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We resolve a conjecture proposed by D.E. Knuth concerning a recurrence arising in the

satisfiability problem. Knuth’s recurrence resembles recurrences arising in the analysis of

tries, in particular PATRICIA tries, and asymmetric leader election. We solve Knuth’s re-

currence exactly and asymptotically, using analytic techniques such as the Mellin transform

and analytic depoissonization.
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1. Introduction

In this note we consider the following recurrence for the sequence {Tn}:

Tn = n + 2

n−1∑
k=1

(
n

k

)
pkqn−kTk, n � 2, (1.1)
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with T0 = 0, T1 = 1, 0 < p < 1 and p + q = 1. At the Analysis of Algorithms (AoA)

conference in Montreal in 2012, R. Sedgewick [12] reported that D. E. Knuth [10] was

interested in its solution, especially for p = 2/3, but also for general p. Here we compute

explicitly, for any p, the exponential generating function of Tn, and then give asymptotic

results for n → ∞. The asymptotics involve nearly constant (i.e., small-amplitude) periodic

functions of log1/p n, and these we explicitly calculate. The analysis is different for p = 1/2

and p �= 1/2.

The motivation for studying recurrences such as (1.1) arises from analysing the

‘satisfiability problem’. As defined in [6], satisfiability is NP-complete, and the procedure

is exponential in the worst case. The Davis–Putnam procedure [1] is a method for solving

the satisfiability problem, and the method determines whether a conjugate normal form

(CNF) is satisfiable. We do not describe this procedure in detail, referring the reader

to [6] for the description of the five steps in the Davis–Putnam procedure. A distribution

on the CNF involves two integer variables, the number of clauses n and the number of

variables L. The average time analysis then involves solving the two-variable recurrence

TL+1
n = anL + 2

n−1∑
k=1

(
n

k

)
pkqn−kTL

k , n � 1, L � 0, (1.2)

with the boundary conditions T 0
n = 0 and TL

0 = 0, and where a is a constant. There are

also alternative versions of the Davis–Putnam procedure that lead to similar recurrences

(see equation (1.1) in [6]).

In [5] and [6] some bounds on the solution were obtained, using the solutions to

simpler, one-variable recurrences, such as that in (1.1). The particular recurrence in (1.1)

is discussed in [5], and there the special case p = 2/3 is further motivated [10]. In [5] it

was conjectured that for n → ∞, Tn in (1.1) is of order nβ∗ , where

β∗ =

⌈
log 2

log(1/p)

⌉
,

and this we verify, giving a more precise estimate in Theorem 2.1. We hope that our

detailed analysis of (1.1) will help in the understanding of more complicated recurrences

such as (1.2).

Knuth’s recurrence (1.1) resembles recurrences arising in the analysis of tries [9, 14], in

particular, PATRICIA tries [11, 13], and also asymmetric leader election algorithms [8]. In

fact, the Poisson transform of Knuth’s recurrence reduces to a certain functional equation

often arising in the analysis of algorithms and data structures (see [2, 8]), namely,

f(z) = f(pz) + f(qz)e−pz + a(z), (1.3)

where p + q = 1 and a(z) is a given function. This functional equation has been previously

studied in [2, 8]. The point to observe is that f(qz) is multiplied by the coefficient function

e−pz . This makes the problem interesting (otherwise a standard approach can be applied:

see [14]). Second-order asymptotics of (1.3), and ultimately the recurrence (1.1), are quite

challenging, especially if one strives to compute explicitly all of the constants and periodic

functions involved. We believe that the novelty of our work lies in deriving exact and
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asymptotic solutions to Knuth’s recurrence, including the constants and periodic functions.

We also suggest a quickly converging numerical procedure to estimate these quantities.

The paper is organized as follows. In Section 2 we state our main results and discuss

some of the basic asymptotics of Tn. In Section 3 we give the asymptotics more precisely,

characterizing explicitly the periodic fluctuations of Tn. In Section 4 we develop an efficient

numerical approach for evaluating some parts of the asymptotic formula for Tn.

2. Main results

We summarize our main results below. We focus on the large n asymptotics, but our

analysis (see (3.10)) also leads to an exact expression for the generating function T (z)

of Tn.

