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Drainage and spreading processes in thin liquid films have received considerable attention
in the past decades. Yet, our understanding of three-dimensional cases remains sparse,
with only a few studies focusing on flat and axisymmetric substrates. Here, we exploit
differential geometry to understand the drainage and spreading of thin films on curved
substrates, under the assumption of negligible surface tension and hydrostatic gravity
effects. We develop a solution for the drainage on a local maximum of a generic substrate.
We then investigate the role of geometry in defining the spatial thickness distribution via
an asymptotic expansion in the vicinity of the maximum. Spheroids with a much larger
(respectively smaller) height than the equatorial radius are characterized by an increasing
(respectively decreasing) coating thickness when moving away from the pole. These
thickness variations result from a competition between the variations of the substrate’s
slope and mean curvature. The coating of a torus presents larger thicknesses and a faster
spreading on the inner region than on the outer region, owing to the different curvatures in
these two regions. In the case of an ellipsoid with three different axes, spatial modulations
in the drainage solution are observed as a consequence of a faster drainage along the
short principal axis, faithfully reproduced by a three-dimensional asymptotic solution.
Leveraging the conservation of mass, an analytical solution for the average spreading front
is obtained. The solutions are in agreement with numerical simulations and experimental
measurements obtained from the coating of a curing polymer on diverse substrates.
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1. Introduction

Coating flows are found in many environmental, chemical and engineering processes
(Weinstein & Ruschak 2004), such as spin coating (Scriven 1988; Schwartz & Roy
2004) and dip coating (Landau & Levich 1942). Additionally, coating assisted fabrication
methodologies recently showed potential in the fabrication of curved spherical shells
(Lee et al. 2016) and inflatable soft tentacles (Jones et al. 2021). The plethora of
observed coating patterns motivated a great deal of studies aimed at understanding the
underlying physical mechanisms (Weinstein & Ruschak 2004). Typical examples include
inertia-driven Kapitza waves (Kapitza 1948; Kapitza & Kapitza 1965), Marangoni effects
due to gradients in surface tension (Oron 2000; Hosoi & Bush 2001; Scheid 2013; Xue,
Pack & Stone 2020) and the formation of drops (Rayleigh 1882; Taylor 1950; Fermigier
et al. 1992; Chandrasekhar 2013; Jambon-Puillet et al. 2021) and rivulets (Lerisson et al.
2019, 2020; Ledda et al. 2020; Ledda & Gallaire 2021) below horizontal and inclined
substrates. Such formation of elongated structures along the streamwise direction is also
typical of contact-line-driven instabilities, often called fingering, and occurs when a fluid
spreads on a dry substrate (Oron, Davis & Bankoff 1997; Kondic 2003; Weinstein &
Ruschak 2004; Craster & Matar 2009). Such patterns are identified as the physical origin
for several geological structures such as stalactites (Short et al. 2005; Camporeale &
Ridolfi 2012) and flutings in limestone caves (Camporeale 2015; Bertagni & Camporeale
2017; Ledda et al. 2021) and due to solidification and melting of water (Camporeale 2015),
while physical or chemical erosion leads to scallops (Meakin & Jamtveit 2010) or linear
karren (Bertagni & Camporeale 2021) patterns. Gravity currents, widely encountered in
environmental fluid dynamics, are flows driven by gravity differences typically imputed to
the presence of one phase heavier than the other which spreads on a substrate. Examples
typically involve complex rheologies (Balmforth et al. 2000; Balmforth, Craster & Sassi
2002; Balmforth et al. 2006) and include oil spreading on the sea (Hoult 1972), lava
(Balmforth et al. 2000) and pyroclastic flows due to a volcano eruption, dust storms,
avalanches (Simpson 1982; Huppert 1986; Balmforth & Kerswell 2005; Huppert 2006),
slurry and sheet flows (Ancey 2007).

