, in transition regime,
there is a considerable deviation of RNSF equations results from the DSMC results
and the first-order set of equations fails to accurately model the problem.

We compare the values of dimensional total heat flux from R19 equations with
those from the DSMC simulation of Gallis, Torczynski & Rader (2007) at various
reference pressures, ranging from continuum to transition regime in figure 3. The
simulation case is a channel with 1 µm width filled with N2 gas and wall temperatures
at 285 and 315 K. The Prandtl number is set to 0.71, and the reference temperature
and reference shear viscosity are 300 K and 1.775 Pa s−1, respectively. Also, full
accommodation coefficients are considered. Reference pressures of 102, 1 and 0.1 Pa
correspond to reference Kntr equal to 0.005, 0.5 and 5. As it is depicted in figure 3,
there is good agreement between our data and the DSMC data. However in transition
regime, there is a considerable deviation of RNSF equations results from R19 and
DSMC results and the first-order set of equations fails to accurately model the
problem. It is seen that the total heat flux is independent of pressure at very low
Knudsen numbers. However, at high Knudsen numbers, heat flux changes abruptly
with changing pressure. Here, we use the values for Maxwell molecules of relaxation
parameters for pure translational moments, Ru2,0 = Rqtr = 3/2, from table 1. Prandtl
number is equal to 0.71 and based on (5.12) we obtain Rqint = 0.847. Also, we use
the obtained value of Rqint for Ru1,1 = 0.847, and as is clear from figure 3, this value
produces a good fit to the DSMC results. Therefore, the relaxation time of internal
heat flux equals to 0.79 of the translational heat flux relaxation time.

Next, we compare results from our macroscopic R19 model and results obtained
deterministically from the Holway (1966) and Andries et al. (2000) kinetic models.
Values of total heat flux obtained from R19 equations are compared with the
values obtained using the Holway (1966) model (Tantos et al. 2015) in figure 4.
The simulation case is a diatomic gas with excited internal DoF equal to 2, the
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FIGURE 4. (Colour online) Comparison of total heat flux as a function of wall
accommodation coefficient, ranging from specular reflection to full accommodation at wall.
Results shown are obtained from: R19 equations (black dashed line); Holway model (red
triangles).
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FIGURE 5. (Colour online) Comparison of translational and internal heat fluxes as a
function of reference Knudsen number, ranging from continuum to transition regime.
Results shown are obtained from: R19 equations (black dashed line); Andries model (red
triangles).

Prandtl number and reference Knudsen number are equal to 0.71. At different
wall accommodation coefficients, χ , total heat fluxes from our macroscopic model
and deterministically solved kinetic model are in a good agreement. As the wall
accommodation coefficient decreases, the value of total heat flux decreases too.

Translational and internal heat fluxes of a polyatomic gas with excited internal DoF
equal to 3, obtained by the deterministic method from the Andries et al. (2000) model
(Tantos et al. 2015) and our R19 equations are compared in figure 5. The Prandtl
number is set to 0.72. The heat fluxes at different reference Knudsen numbers are
depicted and a good agreement between our macroscopic model and Andries kinetic
model is observed, especially for translational heat flux.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

60
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.604


Modelling of rarefied polyatomic gases 473

 0

–0.2

–0.4

0.2

 0.4

 0

–0.2

–0.4

0.2

 0.4

0

 0.05

0.10

0.15

0.20  0.01

 0

 –0.01

 –0.02

 0

 –0.02

 –0.04

0.02

 –0.06

 –0.08

 –0.002

 –0.003

 –0.004

0.002

0.001

0

–0.001

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

q

x x

FIGURE 6. (Colour online) Numerical results of stationary heat conduction from set of
R19 equations. Red line is at t= 0 s; black dashed line is at t= 0.2 s; blue thin line is
at t= 0.6 s; green thick line is at t= 1.5 s; grey dot-dashed line is at t= 29 s.

In all the comparisons with other methods we have good agreement between results
at various Knudsen number values. However, in the cases with fluid flow present, we
expect that at high Knudsen numbers, the agreements might not be as good as for the
heat transfer case.

9.1. Unsteady state analysis
The developing profiles from the equilibrium ground state initial condition {ρ0, θ0} to
the steady state condition are presented for H2 gas in figure 6. Prandtl number is set
to 0.69, reference temperature is at 300 K and dimensionless wall temperatures are
±0.5. The shear viscosity temperature exponent is set to 0.5. Reference time scale is
set to be equal to reference internal time scale, τ0= τint. Therefore, based on (5.8) we
have

Kntr = 0.0091
Knint = 1.

}
(9.1)

The results presented in figure 6 are obtained from numerical solution of the R19
equations with the initial conditions of the reference equilibrium state {ρ0, θ0}. It is
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depicted that deviations of total temperature and density rise from zero starting from
regions near the walls and gradually, in time, move towards the central region. Other
variables start from zero at the initial state and jump to their maximum value first
of all as the boundary feels the temperature jump and then start to decay over time
to reach their steady state profiles as the boundary effects reach the middle section.
As shown in figure 6, the speed of these decays are not constant and their values
keep reducing in time as the temperature differences in the fluid decay. The values of
non-equilibrium variables at the beginning of the process are an order of magnitude
higher than their values in steady state.

9.2. Steady state analysis of various gases
Next, we analyse an N2 gas. The reference time scale is chosen so that, based on
(5.8), we have

Kntr = 0.207
Knint = 0.444.

}
(9.2)

This implies the need for a set of equations with high-order accuracy in both Kntr

and Knint, that is the set of R19 equations. The reference temperature is 400 K and
the dimensionless temperature at the walls is ±0.3. For a N2 gas, the shear viscosity
temperature exponent is set to 0.74 and the Prandtl number to 0.69. Figure 7 illustrates
the steady state profiles obtained numerically from the R19 and RNSF equations, and
analytically from the linear R19 equations. Results from RNSF equations are not in
agreement with the R19 profiles, which reflects the fact that at these Kn numbers
they are not expected to be accurate. Temperature gradient on the walls and normal
heat flux are lower for R19 equations. Here, effects of the gradients of dynamic
temperature and stress tensor are in opposition to the gradient of the temperature
and reduce the total heat flux. Also, it is evident that the effects of the nonlinear
and temperature-dependent properties are more dominant in profiles associated with
variables corresponding to internal and translational interactions (1θ and 1q), and
differ in the analytical and numerical results. The linear and temperature-independent
cases produce lower total heat flux and and symmetry profiles in comparison to the
unsymmetrical profiles of the full R19 equations.

The effects of a different range of temperatures is studied on a N2 gas in figure 8.
We investigate two cases with upper dimensionless wall temperatures at 0.5 and
2.5. The lower wall temperature and reference temperature are kept fixed at 300 K
and referenced Kn numbers are fixed at Kntr = 0.077 and Knint = 0.2. As can be
seen, the main effect here is the promotion of the non-symmetry effects by the
temperature-dependent properties and relaxation times in the case with higher upper
wall temperature. This emphasizes the importance of a model with the capability to
model temperature-dependent properties in problems with relatively high temperature
variations.

Now, we compare three different gases with distinguished characteristics, H2, N2
and CH4, in figure 9. Reference and wall temperatures are fixed at 700 K, 0 and
0.5, respectively. Translational Knudsen number is also kept fixed at 0.032. The
corresponding reference Knint are obtained from (5.8) to be

Knint =
N2: 0.158

H2: 3.78
CH4: 10.

(9.3)
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FIGURE 7. (Colour online) Steady state profiles of N2 gas obtained from numerical and
analytical methods. Red line: R19-numerical; black dot-dashed line: RNSF-numerical; blue
dotted line: R19-analytical.

Number of excited internal DoF at reference temperature of these gases are

δ + θ dδ
dθ
=
 N2: 2.41

H2: 2.09
CH4: 8.89.

(9.4)

H2 and CH4 gases both have large differences between internal and translational
relaxation times. However, internal and translational relaxation times of the N2 gas
have comparable values. On the other hand, H2 and N2 gases both have similar
excited internal DoF. Nonetheless, excited internal DoF of the CH4 gas is higher
than the other two gases. The effects of having internal and translational relaxation
times of the same order are seen in profiles of moments corresponding to deviations
from total values, 1θ and 1q, which are derived by translational-internal interactions.
These effects promote the temperature dependency of the profiles, which now cover
a larger range of values between the two walls. The cases with higher internal Kn
number have a higher temperature jump. Due to the lower internal relaxation times
and more active internal exchange processes in the N2 case, the value of dynamic
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FIGURE 8. (Colour online) Steady state profiles of N2 gas obtained from numerical
method with θWB = 0 and red line: θWT = 0.5; black dot-dashed line: θWT = 2.5.

temperature is slightly higher compared to the H2 case. Also, less active internal
exchange processes produced higher heat fluxes. The strong effects of different ratios
of Kn numbers are diminished at low translational Knudsen number. The effects of
different internal DoF are most seen in the total heat flux and stress tensor. A CH4 gas
with higher DoF gains a higher total heat flux and stress tensor in comparison with
other two gases. Also, increasing the internal DoF slightly increases the temperature
jump.

