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Abstract

A stochastic model predictive control (SMPC) algorithm is developed to solve the

problem of three-dimensional spacecraft rendezvous and docking with unbounded

disturbance. In particular, we only assume that the mean and variance information

of the disturbance is available. In other words, the probability density function

of the disturbance distribution is not fully known. Obstacle avoidance is consid-

ered during the rendezvous phase. Line-of-sight cone, attitude control bandwidth,

and thrust direction constraints are considered during the docking phase. A distri-

butionally robust optimization based algorithm is then proposed by reformulating

the SMPC problem into a convex optimization problem. Numerical examples show

that the proposed method improves the existing model predictive control based

strategy and the robust model predictive control based strategy in the presence of

disturbance.

2020 Mathematics subject classification: primary 93B45; secondary 49N10.

Keywords and phrases: stochastic model predictive control, rendezvous and docking,

Monte Carlo..

1. Introduction

1.1. Background In modern aerospace engineering, autonomous spacecraft ren-

dezvous and docking manoeuvres are the most important components, which have

been used on many occasions. For example, the International Space Station (ISS)

is so huge that the launch vehicle can only launch it in batches and then use the

rendezvous and docking manoeuvres to assemble it. So, the rendezvous and docking

manoeuvres are the foundation for the construction of the ISS. These are also used in
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other space missions, such as the transportation of astronauts, supplies to long-term

orbiting space stations, the exchange of visits between orbiting spacecraft, material

transfer, emergency life saving, and docking between spacecraft and space station to

perform a series of maintenance tasks [25].

1.2. Literature review In the past decades, the control of spacecraft rendezvous

and docking has been intensively studied [1, 12, 17, 19–22]. A comprehensive

overview of the programmes, missions, and techniques that have come to define orbital

rendezvous was provided by Fehse [12]. The optimal control [20] and adaptive sliding

mode control [19] have been used in spacecraft rendezvous and docking. Some works

focus on different missions, such as spacecraft rendezvous and docking in an elliptical

orbit and incorporating spacecraft rendezvous and docking capability into spacecraft

flying in formation [22].

However, there exist many constraints during the process of spacecraft rendezvous

and docking, and the above methods cannot deal with the constraints properly.

To address this problem, model predictive control (MPC) was introduced. MPC

possesses some attractive characteristics as a candidate for the guidance and control

framework. Firstly, MPC replans the optimal trajectory at each sampling instant

[7]. Secondly, due to the implicit way in which the MPC problem is specified,

carrying an exhaustive library of manoeuvres for every possible initial configuration

is not necessary. Thirdly, the intrinsic ability of MPC to handle constraints makes

it a logical choice for rendezvous and docking. MPC is also inherently reconfig-

urable. Constraints (for example, thrust availability and passive safety requirements)

and model parameters (for example, target orbit) can be modified on-line; this

is an attractive feature if these are not known exactly until the target has been

detected.

The control of spacecraft rendezvous with stable attitude or spinning targets in

an elliptical orbit was provided by Li and Zhu [18]. The two cases of a nonrotating

and a rotating (tumbling) platform, treated separately, were provided by Cairano

et al. [4], and trajectories were evaluated in terms of manoeuvre time and fuel

consumption. It was demonstrated that MPC can be an effective feedback control

approach to satisfy various manoeuvre requirements, reduce fuel consumption, and

provide robustness to disturbances. The design and implementation of an MPC system

[15] was presented to guide and control a tracking spacecraft during rendezvous with

a passive target spacecraft in an elliptical or circular orbit, from the point of target

detection all the way to capture. A method that directly optimizes the final spacecraft

rendezvous precision without restricting the duration of the manoeuvres was provided

by Deaconu et al. [10], and that method is based on feedback from MPC. The so-called

chance-constrained model predictive control was provided by Gavilan et al. [13],

who applied it to spacecraft rendezvous in the presence of model uncertainties and

disturbances. A robust technology and mixed MPC (M-MPC) framework was provided

by Zhu et al. [26], who combined them to form a robust M-MPC method to deal

with the multi-step short range spacecraft rendezvous problem. A strategy and case
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study of spacecraft relative motion guidance and control, based on the application of

linear quadratic MPC with dynamically reconfigurable constraints, was provided by

Weiss et al. [23].