The analysis of spreading of currents requires the knowledge of the position, velocity
and thickness of the advancing front. If the inertia of the flow is negligible, the dominant
balance to describe the viscous gravity current is given by viscosity and buoyancy. With
the aim of comparing their results with those of Keulegan (1957), Huppert & Simpson
(1980) investigated the two-dimensional viscous gravity current on a horizontal substrate,
driven by hydrostatic gravity effects. By combining a lubrication approximation with the
volume conservation, the authors determined a self-similar solution for the thickness and
spreading front, recovering the result of Smith (1969) in the case of the release of an initial
amount of fluid. The general problem for different initial and boundary conditions, such
as continuous feeding (Didden & Maxworthy 1982; Huppert 1982b), was investigated by
Gratton & Minotti (1990) via a phase-plane formalism. When the substrate is inclined,
a gravity component parallel to the substrate is introduced, which often dominates the
dynamics. Huppert (1982a) highlighted that the lubrication solution at the leading order
presents a discontinuity at the front, as long as surface tension and hydrostatic pressure
gradients along the film are neglected. The thickness distribution far from the front is
recovered by only considering the drainage along the in-plane directions of the substrate,
so-called drainage solution (Huppert 1982a). For the inclined plane case, the thickness
solution far from the front reads h ∝ x1/2t−1/2 and is formally analogous to the result of
Jeffreys (1930). The mathematical derivation may be more involved when the substrate is
curved, e.g. in the case of the release of an initial volume of fluid on the outer side of a cone
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Figure 1. Different coated substrates considered in this work: (a) spheroid, (b) torus, (c) ellipsoid.

(Acheson 1990), a cylinder or a sphere (Takagi & Huppert 2010; Lee et al. 2016; Balestra
et al. 2019) or in the inside of a downward-pointing cone or a sphere (Lin, Dijksman &
Kondic 2021; Xue & Stone 2021).

From now on, we focus on the diverging spreading on a curved substrate away from
the pole, while gravity points downwards (Takagi & Huppert 2010; Lee et al. 2016;
Balestra et al. 2019), see figure 1. In this case, the drainage solution fairly reproduces
the experimental observations since the hydrostatic pressure gradient due to the gravity
component orthogonal to the substrate does not induce any instability of the thin film free
surface. Takagi & Huppert (2010) studied the drainage and spreading on a cylinder and a
sphere, in the vicinity of the pole. The drainage thickness scales as h ∼ t−1/2 both for the
cylinder and the sphere. More refined drainage solutions were obtained by Balestra et al.
(2019) and Lee et al. (2016) for the cylinder and the sphere, respectively. In both cases,
an increase of the thickness moving from the pole to the equator is observed. However, as
highlighted by the numerical simulations of Duruk, Boujo & Sellier (2021), the coating
of an oblate spheroid with ratio between height and equatorial radius of 0.5 shows a
decreasing thickness moving from the pole to the equator.

The latter example shows the effect of the substrate geometry in the resulting thickness
distribution which stems from drainage induced by gravity. We therefore aim at exploring
the role of the substrate in this process, which still needs to be systematically studied,
even in the simple case of axisymmetric substrates. When the symmetry of the substrate
is broken, spatial non-uniformities may also modify the picture previously described and
require further investigation. Despite the abundance of studies on spreading in different
conditions, the problem of three-dimensional drainage and spreading has been the object
of limited studies on flat substrates (Lister 1992; Xue & Stone 2020), to the best of our
knowledge. The role of the substrate in inducing three-dimensional drainage still needs to
be assessed.

A lubrication model for generic substrates was developed in Roy, Roberts & Simpson
(2002) and Howell (2003) by considering a generic orthogonal local coordinate system.
The same result was obtained by Thiffeault & Kamhawi (2006) via classical differential
geometry where the equations are written in the natural, local (general) coordinates system,
not necessarily orthogonal. General coordinates define a local coordinate system, with the
advantage of deriving general equations that can be used for any geometry and without the
need of defining principal directions. The literature about the topic is extremely vast; for
our purposes, the essential tools can be found in Deserno (2004) and Irgens (2019).

The lubrication equation in general coordinates offers the yet unexplored opportunity
to systematically study the three-dimensional drainage and spreading on complex
substrates through analytical solutions. In this work, we develop analytical solutions and
approximations for the drainage and spreading problem on several substrates, with the aim
of identifying relevant features of coatings on curved substrates. In the spirit of Huppert
(1982a), we consider the case in which the tangential gravity components dominate the
film thickness dynamics and we neglect the hydrostatic pressure and surface tension
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effects, keeping only the leading-order terms given by the drainage gravity components.
This approach is suitable to obtain simple analytical expressions to shed light on the
leading effect of the substrate on the thickness distribution. The paper is organized as
follows. In § 2, we introduce the coating problem of a generic substrate and the differential
geometry tools necessary to understand the flow configuration. We then obtain a general
solution in the vicinity of a local maximum of a diverging substrate. The following
sections focus on how geometry influences the drainage around local maxima using the
geometries reported in figure 1. Section 3 is devoted to the study of the drainage and
spreading on a spheroid, where we show that, depending on the aspect ratio, the film can
either get thicker or thinner as we move away from the pole. Subsequently, § 4 studies the
problem of non-symmetric drainage and spreading on a torus. We conclude by studying
the spatially non-uniform drainage and spreading solution on ellipsoids, in § 5. Eventually,
the analytical and numerical results are compared with experimental measurements.

