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SUMMARY
The paper addresses the robust adaptive control problem of
robot manipulators. The dynamic equations of robot
manipulators and their fundamental properties that facilitate
analysis and control system design are first reviewed. Then
the direct, indirect, and combined direct and indirect
adaptive control approaches of robot manipulators are
presented. After that, a number of variable structure
adaptive control approaches which combines features of the
robust design based on variable structure systems with
parameter adaptive control, are studied. After that, a new
combined adaptive and variable structure adaptive control
approach is proposed for the tracking control of robot
manipulators under the uncertainty environment. This is a
robust, high-performance adaptive control scheme that
combines the advantages and overcomes the disadvantages
of both types of techniques. Finally, the extensive compar-
ing simulation results are presented to demonstrate the
theory study.

KEYWORDS: Adaptive control; Robots; Robust design; Variable
structure systems.

1. INTRODUCTION
Robot manipulators are basically multi-degree-of-freedom
positioning devices. The robot, as the ‘‘plant to be
controlled’’, is a multi-input/multi-output, highly coupled,
nonlinear mechatronic system. The main challenges in the
robot control problem are the complexity of the dynamics
and uncertainties. Robots have to face uncertainty in many
dynamic properties, in particular the parameters describing
the dynamic properties of grasped payload. Sensitivity to
such parameter uncertainty is especially severe in high-
speed operations or when controlling direct-drive robots, for
which no gear reduction is available to mask effective
inertia variations. More generally, if advanced robots are
designed to be capable of precisely affecting their environ-
ment (e.g. providing accurate force or impedance control),
they are likely to exhibit high sensitivity to external forces
and load variations. There are basically two distinct
philosophies for controlling such uncertain systems: the
adaptive control philosophy,1–8 and the robust control
philosophy.9–13 A robust controller is designed to make the
system is not sensitive to all the uncertainties, and the final
controller has a fixed-structure. However, robust control is
suitable for dealing with only relatively small uncertainty.

On the other hand, adaptive control uses on-line identifica-
tion (identifying the plant parameters in indirect adaptive
control using prediction errors and the controller parameters
in direct adaptive control using tracking errors) and attempts
to ‘learn’ the uncertain parameters of the system. The
adaptive approach is applicable to a wider range of
parameter variation, but is sensitive to unstructured uncer-
tainty. The question is whether we can combine the different
adaptive control approaches and robust control approaches
and hence obtain the advantages of both control methods.

Improved system responses in terms of speed and
accuracy, as well as robustness in the presence of perturba-
tions, may be possible if direct, indirect and variable
structure adaptive controllers were somehow combined. The
difficulty arises since the information acquired using the
different methods cannot, in general, be combined conven-
iently to determine the adaptive laws. Combined direct and
indirect adaptive control approaches have been proposed by
Duarte and Narendra,7 for linear plants, and by Slotine and
Li,8 for robot manipulators. Further, a combined direct,
indirect, and variable structure adaptive method of linear
plants is suggested by Narendra and Boskovic.14 A robust
combined direct and variable structure adaptive control
scheme of robot manipulators is proposed by Yu.15

It is noted that a majority of standard adaptive control
theory is only applicable to linear time-invariant systems,
and hence is unsuitable for direct application to the robot
manipulator control problem. In this paper, two combined
control methods for robot manipulators are studied. The first
is the combined adaptive control approach which combines
direct adaptive control with indirect adaptive control.8 The
second is the robust combined adaptive control approach
which combines direct/indirect adaptive control with the
robust variable structure adaptive control.15 The work
presented here is an extension of our previous work.15 The
robustness analysis of the proposed combined adaptive
control approach, which is not studied before,15 is presented
in this paper. The robust combined adaptive control laws are
designed using a special Lyapunov function. The control
structure does not rely on the passivity property of
manipulators (Property 2) and guarantees that the tracking
errors decrease to zero asymptotically. The chattering
problem is also avoided in this approach. The direct
adaptive control law ensures asymptotic stability, while the
variable structure adaptive control law improves the tran-
sient behaviour and enhances the robustness of the robot
system. The combined method improves the transient
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behaviour and robustness to external disturbances and
unmodelled dynamics, and also overcomes the chattering
problem which is the main drawback of the variable
structure method. The fact that the passivity properties of
rigid robot manipulators are not used in the control scheme
will increase its flexibility. The fast tracking convergence
and the robustness to external disturbances and unmodelled
dynamics of the robust combined controller are confirmed
by extensive computer simulations.

2. MANIPULATOR DYNAMIC EQUATIONS AND
USEFUL PROPERTIES
Using the Euler–Lagrangian formulation, the joint-space
(robot coordinates) dynamics of an n-link rigid robot
manipulator can be written as

D(q)¨̈q+C(q,q̇)q̇+G(q)+td =t (1)

where q[Rn and t[Rn denote generalized displacements
and generalized control input forces in robot coordinates,
td[Rn represents the friction, input torque disturbances, and
other unmodelled dynamics, D(q)[Rn3 n is the manipulator
inertial matrix, C(q, q̇)q̇[Rn is the vector of centripetal and
Coriolis torque and G(q)[Rn is gravitational torque. It is
assumed that only the joint positions and velocities, not
accelerations, are available from measurements. The robot
manipulator dynamic model, equation (1), possesses a
number of important properties that facilitate analysis and
control system design. Among these are the following
properties:19, 23

Property 1. The inertia matrix D(q): 1) The kinetic energy
of a manipulator can be written as K(q)= 1

2q̇T D(q)q̇; 2) It is
symmetric, i.e. DT(q)=D(q); 3) It is a uniformly positive
definite matrix; 4) It is bounded above and below, i.e.,
m1(q)I≤D(q)≤m2(q)I, where I [Rn3 n is the identity matrix,
m1(q)≠0 and m2(q) are scalar constants for a revolute arm,
and generally scalar functions of q for an arm containing
prismatic joints.

Property 2. The Coriolis and Centripetal Terms,
C(q, q̇)q̇: 1) It is quadratic in the generalized velocity q̇ and
bounded as follows: ||C(q,q̇)q̇||≤m3(q)||q̇||2, where m3(q) is a
scalar constrant for an all-revolute arm and a scalar
function of q for arms containing prismatic joints; 2) It may
be written in several factorisations, such as C(q, q̇)q̇ =
V(q, q̇) = D1(q)C1(q̇)q̇ = D2(q)[q̇q̇]+D3(q)[q̇2], where [q̇q̇]=
[q̇1q̇2q̇1q̇3 . . . q̇n21q̇n]

T [R
n(n21)

2 , [q̇2] = [q̇2
1q̇

2
2 . . . q̇2

n]
T [Rn,

D1(q)[Rn3 nn, C1(q̇)[Rnn3 n, D2(q)[Rn3 [n(n21)
2 ], and

D3(q)[Rn3 n; 3). The two n3 n matrices D(q) and C(q, q̇) are
not independent; in particular, a suitable definition of
C(q, q̇) makes 

·
D(q)22C(q, q̇) skew-symmetric. And the

following equation is always true, no matter how C(q, q̇) is
defined, XT [Ḋ(q)22C(q, q̇)]X=0, where X [Rn, is an
arbitrary vector. Strongly related to the skew symmetry
property is the so-called, Passivity Property; 4)
C(q, x)y=C(q, y)x for all x and y[Rn.

Property 3. The Gravity Term, G(q): It is bounded as
follows ||G(q)||≤gb(q) where gb(q) is a scalar constant for
revolute arms and a scalar function of q for arms containing
prismatic joints.

Property 4. The Friction Term, F(q̇): Since friction is a
local effect, it is reasonable to assume that the friction terms
F(q̇) are uncoupled among the joints so that F(q̇)=[ f1(q̇1),
f2(q̇2), . . . , fn(q̇n)]

T, where 1) fi(q̇i) is a known scalar
function; 2) fi(q̇)= fvi + fsi =vciq̇i +kisgn(q̇i); 3) fvi represents the
viscous (linear) friction part; 4) fsi represents the static
(Coulomb) friction part; 5) | fi(q̇i)|≤vci|q̇i|+ki.

Property 5. The Disturbance Torque, td: The disturbance
torque td is by definition unknown. It is, however, reason-
able to assume that it is bounded by a known function
||td||≤d(q, q̇).

Property 6. Equation (1) is linear with respect to q̈.

Property 7. Control inputs in equation (1), ti, are
independent.