1.3. Contributions There are numerous phenomena that can disturb or perturb

the rendezvous and docking process of spacecraft, for example, thrust perturbations

and atmospheric drag in low orbit [13]. In the existing literature, disturbances are

usually assumed to be bounded and then tackled by the worst-case robust optimization

based approach [16]. However, it is not the case in practice since the bound cannot be

measured. Moreover, worst-case robustness always leads to conservativeness in terms

of performance.

Motivated by this fact, this paper revisits the MPC of spacecraft rendezvous

and docking [23] in the presence of disturbances by using a distributionally robust

optimization approach. The whole process of rendezvous and docking can be divided

into distinct rendezvous and docking phases, and different types of constraints are

required to be considered in each phase. For example, there are obstacle avoidance

constraints during the rendezvous, and a soft docking constraint is considered during

the docking phase, respectively. Thrust constraints have to be imposed during both of

the two phases.

This work proposes the use of the stochastic model predictive control (SMPC)

[2, 3, 8] as an alternative to design controllers for spacecraft, which is an improvement

of robust model predictive control (RMPC). The purpose of the SMPC algorithm

is to use the randomness and statistical characteristics of uncertain factors. In

this framework, the objective function is in the form of expectation, and the hard

constraints of system variables are re-expressed as chance constraints, allowing the

system to violate the constraints under a given probability, so unbounded disturbances

can be considered [11].

Compared with traditional MPC, SMPC has the ability to deal with disturbance

and, compared with RMPC, due to the weaker conservatism, SMPC has better

performance.

1.4. Organization The rest of this paper is organized as follows. Section 2 states

the SMPC problem of spacecraft rendezvous and docking. Section 3 introduces the

SMPC algorithm. Section 4 shows a Monte Carlo comparison of MPC, RMPC,

and SMPC. Finally, we conclude the paper by making some concluding remarks in

Section 5.

2. Problem statement

2.1. Dynamical system A tracking spacecraft is manoeuvred close to a target

spacecraft in a nominal orbit. The target spacecraft is assumed to be at the origin

of Hill’s frame [24] as shown in Figure 1.
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FIGURE 1. Hill’s frame.

The relative motion of the tracking spacecraft to the target spacecraft on a circular

orbit can be described by the following differential equations [9]:

ẍ = 2nẏ + n2(R + x) − µ
R + x

[(R + x)2 + y2 + z2]3/2
+

Fx

mc

,

ÿ = −2nẋ + n2y − µ
y

[(R + x)2 + y2 + z2]3/2
+

Fy

mc

,

z̈ = −µ
z

[(R + x)2 + y2 + z2]3/2
+

Fz

mc

,

where x, y, and z are the components of the tracking spacecraft position relative to the

target in Hill’s frame, n =
√

µ/R3 is the angular speed of the target spacecraft’s orbit,

µ = 398600.4 km3/s2 is the gravitation parameter of the Earth, R is the orbit radius of

the target spacecraft, Fx, Fy, and Fz are the forces of the tracking spacecraft in the x, y,

and z axes, respectively, and mc is the mass of the tracking spacecraft.

Suppose that the distance d =
√

x2 + y2 + z2 between the tracking spacecraft

and the target spacecraft is far less than R; then the well-known linearized

Clohessy–Wiltshire–Hill (CWH) model (2.1)–(2.3) can be used here:

ẍ − 3n2x − 2nẏ =
Fx

mc

, (2.1)

ÿ + 2nẋ =
Fy

mc

, (2.2)

z̈ + n2z =
Fz

mc

. (2.3)

To proceed further, we denote

ux =
Fx

mc

, uy =
Fy

mc

, uz =
Fz

mc

.
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In fact, ux, uy, and uz are the accelerations of the tracking spacecraft in the x, y, and z

directions, respectively. Then, by letting

x = [x y z ẋ ẏ ż]T , u = [ux uy uz]
T

be the state vector and the control vector, respectively, the state space model of

(2.1)–(2.3) can be written as

ẋ = Acx + Bcu, (2.4)

where

Ac =



































































0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0



































































, Bc =



































































0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1



































































.