2. The coating problem of a generic substrate

2.1. Problem definition and metric terms in general coordinates
In this section, we introduce the essential differential geometry tools to solve the problem
of the coating on a generic substrate. For a complete description of differential geometry
and general coordinates, we refer to Deserno (2004). The derivation of the lubrication
equation for generic curved substrates can be found in Roy et al. (2002), Thiffeault &
Kamhawi (2006) and Wray, Papageorgiou & Matar (2017). The geometry is sketched in
figure 2. We consider a generic substrate h0, on which lies a fluid film of thickness h, and
introduce a Cartesian reference frame (x, y, z). The substrate is identified by the position
vector X (x{1}, x{2}), where (x{1}, x{2}) denote the local coordinates used to parameterize the
surface (e.g. the zenith and the azimuth for spherical coordinates, the radial coordinate and
the azimuth for a cone). The flow equations are solved in the local and natural reference
frame of the substrate. We introduce the local coordinate vectors parallel to the substrate
ei = ∂iX , i = 1, 2 (not necessarily orthonormal), and the normal coordinate vector e3 =
e1 × e2/|e1 × e2|. From the knowledge of the local coordinate vectors, we introduce the
2 × 2 symmetric metric tensor components Gij and the square root of the determinant
of the metric on the substrate w, which is related to the area element on the surface dA
through dA = w dx{1} dx{2}

Gij = ei · ej = Gji, w = (det Gij)
1/2. (2.1a,b)

The metric tensor defines the generic line element ds as ds2 = G11(dx{1})2 +
2G12 dx{1} dx{2} + G22(dx{2})2. Therefore, the dimensions of each component depend on
the considered parameterization (x{1}, x{2}), so that each part that composes ds2 has the
dimensions of the square of a length. We also introduce the second fundamental form
and the curvature tensor, which respectively read, following Einstein’s notation for the
summation

Sij = ∂iej · e3, K {j}
i = SikG{kj}, (2.2a,b)

where G{ij} are the inverse metric tensor components, i.e. G{ij} = G−1
ij . The mean K and the

Gaussian G curvatures read K = tr K and G = det K , respectively. A generic vector f can
be written in terms of its covariant and contravariant base, i.e. f = f {i}ei = fie{i}, where
e{i} is the covector defined as e{i} · ej = δij. The two contravariant components, parallel
to the substrate, of the gravity vector read g{i}

t = g · e{i}, while the normal one reads
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Figure 2. Sketch of the coordinate systems employed in this analysis. A global Cartesian reference frame
(x, y, z) is considered. At each point, the position of the substrate is identified by the vector X , which depends
on the chosen parameterization (x{1}, x{2}) of the substrate. The derivatives of the position vector identify the
local reference frame on the substrate, on which the lubrication equation is solved.

g3 = g · e3. The gradient of a scalar function f and the divergence of a generic vector
f = f {i}ei respectively read (Irgens 2019)

∇f = ∂if G{ij}ej = ∂{i}f ej, ∇ · f = w−1∂i(wf {i}). (2.3a,b)

The above-defined quantities and differential operators are enough to describe the coating
problem on a generic substrate, introduced in the following section.

2.2. Lubrication equation and drainage solution
We consider a thin viscous film, flowing on a substrate h0, of thickness h measured along
the direction perpendicular to the substrate itself. The constant fluid properties are the
density ρ, viscosity μ and the surface tension coefficient γ . In the absence of inertia, the
lubrication model for a generic curved substrate was first derived by Roy et al. (2002) via
central manifold theory. We non-dimensionalize the thickness with hi and the tangential
directions with R, i.e. a characteristic film thickness (e.g. the initial one, if uniform) and
a relevant length of the substrate (e.g. its equatorial radius), respectively. We introduce
the drainage time scale τ = μR/(ρgh2

i ). Upon non-dimensionalization, the equation in
coordinate-free form reads (Roy et al. 2002; Howell 2003; Roberts & Li 2006; Thiffeault
& Kamhawi 2006)