Property 8. The dynamics equation (1) defines a passive
mapping from the input t to the generalized velocity q̇.

Property 9. The structure of the dynamic equation is linear
in terms of a suitably selected set of robot and load
parameters; that is, if a suitable choice of W(q, q̇, q̈),
W0(q, q̇, q̈), and Q is made, the left hand side of equation (1)
can be represented as follows: W(q, q̇, q̈)Q
+W0(q, q̇, q̈) = D(q)q̈+C(q, q̇)q̇+G(q), where
W(q, q̇, q̈)[Rn3 p is a matrix (or regressor matrix) and
W0(q, q̇, q̈)[Rn is a vector, both composed of known
functions, and Q[Rp is a vector of unknown constant
system parameters.

Property 10. The Lagrangian function L can be written by
using the same parameters Q as in Property 9 L = Y(q,
q̇)Q+Y0(q, q̇), where W(q, q̇, q̈)= d

dt(
∂Y
­q̇)2

∂Y
­q, W0(q, q̇, q̈)=

d
dt(

­Y0

­q )2
­Y0

­q .

Property 11. The Hamilton function (or total mechanical
energy) can be written as follows by using the same
parameters Q as in Property 9, H=WH(q, q̇)Q+WH0(q, q̇),
where 

·
WH(q, q̇)= q̇TW(q, q̇, q̈) and 

·
WH0 = q̇TW0(q, q̇, q̈).

Remark 1. It is noted that the dimension of the parameter
space is not unique and the search for the parameterization
that minimizes the dimension of the parameter space is an
important problem. Property 9 plays a crucial role in the
various linear parameterization approaches.1–8, 12, 13

3. COMBINED DIRECT AND INDIRECT
ADAPTIVE CONTROL
The direct adaptive controllers use tracking errors of the
joint motion to drive the parameter adaptation. The indirect
adaptive manipulator controllers use prediction errors on the
filtered joint torques to generate parameter estimates to be
used in the control law. The combined direct and indirect
adaptive controllers use both tracking errors in the joint
motions and prediction errors on the filtered torques to drive
the parameter adaptation. The direct adaptive control
approach and the indirect adaptive control approach are first
reviewed. The control structure which can be extended to
the combined adaptive control schemes is studied. Then, a
combined direct and indirect adaptive control approach is
presented. The combined adaptive method uses both the
prediction (input) error and the tracking (output) error in the
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adaptation law and improves the performances of the
robot.

3.1. Direct adaptive control
Historically, there are many publications on the adaptive
control of robot manipulators that avoid the use of the
inverse of the estimated inertia matrix and the joint
accelerations, using Property 1 2–6. All these controllers
also use the passivity property (Property 2 or 8), except
Johansson4 where the derivative of the inertia matrix is used.
However, it is noted that adaptive control without using
accelerations and the inverse of the estimated inertia matrix
is due to Property 1, and not due to the passivity property
(Property 2 or 8) as is misunderstood in some previous
papers. An adaptive control method is presented on
Lyapunov stability theory using Property 1, the passivity
property of robot manipulators (Property 2 or 8), and the
linearisation property (Property 9). This approach is
different from the computed torque (inverse dynamics,
linearising) approach, since here even with exact knowledge
of the parameters, the control law does not linearise the
equations of motion of the robot. However, this approach
overcomes the main drawbacks of the adaptive computed
torque control methods in that it does not require measure-
ment of the manipulator accelerations, nor does it require
the inverse of the estimated inertia matrix. Most of the
above methods are not strictly derived from Lyapunov
stability theory. Johansson4 gave an adaptive controller
which is completely designed from Lyapunov theory.

3.1.1. Structure of the controller. Let the tracking error
state be,

x̃= [ ˙̃qT(t) q̃T(t)]T; x̃[R2n (2)

where q̃=q2qd. The objective is, given the structure of the
manipulator dynamic equations, the desired trajectories
qd(t), q̇d(t), q̈d(t), measurements of the joint position q(t) and
velocity q̇(t), and with some or all of the manipulator
parameters being unknown, to determine the control input
t(t) such that all the signals in the control system remain
bounded and limt→∞ x̃=0.

First consider the case of known parameters. Combining
equations (1) and (2), the error dynamics of the robot
manipulator as

˙̃x(t)=A0(t)x̃(t)+B0(t)+Bc(t)t(t) (3)

where

A0(t)=F2D21(q)C(q, q̇)
I

0
0G;

B0(t)=F2 q̈d 2D21(q)[G(q)+C(q, q̇)q̇d]
0 G;

Bc(t)=FD21(q)
0 G

Define the control law as

t(t)=tn(t)+tl(t) (4)

where tl(t)[Rn is a linear feedback control part which
ensures that the time differential of a Lyapunov function to
be negative and tn(t)[Rn is a non-linear feedforward
compensation term. Both terms will be decided later from
Lyapunov stability theory. Choose the Lyapunov function
candidate as

V(t)=
1
2

x̃T(t)Pq(q)x̃(t) (5)

where

Pq(q)=UTPD(q)U;

U=FI
0

P12

I G; P12 =P21
cc G; PD(q)=FD(q)

0
0

Pcc
G

with U, PD(q), Pq(q)[R2n3 2n, Pcc =PT
cc >0, G=GT >0 are the

constant positive n3 n matrices. From Property 1, it is
known that V(t) is a legitimate Lyapunov function candi-
date. Differentiating V(t) with respect to time and using
equation (3) yield

V̇(t)=[Ux̃]TFD(q)P12
˙̃q+C(q, q̇)P12q̃

2D(q)q̈d 2C(q, q̇)q̇d 2G(q)+t

Pcc
˙̃q G

+[Ux̃]TF1
2Ḋ(q)2C(q, q̇)

0

0
0G Ux̃

=[Ux̃]TF2D(q)v̇+ 1
2Ḋ(q)s2C(q, q̇)q̇–G(q)+t

Pcc
˙̃q

G (6)

=[Ux̃]TF2D(q)v̇2C(q, q̇)v–G(q)+t

Pcc
˙̃q G (7)

where v=q̇d 2P12q̃ and s= ˙̃q+P12q̃. Equation (7) uses the
passivity property, but equation (6) does not. The non-linear
feedforward terms, tn, can be defined either without using
passivity property,

tn =D(q)(v̇2ms) 2
1
2

Ḋ(q)s+C(q, q̇)q̇+G(q) (8)

or using passivity property Property 2,

tn =D(q)(v̇2ms)+C(q, q̇)v+G(q)=W(t)Q+W0(t) (9)

where Q is an unknown parameter vector, definitions of
W(t), W0(t) are obvious, m is a positive scalar, and the linear
feedback control law, tl, in both cases, is defined as

tl =2 (Pll +PccG
21Pcc)s+Pccq̃=

2 (Pll +PccG
21Pcc) ˙̃q–PllP

21
cc Gq̃ (10)
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where Pll[Rn3 n is a symmetric positive definite matrix.
Then equation (7) becomes

V̇=22mV–x̃TQmx̃ (11)

where

Qm =FPll +PccG
21Pcc

GP21
cc Pll

PllP
21
cc G

GP21
cc PllP

21
cc G2mPcc

G,

Q0 =FPll +PccG
21Pcc

GP21
cc Pll

PllP
21
cc G

GP21
cc PllP

21
cc G
G (12)

Lemma 1. Since Pcc, G, Pll[Rn3 n are symmetric positive
definite matrices, if a reasonably small m is chosen, then
Qm =QT

m >0

Proof. Since Pll and G are symmetric positive definite
matrices, they can be factored as Pll =PT

l Pl and G21 =GT
1G1

with Pl and G1 invertible. When m=0, Q0 can be written as
Q0 =QT

0 =QT
cQc, with

Qc =F Pl

2G1Pcc

PlP
21
cc G

0 G.

It can be proven that Qc is invertible, so that Q0 >0. Also m
can be chosen small enough to guarantee that Qm is still
positive definite. This completes the proof.
From Lemma 1 and equation (11), V̇(t)≤22mV(t). This
implies the exponential convergence of V, i.e.
V(t)≤e22mtV(0), ;t>0. Putting it into equation (5) gives
||x̃(t)||≤!2V(0)

ap
e2mt, where ap is the smallest eigenvalue of

Pq(q). The above result is summarised in the following
theorem:

Theorem 1. If the conditions in Lemma 1 are satisfied, and
the control laws are chosen as equations (4), (9) [or (8)],
and (10), then the global exponential stability of the
tracking errors, q̃, ˙̃q, are guaranteed.