Effects of the reference temperature on the variables are studied in figure 10. A
N2 gas with fixed reference translational Knudsen number at 0.077 and dimensionless
wall temperatures at 0 and 0.5 is used with different reference temperatures of 300
and 700 K. The corresponding reference internal Knudsen numbers are 0.2 and 0.38,
respectively. As is depicted in figure 10, the case with a higher reference temperature,
which means more excited internal DoF, has a higher heat flux value and flatter
deviation moments, 1θ and 1q, in comparison with the lower reference temperature.
Also, there is a slightly higher temperature jump, especially on the bottom wall in
the case of the higher reference temperature in comparison with the lower one.
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FIGURE 9. (Colour online) Steady state profiles of different gases obtained from numerical
solution of the R19 equations. Red line: H2; black dot-dashed line: N2; blue dashed line:
CH4.

9.3. Accommodation coefficients analysis
Effects of the accommodation coefficients are investigated in figure 11. Three cases
are shown with different accommodation coefficients,

case no. 1: χ = 1 and ζ = 1
case no. 2: χ = 0.5 and ζ = 1
case no. 3: χ = 1 and ζ = 0.5.

 (9.5)

Case no. 1 is the case with full accommodation. Case nos. 2 and 3 are partial
accommodations with full internal and half internal-translational accommodations,
respectively. Partial accommodation with full internal accommodation, case no. 2,
shows lower temperature and density gradients and heat flux but higher stress
tensor in comparison with the fully accommodated case (no. 1). Comparing case
nos. 1 and 3 shows that the effects of half internal-translational accommodation are
dominant on the dynamic temperature and heat flux difference, which correspond to
internal-translational interactions. Its effects are towards a lower temperature gradient
and heat flux. The drastic changes in dynamic temperature between case nos. 1 or 2
and 3 are due to differences in the gradient of heat flux difference.
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FIGURE 10. (Colour online) Steady state profiles of N2 gas obtained from numerical
method of the R19 equations with θWB = 0 and θWT = 0.5. Red line: T0 = 300; black
dot-dashed line: T0 = 700.

10. Conclusions
The present study introduced a new kinetic model and macroscopic model for

the accurate description of polyatomic gas flows in the transition regime. Such
flows are presents in many applications, e.g. MEMS and partial vacuumed devices.
It was depicted that the proposed model offers accurate results and the ability to
interpret results in terms of macroscopic quantities. This is achieved with much less
computational cost compared to that required for the DSMC simulations. As the first
applications of the introduced model, we studied stationary heat conduction.

Polyatomic gases are governed by at least two distinct time scales, the mean
free times for processes that exchange only translational energy, or translational and
internal energies. We introduced a generalized S-model with the following features:

(i) The model predicts correct relaxation times of higher moments and Pr number.
(ii) The correct relaxation of the model towards equilibrium phase densities for

different exchange processes.
(iii) The model conserves the collision invariants.
(iv) The linear H-theorem for the proposed model was proven.
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FIGURE 11. (Colour online) Steady state profiles of N2 gases obtained from numerical
solution of the R19 equations with Kntr = 0.04 and Knint = 0.2. Blue dotted line: χ = 1
and ζ = 1; red line: χ = 1 and ζ = 0.5; black dashed line: χ = 0.5 and ζ = 1.

Moment equations for the raw 36 moments were obtained from the proposed
kinetic equation. We introduced the generalized Grad’s distribution function to cover
polyatomic gases based on these 36 variables. The proposed distribution function was
used to obtain constitutive equations to close the set of 36 moments equations.

Closed system of 36 raw moments was used to optimize the moment definitions.
The relations between Kn numbers were explored. We obtained orders of all 36
moments in two Kn numbers by applying CE expansion on the system of raw
moment equations. New optimized moment definitions for polyatomic gases were
defined in a way that all the optimized moments are linearly independent at the first
order. This ensures that at each order of accuracy, we have the least moment numbers
possible. Also, introduced optimized moment definitions are used to obtain the set of
optimized 36 moment equations for polyatomic gases.

Model reduction was applied on the set of 36 moment equations and the obtained
orders of different optimized moments were used to eliminate higher-order terms and
equations at different levels of accuracy. Sets of equations corresponding to ε0, ε1,
ε2 and ε3 orders of accuracy were obtained. At the first order of accuracy, a refined
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version of the classical NSF equations was obtained, which includes the balance law
for the dynamic temperature. At the second order, a refined variant of Grad’s 14
moment equations was obtained, which includes some corrections and three extra
constitutive equations for 1qi, B− and B+. Finally at the third order, the regularized
19 moment equations (R19) were obtained which consists of 19 PDEs and three
constitutive equations. Also, temperature-dependent internal DoF and relaxation times
were calculated based on specific heat and shear viscosities, and incorporated into the
proposed model. Also, we discussed the changes in the equations due to the ratio of
the Knudsen numbers.

We introduced a microscopic boundary condition using same idea that we used to
model the two distinguished exchanged processes, internal and translational. In the
proposed boundary condition, a portion of the particles hit the wall and accommodate
at the wall so that they are reflected with the equilibrium distribution of the wall.
The other portion is reflected specularly. For polyatomic particles that are diffusively
reflected, we had two Maxwellian-type equilibrium distribution functions, (2.16) and
(2.17), corresponding to the translational only energy equilibrium and the total energy
equilibrium. Corresponding macroscopic boundary conditions are obtained using the
proposed kinetic boundary condition.

We solved unsteady one-dimensional stationary heat conduction numerically and
analytically with the set of R19 and RNSF equations and compared the results with
DSMC simulations. It was shown that the NSF equations were not accurate in the
transition regime. The results from set of R19 equations was in a good agreement
with the DSMC simulations and deterministically solved kinetic models. The values
of non-equilibrium variables at the beginning of the unsteady process found to be an
order of magnitude higher than their values in steady state. Effects of nonlinearity
and temperature-dependent properties were more dominant in profiles associated
with translational-internal variables (1θ and 1q). The importance of our proposed
model, with the capability to model temperature-dependent properties, was shown in
problems with relatively high temperature variations. The effects of having internal
and translational relaxation times of the same order were found to be acting on
moments corresponding to deviations from total values, 1θ and 1q, which were
derived by translational-internal interactions. These effects were towards promoting
the temperature-dependency effects and the obtained profiles covered a larger range
of values. The effects of different internal DoF were most seen in the total heat flux
and stress tensor, where gases with higher DoF gain a higher total heat flux and
stress tensor in comparison with gases with lower DoF. Higher reference temperature,
which means more excited internal DoF, produced higher heat flux values and
flatter deviation moment profiles, 1θ and 1q, in comparison to the lower reference
temperature case. Also, different accommodation coefficients are investigated and the
drastic effects of ζ on dynamic temperature and heat flux difference were seen.
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Appendix A
In the first part of this appendix, we present the formulization of our proposed

generalized S-model. Based on the definition of {qi,tr, qi,int, u2,0, u1,1} moments, we
introduce translational and internal distribution functions by expansion about the
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equilibrium Maxwellian functions (2.16) and (2.17) in corresponding polynomials in
specular velocity and the particle’s internal energy as,

ftr = ftr0 [1+ ( a0,0 + a0,0
i Ci + a1,0C2 + a0,0

ij C<iCj>

+ a1,0
i CiC2 + a0,1

i Cieint + a1,1C2eint + a2,0C2C2 )], (A 1)

fint = fint0 [1+ (b0,0 + b0,0
i Ci + b1+1(C2 + eint)

+ b0,0
ij C<iCj> + b1,0

i CiC2 + b0,1
i Cieint + b1,1C2eint + b2,0C2C2)] . (A 2)

The unknown coefficients in ftr and fint are obtained based on the conditions that the
proposed two term collision model predicts correct relaxation for higher moments by
introducing four free relaxation parameters Rqtr , Rqint , Ru2,0 , Ru1,1 as shown in table 2.
A similar idea was used by Marques (1999) to introduce a simple polyatomic kinetic
model with a single relaxation term. These conditions along with the collision
invariants result in coefficients for the translational distribution function as,

a0,0
ij = 0, a0,0 = (1− Ru2,0)(u2,0 − 15ρθ 2

tr)