(1 − δKh + δ2Gh2)
∂h
∂t

+ 1
3Bo

∇ ·
[

h3
(

∇κ̃ − δ

2
h(2KI − K) · ∇K

)]
+ 1

3
∇ ·

[
h3

(
gt − δh

(
KI + 1

2
K

)
· gt + δg3∇h

)]
= 0, (2.4)

where κ̃ = K + δ(K2 − 2G)h + δ∇2h is the free-surface curvature, Bo = (ρgR2)/γ is
the Bond number, δ = hi/R is the aspect ratio of the thin film and gt and g3 identify
the gravity vector components tangent and normal to the substrate, respectively. The
terms in the first and second brackets represent the flux induced by capillary and gravity
effects, respectively. Capillary flow is induced, at leading order, by variations of the mean
curvature of the substrate K and leads to film thinning and thickening in the neighbourhood
of local maximum and minimum values of the curvature (Roy et al. 2002). Corrections at
order O(δ) introduce (i) free-surface curvature variations and (ii) higher-order terms of
the substrate curvature. Gravity-induced fluxes are instead related, at leading order, by the
gravity components tangential to the substrate gt. Corrections at O(δ) introduce hydrostatic
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pressure gradients along the thin film. This equation can be written in compact form as
follows:

(1 − δKh + δ2Gh2)
∂h
∂t

+ 1
3
∇ · q = 0, (2.5)

so-called conservation form, where q = q{1}e1 + q{2}e2 is the flux. The so-called drainage
problem relies on two assumptions. The Bond number is assumed to be very large, i.e.
R2/�2

c � 1, where �c = √
γ /(ρg) is the capillary length. After this first assumption,

the problem accounts only for gravity effects resulting from drainage and hydrostatic
pressure gradients. The latter terms are important when the aspect ratio δ = hi/R is not
negligible, i.e. for a thick film on a large substrate (compared with the capillary length)
with small radius of curvature (compared with the film thickness). A limit case occurs
when the substrate is locally flat. The leading-order solution is given by the hydrostatic
pressure terms, since drainage is absent. A case in which both capillary and hydrostatic
effects cannot be neglected occurs instead when the radius of curvature of the substrate is
comparable to the film thickness, i.e. regions of extremely large curvature such as the tip
of a cone. In the following, we restrict ourselves to the situation in which the film is very
thin and the substrate does not present regions of extremely large curvature. Therefore,
also δ � 1 is considered and the drainage problem reads

∂h
∂t

+ 1
3
∇ · [h3gt] = 0. (2.6)

In this case, the flux per unit length is defined as q = q{1}e1 + q{2}e2 = h3g{1}
t e1 +

h3g{2}
t e2. The solution of the drainage problem requires only the knowledge of w and the

tangential gravity vector components g{i}
t .

The numerical implementation of the lubrication equation (2.4) is performed in
the finite-element solver COMSOL Multiphysics, in which the lubrication equation is
implemented in its conservation form (2.5). Quadratic Lagrangian elements are exploited
for the numerical discretization, while the time marching is performed with the built-in
backward differentiation formula (BDF) solver. In the case of (2.4), we solve for the
variables (h, κ̃). We refer to the corresponding sections for more detail about the boundary
conditions for the different substrates.

The validation procedure consists of a first mesh size validation. We thus verify
the faithfulness of the employed parameterization X (x{1}, x{2}) by a comparison with
the parameterization X = (x, y, h0(x, y)), so-called Monge parameterization (Thiffeault
& Kamhawi 2006; Mayo et al. 2015), reported in the electronic supplementary
material (ESM available at https://doi.org/10.1017/jfm.2022.758) together with the other
parameterizations employed in this work. We also verify the non-dimensionalization by
solving the dimensional version of (2.4) and comparing the solution for each substrate
with the non-dimensional model. To illustrate and complement the theoretical results, we
finally compare in § 6 the drainage problem results with experiments performed following
the procedure outlined in Lee et al. (2016) and Jones et al. (2021), for diverse substrates.

2.3. Asymptotic theory – general expression for the thickness at a local maximum
The employed substrate-free expression of the lubrication equation is suitable for
analytical results. In this section, we develop a general expression for the thickness at a
local maximum of the substrate. In the vicinity of the local maximum, the smooth substrate
is described through a Monge parameterization of the substrate, i.e. (x{1} = x, x{2} = y),
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see the ESM for further detail. The generic substrate position vector in the vicinity of
the maximum reads X = (x, y, h0(x, y)). The square root of the determinant of the metric
tensor w and the tangential gravity components respectively read

w =
√

1 + (
∂xh0

)2 + (
∂yh0

)2
, g{1}

t = −∂xh0

w2 , g{2}
t = −∂yh0

w2 . (2.7a–c)

We expand the drainage solution in the vicinity of the maximum identified by the point
x = (x, y) = 0 by employing an asymptotic expansion in the spatial variables, i.e.