Remark 2. If the control law is chosen as equations (4), (9)
(or (8)) and (10), the closed loop error dynamics is given
by

HD(q)(ṡ+ms)+C(q, q̇)s+(Pll +PccG
21Pcc)s2Pccq̃=0

˙̃q=2P12q̃+s
(13)

It is noted that equation (13) is a non-linear equation and
the proposed controller, though avoiding the use of q̈ and
D̂21, does not linearise the closed loop error dynamics.

3.1.2. Adaptive control design. In the case of unknown
parameters, the non-linear control law, equation (9)
becomes

tn(t)=D̃(q)(v̇2ms)+Ĉ(q, q̇)v+Ĝ(q) (14)

where D̂, Ĉ, and Ĝ have the same structure functions as D,
C, and G with estimated parameters u1, u2, . . . , up, and the
error equation becomes

D(q)(ṡ+ms)+C(q, q̇)s+(Pll +PccG
21Pcc)s2Pccq̃=W(t)Q̃

(15)

where (from Property 3),

W(t)Q̂+W0(t)=D̂(q)(v̇2ms)+Ĉ(q, q̇)v+Ĝ(q) (16)

with Q̃=Q̂2Q. The updating law is chosen as
˙̂Q= ˙̃Q=2KdW

T(t)s (17)

where Kd[Rp3 p is a symmetric positive definite matrix.
Then we have the following theorem;

Theorem 2. The adaptive controller, equations (4), (10),
and (14) with the updating law, equation (17), is globally
convergent that is q̃(t) and ˙̃q(t) asymptotically converge to
zero and all internal signals are bounded.

Proof. Consider the Lyapunov function candidate

Va(t)=
1
2

x̃T(t)Pq(q)x̃(t)+
1
2

˙
Q̃T(t)K21

d Q̃(t) (18)

The time derivative of Va(t) along the error equation (15)
with the adaptation law, equation (17) yields

V̇a(t)=22mx̃T(t)Pq(q)x̃(t)2 x̃T(t)Qmx̃(t) (19)

Thus it can be concluded that x̃(t)[L2n
2 > 2n

∞ and Ũ[Lp
∞ .

From this, it is concluded from equations (4), (10), and (14)
that t[Ln

∞ . This in turn implies, using equation (1) and
Property 1, that q̈[Ln

∞ and, hence, from equation (15) that
˙̃x[L2n

∞ . Since ˙̃x[L2n
∞ , x̃ is uniformly continuous and the

proof is completed using the implication:21 x̃(t) is uniformly
continuous and x̃[L2n

2 ⇒x̃→0 as t→∞ .

Remark 3. It is noted that the above control structure
without using the joint accelerations and the inverse of the
estimated inertia matrix, is due to Property 1. The passivity
property, Property 2, is only used to simplify the non-linear
feedback control law (comparing equations (9) and (8)).

3.2. Indirect adaptive control
The indirect adaptive control of robot manipulators, pio-
neered by Middleton and Goodwin,5 use prediction errors
on the filtered joint torque (as opposed to the joint positions)
to generate parameter estimates to be used in the control
law. The global tracking convergence of the method has
been shown and the adaptive controller is composed of a
modified least-square estimator and a modified computed-
torque controller. The computation of the adaptive
controller again requires the inverse of the estimated inertia
matrix. The method was further extended by Li and Slotine,6

and the requirement of the inverse of the estimated inertia
matrix was relaxed by using a projection approach.

3.2.1. Parameter estimation for robot manipulators.
Using Property 9, equation (1) can be written as
t=W(q, q̇, q̈)Q+W0(q, q̇, q̈). In indirect adaptive control, the
parameters are first estimated from the controlled plant, and
then the estimated parameters are used to replace the true
but unknown plant parameters in the design of relevant
controllers. To achieve this, we operate both sides of the
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above equation by lf

p+lf
, where p= d

dt is the differential
operator and lf is some positive constant specified by the
designer;

tf =Wf(q, q̇)Q+W0f(q, q̇) (20)

where Wf =( lf

p+lf
)W, W0f =( lf

p+lf
)W0, tf = ( lf

p+lf
)t. It is noted that

Wf and W0f are functions of q and q̇, but not of q̈. Wf and W0f

can be computed using the Lagrangian function L. The
Lagrangian Equation can be written in vector form as

d
dt S∂L

∂q̇D2
∂L
∂q

=t (21)

Multiplying both sides of equation (21) by lf

p+lf
and using

Property 10, L=Y(q, q̇)Q+Y0(q, q̇), gives

tf =Wf(q, q̇)Q+W0f(q, q̇) (22)

Thus, if the Lagrangian function L is known, it is relatively
easy to obtain Wf and W0f. Equation (22) can be used to
estimate the unknown parameters as follows. Define the
prediction (or input) error as

ef:=Wf(q, q̇)Q̂(t)+W0f(q, q̇)2tf =Wf(q, q̇)Q̂(t)
2Wf(q, q̇)Q=Wf(q, q̇)Q̃(t) (23)

The prediction error reflects the error between the currently
estimated parameters Q̂(t) and the true parameters Q. There
are a number of identification methods22 to estimate the
parameters from equation (23). Here, briefly described are
two popular methods, i.e. the gradient estimator and the
least square estimator. Both have a common form of
parameter update law, namely

˙̂Q(t)= ˙̃Q(t)=2P(t)WT
f (t)ef(t) (24)

where P(t)[Rp3 p is a constant positive definite matrix in the
gradient estimator or a time-varying positive definite gain
matrix for the least-square estimator. The gain matrix P(t)
determines the estimator performance and as indicated
above, may be generated in different forms from different
perspectives. However, irrespective of P(t)—the prediction
error ef(t) is square integrable (mathematically, ef[Ln

2), and
this is important in proving the global tracking convergence
of the various indirect adaptive controllers. The gradient
estimator has

P(t)=Kd (25)

The least-square estimator has P(t) as a time varying
matrix:

Ṗ(t)=m(t)P(t)2P(t)WT
f (t)Wf(t)P(t) (26)

where P(0)=PT(0)>0, and m(t)>0 is a scalar quantity. Both
estimators have the following the properties.

Lemma 2. The gradient estimator, equations (24), (25) and
the least-square estimator, equations (24), (26), applied to
the error system, equation (23), yields the following
properties, regardless of the control law: 1) The estimator
parameter, Q̂[Lp

∞ , and 2) The prediction error, ef[Ln
2.

Proof. Choose the Lyapunov function V(t)=Q̃T(t)P21(t)Q̃
1) For the gradient estimator case: Using equations

(23)–(25), the derivative of V(t) is

V̇(t)=2Q̃TK–1
d

˙̃Q=22Q̃TWT
f WfQ̃=22eT

f ef (27)

This leads to 0≤V(t)≤V(0), which means that
Q̃[Lp

∞⇒Q̂[Lp
∞ (1 of Lemma 2 above) since the unknown

parameter Q is bounded. Since V(0) is a finite positive
constant, integration of V leads to ∫∞

0 eT
f

(t)ef(t)dt=V(0)2V(∞)≤V(0), so that ef[Ln
2 (2 of Lemma

2).
2) For least-square estimator case: The relevant deriva-

tive of V(t) under the equations (23), (24), and (26) is

V̇(t)=2Q̃TP21 ˙̃Q+Q̃TṖ21Q̃=2m(t)V(t)2Q̃TWT
f WfQ̃

=2m(t)V(t)–eT
f (t)ef(t) (28)

This leads to the desired results.

Remark 4. The gradient estimator is computationally
simple but its convergence is usually slow. The least-square
estimator in equation (26) represents a whole class of
estimators, including the standard least-square method
(corresponding to m(t)=0), constant-forgetting-factor esti-
mator, constant-trace-forgetting factor, and so on.
Comparing equations (27) and (28), it is easy to see that the
least-square estimator has a faster convergent rate than the
gradient estimator.

Remark 5. The convergence of the parameter error needs
the persistently exciting condition, namely that there exist
positive constants a1, a2 and d such that a1I≤ ∫t+d

t WT
f (r)Wf

(r)dr≤a2I, ;t≥0.