In order to develop an implementable MPC algorithm, a discrete system is required.

To this end, we discretize the continuous-time system (2.4) with sampling time ∆T

(in this paper, we set it to 20 s). Considering an external disturbance, the discretized

system is

xt+1 = Axt + But + δt, (2.5)

where A and B are as in (2.6) and (2.7), respectively, xt = [xt, yt, zt, ẋt, ẏt, żt]
T is the

state vector at time step t ∈ Z+, ut = [ux,t, uy,t, uz,t]
T is the control vector at time step

t ∈ Z+, and δt ∈ R
nω is the external disturbance vector. Particularly, the distribution of

δt is not exactly known. Only the mean µµµ0 and the covariance matrix SSS0 are known to

the controller. In addition, the following matrices A ∈ Rnx×nx and B ∈ Rnx×nu are known

to the system:

A =



































































4 − 3 cos(nT) 0 0 sin(nT)/n 2/n − 2 cos(nT)/n 0

6 sin(nT) − 6nT 1 0 2 cos(nT)/n − 2/n 4 sin(nT)/n − 3T 0

0 0 cos(nT) 0 0 sin(nT)/n

3n sin(nT) 0 0 cos(nT) 2 sin(nT) 0

6n cos(nT) − 6n 0 0 −2 sin(nT) 4 cos(nT) − 3 0

0 0 −n sin(nT) 0 0 cos(nT)



































































(2.6)
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FIGURE 2. Schematic of a spacecraft docking manoeuvre subject to LoS, overshoot, and obstacle

avoidance constraints.

and

B =



































































2(sin(nT/2))2/n2 −2(sin(nT) − nT)/n2 0

2(sin(nT) − nT)/n2 8(sin(nT/2))2/n2 − 3T2/2 0

0 0 2(sin(nT/2))2/n2

sin(nT)/n 4(sin(nT/2))2/n 0

−4(sin(nT/2))2/n 4 sin(nT)/n − 3T 0

0 0 sin(nT)/n



































































. (2.7)

2.2. Constraints Considering the limitation of the thrust of the tracking spacecraft,

the following control constraints are imposed on both of the rendezvous phase and the

docking phase: |ut |∞ ≤ umax, where |·|∞ denotes the∞-norm.

During the rendezvous phase, obstacle avoidance is an important mission. For this,

we impose the following rotating hyperplane constraint [23]:

nT
t xp,t ≥ nT

t rc,t, (2.8)

where nt is the normal vector to the hyperplane, rc,t is the tangent point between the

hyperplane and the obstacle, and xp,t is the position of the tracking spacecraft at time

step t as shown in Figure 2. Obviously, the tracking spacecraft is outside the obstacle

as long as (2.8) is satisfied.

REMARK 2.1. During the obstacle avoidance, nt and rc,t are updated at each time

instant t. Let N be the length of the prediction horizon. Then, for each k = 1, 2, . . . , N,
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the normal vector nt+k is rotating around the obstacle with a predetermined rotation

rate θ0. In other words, nt+k+1 = nt+k + θ0.

If the distance between the tracking spacecraft and the target spacecraft is less than

a certain number d0 = 2km, the docking phase begins. In order to prevent the tracking

spacecraft colliding with the target spacecraft, the following constraint is imposed:

uy,t ≤ µe
−βt, (2.9)

where µ > 0 and β > 0. When the tracking spacecraft approaches the target spacecraft,

inequality (2.9) forces the control input in the y-direction to decrease gradually.

Since there is a limit on the working distance of the sensors on the target spacecraft,

as illustrated in Figure 2, we impose the line-of-sight (LoS) cone constraints [13]

Aconext ≤ bcone. An overshoot constraint xy,t ≥ 0 is also considered to avoid missing

an in-track target.