h(x, y, t) = H0(t) + H11(t)x + H12(t)y + . . . . (2.8)

Upon substitution of the decomposition (2.8) in (2.6), the O(1) problem for H0(t) reads

H′
0

H3
0

= (∂xxh0(1 + (
∂yh0)2

) − 2∂xh0∂xyh0∂yh0 + ∂yyh0(
(
∂xh0)2 + 1))

3((∂yh0)2 + (∂xh0)2 + 1)2

∣∣∣∣∣
x=0

= −
(

1
3

(g · e3)K
)∣∣∣∣

x=0
, (2.9)

with the initial condition H0(0) = 1 in the case of a unitary initial thickness. At the
maximum location, ∂xh0 = ∂yh0 = 0, i.e. the normal vector and gravity are aligned.
Therefore, the quantity (1

3 (g · e3)K)|x=0 simplifies to ∂xxh0 + ∂yyh0 = −Kp, where Kp is
the opposite of the mean curvature at the maximum. The resulting problem and associated
solution read

H′
0(t)

H0(t)3 = −1
3
Kp → H0(t) = 1√

2Kpt
3

+ 1

. (2.10)

A general expression for the drainage in the vicinity of a local maximum is obtained.
Note that the mean curvature at the local maximum is negative, and thus Kp > 0. The
thickness at a local maximum depends on the mean curvature. From a geometrical point
of view, the mean curvature represents variations of the tangential vectors along the
surface. Since the normal to the surface and the gravity vector are aligned, the mean
curvature determines the evolution of the tangential components of the gravity field, in
the vicinity of the local maximum. In particular, an increase of Kp implies larger values
of gravity in the tangent plane of the substrate moving away from the pole and thus a
faster drainage and a lower thickness, and vice versa. This solution allows one to identify
the limits of the considered drainage model. If Kp = 0, i.e. a locally flat substrate, there
is no drainage and, therefore, the thickness is constant and equal to H0 = 1. In this case,
hydrostatic effects cannot be neglected since they are the leading-order effect and lead to
a time-dependent drainage (Huppert & Simpson 1980). Therefore, the drainage model
is not suitable to describe locally flat substrates. A second limiting case occurs when
Kp → ∞, i.e. the radius of curvature in the vicinity of the local maximum tends to
zero. A classical example is the tip of a cone, parameterized with the radius x{1} = r and
the azimuth x{2} = ϕ. In this case, an exact solution h ∝ √

r is obtained (see the ESM),
which presents a zero thickness at the pole, in accordance with solution (2.10), which
tends to zero as Kp → ∞. In that case, hydrostatic and capillary effects are crucial to
define the thickness distribution in the vicinity of the tip. Another important limitation
comes from the considered geometry. When the fluid is located below the substrate, the
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solution is formally analogous to (2.10), and predicts a progressive thinning. However,
it is well known, in these situations, that hydrostatic pressure gradients and capillary
effects play a key role since the Rayleigh–Taylor instability can occur (Balestra, Nguyen
& Gallaire 2018b). In the case of converging geometries with a local minimum, the
solution is formally analogous, but with Kp < 0. In this case, the thickness progressively
increases and tends to infinity for t = −3/(2Kp) > 0, long after hydrostatic and capillary
effects should have been considered. These combined effects contribute indeed to the
Rayleigh–Taylor instability when the fluid lies below the substrate and for a levelling and
flattening of the interface when it lies above.

Turning back to the situation where Kp > 0 and remains finite, one can take the limit
for t � 1 of solution (2.10), leading to

H0(t) = 1√
2Kpt

3

+ O
(

1
t3/2

)
, (2.11)

i.e. the solution is independent of the initial condition. This result is in agreement with the
analysis in Lee et al. (2016), where the authors theoretically and experimentally showed
an insensitivity of the film thickness with respect to the initial conditions.

In the following, we investigate the spatial evolution of the thin film thickness when
moving away from the pole. We initially consider the case of an axisymmetric substrate,
the spheroid.