8ρθ 2
tr

, (A 3a)

a0,0
i =−

(1− Rqtr)qi,tr + 2δ
(
1− Rqint

)
qi,int

ρθtrθint

4u0,2 − δ2ρθ 2
int

ρθ 2
tr

 , (A 3b)

a1,0 =
−5(1− Ru2,0)

(
u2,0 − 15ρθ 2

tr

)− 8δρθtrθint (1− Ru1,1)
u1,1 − 3

2δρθtrθint

4u0,2 − δ2ρθ 2
int

60ρθ 3
tr

, (A 3c)

a1,0
i =

(1− Rqtr)qi,tr

5ρθ 3
tr

, a0,1
i =

4
(
1− Rqint

)
qi,int

4u0,2θtr − δ2ρθ 2
intθtr

, (A 3d)

a1,1 = 4 (1− Ru1,1)
(
u1,1 − 3

2δρθtrθint
)

15θ 2
tr

[
4u0,2 − δ2ρθ 2

int

] , (A 3e)

a2,0 = (1− Ru2,0)
(
u2,0 − 15ρθ 2

tr

)
120ρθ 4

tr

, (A 3f )

and internal distribution function as,

b0,0 = (6+ δ) 28 (1− Ru1,1)
[
u1,1 − 3

2δρθ
2
]+ (5− δ) (1− Ru2,0)

[
u2,0 − 15ρθ 2

]
8ρθ 2 (30+ δ (3+ δ)) ,

(A 4a)

b0,0
i =−

[
(1− Rqtr)qi,tr +

(
1− Rqint

)
qi,int

ρθ 2

]
, (A 4b)

b1+1 = −28 (1− Ru1,1)
[
u1,1 − 3

2δρθ
2
]− (5− δ) (1− Ru2,0)

[
u2,0 − 15ρθ 2

]
2ρθ 3 (30+ δ (3+ δ)) , (A 4c)

b0,0
ij = 0, b1,0

i =
(1− Rqtr)qi,tr

5ρθ 3
, b0,1

i =
2
(
1− Rqint

)
qi,int

δρθ 3
, (A 4d)
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b2,0 = 20(6− δ)(1− Ru1,1)
[
u1,1 − 3

2δρθ
2
]+ (30− δ(7− δ))(1− Ru2,0)[u2,0 − 15ρθ 2]

120ρθ 4(30+ δ(3+ δ)) ,

(A 4e)

b1,1 = 24 (1+ δ) (1− Ru1,1)
[
u1,1 − 3

2δρθ
2
]+ δ (3− δ) (1− Ru2,0)

[
u2,0 − 15ρθ 2

]
6δρθ 4 (30+ δ (3+ δ)) .

(A 4f )

In the rest of this appendix we examine some important properties of our proposed
model. First, we consider equilibrium. Using the Maxwellian distribution functions, we
get

u1,1
|E,tr =m

∫∫
C2eintftr0 t dc deint = 3

2
δρθintθtr,

u2,0
|E,tr =m

∫∫
C4ftr0 dc deint = 15ρθ 2

tr, and

u1,1
|E,int =m

∫∫
C2eintfint0 dc deint = 3

2
δρθ 2,

u2,0
|E,int =m

∫∫
C4fint0 dc deint = 15ρθ 2.


(A 5)

In equilibrium we have zero collision term and all moments of the collision term must
vanish, e.g. qi,tr = qi,int = 0. Therefore, based on (A 1) and (A 2), all the expanding
coefficients become zero and we will get f = ftr = ftr0 when we have equilibrium
in translational processes only, and f = fint = fint0 when we have equilibrium in both
internal and translational processes.

Next we consider conservation of moments: for the translational exchange processes,
the mass of particles with the same internal energy level should be conserved. Internal
exchange processes conserve the total mass. Both internal and translational exchange
processes conserve the momentum. The total energy is conserved in the internal
exchange processes, where the translational processes conserve the translational and
internal energies separately. The above conditions imply that the two phase densities,
ftr and fint, should have the moments related to mass, momentum and energy in
common with f as,

ρI =m
∫

ftr dc=m
∫

f dc,

0=m
∫∫

Ci ftr dc dI =m
∫∫

Ci f dc dI,

3
2
ρθtr = m

2

∫∫
C2ftr dc dI = m

2

∫∫
C2f dc dI.


(A 6a)

ρ =m
∫∫

fint dc dI =m
∫∫

f dc dI,

0=m
∫∫

Ci fint dc dI =m
∫∫

Ci f dc dI,(
3
2
+ δ

2

)
ρθ =m

∫∫ (
C2

2
+ eint

)
fint dc dI =m

∫∫ (
C2

2
+ eint

)
f dc dI.


(A 6b)
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These equalities are satisfied, and the conservation of mass, momentum and energy is
guaranteed by using the proposed model.

In the rest of this appendix we prove the linear H-theorem for the proposed kinetic
model. It should be pointed out that the nonlinear H-theorem is not proven here.
Multiplication of the kinetic equation (2.15a) with −k ln f and subsequent integration
over velocities and internal energy give the transport equation for the entropy density.
Consequently, the entropy generation is obtained as∑

= −k
∫

ln f S dc dI

= k
τint

∫∫
ln f ( f − fint) dc dI + k

τtr

∫∫
ln f ( f − ftr) dc dI > 0, (A 7)

non-equality shows that the entropy generation ought to be non-negative. The right-
hand side of (A 7) has two terms, first we consider the first term.

We write the first term associated with the internal exchange processes as

k
τint

∫∫
ln f ( f − fint) dc dI = k

τint

∫∫
ln f

ln fint
( f − fint) dc dI

+ k
τint

∫∫
ln fint( f − fint) dc dI. (A 8)

Here, the first term on the right-hand side is always positive by structure. Now, we
focus on the second term. Considering a near equilibrium situation with small non-
equilibrium variables qi,tr, qi,int, [u1,1− (3/2)δρθ 2], [u2,0− 15ρθ 2], we write ln fint as,

ln fint = ln fint0 + (b0,0 + b0,0
i Ci + b1+1(C2 + eint)+ b0,0

ij C<iCj>

+ b1,0
i CiC2 + b0,1

i Cieint + b1,1C2eint + b2,0C2C2); (A 9)

here, we used the relation ln[1+ x] = x with x being small. Due to the conservation
of energy, momentum and mass, we have∫∫

ln fint0( f − fint) dc dI

=
∫∫ ln

 ρm 1
(2π)3/2 θ 3/2

1

Γ

(
1+ δ

2

)
− 1

θ

(
C2

2
+ eint

) ( f − fint) dc dI = 0,

∫
b0,0( f − fint) dc dI = 0,

∫
b0,0

i Ci( f − fint) dc dI = 0,

and
∫

b1+1(C2 + eint)( f − fint) dc dI = 0.


(A 10)

Therefore, remaining terms of the first term of (A 7) are∫∫
b1,0

i CiC2( f − fint) dc deint = b1,0
i 2Rqtr qi,tr =

2Rqtr(1− Rqtr)

5ρθ 3
q2

i,tr, (A 11a)
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484 B. Rahimi and H. Struchtrup∫∫
b0,1

i CiI2/δ( f − fint) dc deint = b0,1
i Rqint qi,int =

2Rqint(1− Rqint)

δρθ 3
q2

i,int, (A 11b)

which are always positive for {Rqtr , Rqint}6 1 and

A1 =
∫∫

b2,0C2C2( f − fint) dc deint = b2,0
[
Ru2,0

(
u2,0 − 15ρθ 2

)]
= 20δ (6− δ) Ru2,0 (1− Ru1,1)

[
u1,1 − 3

2δρθ
2
]

120δρθ 4 (30+ δ (3+ δ))
[
u2,0 − 15ρθ 2

]
+ δ (30− δ (7− δ)) Ru2,0(1− Ru2,0)

120δρθ 4 (30+ δ (3+ δ))
[
u2,0 − 15ρθ 2

]2
, (A 12)

A2 =
∫∫

b1,1C2I2/δ( f − fint) dc deint = b1,1

[
Ru1,1

(
u1,1 − 3

2
δρθ 2

)]
= 480 (1+ δ) Ru1,1 (1− Ru1,1)

120δρθ 4 (30+ δ (3+ δ))
[

u1,1 − 3
2
δρθ 2

]2

+ 20δ (3− δ) Ru1,1 (1− Ru2,0)

120δρθ 4 (30+ δ (3+ δ))
[
u2,0 − 15ρθ 2

] (
u1,1 − 3

2
δρθ 2

)
. (A 13)

It should be pointed out here that the two relaxation parameters, Rqtr and Rqint , are
analogies to the Pr number and their typical values are around 0.6–0.9. We use the
Onsager relation due to the coupling between these last two equations as