Theorem 2.1.

(i) Assume p �= 1/2. Then

Tn = Cn− log 2
log p

[
1 + P (log n) + O(n−1)

]
+

1

1 − 2p
n, (2.1)

where C is constant that can be expressed as

C =
2p

2p − 1

1

log(1/p)

∞∑
k=−∞

(2p)k
∫ 1/p

1

y
log 2
log p e−qpky

[ ∞∏
j=1

(
1 − e−qpk−j y

)]
dy (2.2)

(see also (5.1)), and P (x) is a periodic function of period − log p and small amplitude

that can be explicitly expressed as

CP (log n) :=

∞∑
�=−∞,��=0

c�e
2πi� log1/p(n), (2.3)

where

c� =
2p

2p − 1

∫ 1

0

e−2πix�
∞∑

k=−∞
(2p)k−xe−qpk−x

[ ∞∏
j=1

(
1 − e−qpk−x−j)]

dx

for integer �.

(ii) For p = 1/2 we have

Tn =
n log n

log 2
+ nP∗(log n) + O(1), (2.4)

where P∗(x) is a periodic function of period log 2, explicitly shown in (4.25)) and (4.26),

which is constant to four decimal places, with P∗(log n) ≈ 0.6295.

In Table 1 we present the values of the constant C = C(p) for p �= 0.5. The reader is

referred to Sections 3 and 4 for a more detailed discussion of this constant. Furthermore,

we point out that the amplitude of the periodic function CP (log n) is very small, unless

p itself is small. Let x = log1/p n, and define amplitude as A = max(x) − min(x), where
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Table 1. The constant C(p)

versus p for some p �= 0.5.

p C(p)

0.1 –0.123

0.2 –0.459

0.3 –1.292

1/3 –1.822

0.4 –3.947

0.6 4.837

2/3 2.161

0.7 1.344

0.8 0.102

0.9 3.687 ×10−6

max(x) and min(x) are the maximum and minimum of P over the period 0 � x < 1. For

example, for p = 2/3 we find that

max(x) = 0.1542 × 10−10 . . . for x = 0.52,

min(x) = −0.1548 × 10−10 . . . for x = 0.02,

so the amplitude is of order 10−10.

Note that for 0 < p < 1/2 we have Tn = O(n) and the term n/(1 − 2p) dominates the

asymptotics in (2.1), while for 1/2 < p < 1 we have Tn = O(n
log 2

log(1/p) ). This means that for

0 < p < 1/2 both the term n and the sum in the right-hand side of (1.1) are asymptotically

important, while if 1/2 < p < 1 the sum dominates.

3. Proof of main results

We now give a proof of the theorem using analytic techniques such as the Mellin transform

[4] and depoissonization [7] (see also [3, 14]). In the following we will set

β = − log 2

log p
.

We will first establish a rough estimate. We shall prove that there exists an α such that,

for all integer n, Tn < eαn. Let N and α be large enough such that, for all integer n � 1
2
eαn

and for all n � N,

Tn � eαn, (3.1)

peα + q � eα

21/N
(3.2)
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where we recall that q = 1 − p. We show by recursion that Tn � eαn for n > N. Indeed,

assuming that the hypothesis is true up to n − 1, from (1.1) we have

Tn = n + 2

n−1∑
k=1

(
n

k

)
pkqn−kTk

� n + 2

n−1∑
k=1

(
n

k

)
pkqn−keαk

= n + 2(peα + q)n.

Since n � 1
2
eαn and

(peα + q)n <
1

2n/N
eαn <

1

2
eαn,

we get Tn � eαn.

We define the Poisson transform as

T (z) =
∑
n

Tn

zn

n!
e−z ,

which exists for all complex z since the series converges due to the estimate Tn � enα. We

find from (1.1) that

T (z) = z + 2T (pz) − 2e−qzT (pz). (3.3)

We can prove that for | arg(z)| < π/2 − ε and any fixed ε > 0, the following is true:

|T (z)| � (|z| + |z|β)B, (3.4)

for some B > 0. Considering the sequence

Bk = max
|z|�p−k

{
|T (z)|

|z| + |z|β

}
,

we can show, using arguments similar to those in [7] or Theorem 10.5 of [14], that

Bk � (1 + e−qp−k

)Bk−1, (3.5)

and thus the sequence {Bk} is uniformly bounded.