3. Drainage and spreading on axisymmetric substrates: coating of a spheroid

3.1. Drainage problem
In this section, we consider the drainage of a thin film flowing on an spheroidal substrate
of equatorial radius R (i.e. a = b = 1) and height cR. We non-dimensionalize the in-plane
directions and substrate variables with the equatorial radius R. We parameterize the
spheroidal surface via the zenith (or colatitude) x{1} = ϑ and the azimuth x{2} = ϕ

X (ϑ, ϕ) = (sin ϑ cos ϕ, sin ϑ sin ϕ, c cos ϑ). (3.1)

A complete description of the metric and curvature tensors is reported in the ESM. The
gravity term g{1}

t and w are

g{1}
t (ϑ) = c sin(ϑ)

c2 sin2(ϑ) + cos2(ϑ)
, w(ϑ) = 1√

2
sin(ϑ)

√
(1 − c2) cos(2ϑ) + 1 + c2,

(3.2a,b)
while g{2}

t = 0. In the case c = 1, we recover the evolution equation for the spherical case,
reported in the ESM. Following the previous section, we consider as initial condition a
constant thickness on the substrate, i.e. h(ϑ, 0) = 1. The problem is solved through an
asymptotic expansion in the vicinity of the pole. We expand the solution at different orders
in ϑ

h(ϑ, t) = H0(t) + ϑ2H2(t) + ϑ4H4(t) + ϑ6H6(t) + . . . . (3.3)

We introduce this ansatz and expand in powers of ϑ . At each order O(ϑn), one obtains an
ordinary differential equation for Hn. The problem at orders O(1) and O(ϑ2) together with
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their solution read

2
3

cH3
0 + H′

0 = 0, H0(0) = 1 → H0 =
(

4ct
3

+ 1
)−1/2

, (3.4a,b)(
2c
3

− c3
)

H3
0 + 4cH2

0H2 + H′
2 = 0, H2(0) = 0,

→ H2 = (3c2 − 2)(64
√

3c3t3 + 144
√

3c2t2 + 108
√

3ct + 27(
√

3 − √
4ct + 3))

10(4ct + 3)7/2 .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.5)

Applying the same procedure at orders O(ϑ4) and O(ϑ6), the solution up to O(ϑ6) and at
leading order for t � 1, reads (see Appendix A for further detail)

h(ϑ, t) =
√

3
4t

1√
c

(
1 + 1

10

(
3c2 − 2

)
ϑ2 −

(
336c4 − 408c2 + 31

)
ϑ4

4800

+
(
58 464c6 − 115 368c4 + 62 667c2 − 4576

)
ϑ6

1 584 000

)
+ O(ϑ8) + O

(
1

t3/2

)
.

(3.6)

Note that the O(1) large-time solution is formally analogous to (2.10) with Kp = 2c, i.e.
the opposite of the mean curvature at the pole.

We perform numerical simulations of (2.6), in the region 0 < ϑ < π/2. Owing to the
hyperbolic nature of the equation, no boundary conditions are necessary at ϑ = 0 and ϑ =
π/2, and thus we impose only the initial condition h(ϑ, 0) = 1. Numerical convergence
is achieved with the characteristic element size �ϑ = 1◦. Figure 3 shows a comparison
of the numerical solution of (2.6) at t = 100 with the analytical ones at orders O(ϑ2)

(solid lines) and O(ϑ6) (dashed lines), which shows an overall agreement. The solution
at order O(ϑ6) gives a better agreement with the numerics in a larger range of ϑ . For
c > 1.2, the numerical and analytical solutions start to deviate for ϑ > 60◦. The agreement
with the solution at second order is good in most cases for ϑ < 60◦. The second-order
term in (3.6) vanishes when c∗ = √

2/3 ≈ 0.81. Under these conditions, the solution at
O(ϑ2) is constant along the zenith. The approximation at order O(ϑ6) does not admit a
constant solution. However, the minimum variation of its integral in the region 0 < ϑ <

π/2, with respect to the constant value given by employing H0(t), is obtained for c ≈ 0.74.
Independently of the considered order of the solution, for very small (respectively very
large) values of c the thickness decreases (respectively increases) when moving away from
the pole. Moreover, for c < c∗, the numerical solution and the analytical one at order
O(ϑ6) present a non-monotonic behaviour, as shown in figure 3 for c = 0.4, 0.6, with
an initial decrease followed by a slight increase for ϑ > 70◦. The solutions for c > c∗
monotonically increase.

The leading-order large-time analytical solution presents a temporal decay h ∼ t−1/2.
The spherical case is recovered by imposing c = 1 (Couder et al. 2005; Lee et al. 2016;
Qin, Xia & Gao 2021). The large-time solution is independent of the initial thickness hi. It
is interesting to note the good agreement between the analytical and numerical solutions
for c < 1.2 and ϑ > 1, which is out of the expected range of validity of the asymptotic
expansion. The relative size of the terms in the asymptotic expansion decreases as higher
orders are considered, thus suggesting that the power series expansion may converge to the
exact solution in the considered range of ϑ .
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Figure 3. (a) Sketch of the spheroidal substrate with varying c. (b) Comparison of the numerical solution
at t = 100 of (2.6) (coloured dots) with the analytical ones at order O(ϑ2) (solid lines) and O(ϑ6) (dashed
lines). Different colours identify different values of c: c = 0.4 (blue), c = 0.6 (orange), c = 0.8 (yellow), c = 1
(purple), c = 1.2 (green), c = 1.4 (cyan).