2.3. SMPC problem In this method, we add the state point set xs to the MPC

problem formulation, and add a penalty term to the cost. The vectors xk and uk are

state and control vectors to be determined; xs and us are the forced equilibrium state

and control to be determined. The rendezvous phase is described by

min
uk ,xs,us

E[P]

{ t+N−1
∑

k=t

((xk − xs)
TQ(xk − xs) + (uk − us)

TR(uk − us)) + xT
s Pxs.

+ (xN − xs)
TQfinal(xN − xs)

}

, (2.10a)

subject to xt+1 = Axt + But + δt, (2.10b)

xs = Axs + Bus, (2.10c)

Pr[P][−nT
t+kxp,t+k ≤ −nT

t+krc,t+k] ≥ 1 − ǫx, k = 1, 2, . . . , N, (2.10d)

Pr[P][c
T
i ut+k ≤ umax] ≥ 1 − ǫu, k = 0, 1, . . . , N − 1, i = 1, 2, . . . , 6, (2.10e)

where E[P]{·} and Pr[P][·] denote, respectively, the statistical expectation and the

probability under the distribution P. In addition, the derivation of (2.10a) is shown

in the Appendix.

During the docking phase, obstacle avoidance is no longer considered and the

reference governor is removed. In this study, the spacecraft contains only one thruster.
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In order to change the thrust direction, the attitude of the spacecraft must be changed.

If the thrust direction changes too fast, the attitude controller of the spacecraft will not

be able to keep up with commanded thrust direction changes. So, we augment the cost

function with a term

t+N−1
∑

k=t

(uk − uk−1)TQ̃(uk − uk−1),

where Q̃ = (Q̃)T > 0 is a weight matrix. Obviously, the thrust direction change will

be limited after adding this term. This penalty for the rate at which the thrust vectors

change is found to be effective in dealing with the bandwidth and capacity constraints

of the attitude controller.

The penalty term of the attitude controller is added, and the overshoot constraint,

LoS cone constraints, and thrust direction constraints are added. Thus, the docking

phase is described by

min
uk

E[P]

{ t+N−1
∑

k=t

(xT
k Qxk + uT

k Ruk)+

t+N
∑

k=t

(uk − uk−1)TQ̃(uk − uk−1) + xT
NQfinalxN

}

,

(2.11a)

subject to xt+1 = Axt + But + δt, (2.11b)

Pr[P][A
T
conei,k

xt+k ≤ bconei
] ≥ 1 − ǫx, k = 1, 2, . . . , N, i = 1, 2, . . . , 5,

(2.11c)

Pr[P][a
T
6,kxt+k ≤ 0] ≥ 1 − ǫx, k = 1, 2, . . . , N, (2.11d)

Pr[P][c
T
i,kut+k ≤ umax] ≥ 1 − ǫu, k = 0, 1, . . . , N − 1, i = 1, 2, . . . , 6,

(2.11e)

Pr[P][c
T
7,kut+k ≤ µe

−βk] ≥ 1 − ǫu, k = 0, 1, . . . , N − 1, (2.11f)

where ǫx and ǫu are design parameters, and Aconei
and bconei

represent line i of Acone

and bcone, respectively. Since thrust is directional, the thrust constraints include six

constraints. And,

P = {P | E[P][δt] = µ0 ,E[P][(δt − µ0)(δt − µ0)T ] = S0}, (2.12)

where the predictive horizon and the control horizon are both set as N. Here

Q and R are the specified weighting matrices, P is the weighting on the forced

equilibrium states, and Qfinal is the terminal weight matrix as calculated by the Riccati

equation.

https://doi.org/10.1017/S1446181121000031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000031


[9] SMPC for spacecraft rendezvous and docking 47

3. SMPC algorithm

As we mentioned earlier, one can find multiple sources of disturbances in space

vehicles. In Section 2, we took into account disturbances and system uncertainties, and

represented rendezvous and docking as a stochastic optimization problem. However,

such a form cannot be calculated. We must convert it into a convex form that can be

calculated on-line. We take

x =















































xT
t

xT
t+1

xT
t+2

· · ·

xT
t+N















































, u =















































uT
t

uT
t+1

uT
t+2

· · ·

uT
t+N−1















































, δ =

















































δ
T
t

δ
T
t+1

δ
T
t+2

· · ·

δ
T
t+N−1

















































.