On the other hand, when arg(z) > π/2 − ε, then we can prove that there exists α′ < 1

such that |T (z)ez | � eα
′ |z| as described in [7]. Then by analytic depoissonization (for more

details see [7]) we conclude that

Tn = T (n)
(
1 + O(n−1)

)
.

Thus we need to establish asymptotic behaviour of T (z) for z → ∞ in a cone around

the real axis. We rewrite equation (3.3) as

T (z) = z + 2(1 − e−qz)T (pz), (3.6)

and let

f(z) =
∏
m>0

(1 − e−qp−mz). (3.7)
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The function f(z) satisfies

f(pz) = (1 − e−qz)f(z).

We have f(z) → 1 when z → +∞, in fact f(z) = 1 − O(e−qz/p). Also, f(z) → 0 when z → 0,

and in fact from (3.7) we have f(z) = o(zM) for all M > 0. Let

τ(z) = f(z)T (z). (3.8)

Then from (3.6) we obtain a new equation for τ(z):

τ(z) = zf(z) + 2τ(pz), (3.9)

which can be solved to give

τ(z) =
∑
m�0

2mpmzf(pmz).

We thus have the solution of (3.6) in the form

T (z) = z +
∑
m�0

(2p)m+1z

m∏
i=0

(1 − e−qpiz). (3.10)

The Mellin transform

f∗(s) =

∫ ∞

0

f(z)zs−1dz (3.11)

of f(z) is defined for 	(s) < 0, while the Mellin transform of zf′(z), that is, −sf∗(s), is

defined for all complex s. We also have

lim
s→0

sf∗(s) = −
∫ ∞

0

f′(z)dz = −f(∞) = −1. (3.12)

For z real and positive, our previous estimates show that τ(z) = O(z + zβ) when z → ∞
and τ(z) = o(zM) for all M > 0 when z → 0. The Mellin transform τ∗(s) of the function

τ(z) is defined for 	(s) < − max{1, β} and satisfies

τ∗(s) =
f∗(s + 1)

1 − 2p−s
. (3.13)

Via the inverse Mellin transform [4], we find that

τ(z) =
1

2iπ

∫ c+i∞

c−i∞

f∗(s + 1)

1 − 2p−s
z−s ds. (3.14)

Let us assume that p �= 1/2. The function f∗(s+1)
1−2p−s has simple poles:

(i) at s = −1, from f∗(s + 1),

(ii) at s = sk , from (1 − 2p−s)−1, where

sk = −β +
2ikπ

log p
, k ∈ Z.

Thus

τ(z) =
z

1 − 2p
+

∑
k∈Z

f∗(1 + sk)

log p
z−sk + o(z−M) (3.15)
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for any arbitrary M > 0. The factor 1/(1 − 2p) is a consequence of the residue of − f∗(s+1)
1−2p−s

at s = −1, and (3.12). Note also that

T (z) =
τ(z)

f(z)
= τ(z)(1 + O(e−qz/p)),

since f(z) converges to 1 exponentially fast.

Finally, when p = 1/2 the singularity at s = s0 = −1 becomes a double pole, and then

τ(z) =
z log z

log 2
+

z

2
+

(sf∗)′(0)

log 2
z +

∑
k∈Z∗

f∗(1 + sk)

− log 2
z−sk + o(z−M). (3.16)

Here Z
∗ = Z − {0} denotes the set of all integers except k = 0.

4. Periodic oscillations

In this section we shall obtain explicitly the periodic functions that appear in (2.1) and

(2.4) within Theorem 2.1. We shall also obtain alternative expressions for the Poisson

transform T (z), from which the large z behaviour is easily obtained.