A decrease of c implies a reduction of the gravity component parallel to the substrate
and thus a reduction of the pole thickness, for a given time horizon. The film thinning
or thickening moving downstream of the pole is also related to the considered geometry,
as the consequence of two competing effects, already shown close to the pole (§ 2.3),
where the thickness evolution depends on the normal gravity component multiplied by
the local mean curvature (g · e3)K. While at the pole gravity is aligned with the substrate
normal, i.e. g · e3 = 1, as we move away the normal gravity component g · e3 decreases
with the zenith owing to the slope increase of the substrate, leading to a first inhomogeneity
mechanism. Moving away from the pole, this slope increase leads to a slower decrease of
the thickness with time. This explains why, in the case of constant curvature, e.g. spheres
or cylinders, the thickness increases moving toward the equator, in agreement with the
results of Lee et al. (2016) and Balestra et al. (2018a). The second mechanism at hand is
the evolution of the curvature K along the zenith direction. Curvature variations induce an
accumulation of fluid in regions of lower curvature, characterized by a slower decrease of
the thickness with time. Spheroids with small height are characterized by a mean curvature
that increases away from the pole, and vice versa for spheroids of large height. The former
are thus likely to present a decreasing thickness moving downstream, and vice versa, as
observed in figure 3. As a result, the thickness distribution is a result of the competition
between variations of slope and mean curvature, which may induce thinning or thickening
of the fluid layer.

Therefore, the transition does not occur when the mean curvature is constant (i.e. c = 1),
but when there is a balance between the thickness variations due to the change in mean
curvature and those induced by slope variations. This value can be obtained by considering
the quantity on the right-hand side of (2.9), i.e. (g · e3)K, which, in the vicinity of the pole,
reads

(g · e3)K ≈ −(2c − c(3c2 − 2)ϑ2 + O(ϑ4)), (3.7)

which is constant for c = c∗, i.e. the value that causes the O(ϑ2) contribution to vanish.
Note that the same transition value can be obtained by evaluating how the quantity
(1/w)∂1(wg{1}

t ) perturbs the O(1) solution. The non-monotonic behaviours at large ϑ for
c < c∗ are related to higher-order terms.
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3.2. Spreading problem
Typical coating applications involve the spreading of an initial volume of fluid located
close to the top of the considered geometry (Takagi & Huppert 2010). Here, following
previous works (Huppert 1982a), we recover some typical relevant quantities such as the
position and thickness of the spreading front. An initial volume of fluid V is released
on the substrate. We impose the conservation of mass in general coordinates, under the
assumption δ = 0 (Roy et al. 2002):∫ ∫

S
h(x{1}, x{2}, t)w dx{1} dx{2} = V, (3.8)

where V is the initial volume released on the substrate and S is the region of the substrate,
parameterized with (x{1}, x{2}), which contains the fluid and varies with time because
of the moving front. Far from the contact line, the drainage solution h(x{1}, x{2}, t) can
be employed, while capillary effects are relevant only in the close vicinity of the front
(Huppert 1982a). For a fixed substrate geometry, w is known, and thus relation (3.8) is an
implicit equation with the front position as an unknown. A typical assumption to simplify
the analysis is the employment of the large-time drainage solution.

We consider an initial volume of fluid of constant height hi = 1 released at t = 0 in the
region 0 < ϕ < 2π, 0 < ϑ < ϑ0. Owing to the invariance along the azimuthal direction,
the conservation of the initial fluid volume (3.8) reads

∫ ϑF(t)

0
h(ϑ, t)w(ϑ) dϑ =

∫ ϑ0

0
1 w(ϑ) dϑ, (3.9)

where ϑF(t) is the front angle; the analytical expression (3.6) for h(ϑ, t) is employed.
Equation (3.9) is numerically solved in Matlab via the built-in function ‘fsolve’.
Figure 4(a) shows the evolution of the front angle ϑF with time, for different values of
ϑ0 and c. An increase in ϑ0 leads to larger values of ϑF, for fixed time. At small times, an
increase in c leads to larger ϑF; however, at large times, the opposite behaviour is observed.
In figure 4(b) we report the thickness at the front hF = h(ϑF(t), t), which presents slight
variations with c.