A1 + A2 = LABXB · XA, (A 14a)

with Onsager phenomenological matrix,

LAB =


δ (30− δ (7− δ)) Ru2,0(1− Ru2,0)

120δρθ 4 (30+ δ (3+ δ))
20δ (6− δ) Ru2,0 (1− Ru1,1)

120δρθ 4 (30+ δ (3+ δ))
20δ (3− δ) Ru1,1 (1− Ru2,0)

120δρθ 4 (30+ δ (3+ δ))
480 (1+ δ) Ru1,1 (1− Ru1,1)

120δρθ 4 (30+ δ (3+ δ))

 , (A 14b)

and forces,
X1 = u2,0 − 15ρθ 2 and X2 = u1,1 − 3

2δρθ
2. (A 14c)

The coefficient matrix has proportional non-diagonal terms, non-negative diagonal
terms and determinant for {Ru1,1, Ru2,0}6 1. Therefore, we conclude that

b2,0[Ru2,0(u2,0 − 15ρθ 2)] + b1,1
[
Ru1,1

(
u1,1 − 3

2δρθ
2
)]

> 0. (A 14d)

The relaxation parameter, Ru2,0 , has a value of approximately 0.7 for a monatomic gas,
as mentioned in table 1. Now that we have proved that the first term on the right-hand
side of the entropy production equation (A 7) is non-negative, the second term is now
analysed.

We re-write the second term in the entropy production equation (A 7) which is
related to translational exchange processes as,∫

ln f ( f − ftr) dc dI =
∫

ln f
ln ftr

( f − ftr) dc dI +
∫

ln ftr( f − ftr) dc dI. (A 15)
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The first term is always positive by structure. Therefore, we now focus on the second
term here. Applying the same technique as we did for ln fint, we will have the ln ftr
as,

ln ftr = ln ftr0 + (a0,0 + a0,0
i Ci + a1,0C2 + a1,0

i CiC2 + a0,1
i Cieint + a2,0C2C2 + a1,1C2eint)

(A 16a)

ln ftr0 = ln

[
ρI

m

(
1

2πθtr

)3/2
]
− 1

2θtr
C2. (A 16b)

Due to the conservation of the translational energy, momentum and mass, we have∫∫
ln ftr0( f − ftr) dc dI =

∫∫ [
ln

[
ρI

m

(
1

2πθtr

)3/2
]
− 1

2θtr
C2

]
( f − ftr) dc dI = 0,∫

a0,0( f − ftr) dc dI = 0,
∫

a0,0
i Ci( f − ftr) dc dI = 0

and
∫

a1,0C2( f − ftr) dc dI = 0.


(A 17)

Therefore the remaining parts are,∫
a1,0

i CiC2( f − ftr) dc dI = 2Rqtr(1− Rqtr)

5ρθ 3
tr

q2
i,tr, (A 18a)∫

a0,1
i CiI2/δ( f − ftr) dc dI = 4Rqint(1− Rqint)

θtr
[
4u0,2 − δ2ρθ 2

int

]q2
i,int, (A 18b)∫

a2,0C2C2( f − ftr) dc dI = Ru2,0 (1− Ru2,0)

120ρθ 4
tr

(
u2,0 − 15ρθ 2

tr

)2
, (A 18c)∫

a1,1C2I2/δ( f − ftr) dc dI = 4Ru1,1 (1− Ru1,1)

15θ 2
tr

[
4u0,2 − δ2ρθ 2

int

] (u1,1 − 3
2
δρθtrθint

)2

, (A 18d)

which are always non-negative for {Rqtr , Rqint , Ru2,0, Ru1,1} 6 1. Here, based on the
obtained Grad 36 (G36) distribution function (B 1) we calculate the moment u0,2 to
be

u0,2
pG36 = 1

4(2+ δ)ρθ [(6+ δ)θ − 6θtr], (A 19a)

[4u0,2
pG36 − δ2ρθ 2

int] = ρ[2δθ 2 + 31θ(4θ − 31θ)]. (A 19b)

Therefore, both terms in the entropy production inequality are non-negative. It follows
from (A 7) that the linear H-theorem is fulfilled as,∑

=−k
∫

ln f S dc dI > 0 for {Rqtr , Rqint , Ru2,0, Ru1,1}6 1. (A 20)

Therefore, the H-theorem demands that the values of relaxation parameters be less
than or equal to 1. Also, this agrees with our obtained values of relaxation parameters
from fitting to DSMC simulation data, as is shown in § 8.
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486 B. Rahimi and H. Struchtrup

Appendix B
Generalized Grad closure for 36 moments is presented in this appendix. Grad (1949,

1958) proposed a distribution function based on the expansion of the Maxwellian into
a series of Hermite polynomials. It is convenient to consider the expansion with
the trace free moments instead of regular moments, so that the generalized Grad
distribution function based on the 36 variables is written as

f|36 = fint0 (λ
0,0 + λ0,0

i Ci + λ1,0C2 + λ0,0
〈ij〉C<iCj> + λ0,1eint

+ λ1,0
i CiC2 + λ0,1

i Cieint + λ1,0
〈ij〉C

2C<iCj> + λ2,0C4

+ λ0,0
〈ijk〉C<iCjCk> + λ0,1

〈ij〉C<iCj>eint + λ1,1C2eint), (B 1)

where λς,A〈i1i2...in〉 are expansion coefficients, which are chosen such that Grad’s 36
distribution function reproduces the set of 36 moments, i.e.

uA =m
∫∫

ΨAf|36 dc dI, (B 2a)

with
uA = {ρ, ρθtr, ρθint, σij, qi,tr, qi,int, u1,0

ij , u2,0, u0,0
ijk , u0,1

ij , u1,1}, (B 2b)
and

ΨA =
{

1,Ci,
C2

3
,

2
δ

eint,C<iCj>,
CiC2

2
,Cieint,

C<iCj>C2,C4,C<iCjCk>,C<iCj>eint,C2eint

}
. (B 2c)

The obtained coefficients are

λ0,0 = 4u1,1 + u2,0

8ρθ 2
+ 5

8
− 3 (2+ δ) θtr

4θ
, (B 3a)

λ0,1 = − u1,1

δρθ 3
+ 15

2δθ
− 3 (5− δ) θtr

2δθ 2
, (B 3b)

λ1,0 = −2u1,1 + u2,0

12ρθ 3
− 1
θ
+ (9+ δ) θtr

4θ 2
, (B 3c)

λ2,0 = u2,0

120ρθ 4
+ 1

8θ 2
− θtr

4θ 3
, (B 3d)

λ1,1 = u1,1

3δρθ 4
− 3

2δθ 2
+ (9− δ) θtr

6δθ 3
, (B 3e)

λ0,0
i = −

qi,tr + qi,int

ρθ 2
, λ1,0

〈ij〉 =
u1,0

ij

28ρθ 4
− σij

4ρθ 3
, (B 3f )

λ1,0
i =

qi,tr

5ρθ 3
, λ0,1

i =
2qi,int

δρθ 3
, (B 3g)

λ0,0
〈ij〉 = −

2u0,1
ij + u1,0

ij

4ρθ 3
+ (9+ δ) σij

4ρθ 2
, (B 3h)

λ0,0
〈ijk〉 =

u0,0
ijk

6ρθ 3
, λ0,1

〈ij〉 =
u0,1

ij

δρθ 4
− σij

2ρθ 3
. (B 3i)
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Grad’s distribution function implies a relation between the internal state density, ρI ,
total density, ρ, and the temperatures, θ and 1θ = θ − θtr based on (2.6a), viz.