Thus, we can rewrite the system model into a compact form [5]

x = Fxt +Guu +Gδδ,

where F ∈ RnxN×nx , Gu ∈ R
nx(N+1)×nuN , and Gδ ∈ R

nx(N+1)×nxN , with

F =



















































Inx×nx

A

A2

...

AN



















































, Gu =

















































0nx×nu
0nx×nu

· · · 0nx×nu

B 0nx×nu
· · · 0nx×nu

AB B · · · 0nx×nu

...
...

. . .
...

AN−1B AN−2B · · · B

















































,

Gδ =

















































0nx×nx
0nx×nx

· · · 0nx×nx

Inx×nx
0nx×nx

· · · 0nx×nx

A Inx×nx
· · · 0nx×nx

...
...

. . .
...

AN−1 AN−2 · · · Inx×nx

















































.

The feedback control law is

ut = ut +Kt(xt − xt), (3.1)

where ut and xt are the state vector and the control vector of the nominal system,

respectively, and Kt is time-varying feedback gain matrix. Equation (3.1) can be

rewritten as

u = Θδ + u +K(xt − xt), (3.2)
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where

u =

























ut

...

ut+N−1

























, K =













































Kt

Kt+1Ψt

Kt+2Ψt+1Ψt

...

Kt+N−1Ψt+N−2 · · ·Ψt













































,

Θ =























































0nu×nx
· · · 0nu×nx

0nu×nx

Kt+1 · · · 0nu×nx
0nu×nx

Kt+2Ψt+1 · · · 0nu×nx
0nu×nx

...
. . .

...
...

Kt+N−2Ψt+N−3 · · ·Ψt+1 · · · Kt+N−2 0nu×nx

Kt+N−1Ψt+N−2 · · ·Ψt+1 · · · Kt+N−2Ψt+N−3 Kt+N−1























































,

and Ψt = (A + BKt). For convenience of description, we take z = u +K(xt − xt).

Therefore, (3.2) can be rewritten as

u = Θδ + z.

3.1. Convex expression of objective function By substituting formula (2.5) into

formula (2.10a) and calculating and sorting out formula (2.10a),

min
u,K,P∗

tr(∆1ΘS + P∗S) + (Fxt +Guz − Xs)
TQl(Fxt +Guz − Xs)

+ (z − Us)
TRl(z − Us) + xT

s Pxs + c, (3.3)

where tr(·) represents the trace of a matrix and S = IN ⊗ S0. Here IN denotes

an N × N identity matrix and ⊗ denotes the Kronecker product. Also, P∗ =

Θ
T
∆2Θ ≥ 0, y = Fxt +Guz, ∆1 = 2GT

δ
QlGu, ∆2 = Rl +GT

u QlGu, c = tr(GT
δ
QlGδS),

Ql ∈ R
nx(N+1)×nx(N+1), Rl ∈ R

nuN×nuN ,

Ql =



































Q 0 · · · 0

0 Q · · · 0
...

...
. . .

...

0 0 · · · Qfinal



































, Rl =



































R 0 · · · 0

0 R · · · 0
...

...
. . .

...

0 0 · · · R



































,

Xs ∈ R
nx(N+1)×nx , Us ∈ R

nuN×nu , Xs = 1N ⊗ xs, and Us = 1N ⊗ us. In addition, we put the

derivation of formula (3.3) in the Appendix.

By substituting formula (2.5) into formula (2.11a) and calculating and integrating

formula (2.11a),

min
u,K,P∗

tr(∆1ΘS) + zT
∆2z + 2(Fxt)

TQlGuz + (Fxt)
TQl(Fxt) + c + tr(P∗S)

+ (u − u−1)TRa(u − u−1), (3.4)
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where Ra ∈ R
nuN×nuN ,

u−1 =

























ut−1

...

ut+N−1

























, u =

























ut

...

ut+N

























, Ra =

























Q̃ · · · 0nu×nu

...
. . .