3.2.2. Indirect adaptive control design. The indirect
adaptive controller proposed uses a first-order filter to avoid
the joint acceleration measurement. The adaptive controller
is composed of two parts: a control law and a parameter
estimation law. This subsection is focused on the former.
The controller part has the following structure,

t=tm +ta +tb (29)

tm =D̂(q)[q̈d 2Kv
˙̃q2Kpq̃]+V̂(q, q̇)+Ĝ(q) (30)

where ta and tb are signals dealing with terms arising in the
adaptive case due to the commuting of time varying
operators and will be decided later. The parameter estimator
is given by equation (24), with P(t) generated by equation
(25) or equation (26). Substituting equation (29) into
equation (1) yields the closed-loop dynamics as

D̂( ¨̃q+Kv
˙̃q+Kpq̃)=WQ̃+ta +tb (31)

Multiplying both sides of equation (23) by 
p+lf

lf

gives

Sp+lf

lf
Def =WQ̂+

1
lf

Wf
˙̂Q+W0 2t (32)

Combining equations (31) and (32) gives

D̂( ¨̃q+Kv
˙̃q+Kpq̃)=

p+lf

lf

ef 2
1
lf

Wf
˙̂Q+ta +tb (33)
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In order to cancel the term, 1
lf
Wf

˙̂Q, in equation (33), let

ta =
1
lf

Wf
˙̂Q (34)

Further letting

tb =
1
lf

D̂J21 d
dt

[JD̂21]ef (35)

Equation (33) becomes

¨̃q+Kv
˙̃q+Kpq̃=

p+lf

lf

[D̂21ef] (36)

D̂21[L∞ +ef[L2⇒1
lf

D̂21ef[L2, so that q̃[L∞ , q̃ and ˙̃q[L2.
Thus using the same mathematical proof of Middleton and
Goodwin5, it can be proved that ef→0, q̃→0, and ˙̃q→0. The
above results can be summarised as the following theorem.

Theorem 3. If D̂21(q)[L∞ , the desired trajectories qd, q̇d,
and q̈d[L∞ , then the adaptive control law equations (29),
(30), (34), and (35), with parameter updating law equations
(24) and (25) or (26) guarantees that the prediction (input)
error ef→0, the position tracking (output) error q̃→0, and
the velocity tracking error ˙̃q→0 as time t→∞.

Remark 6. The additional terms, ta and tb in equation (29),
have their roots in the augmented error adaptive control of
linear plants.21

3.3. Combined adaptive control
The control law and error equation are same as in direct
adaptive control (Section 3.1) and are summarized as
follows:

t=W(q, q̇, v, v̇)Q̂+W0(q, q̇, v, v̇)+tl

= D̂(q)v̇+Ĉ(q, q̇)v+Ĝ(q)+tl (37)

D(q)ṡ+C(q, q̇)s+(Pll +PccG
21Pcc)s–Pccq̃=W(q, q̇, v, v̇)Q̃

(38)

The direct parameter adaptation law:

Q̂= ˙̂Qd =2KdW
T(q, q̇, v, v̇)s (39)

The indirect parameter adaptation law:
˙̂QI =2PI(t)W

T
f (q, q̇)ef(t) (40)

where PI(t) is a constant positive matrix for gradient
estimator or time-varying definite gain matrix for least-
square estimator.

Since equation (23) is a complicated vector equation and
includes centripetal and Coriolis terms, it needs a heavy
computation burden. Now we propose a simple method to
implement equation (23) using the principle of energy
conservation. From Property 8,

tTq̇=
dH
dt

(41)

where H is a Hamiltonian function representing the total

mechanical energy of the robot system. From Property 11,
we have tTq̇= d

dt[WH(q, q̇)]Q+ d
dt[W0H(q, q̇)]. Multiplying both

sides of the above equation by lf /(p+lf) leads to

lf

p+lf

[tTq̇]=lf [WH(q, q̇)2
lf

p+lf

(WH(q, q̇))]Q

+lf[W0H(q, q̇)2
lf

p+lf

(W0H(q, q̇))]

This can be written as

tfa =wf(q, q̇)Q+w0f (q, q̇) (42)

where

tfa =
lf

p+lf

[tTq̇]; wf (q, q̇)=lf[WH(q, q̇)

2
lf

p+lf

WH(q, q̇)]; w0f(q, q̇)=lf[W0H(q, q̇)

2
lf

p+lf

W0H(q, q̇)]

In this notation, the indirect parameter estimation law,
equation (40), becomes

˙̂QI =2PI(t)w
T
f (q, q̇)efa(t) (43)

where efa = ötfa 2tfa =wT
f (q, q̇)Q̃.

Remark 7. Note that the estimation models (24) and (43)
are different. Equation (24) is an n dimension vector, while
equation (43) is a scalar equation. Using the energy
relationship, equation (41), the computation of wf[R13 p and
w0f[R in equation (43) is greatly simplified compared with
the computation of Wf[Rn3 p and W0f[Rn3 1 in equation (24),
since in equation (43) it is not necessary to compute the
complex centripetal and Coriolis terms.

If the above two adaptation laws are directly added
together, the stability analysis is difficult. In order to
overcome this difficulty, the following improved indirect
adaptation law is introduced:

˙̂QI =2Kdw
T
f (q, q̇)Refa(t) (44)

where R is a positive constant matrix. Now define the
combined adaptation law as:

˙̂Q=2P(t)[WT(q, q̇, v, v̇)s+wT
f (q, q̇)R(t)efa(t)] (45)

The combined adaptive law takes into account information
in both the tracking error and the prediction error in
estimating the unknown parameters. The structure of the
combined adaptive control law and error equation is still the
same as that of the direct adaptive controller, i.e. equations
(37)2 (38). R=0 and P(t)=Kd would correspond to the
direct adaptive control version (Section 3.1). There are a
number of methods to generate the combined adaptation
gain matrix P(t), e.g. gradient method, least–square method,
bounded–gain–forgetting method and cushioned–floor
method6, 22. The different methods give the different per-
formances under different conditions. For simplicity, here
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we only discuss the simple gradient method, i.e. P(t)=Kd is
a constant symmetric positive definite matrix, and choose
R=1.

Theorem. 4 For robot dynamics governed by equation (1),
if the control law (37), and the combined adaptation law
(45) are used, and the desired trasjectories and up to the
second order derivatives are bounded, then the following
properties hold: (i) The tracking errors q̃ and ˙̃q, and the
prediction error efa all globally converge to zero, i.e.
Limt→∞ q̃=0, limt→∞

·̃q=0, limt→∞ efa =0 with the other
signals remaining bounded; (ii) If q3

d(t) is uniformly
continuous almost everywhere, then limt→∞ W
(q, q̇ v, v̇)Q̃=0; (iii) If Wd is persistently exciting, then
limt→∞ Q̃=0; (iv) If further WT

f Wf >aIp3 p, then Q̃ exponen-
tially converges to zero.

Proof. Taking the same Lyapunov function candidate as in
direct adaptive control, equation (18), the corresponding
derivative of the Lyapunov function is

V̇a = x̃T(t)Pq(q)˙̃x(t)+
1
2

x̃T(t)Ṗq(q)x̃(t)+Q̃TK21
d

˙̃Q=

22mx̃T(t)Pq(q)x̃(t)2 x̃T(t)Qmx̃(t)2Q̃TwT
f (t)wf(t)Q̃≤0

(46)

The boundedness of x̃(t) and Q̃(t) is found immediately
from (18) and (46). Similar to the proof of the Theorem 2,
it is necessary to prove the boundedness of V̈a(t). From the
closed-loop error equation (38) and Property 1, the
boundedness of desired trajectories q̈d, q̇d, qd, q̃, ˙̃q, and Q̃
implies the boundedness of q̈ and ¨̃q. This implies Lemma 2
guarantees the convergence of q̃(t), ˙̃q(t), and efa(t). This
proves part (i).

In (38), it is only necessary to prove that D(q)ṡ→0 as
t→∞ . Utilizing integration by parts.

Et+c

t

D(t)ṡ(t)dt=D(t+c)s(t+c)2D(t)s(t)

2Et+c

t
Ḋ(t)s(t)dt (47)

Notice that Ḋ(q) can be written as: Ḋ=∑i=n
i=1

­D
­q q̇i. q̇[Ln

∞ has
been proved above, which implies Ḋ(q) is bounded. Thus,
limt→∞ [∫t+c

t Ḋ(t)s(t)dt]=0. From (47), this implies that,
limt→∞ [∫t+c

t D(t)ṡ(t)dt]=0. This implies limt→∞ [D(q)ṡ]=0.
From (38), limt→∞ [W(q, q̇, v, v̇)Q̃]→0. This proves part (ii).