ρI = ρ

θ 1+δ/2Γ
(

1+ δ
2

) [ I2/δ

δ

δθ − (δ − 3) 1θ
θ

+ 2θ − 31θ
2

]
exp

(
−1
θ

I2/δ

)
. (B 4)

Appendix C

Scaled moments equations used in the model reduction procedure are given here as
the balance laws for dynamic temperature 1θ , stress tensor σij, overall heat flux qi,
heat flux difference 1qi:

εα

ρD1θ
Dt
+

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)ρ1θ ∂vi

∂xi



+ ε1


 2

3+ δ + θ dδ
dθ

− 10Rqint

3
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)
 ∂qi

∂xi



+ ε1


10Rqint Rqtr

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
3
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2 qi
∂θ

∂xi
−

2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)σij
∂vj

∂xi



− ε1+α


10Rqint Rqtr

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
3
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)21qi
∂θ

∂xi
+

2
(
δ + θ dδ

dθ

)
Rqtr

3
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) ∂1qi

∂xi



−
2
(
δ + θ dδ

dθ

)
3
(

3+ δ + θ dδ
dθ

)ρθ ∂vi

∂xi
=− ρ

τint
1θ, (C 1a)

ε1

Dσij

Dt
−

4Rqint Rqtr

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2 q<i
∂θ

∂xj>



+ ε1

 4Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

∂q<i

∂xj>
+ 2σk<i

∂vj>

∂xk
+ σij

∂vk

∂xk


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488 B. Rahimi and H. Struchtrup

− εα
[

2ρ1θ
∂v<i

∂xj>

]
+ ε1+α

 4
(
δ + θ dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) ∂1q<i

∂xj>



+ ε1+α

 4Rqint Rqtr(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)2

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
1q<i

∂θ

∂xj>


+ ε2

[
∂u0,0

ijk

∂xk

]
+ 2ρθ

∂v<i

∂xj>
=−

[
1
τtr
+ ε

1−α

τint

]
σij, (C 1b)

ε1

Dqi

Dt
+ θ ∂σik

∂xk
+ σik

5+ δ + θ dδ
dθ

2
∂θ

∂xk
− θ ∂ ln ρ

∂xk




+ ε1


1+ 2Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

[qk
∂vi

∂xk
+ qi

∂vk

∂xk

]

+ ε1

 2Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

qk
∂vk

∂xi
+ 5

13
∂B−

∂xi



− εα
ρθ ∂1θ

∂xi
+

5+ δ + θ dδ
dθ

2
ρ1θ

∂θ

∂xi


− ε2α

[
ρ1θ

∂1θ

∂xi
+1θ 2 ∂ρ

∂xi
+ 2

39
∂B+

∂xi

]

+ ε1+α

 2
(
δ + θ dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) (1qk
∂vi

∂xk
+1qi

∂vk

∂xk
+1qk

∂vk

∂xi

)
+ ε1+α

[
168

(42+ 25δ)2
B+ij

dδ
dθ
∂θ

∂xj
+ 4δ
(42+ 25δ)

∂B+ij
∂xj
+1θ ∂σij

∂xj

]

+ ε1+α
[
σik

(
∂1θ

∂xk
+1θ ∂ ln ρ

∂xk

)]
+

5+ δ + θ dδ
dθ

2
ρθ
∂θ

∂xi

+ ε2

[
7
(

1
(14+ δ)2 −

24
(42+ 25δ)2

)
B−ij

dδ
dθ
∂θ

∂xj
− 1
ρ
σik
∂σkj

∂xj

]
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+ ε2

[
7 (3+ δ) (14+ 3δ)
(14+ δ)(42+ 25δ)

∂B−ij
∂xj
+ u0,0

ijk
∂vj

∂xk

]
=−

[
1
τtr
+ ε

1−α

τint

]

×

Rqint Rqtr

(
5+ δ + θ dδ

dθ

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

qi + εα

(
δ + θ dδ

dθ

)
Rqtr

(
Rqtr − Rqint

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

1qi


 ,
(C 1c)

ε1

D1qi

Dt
+ σik

[
∂1θ

∂xk
+1θ ∂ ln ρ

∂xk

]
− ς21θqi

∂vk

∂xk

+ δ

(42+ 25δ)
ς4
∂B+ij
∂xj
+ 42
(42+ 25δ)2

ς4
dδ
dθ

B+ij
∂θ

∂xj

− ς2θ1qi
∂vk

∂xk
+

2
(
δ + θ dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)1qj
∂vj

∂xi
+ 5

2
ς31θ

∂σij

∂xj

+

 25Rqint + 7
(
δ + θ dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)
(1qi

∂vk

∂xk
+1qk

∂vi

∂xk

)
− εα

[
5
2
ς31θ

2 ∂ρ

∂xi
+ 5

2
ς3ρ1θ

∂1θ

∂xi
+ 5

39
ς3
∂B+

∂xi

]

+ ε1−α

 5
39

1− 10Rqint(
δ + θ dδ

dθ

)
Rqtr

 ∂B−

∂xi
+ ς2θqi

∂vk

∂xk
+ θ ∂σik

∂xk

+ 2Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

[
qj
∂vj

∂xi
+ qi

∂vk

∂xk
+ qk

∂vi

∂xk

]

+ σik

(
5
2

[
1− Rqint

Rqtr

]
∂θ

∂xk
− θ ∂ ln ρ

∂xk

)
+ ς21θ1qi

∂vk

∂xk



− ε2

[
ς2

(
1qi

ρ

∂qk

∂xk
+1qi

σkl

ρ

∂vl

∂xk

)]
+ ε2−α

ς2
qi

ρ

∂qk

∂xk
+ u0,0

ijk
∂vj

∂xk
− σik

ρ

∂σkj

∂xj

+ 7 (3+ δ)
(14+ δ) (42+ 25δ)

14− δ − 20δRqint(
δ + θ dδ

dθ

)
Rqtr

 ∂B−ij
∂xj
+ ς2

qiσkl

ρ

∂vl

∂xk
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− ς1
dδ
dθ

B−ij
∂θ

∂xj

− 5
2
ρ

(
ς3θ

∂1θ

∂xi
−
[
Rqint − Rqtr

]
Rqtr

1θ
∂θ

∂xi

)

− ε−α
[

5
[
Rqint − Rqtr

]
2Rqtr

ρθ
∂θ

∂xi

]
=−

[
1
τtr
+ ε

1−α

τint

]

×

ε−α
 5Rqint

(
Rqtr − Rqint

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

qi

+
(
δ + θ dδ

dθ

)
R2

qtr
+ 5R2

qint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

1qi

 , (C 1d)

where,

ς1 = 7

 1
(14+ δ)2 +

42
(42+ 25δ)2

+ 10Rqint(
δ + θ dδ

dθ

)
Rqtr

[
1

(14+ δ)2 +
9

(42+ 25δ)2

],
(C 1e)

ς2 =
10Rqint

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(
δ + θ dδ

dθ

)(
3+ δ + θ dδ

dθ

)(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) , (C 1f )

ς3 =

1+ 3Rqint(
δ + θ dδ

dθ

)
Rqtr

 , (C 1g)

ς4 =

7+ 15Rqint(
δ + θ dδ

dθ

)
Rqtr

 . (C 1h)

Balance laws for higher moments B− and B+,

ε1

[
DB−

Dt
+ 71

39
B−
∂vk

∂xk
+ 12

5
θσij

∂vj

∂xi

]

+ ε1

ς5qk
∂θ

∂xk
+

12Rqint + 2
(
δ + θ dδ

dθ

)
Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk

∂xk
− 2ς6θqk

∂ ln ρ
∂xk


− ε2α

[
2

13
B+
∂vk

∂xk
+ 3ρ1θ 2 ∂vi

∂xi

]
+ ε1+α

[
54δ

5(42+ 25δ)
B+ij
∂vj

∂xi

]
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+ ε1+α
[

2ς6qk

(
∂1θ

∂xk
+1θ ∂ ln ρ

∂xk

)
+ ς71qk

∂θ

∂xk

]

+ ε1+α

31θ
(
∂qk

∂xk
+ σij

∂vj

∂xi

)
+ 2

5

(
δ + θ dδ

dθ

)
Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

θ
∂1qk

∂xk


− ε1+α

[
ς8θ1qk

∂ ln ρ
∂xk

]
+ ε1+2α

[
ς81qk

(
∂1θ

∂xk
+1θ ∂ ln ρ

∂xk

)]
+ ε2

[
196 (6+ δ) (3+ δ)

5(14+ δ)(42+ 25δ)
B−ij
∂vj

∂xi
− 2ς6

qk

ρ

∂σkj

∂xj

]
− ε2+α

[
ς8
1qk

ρ

∂σkj

∂xj

]
=−

[
1
τtr
+ ε

1−α

τint

] (
10Ru1,1 + 3Ru2,0

13
B− + ε2α−1

[
3 (Ru1,1 − Ru2,0)

13
B+
])

− ε2α−1

[
1
τtr

9 (Ru1,1 − Ru2,0)

2
ρ1θ 2

]
− 1
τint

(
3
2
(3+ δ + [3− δ] Ru1,1 − 6Ru2,0) ρθ1θ

)
. (C 2a)

ε1

[
DB+

Dt
+ 85

39
B+
∂vk

∂xk
+ ς13ρ1θ

2 ∂vi

∂xi

]
+ ε1−α


26− 78

3+ δ + θ dδ
dθ

 ρθ1θ ∂vi

∂xi


+ ε2−2α

[
ς9qk

∂θ

∂xk
− 8θσij

∂vj

∂xi
+ ς14θ

∂qk

∂xk
− ς10θqk

∂ ln ρ
∂xk
− 20

39
B−
∂vk

∂xk

]
+ ε2−α

[
ς10qk

[
∂1θ

∂xk
+1θ ∂ ln ρ

∂xk

]
− 62δ
(42+ 25δ)