...

0nu×nu
. . . Q̃

























.

In addition, the derivation of formula (3.4) is similar to that of formula (3.3) and will

not be repeated here. We can find a way to deal with probabilistic constraints [6].

LEMMA 3.1. For any ǫ ∈ (0, 1), the distributionally robust chance constraint

inf
d (d̂,Γ)

Pr[dT x̃ ≤ 0] ≥ 1 − ǫx

is equivalent to the convex second-order cone constraint

√

1 − ǫ

ǫ
x̃T
Σx̃ + µT x̃ ≤ 0,

where

P = {P | E[P][x̃] = µ, E[P][(x̃ − µ)(x̃ − µ)
T ] = S}.

Using Lemma 3.1, we can transform (2.10d) and (2.10e) into

√

1 − ǫx

ǫx
‖ − S

1/2

0
Π

Tnt+k‖ ≤ −nT
t+krc,t+k + nT

t+ky, k = 1, 2, . . . , N,

√

1 − ǫu

ǫu
‖S

1/2

0
Θci,k‖ ≤ umax − cT

i,kz, k = 0, 1, . . . , N − 1, i = 1, 2, . . . , 6,

where Π = GuΘ +Gδ. Using similar methods to deal with (2.11d)–(2.11f),

√

1 − ǫx

ǫx
‖S

1/2

0
Π

TAconei,k
‖ ≤ bconei

− aT
i,ky, k = 1, 2, . . . , N, i = 1, 2, . . . , 5,

√

1 − ǫx

ǫx
‖S

1/2

0
Π

Ta6,k‖ ≤ −aT
6,ky, k = 1, 2, . . . , N,

√

1 − ǫu

ǫu
‖S

1/2

0
Θci,k‖ ≤ umax − cT

i,kz, k = 0, 1, . . . , N − 1, i = 1, 2, . . . , 6,

√

1 − ǫu

ǫu
‖S

1/2

0
Θc7,k‖ ≤ µe

−βk − cT
7,kz, k = 0, 1, . . . , N − 1.
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3.2. Strategy of initialization

REMARK 3.2. In our previous work, two strategies were proposed.

STRATEGY 1. Reset of the initial state: in the MPC optimization problem set

xt|t = xt.

STRATEGY 2. Prediction: in the MPC optimization problem set xt|t = xt|t−1.

So far, all problems have been transformed into convex forms and we can use other

tools to solve this problem. During the rendezvous phase,

min
u,K,P∗

tr(∆1ΘS + P∗S) + (Fxt +Guz − Xs)
TQl(Fxt +Guz − Xs)

+ (z − Us)
TRl(z − Us) + xT

s Pxs + c, (3.5a)

subject to

√

1 − ǫx

ǫx
‖ − S

1/2

0
Π

Tnt+k‖ ≤ −nT
t+krc,t+k + nT

t+ky, k = 1, 2, . . . , N,

(3.5b)
√

1 − ǫu

ǫu
‖S

1/2

0
Θci,k‖ ≤ umax − cT

i,kz, k = 0, 1, . . . , N − 1, i = 1, 2, . . . , 6.

During the docking phase,

min
u,K,P∗

2tr(∆1ΘS) + zT
∆2z + 2(Fxt)

TQlGuz + (Fxt)
TQl(Fxt) + tr(GT

δQlGδ)

+ tr(P∗S) + (u − u−1)TRa(u − u−1),

subject to

√

1 − ǫx

ǫx
‖S

1/2

0
Π

TAconei,k
‖ ≤ bconei

− aT
i,ky, k = 1, 2, . . . , N, i = 1, 2, . . . , 5,

√

1 − ǫx

ǫx
‖S

1/2

0
Π

Ta6,k‖ ≤ −aT
6,ky, k = 1, 2, . . . , N,

√

1 − ǫu

ǫu
‖S

1/2

0
Θci,k‖ ≤ umax − cT

i,kz, k = 0, 1, . . . , N − 1, i = 1, 2, . . . , 6,

√

1 − ǫu

ǫu
‖S

1/2

0
Θc7,k‖ ≤ µe

−βk − cT
7,kz, k = 0, 1, . . . , N − 1.