The convergence of the estimated parameters to the true
parameters can be shown by noting that the adaptation law

˙̃Q(t)=2Kd[W
T(t)s+wT

f (t)wf(t)Q̃(t)]=2Kdw
T
f (t)wf(t)Q̃(t)

2KdW
T(t)s (48)

represents exponentially stable dyamics22 with convergent
input 2PdW

T(t)s.
Using (18), (48), and the condition of part (iv) implies

that 'g>0, such that

V̇a(t)+gVa(t)≤0 (49)

Similar to Theorem 1, exponential stability of the position
tracking error q̃, ˙̃q, and the parameter error Q̃ with a time
constant 1

g is thus shown. h

4. VARIABLE STRUCTURE ADAPTIVE
CONTROL
The variable structure adaptive controllers combine features
of the robust design based on variable structure systems
with parameter adaptive control. In order to introduce this
new design method, the variable structure control design
approach is first reviewed.

4.1 Variable structure control design
In variable structure control (VSC), the goal is the same as
in adaptive control discussed in Section 3. The approach
used in accomplishing this goal, is however, different: VSC
exploits a variable structure feedback control mechanism
where a sliding mode occurs during the transient process.
The Lyapunov direct method can be used to design a
variable structure controller.12, 13, 16–18

The main difference between adaptive control and
variable structure control is that parameter estimates are
used in the adaptive control, while, instead, switching
functions are used in variable structure control. A variable
structure control scheme assumes that the unknown manip-
ulator and load parameters, U, are known to lie in a bounded
set: V={U| |ui|≤ ūi, i=1, 2, . . . , p}. The variable structure
controller proposed in Yu13 is outlined in the following
theorem.

Theorem 5. If the robot manipulator, equation (1), with
constant but unknown parameters U and with the robust
control law:

F(t)= x̃T(t)PT
1W(t)=s(t)TW(t)=[ f1(t), f2(t), . . . , fp(t)] (50)

fi(t)=On

j=1

sj(t)Wji(t) i=1, 2, . . . , p (51)

Uv(t)=2F1(t)Ũ, ūi ≥ui;i (52)

F1(t)=diag[sgn( f1), sgn( f2), . . . , sgn( fp)] (53)

tn(t)=W(t)Uv(t)+W0(t) (54)

and (4), (10), where P1 =[In3 nP12][Rn3 2n, then for a
reasonably small positive constant m, all the signals in the
system are bounded and x̃(t) tends to zero with at least an
exponential rate that is independent of the excitation.
The proof of Theorem 5 is given in Yu.13

Remark 8. The link between the adaptive control algorithm
and the variable structure control algorithm is given by
n1U̇x =2n2Ux 2F(t): 1) n2 =0 and n1 =K21

d leads to the
adaptive control scheme proposed in Section 3.1; 2) n1 =0
and n2 =diag[| f1|ū

21
1 , | f2|ū

21
2 , . . . , | fp|ū

21
p ] leads to the vari-

able structure control scheme given in Theorem 5.
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4.2. Variable structure adaptive control design
From simulation results, we find that the further Ū is from
the true value U, the more serious the chattering prob-
lem.13, 19 This observation motivates us to propose the
following variable structure adaptive (VSA) control algo-
rithms. The estimated bounds are used to replace the upper
bounds in the VS controller, so the controller is called a
variable structure adaptive (VSA) controller. The difference
between VSA control and VS control is the estimated upper
bounds used in the former and the fixed upper bounds used
in the latter. All the algorithms in this section have the same
control law

t=Wv(t)Qv +Wv0(t)+ti (55)

where Wv(t) and Wv0(t) satisfy the following equation
Wv(t)Q+Wv0(t)=D(q)v̇+C(q, q̇)v+G(q). The VSA law is
defined as

Qv(t)=F1(t)Qs(t) (56)

where F=WT
vs=[ f1, f2, . . . , fp]

T; F1 =diag[sgn( f1), sgn( f2),
. . . , sgn( fp)]; fi =∑n

j=1 sjWvji, i=1, 2, . . . , p, Qs(t)[Rp3 1 is an
adaptation law of the bounds of the unknown parameters
and will be given later. It is easy to see that the ith
component of the vector Qv(t) can be expressed as

Qvi(t)=Qsi(t)sgn[On

j=1

sj(t)Wvji(t)], i=1, 2, . . . , p (57)

The following three choices for the adaptation law Qs(t) are
proposed.

Algorithm 1:
˙̃Qs(t)=Q̇s(t)=

2PsF1(t)F(t) or ˙̃Qsi =Q̇si =2Psi|On

j=1

sjWvji|, i=1, 2, . . . , p

Algorithm 2:
Q̇s(t)=Q̇s(t)=2G1Q̃s(t)2PsF1(t)F(t) or ˙̃Qsi =Q̇si =

2G1iQ̃si 2Psi|On

j=1

sjWvji|, i=1, 2, . . . , p

Algorithm 3:

Q̃s(t)=Q̇s(t)
=2G1Qs(t)2PsF1(t)F(t) or ˙̃Qsi =Q̇si

=2G1iQsi 2Psi|On

j=1

sjWvji|, i=1, 2, . . . , p

where Ps and G1[Rp3 p are diagonal positive definite
matrices, Q̃s(t)=Qs(t)+Q̄, Q̄i ≥ |Qi|.

Using control law (55) in the robot dynamics, equation
(1), the corresponding error equation is:

HD(q)ṡ+C(q, q̇)s+(Pll +PccG
21Pcc)s2Pccq̃=Wv(t)Q̃

˙̃q=2P12q̃+s
(58)

where Q̃=Qv(t)2Q[Rp.

Theorem 6. For the error equation (58), under the VSA law,

equation (56) [or (57)], the following properties hold: i) If
the adaptive gain law is chosen as Algorithm 1, then the
tracking error q̃(t) and ˙̃q(t) converge asymptotically to zero.
ii) If Algorithm 2 is chosen, then the conclusion of the
Algorithm 1 is true. iii) If Algorithm 3 is chosen, then the
system is globally uniformly ultimately bounded, that is, the
tracking errors q̃(t) and ˙̃q(t) are bounded and the bounded-
ness depends on G1.

Proof: The proof is based on the Lyapunov theory. Define
a Lyapunov function candidate as

V[x̃(t), Q̃s(t)]=
1
2

x̃T(t)Pq(q)x̃(t)+
1
2

Q̃T
s (t)P

21
s

˙̃Qs(t) (59)

where x̃(t) and Pq(q) are defined as before. So V[x̃(t), Q̃s(t)]
is a legitimate Lyapunov function candidate. Differentiating
equation (59) with respect to time along the error equation
(58) gives

V̇=2 x̃T(t)Q0x̃(t)+Q̃T(t)F(t)+Q̃T
s (t)P

21
s

˙̃Qs(t) (60)

i) Using Algorithm 1 in equation (60) leads to

V̇=2 x̃T(t)Q0x̃(t)+(Qv 2Q)TF(t)2Q̃T
s (t)F1(t)F(t)

≤2 x̃T(t)Q0x̃(t)2Op

i=1

(Q̄i 2 |Qi|)On

j=1

sj(t)Wvji(t)|

<2 x̃T(t)Q0x̃(t)

Using similar reasoning as in Theorem 1 leads to
limtW∞ x̃(t)=0⇒limtW∞ q̃(t)=0 and limtW∞

˙̃q(t)=0.
ii) Using Algorithm 2 in equation (60),

V̇=2 x̃T(t))Qx̃(t)+Q̃T(t)F(t)2Q̃T
s (t)P

21
s G1Q̃s(t)

2Q̃T
s (t)F1(t)F(t))<2 x̃T(t)Qx̃(t)

2Q̃T
s (t)P

21
s G1Q̃s(t)

Since G1 and Ps are positive definite diagonal matrices,
P21

s G is a positive definite matrix. This implies that
limtW∞ x̃(t)=0 and limtW∞ Q̃s(t)=0.

iii) Using Algorithm 3 in equation (60) gives

V̇=2 x̃T(t)Qx̃(t)2Q̃T
s (t)P

21
s G1Qs(t)2Q̃T

s (t)F1(t)F(t)

≤2 x̃T(t)Qx̃(t)2Q̃T
s (t)P

21
s G1Qs(t)

This implies that the system is globally uniformly ultimately
bounded. h

Remark 9. Algorithm 1 is the same as that proposed in the
literature.16, 17 It is a special case of the Algorithms 2 and
3 (G1 =0). Algorithm 2 is a quite general form. When G1 =0,
it leads to the Algorithm 1; when Ps =0 and G1 =∞ , it leads
to the variable structure control scheme.12, 13

Remark 10. Algorithm 1 guarantees that the tracking
errors q̃ and ˙̃q converge asymptotically to zero, and the
adaptive error Q̃s is bounded. Algorithm 2 guarantees that
both the tracking errors (q̃ and ˙̃q) and the adaptive error
(Q̃s) converge asymptotically to zero. They have a same
Lyapunov function, but the derivative with respect time of
Algorithm 2 is more negative than that of Algorithm 1,
since the extra term 2Q̃T

s (t)P
21
s G1Q̃s(t) appears in Algo-

rithm 2. This implies that the convergent rate of the
Algorithm 2 is faster than that of the Algorithm 1.