B+ij
∂vj

∂xi
+ ς121qk

∂θ

∂xk

]
+ ε2−α

[
ς11θ

(
1qk

∂ ln ρ
∂xk
− ∂1qk

∂xk

)
− ς131θ

(
∂qk

∂xk
+ σij

∂vj

∂xi

)]
− ε2

[
ς111qk

(
∂1θ

∂xk
+1θ ∂ ln ρ

∂xk

)]
+ ε3−α

[
ς11
1qk

ρ

∂σkj

∂xj

]
− ε3−2α

[
112 (7− δ) (3+ δ)
(14+ δ)(42+ 25δ)

B−ij
∂vj

∂xi
+ ς10

qk

ρ

∂σkj

∂xj

]
=−

[
1
τtr
+ ε

1−α

τint

] (
3Ru1,1 + 10Ru2,0

13
B+ + ε1−2α

[
10
13
(Ru1,1 − Ru2,0) B−

])
− 1
τtr

(
9
2

Ru1,1 + 15Ru2,0

)
ρ1θ 2

− ε1−2α

[
1
τint

3
2
((3− δ) Ru1,1 + 20Ru2,0 − (23− δ)) ρθ1θ

]
, (C 2b)

where,

ς5 =


(
5Rqint + 3Rqtr

) (
δ + θ dδ

dθ

)
+ 30Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

−
2Rqtr Rqintθ

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2

 , (C 2c)
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ς6 = 1+ Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

, (C 2d)

ς7 =

(
3+ δ + θ dδ

dθ

)
Rqtr

(
δ + θ dδ

dθ

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

+
2Rqtr Rqintθ

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2 , (C 2e)

ς8 = 2
5

1− 5Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

 , (C 2f )

ς9 =


50Rqint Rqtrθ

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2 +
(
5Rqint + 3Rqtr

) (
δ + θ dδ

dθ

)
− 100Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

 , (C 2g)

ς10 =

2− 50Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

 , (C 2h)

ς11 =
10
(
δ + θ dδ

dθ

)
Rqtr

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

, (C 2i)

ς12 =


(
−23+ δ + θ dδ

dθ

)
Rqtr

(
δ + θ dδ

dθ

)
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

−
50Rqtr Rqintθ

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2

 , (C 2j)

ς13 =
3
(

23− δ − θ dδ
dθ

)
3+ δ + θ dδ

dθ

(C 2k)

ς14 =
2
(
δ + θ dδ

dθ

)
Rqtr − 40Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

. (C 2l)
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The equations for higher moments B+ij , B−ij and u0,0
ijk ,

ε1

DB+ij
Dt
+

2 (70+ 23δ) Rqtr

(
δ + θ dδ

dθ

)
5δ
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)θ ∂1q<i

∂xj>
+ Γ31q<i

∂θ

∂xj>
+ 2B+k<i

∂vj>

∂xk



+ ε1

 8δ
(42+ 25δ)

(
14
5

B+k<i
∂vk

∂xj>
+ 3B+<ij

∂vk>

∂xk

)

−
(14− δ) θ dδ

dθ
− δ (14+ δ)

δ

(
3+ δ + θ dδ

dθ

) 1θσij
∂vk

∂xk



− ε1

(Γ1 − 1) B+ij
∂vk

∂xk
+

2 (70+ 23δ) Rqtr

(
δ + θ dδ

dθ

)
5δ
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)θ1q<i
∂ ln ρ
∂xj>



+ ε1

2

 (70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)
δ

 q<i

(
∂1θ

∂xj>
+1θ ∂ ln ρ

∂xj>

)

+ ε1+α

 2 (70+ 23δ) Rqtr

(
δ + θ dδ

dθ

)
5δ
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)1q<i

(
∂1θ

∂xj>
+1θ ∂ ln ρ

∂xj>

)
+ Γ1B+ij1θ

∂vk

∂xk



+ ε1−α

2

 (70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)
δ

 θ ∂q<i

∂xj>
+ Γ2q<i

∂θ

∂xj>



+ ε1−α

4θ
(

2σk<i
∂vk

∂xj>
+ 2σk<i

∂vj>

∂xk
+ σij

∂vk

∂xk

)

+
(14− δ) θ dδ

dθ
− δ (14+ δ)

δ

(
3+ δ + θ dδ

dθ

) θσij
∂vk

∂xk



− ε1−α

2

 (70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)
δ

 θq<i
∂ ln ρ
∂xj>
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494 B. Rahimi and H. Struchtrup

− 4 (70− 19δ)
39δ

B−
∂v<i

∂xj>



+ ε2−α

u0,0
ijk

14+ δ + δ − 14
δ

θ
dδ
dθ

2
∂θ

∂xk
− 4θ

∂ ln ρ
∂xk



+
(14− δ)θ dδ

dθ
− δ (14+ δ)

δ

(
3+ δ + θ dδ

dθ

) σij

ρ

∂qk

∂xk



+ ε2−α

(14− δ)θ dδ
dθ
− δ(14+ δ)

δ

(
3+ δ + θ dδ

dθ

) σijσkl

ρ

∂vl

∂xk
+ 784 (3+ δ) Γ1

84(14+ δ) B−ij
∂vk

∂xk



− ε2−α

2

 (70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)
δ

 q<i

ρ

∂σj>k

∂xk


+ ε2−α

[
8(14− δ) (3+ δ)
(14+ δ)(42+ 25δ)

(
14
5

B−k<i
∂vk

∂xj>
+ 3B−<ij

∂vk>

∂xk

)]
− ε2

[
Γ1

3(14+ δ)θ
(

3(14+ δ)B
+
ij

ρ

[
∂qk

∂xk
− σkl

∂vl

∂xk

]
+ 28 (3+ δ) B−ij1θ

∂vk

∂xk

)]

+ ε2

4u0,0
ijk

[
1θ

∂ ln ρ
∂xk
+ ∂1θ
∂xk

]
−

2 (70+ 23δ) Rqtr

(
δ + θ dδ

dθ

)
5δ
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)1q<i

ρ

∂σj>k

∂xk


+ ε3−α

[
784 (3+ δ) Γ1

84(14+ δ)
B−ij
ρθ

(
σkl
∂vl

∂xk
+ ∂qk

∂xk

)
− 4

u0,0
ijk

ρ

∂σkl

∂xl

]

− εα
[

2(42+ 25δ)
39δ

B+
∂v<i

∂xj>

]
− (42+ 25δ)

δ
ρθ1θ

∂v<i

∂xj>
=−

[
1
τtr
+ ε

1−α

τint

]
B+ij , (C 3a)

ε1

[
DB−ij
Dt
− 14+ δ

3+ δ
σij

ρ

[
∂qk

∂xk
+ σkl

∂vl

∂xk

]]

− ε1

 22θ
dδ
dθ

(3+ δ) (14+ δ)
(

3+ δ + θ dδ
dθ

)B−ij
∂vk

∂xk
−

14+ δ + 14+ δ
3+ δ θ

dδ
dθ

2
+ 2B−k<i

∂vj>

∂xk


+ ε1

[
6(14− δ)
(42+ 25δ)

[
3
7

B−<ij
∂vk>

∂xk
+ 2

5
B−k<i

∂vk

∂xj>

]
u0,0

ijk
∂θ

∂xk

]
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+ ε1

[
B−ij
∂vk

∂xk
+ 3(14+ δ)

7 (3+ δ) θ
∂u0,0

ijk

∂xk
− 3(14+ δ)

7 (3+ δ) θu0,0
ijk
∂ ln ρ
∂xk
− Γ5

q<i

ρ

∂σj>k

∂xk

]

+ εα
14+ δ

3+ δ 1θσij
∂vk

∂xk
+

2 (70+ 23δ)
(
δ + θ dδ

dθ

)
Rqtr

5δ
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)θ ∂1q<i

∂xj>

+ 4Γ4θ1q<i
∂ ln ρ
∂xj>



+ εα

 10(
δ + θ dδ

dθ

)Γ4


(
δ + θ dδ

dθ

)
5

(
3+ δ + θ dδ

dθ

)

−
2θ
(

2
dδ
dθ
+ θ d2δ

dθ 2

)
Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

1q<i
∂θ

∂xj>


+ εα

[
6δ(14+ δ)

(3+ δ) (42+ 25δ)

(
3
7

B+<ij
∂vk>

∂xk
+ 2

5
B+k<i

∂vk

∂xj>

)]
+ εα

[
Γ5q<i

(
∂1θ

∂xj>
+1θ ∂ ln ρ

∂xj>

)]
− ε2α

[
4Γ41q<i

(
∂1θ

∂xj>
+1θ ∂ ln ρ

∂xj>

)]
+ ε1+α

[
3(14+ δ)
7 (3+ δ) u0,0

ijk

(
1θ

∂ ln ρ
∂xk
+ ∂1θ
∂xk

)
+ 4Γ4

1q<i

ρ

∂σj>k

∂xk

]