4.1. Case p �= 1/2

First consider p �= 1/2 and set

T (z) =
z

1 − 2p
+ T̃ (z). (4.1)

Then from (3.3) we obtain for T̃ (z) the functional equation

T̃ (z) = 2(1 − e−qz)T̃ (pz) − 2pz

1 − 2p
e−qz. (4.2)

Unlike (3.3) the non-homogeneous term in (4.2) decays exponentially for z → ∞. If,

furthermore, we set

T̃ (z) =

[ ∞∏
�=0

(
1 − e−qp�z

)]
S(z), (4.3)

we find that S satisfies

S(z) = 2S(pz) − 2pz

1 − 2p
e−qz

[ ∞∏
�=0

(
1 − e−qp�z

)−1
]
. (4.4)

Solving (4.4) by iteration leads to

S(z) = − 2pz

1 − 2p

∞∑
m=0

(2p)me−qpmz

[ ∞∏
�=m

(
1 − e−qp�z

)−1
]
. (4.5)

Inverting the transform in (4.1) leads to

Tn =
n

1 − 2p
+ T̃n, (4.6)

where

T̃n =
n!

2πi

∮
ez

zn+1
T̃ (z) dz. (4.7)
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We expand T̃n for n → ∞ by using a depoissonization argument, first expanding T̃ (z) as

z → ∞. Using (4.5) in (4.3), we let

m =

⌊
log z

log(1/p)

⌋
+ k =

log z

log(1/p)
− ω(z) + k, (4.8)

where

ω(z) =

〈
log z

log(1/p)

〉
(4.9)

and 〈·〉 denotes the fractional part, so that 0 � ω < 1. It follows that

pmz = pkp−ω, 2m = 2k−ω(z)z
log 2

log(1/p) , (4.10)

and then

T̃ (z) =
2p

2p − 1
z

log 2
log(1/p)

∞∑
k=−
log1/p(z)�

(2p)k−ω(z) exp(−qpk−ω)Rk(z), (4.11)

where

Rk(z) =

m−1∏
�=0

(
1 − e−qp�z

)
=

m∏
j=1

[
1 − exp(−qpk−ωp−j)

]

=

∞∏
j=1

[
1 − exp(−qpk−ωp−j)

](
1 + O(exp(−qz)

)
. (4.12)

Note that the error in the asymptotic relation in (4.12) is exponentially small as z → ∞.

Then the leading term for T̃ (z) is obtained by replacing the lower limit on the sum in

(4.11) by k = −∞, and using (4.12). Thus we have obtained the leading term for T̃ (z)

as z → +∞ for z real, up to an exponentially small error. In view of the appearance of

the fractional part ω, it would appear that there may be a lack of smoothness in the

asymptotic approximation. But this is in fact not the case, as in the approximation we

can drop the fractional part, thus replacing ω(z) by log1/p(z), and then p−ω = z. Then

the leading term is invariant under the mapping z → pz (just shift the summation index

k → k − 1) and is thus an infinitely smooth function, for z real and positive. We argue that

the asymptotic approximation will also hold in a sector in the complex z-plane containing

the real axis (see the estimates in Section 2).

Then, by depoissonization,

Tn − n

1 − 2p
= n

log 2
log(1/p) P1(n) ×

(
1 + O

(
1

n

))
, (4.13)

where

P1(n) =
2p

2p − 1

∞∑
k=−∞

(2p)k−ω(n)e−qpk−ω(n)
∞∏
j=1

(
1 − e−qpk−ω(n)−j)

(4.14)

and ω(n) is obtained by replacing z by n in (4.9). Again, we can replace p−ω(n) by n. While

the error in (4.13) is of the form 1 + O(n−1), from the depoissonization, we can improve
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the estimate by using the identity

n!

2πi

∮
ez

zn+1
zβdz =

Γ(n + 1)

Γ(n + 1 − β)
, β =

log 2

log(1/p)
(4.15)

and the fact that the error term in (4.12) is exponentially small. We use (4.15) in the

numerical studies in Section 5, while the results in Theorem 2.1 replace the right-hand

side of (4.15) by nβ , since n → ∞.

We have thus identified explicitly the periodic function P (·) in (2.1). Writing (4.14) as

the Fourier series

P1(n) =

∞∑
�=−∞

c�e
2πi� log1/p(n), (4.16)

we have

c� =
2p

2p − 1

∫ 1

0

e−2πix�
∞∑

k=−∞
(2p)k−xe−qpk−x

[ ∞∏
j=1

(
1 − e−qpk−x−j)]

dx (4.17)

=
2p

2p − 1

1

log(1/p)

∫ 1/p

1

exp

(
2πi� log(y)

log(p)

)
y

log 2
log p

∞∑
k=−∞

(2p)ke−qpky

[ ∞∏
j=1

(
1 − e−qpk−jy

)]
dy.