4. Simulation results

All simulation results were obtained on a 2.2-GHz Intel Core i7 processor.

MATLAB 2018a and CVX [14] toolbox were used for simulation. The target spacecraft

is in a nominal circular orbit at an altitude of 850 km above the Earth, that is,

n = 0.0255. The control horizon and the prediction horizon N are fixed at four steps.

Concerning the constraints, the maximum amount of acceleration that the chaser’s
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FIGURE 3. MPC path simulation without disturbance.

FIGURE 4. RMPC path simulation without disturbance.

actuators can provide is umax = 4 m/s2. The obstacle avoidance hyperplane rotates

counter clockwise (viewed from the +Z direction of Hill’s frame) at a speed of 30◦/min.

The corresponding weight matrices are R = 2 × 105I3, Ra = 2 × 106I3, Q =

diag(102, 102, 102, 107, 107, 107), P = 107I6. An obstacle is introduced during the

rendezvous phase at r0 = (1.3, 5, 0) km, and the initial radius of the uncertain sphere is

0.6 km, increasing by 0.03 km per minute. Here ǫx = ǫu = 0.05, µ = 10−2, and β = 5.

In addition, a Monte Carlo analysis was conducted to get more confidence on the

controller design. Two hundred simulations were performed for MPC, RMPC, and

SMPC.

The simulation results of MPC, RMPC, and SMPC without disturbance are given

in Figures 3, 4, and 5, respectively, and the initial position of the tracking spacecraft

is x0 = (0.63, 10, 0) km. It can be seen from the figures that all three methods can be

successfully docked without disturbance. As shown in Figure 3, since the other two

methods are more conservative, the standard MPC has a more efficient path.

We assume that the disturbance is a Gaussian disturbance with mean value of 0 and

variance of 8 × 10−4. Results for MPC simulations are shown in Figure 6, results for

RMPC simulations are shown in Figure 7, and results for SMPC simulations are shown
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FIGURE 5. SMPC path simulation without disturbance.

FIGURE 6. MPC path simulation with Gaussian perturbation.

FIGURE 7. RMPC path simulation with Gaussian perturbation.
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FIGURE 8. SMPC path simulation with Gaussian perturbation.

TABLE 1. The number of docking failures of the three methods.

MPC RMPC SMPC

Gaussian perturbation 21 0 0

Laplace perturbation 40 0 0

FIGURE 9. MPC path simulation with Laplace perturbation.

in Figure 8. Note that in all the simulation results of this paper, the red area represents

the confidence interval. As shown in Figure 6, the standard MPC may not succeed

in the presence of disturbances (that is, it failed to reach the origin). We counted the

number of docking failures of the three methods and show it in Table 1. In addition, as

shown in Figure 7, the results for RMPC are more conservative.

In order to make the results more convincing, we set the disturbance as a Laplace

distribution and simulated it and the results are shown in Figures 9, 10, and 11. It can

be seen that the results are basically consistent with that of the Gaussian distribution.

Similarly, we counted the number of docking failures of the three methods and show

it in Table 1. It can be seen that the standard MPC has docking failure when there is a

disturbance, while RMPC and SMPC can ensure successful docking.
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FIGURE 10. RMPC path simulation with Laplace perturbation.

FIGURE 11. SMPC path simulation with Laplace perturbation.

TABLE 2. Total fuel consumption of three methods.

MPC (J/kg) RMPC (J/kg) SMPC (J/kg)

Gaussian perturbation 0.0018 0.0327 0.0104

Laplace perturbation 0.0101 0.0326 0.0116

More importantly, we must point out that the fuel consumption of RMPC is larger

because of its conservatism, while SMPC has less fuel consumption when ensuring

the docking success, which is very important for engineering practice, because the

fuel that the spacecraft can carry is very limited and adding fuel is troublesome.