+ ε1+α

 22
dδ
dθ

(3+ δ) (14+ δ)
(

3+ δ + θ dδ
dθ

)1θB−ij
∂vk

∂xk

− ε2

[
3 (14+ δ)
7 (3+ δ)

u0,0
ijk

ρ

∂σkl

∂xl

]

− ε2

 22
dδ
dθ

(3+ δ) (14+ δ)
(

3+ δ + θ dδ
dθ

) B−ij
ρ

(
∂qk

∂xk
+ σlk

∂vk

∂xl

)
+ 2(14+ δ)Rqint

(3+ δ)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)2

(
5Rqint

[
3+ δ + θ dδ

dθ

]

+Rqtr

[
(3+ δ) δ + (7+ 2δ) θ

dδ
dθ
+
((

dδ
dθ

)2

+ 2
d2δ

dθ 2

)
θ 2

])
q<i

∂θ

∂xj>

+ 6(14+ δ)
7 (3+ δ) θ

(
σk<i

∂vj>

∂xk
+ σk<i

∂vk

∂xj>
− 2

3
σij
∂vk

∂xk

)
+Γ5θ

(
∂q<i

∂xj>
− q<i

∂ ln ρ
∂xj>

)
+ 2 (14+ δ)

3 (3+ δ) B−
∂v<i

∂xj>
=−

[
1
τtr
+ ε

1−α

τint

]
B−ij , (C 3b)
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ε1

[
Du0,0

ijk

Dt
− 3

σ<ij

ρ

∂σk>l

∂xl
+ 6 (14− δ) (3+ δ)
(14+ δ) (42+ 25δ)

∂B−<ij

∂xk>

]

− ε1

[(
6

(14+ δ)2 +
252

(42+ 25δ)2

)
dδ
dθ

B−<ij
∂θ

∂xk>

]
+ ε1

[
u0,0

ijk
∂vl

∂xl
+ 3u0,0

l<ij
∂vk>

∂xl

]
+ εα

[
6δ

42+ 25δ
∂B+,<ij

∂xk>

]

+ εα
 252

dδ
dθ

(42+ 25δ)2
B+,<ij

∂θ

∂xk>
+ 3σ<ij

(
∂1θ

∂xk>
+1θ ∂ ln ρ

∂xk>

)

+ εα
 12

(
δ + θ dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)1q<i
∂vj

∂xk>

+ 3θ
(
∂σ<ij

∂xk>
− σ<ij

∂ ln ρ
∂xk>

)

+ 12Rqint

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

q<i
∂vj

∂xk>
=−

[
1
τtr
+ ε

1−α

τint

]
u0,0

ijk . (C 3c)

where,

Γ1 =
84(14+ δ)θ dδ

dθ

δ(14+ δ)
(

3+ δ + θ dδ
dθ

)
(42+ 25δ)

, (C 3d)

Γ2 = 2Rqint


[

14+ δ + θ dδ
dθ

]
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

− θ

10
(
7Rqint + 2 (7+ 3δ) Rqtr

) dδ
dθ
+ 14Rqtrθ

(
dδ
dθ

)2

+ (70+ 23δ) Rqtrθ
d2δ

dθ 2

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)2

 ,
(C 3e)

Γ3 = 2Rqtr


(
δ

[
14+ δ + θ dδ

dθ

]
− 14

dδ
dθ

)(
δ + θ dδ

dθ

)
5δ
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

)

+
2Rqtr Rqint

(
2

dδ
dθ
+ θ d2δ

dθ 2

)
(70+ δ [14+ 9θ ])

δ

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)2

 , (C 3f )
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Γ4 =
(14+ δ)

(
δ + θ dδ

dθ

)
Rqtr

5 (3+ δ)
(

5Rqint +
(
δ + θ dδ

dθ

)
Rqtr

) , (C 3g)

Γ5 =
2(14+ δ)

(
3Rqint +

(
δ + θ dδ

dθ

)
Rqtr

)
(3+ δ)

(
5Rqint +

(
δ + θ dδ

dθ

)
Rqtr

) . (C 3h)

Appendix D
The corresponding equations and boundary conditions for the stationary heat

conduction are presented here. To avoid complexity, the overbars and hats are
dropped in the following dimensionless set of R19 equations describing the considered
problem: the balance laws for dynamic temperature 1θ , stress tensor σij,

(1+ ρ) ∂1θ
∂t
+

 2

3+ δ + (1+ θ) dδ
dθ

− 10Rqint

3
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

)
 ∂q
∂x

−
2
(
δ + (1+ θ) dδ

dθ

)
Rqtr

3
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

) ∂1q
∂x

+
10Rqint Rqtr

(
2

dδ
dθ
+ (1+ θ) d2δ

dθ 2

)
3
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

)2 (q−1q)
∂θ

∂x
=− (1+ ρ)

τint
1θ, (D 1)

∂σ11

∂t
+ 2

3
4Rqint

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

∂q
∂x
+ 2

3

4
(
δ + (1+ θ) dδ

dθ

)
Rqtr

5
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

)

× ∂1q
∂x
+ 2

3

4Rqint Rqtr

(
2

dδ
dθ
+ (1+ θ) d2δ

dθ 2

)
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

)2 (1q− q)
∂θ

∂x
+ ∂u0,0

111

∂x

=−
[

1
τtr
+ 1
τint

]
σ11, (D 2)

overall heat flux q, heat flux difference 1q,

∂q
∂t
+
(

1+ θ +1θ − 1
ρ
σ11

)
∂σ11

∂x
+

5+ δ + (1+ θ) dδ
dθ

2

× [(1+ ρ) [1+ θ −1θ ]+ σ11]
∂θ

∂x
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+ 168
(42+ 25δ)2

B+11
dδ
dθ
∂θ

∂x
+ 4δ
(42+ 25δ)

∂B+11

∂x
− 2

39
∂B+

∂x
+ 5

13
∂B−

∂x

+ 7 (3+ δ) (14+ 3δ)
(14+ δ) (42+ 25δ)

∂B−11

∂x
+ [σ11 − (1+ ρ) [1+ θ +1θ ]]

∂1θ

∂x

−
[
(1+ θ −1θ) σ11

(1+ ρ) +1θ 2

]
∂ρ

∂x
+ 7

(
1

(14+ δ)2 −
24

(42+ 25δ)2

)
B−11

dδ
dθ
∂θ

∂x

=−
[

1
τtr
+ 1
τint

]Rqint Rqtr

(
5+ δ + (1+ θ) dδ

dθ

)
5Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

q

+

(
δ + (1+ θ) dδ

dθ

)
Rqtr

(
Rqtr − Rqint

)
5Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

1q

 , (D 3)

∂1q
∂t
+

σ11 − 5
2

1+ 3Rqint(
δ + (1+ θ) dδ

dθ

)
Rqtr

 (1+ ρ) (1+ θ +1θ)
 ∂1θ∂x

+

(1θ − 1− θ)
1+ ρ σ11 − 5

2

1+ 3Rqint(
δ + (1+ θ) dδ

dθ

)
Rqtr

1θ 2

 ∂ρ∂x

+

1+ θ + 5
2

1+ 3Rqint

Rqtr

(
δ + (1+ θ) dδ

dθ

)
1θ

 ∂σ11

∂x

− 5
39

1+ 3Rqint(
δ + (1+ θ) dδ

dθ

)
Rqtr

 ∂B+

∂x

+ 5
39

1− 10Rqint(
δ + (1+ θ) dδ

dθ

)
Rqtr

 ∂B−

∂x

+ δ

(42+ 25δ)

7+ 15Rqint(
δ + (1+ θ) dδ

dθ

)
Rqtr

 ∂B+11

∂x
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+


5
2

[
1− Rqint

Rqtr

]
[σ11 + (1+ ρ) (1+ θ +1θ)]

+

42

7+ 15Rqint(
δ + (1+ θ) dδ

dθ

)
Rqtr


(42+ 25δ)2

dδ
dθ

B+11


∂θ

∂x

=−
[

1
τtr
+ 1
τint

] 5Rqint

(
Rqtr − Rqint

)
5Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

q

+

(
δ + (1+ θ) dδ

dθ

)
R2

qtr
+ 5R2

qint

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

1q

 , (D 4)

and higher moments B+ and B−,

∂B+

∂t
− 2 (1+ θ)

[
∂q
∂x
− q
(1+ ρ) (1+ θ −1θ)