Here we set y = p−x in the first integral in (4.17). Comparing (4.13) to (2.1), we see that

C[1 + P (log n)] = P1(n) = c0 +

∞∑
�=−∞,��=0

c�e
2πi� log1/p(n), (4.18)

so that c0 = C and CP (log n) = 1(n) − c0. In particular, the zeroth Fourier coefficient is

c0 =
2p

2p − 1

1

log(1/p)

∞∑
k=−∞

(2p)k
∫ 1/p

1

y
log 2
log p e−qpky

[ ∞∏
j=1

(
1 − e−qpk−j y

)]
dy. (4.19)

For p = 2/3, numerical evaluation of the right-hand side of (4.19) yields c0 ≈ 2.1608.

We note that the series in (4.19) is rapidly convergent, at both k = ±∞. For k → −∞
we have double exponential decay due to the factor e−qpky in the integrand. For k → +∞,

the product in (4.19) behaves as (with A = qy)

∞∏
j=1

(
1 − e−Apk−j)

= exp

[ ∞∑
�=1

log
(
1 − e−Ap−�)

+

0∑
�=1−k

log
(
1 − e−Ap−�)]

=

∞∏
�=1

(
1 − e−Ap−�)

exp

[k−1∑
�=0

log

(
1 − e−Ap�

Ap�

)
+ log(Ap�)

]

=

∞∏
�=1

(
1 − e−Ap−�) ∞∏

�=0

(
1 − e−Ap�

Ap�

)
Akpk(k−1)/2(1 + O(pk)). (4.20)

Hence the product is roughly O(pk
2/2), corresponding to Gaussian decay as k → +∞.
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4.2. Case p = 1/2

Next we consider p = 1/2. Setting

T (z) = zT∗(z) (4.21)

in (3.3), with p = 1/2, leads to

T∗(z) = 1 + (1 − e−z/2)T∗

(
z

2

)
. (4.22)

Solving (4.22) by iteration yields

T∗(z) =

∞∑
m=0

m∏
�=1

(
1 − e−z2�−m−1)

. (4.23)

To expand (4.23) for z → ∞ we again set m = 
log2 z� + k = log2 z − ω + k, as in (4.8).

Then (4.23) becomes

T∗(z) =

∞∑
k=−
log2 z�

[ m∏
�=1

(
1 − e−2�−1+ω−k)]

=

∞∑
k=0

m∏
�=1

(
1 − e−2�−1+ω−k)

+


log2 z�∑
k=1

[ m∏
�=1

(
1 − e−2�−1+ω+k) − 1 + 1

]

= 
log2 z� +

∞∑
k=0

∞∏
�=1

(
1 − e−2�−1+ω−k)

+

∞∑
k=1

[ ∞∏
�=1

(
1 − e−2�−1+ω+k) − 1

]
+ O(e−zβ ).

(4.24)

It follows by depoissonization of (4.21) that

Tn = n log2 n + nQ∗(n) + O(1), (4.25)

where

Q∗(n) = −ω(n) +

∞∑
k=0

∞∏
�=1

(
1 − e−2�−1+ω(n)−k)

+

∞∑
k=1

[ ∞∏
�=1

(
1 − e−2�−1+ω(n)+k) − 1

]
. (4.26)

The periodic function in (4.26) may once again be written as the Fourier series

Q∗(n) =

∞∑
�=−∞

c∗
�e

2πi� log2(n), (4.27)

and we have thus identified P∗(log n) in (2.4). In (4.25) ω(n) = 〈log2 n〉, but we may drop

the fractional part 〈·〉, because if ω(n) is replaced by log2 n it is easy to verify that

Q∗(n) = Q∗(n/2). Thus the expression below (4.25) is the same whether ω = 〈log2 n〉 or

ω = log2 n. Numerical studies show that the right-hand side of (4.26) fluctuates between

0.629494 and 0.629513, so this function is nearly constant, and may be approximated to

four significant figures by the zeroth Fourier coefficient c∗
0 in (4.27).
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5. Further numerical analysis

Here we develop a semi-numerical semi-analytic method for evaluating the Fourier

coefficients of the periodic functions that appear in Theorem 2.1. This will require that

we compute the first few Tn numerically and use them to evaluate a rapidly converging

series.