Adaptive control of robot manipulators630

https://doi.org/10.1017/S0263574798000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000563


Algorithm 3 only guarantees that the tracking errors are
bounded, that is, the system is only globally uniformly
ultimately bounded. If these three Algorithms are used
individually, Algorithm 2 gives better results. However,
Algorithm 3 combined with direct adaptive control algo-
rithms proposed in Section 3, gives a very high
performance (see next section).

Remark 11. Algorithms 1 and 3 use only very general
information about the structure of the robot dynamic
equation (Property 9). The upper bound of the uncertain
parameters (Q̄) is only used in the stability proof, and is not
required in the controller. This avoids the problem of high
gains which lead to excessive control signals. Algorithm 2
indirectly uses the upper bound of the uncertainty parame-
ters (Q̃), but this is in the adaptive law.

4.3. Robustness properties
Generally speaking, uncertainties are functions of the
system states and may grow beyond any constant bound if
the system becomes unstable. For example, the viscous and
Coulomb friction forces may be modelled as Fvq̇+Fcsgn(q̇).
Therefore, from Properties 4 and 5, it is reasonable to
assume that the uncertainty effects are represented by

||td||≤d0 +d1|| ˙̃q||+d2||q̃|| (61)

where d0 >0, d1 >0, and d2 >0 are some constants. To take
account of the uncertainties, the controller, equation (55), is
modified as

tn(t)=W(t)Qv(t)+W0(t)+tcs+t0sgn(s) (62)

ṫc(t)=2c||s||2; ṫ0(t)=2c0||s|| (63)

where the switching law Qv(t) is the same as in equation
(57), the adaptation law is in the form of Algorithms 1–3,
and c>0 and c0 >0 are constants.

The following error equation can be obtained using the
control laws equations (55), (56), (62), and (63),

H D(q)ṡ+C(q, q̇)s+(Pll +PccG
21Pcc)s2Pccq̃=W(t)Q̃+tcs2td

˙̃q=2P12q̃+s
(64)

Theorem 7. Considering robot system, equation (1), with
input uncertainty, equation (61), if the control law equa-
tions (55), (56), (62), and (63), and Algorithm 1 (or 2 or 3)
is used, then the conclusions in Theorem 6 are also true.

Proof: Let the Lyapunov function candidate be

V[x̃(t), Q̃s(t), t̃c]=
1
2

x̃T(t)Pq(q)x̃(t)+
1
2

Q̃T
s (t)P

21
s Q̃s(t)

+
1
2

t̃T
c c21t̃c +

1
2

t̃T
0c

21
0 t̃0 (65)

where t̃c = t̃c 2tc, t̃c is a desired constant value of tc, and the
other parameters are the same as in equation (59).
Differentiating equation (65) with respect to time along the
error equation (64) and using Property 2 gives

V̇=2 x̃T(t)Qx̃(t)+Q̃T(t)WT(t)s(t)+sT(t)[tcs(t)2td]

+Q̃T
s (t)P

21
s (t) ˙̃Qs(t)+ t̃cc

21˙̃tc + t̃T
0c

21
0 ˙̃t0 (66)

Since Algorithm 2 gives a general form of Q̃s, we only
prove the theorem for this case. For Algorithms 1 and 3, a
similar procedure can be followed. From equation (61).

2sT(t)td(t)≤ ||s||(d0 +d1(||s||+lM(P12)||q̃||)+d2||q̃||)

≤d0||s||+d1||s||2 +(lM(P12))d1 +d2)||s||||q̃|| (67)

where lM (P12) is the largest eigenvalue of the matrix P12.
Putting Algorithm 2, equations (56), (63), and (67) into
equation (66) gives

V̇≤2 x̃T(t)Qmx̃(t)2Q̃s(t)P
21
s G1Q̃s 2 (t̄c 2d1)||s||2

2 (t̄0 2d0)||s||+ (lM(P12)d1 +d2)||s||||q̃||2m||q̃||2

≤2 x̃T(t)Qmx̃(t)2Q̃sP
21
s G1Q̃s 2 [||s|| ||q̃||]Q2F||s||

||q̃||G<0 (68)

where

Q2 =F2

t̄c 2d1

lM(P12)d1 +d2

2

2
lM(P12)d1 +d2

2
m

G
and m>0. Using similar reasoning as in Lemma 1, we can
choose suitable Pu, Pcc, G, and m to guarantee that Qm is a
positive definite matrix. If we choose t̄c sufficiently large,
then the matrix Q2 is a positive definite. This completes the
proof. h

4.4 Continuous approximations of the control laws
The control laws given above are discontinuous and give
rise to chattering of the trajectories about the surface s=0.
The reason resulted in the discontinuous laws is due to the
signum function sgn(s). In general, it is desirable to
eliminate this problem and there are two approximate
methods. The first one, introduces a thin boundary layer
neighbouring the switching surface11; that is, the signum
function sgn(s) is replaced by a saturation function sat(s),
which is defined as follows:

sat(s)=

1 if s>d

s
d

if |s|<d

21 if s<2d

where d is the boundary layer thickness. Using similar
methods as above, we can prove that both approximate
methods give bounded tracking error.

The second one13 uses s
|s|+d to replace the signum function

sgn(s), where d is a positive constant chosen by the
designers. However, both of the above modifications
sacrifice the convergence of the closed loop system. A new
continuous law16 uses the function s

|s|+dae
2dbt to replace the

signum function. This approach not only is the problem of
existence of solutions due to discontinuities in the control
eliminated, but also the tracking errors can be shown to be
globally stable.
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5 COMBINED DIRECT AND VARIABLE
STRUCTURE ADAPTIVE CONTROL

5.1 Combined adaptive controller design
The combined direct, indirect, and variable structure
adaptive control for linear plants with unknown parameters
is presented by Narendra14. The combined adaptive control
can improve the transient behaviour and have strong
robustness compared to direct adaptive control; it also
avoids the chattering problem and improves the asymptotic
behaviour compared with VSA control. This method has
been extended to robot manipulator control15. The robust
analysis of the method is performed in this paper. In the
combined adaptive control, we choose the control input t(t)
and adaptation law as

t(t) = Wc(t)Q̂c(t) + Wc0 (t) + tl(t) (69)

Q̂c(t) = Qd(t) + Qv(t) (70)

where Wc(t)Q+ Wc0(t) = 2
1
2Ḋ(q)s(t) + D(q)v̇(t) + C(q, q̇)q̇

+ G(q) and linear control law tl(t), reference error s, v, P12,
G, Pll are defined as before. Both Qd(t) and Qs(t) are adjusted
adaptively. Qd(t) can be adjusted as in the direct, indirect
adaptive control proposed in Section 3.1, or combined
adaptive control by the direct and indirect adaptive control
discussed in Section 3.3. Qs(t) has the form of Algorithm 3
given in Section 4, but the discontinuous signum function is
replaced by the continuous function s

|s|+d. Defining Qs(t) =
Qs(t) and Q̃d(t) = Qd(t)2Q, we have

˙̃
Qd(t) = Q̇d(t) = 2KdW

T
c(t)s(t) (71)

Qv(t) = F2(t)Q̃s(t) = F2(t)Qs(t) (72)
˙̃Qs(t) = Q̇s(t) = 2G1Q̄s(t)2PsF2(t)F(t) = 2G1Qs(t)
2Ps F2(t)F(t) (73)

F(t)=WT
c (t)s(t)=[f1, f2, . . . . , fp]

T (74)

F2(t) = diag F f1

|f1|+d
,

f2

|f2|+d
, . . . ,

fp

|fp|+d
G, d>0 (75)

Fi =On

j=1

sj(t)Wcji(t), i=1, 2, . . . , p., (76)

where Kd, G1 and Ps are the same as before.