∂ρ (θ −1θ)
∂x

]

=
5Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

20Rqint −
(
δ + (1+ θ) dδ

dθ

)
Rqtr

− 1
τtr

(
9
2

Ru1,1 + 15Ru2,0

)
(1+ ρ) 1θ 2 − 1

τint

×
(

3
2
((3− δ) Ru1,1 + 20Ru2,0 − (23− δ)) (1+ ρ) (1+ θ) 1θ

)
− 6 (1+ θ) σ11σ11

µ

+


50Rqint Rqtr (1+ θ)

(
2

dδ
dθ
+ (1+ θ) d2δ

dθ 2

)
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

)2
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+
(
5Rqint + 3Rqtr

) (
δ + (1+ θ) dδ

dθ

)
− 100Rqint

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

 qq
κ

−
[

1
τtr
+ 1
τint

] (
3Ru1,1 + 10Ru2,0

13
B+ + 10

13
(Ru1,1 − Ru2,0) B−

)
− 2 (1+ θ)

1+ θ −1θ
[

qq
κ
+ q1q

κ∆

]
, (D 5)

∂B−

∂t
+ 2 (1+ θ)

[
∂q
∂x
− q
(1+ ρ) (1+ θ −1θ)

∂ρ (θ −1θ)
∂x

]

=
5Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

6Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

− 1
τtr

9 (Ru1,1 − Ru2,0)

2
(1+ ρ) 1θ 2

− 1
τint

(
3
2
(3+ δ + [3− δ] Ru1,1 − 6Ru2,0) (1+ ρ) (1+ θ) 1θ

)
+ 9

5
(1+ θ) σ11σ11

µ

+


(
5Rqint + 3Rqtr

) (
δ + (1+ θ) dδ

dθ

)
+ 30Rqint

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

−
2Rqtr Rqint (1+ θ)

(
2

dδ
dθ
+ (1+ θ) d2δ

dθ 2

)
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

)2

 qq
κ

−
[

1
τtr
+ 1
τint

] (
10Ru1,1 + 3Ru2,0

13
B− + 3 (Ru1,1 − Ru2,0)

13
B+
)

+ 2
(1+ θ)

(1+ θ −1θ)
[

qq
κ
+ q1q

κ∆

]
, (D 6)

the constitutive equations for the higher moments B+ij , B−ij and u0,0
ijk ,

(1+ ρ) (1+ θ)
(70+ 23δ) Rqint

δ

(
5Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

) − 14− δ
δ

[
1
τtr
+ 1
τint

]
B+11

= 4
3

(1+ θ) q
(1+ θ −1θ)

[
q
κ
+ 1q
κ∆

]
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− 4
3
(1+ θ)

[
∂q
∂x
− q
(1+ ρ) (1+ θ −1θ)

∂ρ (θ −1θ)
∂x

]

− 1 (70+23δ)Rqint

δ

5Rqint+
δ+(1+θ) dδ

dθ

Rqtr

 −
14−δ
δ



2 (70− 19δ) B− + (42+ 25δ)B+

µ39δ
σ11

+ (42+ 25δ)
µ2δ

(1+ ρ) (1+ θ) 1θσ11 − 4σ11σ11

(1+ ρ) τtr
− 4

3
Rqint

qq
κ 14+ δ + (1+ θ) dδ

dθ

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

−
10
(
7Rqint + 2 (7+ 3δ) Rqtr

)
(1+ θ) dδ

dθ
+ 14Rqtr

(
(1+ θ) dδ

dθ

)2

+ (70+ 23δ) R2
qtr
(1+ θ) d2δ

dθ 2

δ

(
5Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

)2



+

 (14− δ) (1+ θ) dδ
dθ
− δ(14+ δ)

δ

(
3+ δ + (1+ θ) dδ

dθ

) + 28
3

 3
(

3+ δ + (1+ θ) dδ
dθ

)
2
(
δ + (1+ θ) dδ

dθ

)
τint

1θσ11

 , (D 7)

(3+ δ)
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

)
(14+ δ)

(
3Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

) B−11

τtr
= 4

3
(1+ θ) q

(1+ θ −1θ)
[

q
κ
+ 1q
κ∆

]

− 4
3
(1+ θ)

(
∂q
∂x
− q
(1+ ρ) (1+ θ −1θ)

∂ρ (θ −1θ)
∂x

)

−
(3+ δ)

(
5Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

)
(14+ δ)

(
3Rqint +

(
δ + (1+ θ) dδ

dθ

)
Rqtr

) 1
(1+ ρ) (1+ θ) τtr

−3(14+ δ)
7 (3+ δ) (1+ θ) σ11σ11 − (14+ δ)

3 (3+ δ)B−σ11 − 4(14+ δ)Rqint

×
5Rqint

[
3+ δ + (1+ θ) dδ

dθ

]
+ Rqtr

[
(3+ δ) δ + (7+ 2δ) (1+ θ) dδ

dθ
+
((

dδ
dθ

)2

+ 2
d2δ

dθ 2

)
(1+ θ)2

]

3 (3+ δ)
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

)2

× 2Rqint Rqtr

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

qq

 , (D 8)
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u0,0
111

τtr
= 9

5
(1+ θ) σ11

(1+ θ −1θ)
[

q
κ
+ 1q
κ∆

]
+ 18Rqint

5
(

5Rqint +
(
δ + (1+ θ) dδ

dθ

)
Rqtr

) qσ11

(1+ ρ) (1+ θ) τtr

− 9
5
(1+ θ)

(
∂σ11

∂x
− σ11

(1+ ρ) (1+ θ −1θ)
∂ρ (θ −1θ)

∂x

)
. (D 9)

D.1. Boundary conditions
The corresponding boundary conditions for the stationary heat conduction are as
follows: boundary condition for total heat flux,

q = −ny
χ

(2− χ)

√
2

πθ

[
(56− δ (1− ζ ))

312
B−

+ (3+ δ) (140+ δ (32+ δ)+ (14− δ) δζ )
4(14+ δ) (42+ 25δ)

B−11

+ [(1− ζ ) δ − 4]
312

B+ + δ (4− δ (1− ζ ))
4 (42+ 25δ)

B+11 −
(2+ δ (1− ζ ))

4
θ (ρ1θ − σ11)

+ δ (1− ζ )
2

ρθ 2 + Υ
2

√
θ [(4+ δζ ) (θ − θw)− (1− ζ ) (δθ + 31θ)]

]
, (D 10)

boundary condition for heat flux difference,

1q = ny
χ

(2− χ)Rqtr

(
δ + θ dδ

dθ

)√ 2
πθ

5 (40− δ) Rqint − 12
(
δ + θ dδ

dθ

)
Rqtr

312
B−

+
5 (12+ δ) Rqint + 12

(
δ + θ dδ

dθ

)
Rqtr

312
B+ +

10δRqint − 8
(
δ + θ dδ

dθ

)
Rqtr

4
ρθ 2

+ [3+ δ]
5δ (42+ δ) Rqint − 6(14− δ)

(
δ + θ dδ

dθ

)
Rqtr

4(14+ δ)(42+ 25δ)
B−11

+
5δRqint − 6

(
δ + θ dδ

dθ

)
Rqtr

4
θσyy +

5 (6− δ) Rqint + 12
(
δ + θ dδ

dθ

)
Rqtr

4
ρθ1θ

− δ
5 (6+ δ) Rqint + 6

(
δ + θ dδ

dθ

)
Rqtr

4(42+ 25δ)
B+11

+ Υ
2

√
θ

[(
δ + θ dδ

dθ

)
Rqtr V

2
s − 15Rqint (1− ζ ) 1θ
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−
(

5δRqint − 4
(
δ + θ dδ

dθ

)
Rqtr

)
θ

+
(

5δζRqint − 4
(
δ + θ dδ

dθ

)
Rqtr

)
(θ − θW)

]  , (D 11)

and, boundary condition for u0,0
yyy,

u0,0
111 = ny

χ

(2− χ)

√
2

πθ

[
(−14+ δ) (3+ δ)
(14+ δ)(42+ 25δ)

B−11 −
δB+11

42+ 25δ
− 2(B+ − B−)

195

− 7σ11 + 2ρ1θ
5

θ +Υ 2
5

√
θ [θ − θW]

]
, (D 12)

where,

Υ = ρw

√
θw =− (14− δ) (3+ δ)

2(14+ δ)(42+ 25δ)θ 3/2
B−11 +

1
156

B+ − B−

θ 3/2
− δ

2(42+ 25δ)θ 3/2
B+11

+ 1
2
σ11√
θ
+ 1

2
√
θ
ρ(2θ −1θ). (D 13)

These boundary conditions have to hold on both walls with ny=±1 for the lower and
upper wall, respectively.
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