Using the analysis in Sections 2 and 3, we can extract the Mellin transform of f(z) from

numerical analysis. For p = 2/3, for the problem originally proposed by D. E. Knuth [10],

we have the leading term (see also (4.19))

C =
f∗(s0 + 1)

log p
≈ 2.16086439750354927606532, (5.1)

where we recall that s0 = −β = log 2/ log p. The k = 1 term in (3.15),

−
f∗(s0 + 1 + 2iπ

log p

)
log p

≈ −7.66 × 10−11 + 9.84 × 10−12i. (5.2)

The problem with the analysis in Section 2 is that it is somewhat difficult to extract the

Mellin transform of f(z). Below we propose an easier indirect method in the case β is not

an integer (see also [8]).

Let k be an integer. For all analytic functions F(z) in a complex neighbourhood of 0,

we define
∐

k F(z) as the Taylor polynomial of degree k:

∐
k
F(z) =

k∑
j=0

F (j)(0)
zj

j!
, (5.3)

with F (j)(z) the jth derivative of function F(z). We also define

k∐
F(z) = F(z) −

∐
k

F(z).

Let b = 
β� and recall that T0 = 0 and T1 = 1. The function
∐b

T (z) is O(zb+1) when

z → 0 and O(zβ) when z → ∞. Thus the Mellin transform T ∗(s) of
∐b

T (z) exists for

−b − 1 < 	(s) < −β.

We set θ(z) = T (pz)e−qz . Its Mellin transform θ∗(s) exists for 	(s) > −1 and satisfies

(see also [8])

θ∗(s) =
∑
n�1

pnTn

Γ(s + n)

n!
. (5.4)

Since additive polynomial terms only shift the fundamental strip of the Mellin transform,

from (3.6) we arrive at

T ∗(s) = −2
θ∗(s)

1 − 2p−s
. (5.5)

Therefore the leading term in T (z) is equal to

∑
k∈Z

2
θ∗(sk)

log p
z−sk , (5.6)
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Table 2. Exact versus asymptotic values of Tn for p = 2/3.

n Tn C
Γ(n + 1)

Γ(n + 1 − β)
+

n

1 − 2p

1 1.00000000000000000000 –2.30174306232304985900

10 74.19014780949336492932 73.91603109473686910765

20 291.00460566996026651879 291.00361735959358501362

30 619.38760608108754323680 619.38760213254548663704

40 1046.04525284496893107557 1046.04525440741658728759

60 2164.10852244470855065774 2164.10852363157796067744

80 3603.01754773643508459982 3603.01754785633937946726

100 5336.44933450906552767752 5336.44933395400537596930

where we recall that

sk = −β +
2ikπ

log p
.

Thus, for all k ∈ Z,

f∗(1 + sk) = 2

∞∑
n=1

Tnp
n Γ(n + sk)

n!
. (5.7)

Expression (5.7) is an implicit formula for the f∗(1 + sk). The series converges geometrically

in view of the factor pn (and the algebraic growth Tn), but the Tn must be calculated

from (1.1).

For p = 2/3, by numerically evaluating (5.7) (using (1.1) to numerically compute the

Tn), we get the k = 0 term as

C =
f∗(s0 + 1)

log p
≈ 2.16086439750354927606532,

and the k = 1 term is

f∗(s0 + 1 + 2iπ
log p

)
log p

≈ −7.66 × 10−11 + 9.84 × 10−12i.

For p = 1/3 these quantities are approximately −1.8219 and −2.662 × 10−4 + 1.853 ×
10−4i, respectively.

Omitting the periodic terms, the only asymptotic terms of T (z) are Czβ and z/(1 − 2p).

Therefore, in view of (4.15), Tn and

C
Γ(n + 1)

Γ(n + 1 − β)
+

n

1 − 2p

converge exponentially fast (still omitting the periodic terms). Table 2 illustrates this for

p = 2/3, where the exact Tn are computed from the recurrence (1.1).
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