Theorem. 8 If the robust combined adaptive control laws
equations (69)–(76) are used to control the robot dynamic
equation (1) with td = 0, then both the tracking error x̃(t)
and the gain adjusting parameter, Qs(t), converge to zero.

Proof. Using the control law, equations (69) and (70), in the
robot dynamic system, equation (1), leads to the error
equation

HD(q)Pc
˙̃x+

1
2
Ḋ(q)Pcx̃+(Pu +PccG

21Pcc)Pcx̃2Pccq̃=Wc(t)Q̃(t)

˙̃q=2P12Pcx̃+ q̃

(77)

where Q̃(t)=Q̂c(t)2Q, Pc =[I P12], x̃= [ ˙̃q q̃]. The Lyapunov

function candidate is chosen as

V[x̃(t), Q̃d(t), Q̃s(t)]=
1
2

x̃T(t)Pq(q)x̃(t)

+
1
2

Q̃T
d(t)K

21
d Q̃d(t)+

1
2

Q̃T
s (t)P

21
s Q̃s (78)

The time derivative of the Lyapunov function candidate is

V̇[x̃(t), Q̃d(t), Q̃s(t)]≤2 x̃T(t)Qx̃(t)2QT
s (t)P

21
s Qs(t) (79)

Using the same reasoning as in the proof of Theorem 2,
we can prove that all the signals in the combined control
system are bounded and limt→∞ ˙̃x(t)=0, limt→∞ Qs(t)=0.

Remark. 12 Qs(t) is a transient term, and it only improves
transient behaviour of the system. From equation (79), the
derivative of Lyapunov function becomes more negative and
this will decrease the transient error.

5.2 Robustness with respect to uncertainty
The robust combined adaptive control scheme proposed in
Section 5.1 can be modified to overcome the uncertainty
discussed in Section 4.3. The controller is modified as

t(t) = Wc(t) [Qd(t) + Qv(t)] = Wc0(t) + tcs +
t0sgn(s) + tl(t) (80)

where

ṫc =2c||s||2; ṫ=2C0||s|| (81)

and c>0 and c0 >0 are constants, and the other parameters
are as in Section 5.1.

Theorem. 9 If the robust control laws, equations (69)–(75),
(80) and (81), are applied to the robot system, equation (1)
with uncertainties, equation (61), then the conclusion in
Theorem 8 is still true.

Proof: Following the same line of proof as in Theorems 7
and 8 leads to the conclusion. h

6 COMPUTER SIMULATION
To compare the effectiveness of the above various adaptive
control methods, we present computer simulation results
using the two-link manipulator shown in Fig. 1 with the
parameters given in Table I. The parameters related to the
end-effector, u1 =m2, u2 =m2l

2
c2 + I2, and u3 =m2lc2 are

assumed to be unknown or changing with time. We suppose
that the robot picks up a payload at a time t=1 [s], and the

Table I. Dimensions of the fire-truck (metres)

Value without Value with
Parameter payload payload

11 0.432 m 0.432 m
1c1 0.216 m 0.216 m
m1 15.91 kg 15.91 kg
I1 0.247 khm2 0.247 kgm2

12 0.432 m 0.5 m
1c2 0.216 m 0.4 m
m2 11.36 kg 20 kg
I2 0.177 kgm2 0.68 kgm2
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parameters affected by the payload change to
m2 =31.36[kg], I2 =0.88[kgm2], l2 =0.5[m], and lc2 =0.4[m]
after t=1[s]. In all the simulations shown in this paper, the
sampling time is 2 ms and the intail errors, q̃1(0)=21.57,
q̃2(0)=0.57. All schemes use the same control structure as,

t(t)=Wc(t)Q̂(t) + Wc0(t) + tl (82)

where Wc(t)Q + Wc0(t) = 2
1
2 Ḋ(q)s(t)+D(q)v(t)+C(q, q̇)q̇

+ G(q)
In all the simulations, the arm is required to follow the

desired positions qd1
(t) and qd2

(t) produced by the reference
model q̈d1

+2j1v1q̇d1
+v2

1qd1
=v2

1r1, q̈d2
+2j2v2q̇d2

+v2
2 qd2

=
v2

2r2, where j1 =j2 =0.707, v1 =v2 =4, and the reference
inputs are specified as r1(t)=1, r2(t) = 1.5, 0≤t<10;
r1(t)=21, r2(t)=21.5, 10≤t<20. The PD coefficients are
chosen as Pll =10I23 2, Pcc =10I23 2, G=40I23 2. Thus,
P12 =P21

cc G=4I23 2.

6.2 Ideal case
Here, the ideal case means that the robot system only suffers
with initial errors and parameter change but without
external disturbances and unmodelled dynamics.

1) Direct adaptive control: In this case, the integral
parameter adjusting law and control inputs of the robot
manipulator are given as in Figure 2 shows the errors
between the outputs of the robot and the model, and control
inputs of the robot, with four different integral parameters
Kd, during the transient recovery from initial errors,
q̃1(0)=21.57, q̃2 =0.57. For the convenience of drawing the
figures, the output data is selected once every ten sampling
time intervals. From Fig. 2, we see that the tracking
performance is not improved with increasing the gains of
the integral parameters, since the big payload is changed.
The simulation results show that Kd =4I33 3 gives the best
tracking performance.

2) VSA control—algorithm 1: In this case, three groups
of the simulation results are shown in Fig. 3. The constant
d is chosen as 0.001, 0.05, and 0.2, respectively, and Ps =
4I33 3. The correspondent adjusting law and control law for
the robot are as in. Figure 3 shows that the smaller the value
of d is chosen, the better the tracking performance, but the
worse the chattering of the inputs. The tracking errors
increase with increasing d.

3) VSA control—algorithm 2: The adjusting law in this
case requires information of the upper bound of the
uncertain parameters. The simulation for three groups of the
parameters, i) Q̄s1 = 32, Q̄s2 = 6, Q̄s3 =13; ii) Q̄s1 = 16, Q̄s2

= 3, Q̄s3 = 6.5; and iii) Q̄s1 = 48, Q̄s2 = 9, Q̄s3 = 19.5 are
given in Figs. 4 i), ii), iii), respectively. The other
parameters are chosen as follows: G1 = 2I33 3, Ps = 4I33 3,
and d = 0.001. Since the first group of parameters are
closest to the true parameters during the term that the robot
picks up the payload, it shows the best performance. If we
increase the values of the parameters, the tracking perform-
ance is maintained, but the chattering becomes worse (Fig.
4 iii)). If we decrease the values of the parameters, the
chattering is reduced, but the tracking performance becomes
worse (Fig. 4 ii)).

4) VSA control—algorithm 3: The parameters are
chosen as Ps = 4I33 3, d = 0.001, and G1 is chosen as 0.2I33 3,
2I33 3, 8I33 3, respectively, corresponding to Figs. 5 i), ii), and
iii), respectively. The larger G1 reduces the chattering of the
input, but increases the tracking errors.

5) Combined direct adaptive and VSA control: To test
the performarnce of the proposed combined direct adaptive
and VSA control (algorithm 3), the following simulation is
performed. The constant parameters are chosen as Pd =
4I33 3, d = 0.001, Ps = 4I33 3. The simulation results are
shown in Fig. 6 i) combined direct adaptive and VSA—
algorithm 3 (G1 = I33 3), ii) combined direct adaptive and
VSA—algorithm 3 (G1 = 2I33 3), iii) combined direct
adaptive and VSA — algorithm 2 (G1 = 2I33 3, Q̄s1 = 48,
Qs2

=9,Q̄s3 = 19.5). When G1 is increased, the control inputs
become more smooth with a slight sacrifice in the transition
of the tracking errors (comparing Figs 6 (i) and (ii)). When
the direct adaptive control algorithm is combined with VSA
control algorithm 2, no benefit is obtained (Fig 6 iii)). This
can be explained using the Lyapunov function since in this
case the tracking errors are not convergent to zero.