We calculated the average fuel consumption of the three methods in 200 simulations

(including failed attempts) under the two disturbances and show it in Table 2, which

will demonstrate our conclusion, where J is the unit of heat.

We see that when the disturbance is the Laplace distribution, the MPC fuel

consumption is more than that when the disturbance is the Gaussian distribution,

which is because the MPC docking failures are more under the Laplace distribution.
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TABLE 3. The control law computation time of three methods.

MPC (s) RMPC (s) SMPC (s)

Rendezvous phase 0.4 0.5 1.2

Docking phase 0.5 0.6 1.6

In addition, in order to demonstrate the computational complexity of SMPC, the

control law computation times of the three methods in the rendezvous phase and the

docking phase are listed in Table 3.

From Table 3, we can see that although the control law computation time of SMPC

is longer than the other two methods, it is still acceptable compared with the sampling

time of 20 s.

5. Conclusions

Autonomous spacecraft rendezvous and docking manoeuvres are very important to

the aerospace industry, and they have high technical requirements. In particular, it is

very difficult to improve the autonomy of spacecraft from the perspective of control

theory. Therefore, we must propose better solutions to enable the spacecraft to deal

with various unmodelled disturbances under various constraints. At the same time, the

fuel consumption of the spacecraft is reduced to a minimum.

In this paper, a stochastic model predictive controller with chance constraints

is proposed. The Clohessy–Wiltshire–Hill model with unbounded disturbances and

various constraints is used to solve the problem of spacecraft rendezvous and docking.

The simulation results show that SMPC has the ability to deal with disturbances and

the computational complexity is acceptable. Specifically, compared with the standard

MPC, SMPC can ensure the successful docking of spacecraft, and SMPC has less fuel

consumption compared with RMPC, which is very important for engineering practice.

Appendix

After substituting the system equations (2.5), (2.10a) is rewritten as

(Fxt)
TQl(Fxt) + 2(Fxt)

TQlGuE[P][u]

+ 2(Fxt)
TQl(GδEP[δ]) − 2(Fxt)

TQlXs

+ EP[u
T (Rl +GuQlGu)u] + 2EP[(Guu)TQl(Gδδ)]

− 2(GuEP[u])TQlXs + EP[(Gδδ)
TQl(Gδδ)]

− 2(GδEP[δ])
TQlXs + XT

s QlXs + xsPxs

+ EP[u
TRlu] − 2EP[u]TRlUs + UT

s RlUs. (A.1)
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In this paper, we set E[P][δ] = µ = 0, E[P][δδ
T ] = S. So,

(Fxt)
TQlGuE[P][u] = (Fxt)

TQlGuE[P][Θδ + z]

= (Fxt)
TQlGuz, (A.2)

E[P][u
T (Rl +GuQlGu)u] = E[P][(Θδ + z)T (Rl +GuQlGu)(Θδ + z)]

= E[P][δ
T
Θ

T (Rl +GT
u QlGu)Θδ] + zT (Rl +GT

u QlGu)z

+ 2E[P][δ
T ]ΘT (Rl +GT

u QlGu)z

= tr(ΘT (Rl +GT
u QlGu)ΘS) + µT

Θ
T (Rl +GT

u QlGu)Θµ

+ zT (Rl +GT
u QlGu)z + 2µΘ(Rl +GT

u QlGu)z,

E[P][(Guu)TQl(Gδδ)] = E[P][δ
TGT
δQlGu(Θδ + z)]

= tr(GT
δQlGuΘS) + µTGT

δQlGuz + µTGT
δQlGuΘµ,

(GuE[P][u])TQlXs = (GuE[P][Θδ + z])TQlXs = (Guz)TQlXs,

EP(Gδδ)
TQl(Gδδ) = tr(GT

δQlGδS),

E[P][u]TRlUs = E[P][(Θδ + z)T ]RlUs = zTRlUs. (A.3)

Substituting formulas (A.2)–(A.3) into formula (A.1) and sorting it out, formula (3.3)

can be obtained.
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