Comparing the above simulation results, the combined
adaptive control gives the best performance. Increasing the
integral parameter gain of the direct adaptive law, Kd, does
not improve the tracking performance (Fig. 2). The
relationship between Kd and the tracking performance is a
complicated problem. Further research is needed to give
guidelines for choosing the integral parameter gains. For the
other control schemes proposed in this paper, the same
problem exists. The positive constant d has a great influence
on the VSA control algorithm 1. Large d can smooth the
control inputs but sacrifice the tracking performance (Fig.
3). In the VSA control algorithm 2, the choice of Q̄s is vital.
Large Q̄s will improve the tracking performance but results
in bad chattering (Fig. 5). Although increasing G1 or
reducing Ps can prevent the chattering, the overall tracking
performance will become worse (Fig. 5). Comparing the
above five types of control algorithms, the combined direct
adaptive and VSA — algorithm 3 control method shows the
most promising performance (Fig. 6).

6.2 External disturbances
External disturbances always exist. In the simulation,
several disturbances are chosen as follows:

Fig. 1. Two-link Planar Robot Arm
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Fig. 2. Direct Adaptive Control
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Fig. 3. VSA Control—Algorithm 1 (Ps =4I333)
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Fig. 4. VSA Control—Algorithm 2 (G1 =2I333, d=0.00)
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Fig. 5. VSA Control—Algorithm 3 (Ps =4I333, d=0.001)
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Fig. 6. Combined Direct Adaptive and VSA Control (Kd =4I333, Ps =4I333, d=0.001)
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Fig. 7. Direct Adaptive Control with Input Disturbances
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Fig. 8. VSA—Algorithm 1 with Input disturbances (Ps =I333)
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Fig. 9. VSA—Algorithm 2 witrh Input Disturbances (Ps =I333, d=0.00)

Adaptive control of robot manipulators 641

https://doi.org/10.1017/S0263574798000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000563


Fig. 10. VSA—Algorithm 3 with Input Disturbances (d=0.00)
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Fig. 11. Combined Direct Adaptive and VSA Control with Input Disturbances (Kd =4I333)
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Fig. 12. Direct Adaptive Control with Unmodelled Dynamics (Kd =I333)
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Fig. 13. VSA Control—Algorithm 1 with Unmodelled Dynamics (Ps =I333, d0.1)
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Fig. 14. VSA Control—Algorithm 2 with Unmodelled Dynamics (Ps =I333, G1 =I333, d=0.001, ūs1 =32, ūs2 =6, ūs3 =13)
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Fig. 15. VSA Control—Algorithm 3 with Unmodelled Dynamics (Ps =I333, G1 = I333, d=0.001)

Adaptive control of robot manipulators 647

https://doi.org/10.1017/S0263574798000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000563


Fig. 16. Combined Direct Adaptive and VSA Control with Unmodelled Dynamics (Kd =I333, Ps = I333, G1 = I333, d=0.001)
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td1(t)=k11q̇1 +k12sgn(q̇1)+d1(t) td2(t)

=k21q̇2 +k22sgn(q̇2)+d2(t) (83)

where k11 =k21 =d1(t)=d2(t)=0, k12 =k21 =0.5, 0≤t<1[s];
k11 =k21 =k12 =k22 =0, d1(t)=d2(t)=1, 1[s]≤ t5[s]; k11 =k21 =
0.5, k21 =k22 =d1(t)=d2(t)=0.5, 5≤ t<10; k11 =k21 =0.5,
k12 =k22 =0, d1(t)=d2(t)=21, 10[s]≤ t<15[s]; k11 =1,
k21 =0.5 k12 =k22 =0, d1(t)=1+sin(t), d2(t)=1+0.5cos(t),
10[s]≤ t≥20[s]. For the convenience of drawing the figures,
the output data is selected once every two hundred sampling
time intervals in the following figures.

1) Direct adaptive control: The simulation results are
shown in Fig. 7, for the time interval from 0 [s] to 20 [s].
From the simulation results, we can see that the direct
adaptive control is robust to reasonable input disturbances,
and the smaller integral parameter gains give a better
performance when the reference model changes over.

2) VSA control — algorithm 1: Figure 8 shows the
simulation results under input disturbances. From Fig. 8 ii),
we see that the input chattering becomes worse than the
ideal case (Fig. 3).

3) VSA control — algorithm 2: For the different Q̄s, the
simulation results are shown in Fig. 9 under same input
disturbances as in the direct adaptive control.

4) VSA Control — Algorithm 3: Figure 10 shows the
simulation results under input disturbances. From Fig. 10,
we see that the large G1 increases the robustness of the
control system to the external input disturbances.

5) Combined direct adaptive and VSA control: Figure
11 shows the simulation results for three groups of
parameters of Ps and G1 under input disturbances. The
results show that when Ps =4I33 3 and G1 = 2I33 3 lead to the
better performance.

We stimulate various external disturbances to compare
the robustness properties of the five kinds of adaptive
control laws used. The VSA control algorithm 3 has the best
robustness, while the combined adaptive control gives good
performance for both transient and steady state tracking
performances. Increasing G1 can further increase the
robustness for the VSA control, but the steady state
performance becomes worse.

6.3 Unmodelled Dynamics
Robot arm equations of motion are generally derived
assuming rigid links and neglecting actuator dynamics and
other flexibility effects, and most control laws are designed
based on such models. However, in practice, the input to a
manipulator driven by DC servo motors is the vector of
armature voltages of the joint actuators, and the dynamic
model from the armature voltages to the joint positions is at
least third order. Although the adaptive control approach
based on the third order dynamics has been proposed20,
generally, the controller will become more complicated.
Hence, we need to consider the robustness of control
methods due to perturbations from unmodelled dynamics.
The dynamic model is described by the equations

D(q)q̈ + C(q, q̇)q̇+G(q)=Z(t); hŻ(t)=2Z(t)+U(t)
(84)

where U(t)[ Rn are the voltage control inputs and Z(t)[ Rn

are the motor states20. In the following simulations the robot
dynamics (84) is used.

1) Direct adaptive control: Figure 12 shows the
simulation results for adaptive control under unmodelled
dynamics, with h=0.1 I23 2, h = 0.15I23 2, and h = 0.21I2x2.
For the small unmodelled dynamic coefficient, h, the direct
adaptive control gives an acceptable performance. But the
performance deteriorates significantly with increasing h.

2) VSA control algorithm 1: For the same unmodelled
dynamics effects, the simulation results are shown in Fig. 13
using VSA control algorithm 1. The simulation results show
that this control algorithm has a weak robustness to the
unmodelled effects.

3) VSA control algorithm 2: Figure 14 shows the
simulation results using VSA control algorithm 2 under the
same unmodelled effects. This control algorithm provides
better robustness than direct adaptive control and VSA
control algorithm 1. But information on Q̄s is required.

4) VSA control algorithm 3: Figure 15 shows the
simulation results using VSA control algorithm 3 under the
same unmodelled dynamics. This control algorithm has the
best robustness properties compared to the previous algo-
rithms. But tracking performance is not acceptable, due to
the large tracking errors.

5) Combined direct adaptive and VSA control: For the
same unmodelled dynamics effects, the simulation results
are shown in Fig. 16 using the combined adaptive control
algorithm.

Comparing all the simulation results under the same
unmodelled dynamics effects, the combined adaptive con-
trol algorithm provides the best performance. The direct
adaptive control becomes unacceptable when h>0.15I23 2

and the control inputs are larger than those of the combined
adaptive control. The VSA control algorithm 1 shows the
worst robustness to the unmodelled dynamics.

7 CONCLUSIONS
First, the direct and indirect adaptive control methods are
briefly reviewed. Then, the combined direct and indirect
adaptive control method is presented. The control system-
makes both the tracking (output) error and the prediction
(input) error converge to zero. The computational efficient
identifying algorithm of the indirect parameter estimation
law is proposed. The method has been further extended to
the position/force control24.

After that, three types of variable structure adaptive
(VSA) control algorithms are proposed. The methods have
the form of the variable structure controller discussed in
Spong12 and Yu13, but the switching gains are adjusted based
on the gradient rule which can avoid the high gain control
issue12, 13. The robustness to other uncertainties (except
parameter uncertainty) is discussed and a modified scheme
to overcome these uncertainties is proposed.

Finally, a new adaptive control scheme combining direct
adaptive control and variable structure adaptive control for
non-linear robot manipulators is presented. The method can
be also extended to design combined direct, indirect and
variable structure adaptive controllers. The combined adap-
tive control improves both the transient and robust

Adaptive control of robot manipulators 649

https://doi.org/10.1017/S0263574798000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000563


properties for the robot system compared with adaptive
control, and reduce the chattering compared with variable
structure control. The various methods are tested and
compared using extensive computer simulations.
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