We approximate these results by considering an expansion for ϑ � 1, by employing
equation (3.4a,b) for t � 1, and w(ϑ) = ϑ + O(ϑ2). In this case, both the right-hand side
and left-hand side of (3.9) can be analytically integrated and an explicit relation for ϑF is
found, together with an expression of the thickness at the front hF√

3
4t

1√
c

ϑ2
F

2
= ϑ2

0
2

→ ϑF = ϑ0

(
4ct
3

)1/4

, hF =
(

ϑ0

ϑF

)2

. (3.10a,b)

Note that this expression with c = 1 coincides with the solution on a sphere (Takagi &
Huppert 2010). These results, reported in the black dashed line in figure 4(a,b), agree
well with the implicit equation for small values of ϑ . The velocity of the front UF =
dϑF/dt = (c/192)1/4t−3/4 decreases with time. Therefore, the front slows down as moving
downstream toward the equator, for all values of c.

We verify the faithfulness of this approach by comparing it with the numerical results of
the complete model (2.4) with parameters c = 0.6, Bo = 500 and δ = 10−3 (figure 4c). To
simulate the spreading on the substrate, we consider a precursor film of size hpr = 0.005
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Figure 4. Spreading of an initial volume of fluid on a spheroid. (a) Variation of the front angle ϑF with time
and (b) of the thickness at the front hF with ϑF , for different values of c (coloured lines) and ϑ0 (different
clusters of curves). The black dashed lines correspond to the analytical approximation of the relation ϑF(t)
and hF(ϑF), while the stars are the values recovered by a numerical simulation of the complete model with
c = 0.6, Bo = 500, δ = 10−3. (c) Numerical thickness distribution obtained from the complete model with
c = 0.6, Bo = 500, δ = 10−3 as a function of ϑ at different times: t = 20 (blue), t = 40 (orange), t = 60
(yellow), t = 80 (purple), t = 100 (green), t = 120 (cyan), t = 140 (maroon), t = 160 (blue). The black dashed
lines denote the corresponding leading-order large-time drainage solution.

(Troian, Wu & Safran 1989b; Kondic & Diez 2002) with the following initial condition
(Balestra et al. 2019):

h(ϑ, 0) = hi − hpr

2
(1 − tanh (100 (ϑ − ϑ0))) + hpr. (3.11)

Figure 4(c) shows the evolution with time of the film thickness, with ϑ0 = 20◦. In the
vicinity of the front, a capillary ridge connects the film to the precursor one. Far from the
front, the drainage solution approximates well the thin film evolution. In figure 4(a,b), we
report also the position and the values of the maximum thickness at the ridge, with a good
agreement with the analytical approach.

The spreading velocity decreases with time and is proportional to c1/4, in the vicinity of
the pole. As c increases, for fixed ϑF, the tangential gravity component increases while the
area invaded by the fluid does not vary, at leading order (w ≈ ϑ), close to the pole. The
propagation velocity therefore increases since a faster drainage is observed with increasing
c. Nevertheless, at large times, spheroids with smaller c present larger values of ϑF. Close
to the equator, the tangential gravity component is almost vertical and thus the film velocity
is not strongly affected by c. Nevertheless, for fixed equatorial radius, the distance covered
for a small increment dϑF increases with c, at large ϑF, therefore implying a reduction of
the spreading velocity dϑF/dt.

In this section, we described the competition between the substrate’s slope and curvature
in defining the drainage and spreading patterns on an axisymmetric substrate, the spheroid.
In the ESM, we report also the case of a paraboloid, which instead always shows a
decreasing mean curvature and thus an increasing thickness moving away from the pole.
The spheroid analysis was simplified thanks to the absence of odd terms in the asymptotic
expansion in ϑ . To better understand the role of the curvature in modifying the drainage,
we now consider the torus, a substrate in which the symmetry with respect to ϑ is broken.
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4. Non-symmetric drainage and spreading: coating of a torus

4.1. Drainage problem
In this section, we consider the drainage of a thin film flowing on a toroidal substrate of
tube radius R and distance dR between the axis of revolution and the centre of the tube
(see figure 5a). The torus is thus generated by the rotation along the azimuthal direction
of a circular cross-section whose centre is located at a distance d from the axis of rotation.
Non-dimensionalizing the in-plane directions and substrate variables with R, the following
parameterization based on the zenith ϑ and the azimuth ϕ is employed:

X (ϑ, ϕ) = ((d + sin ϑ) cos ϕ, (d + sin ϑ) sin ϕ, cos ϑ). (4.1)

The position along the cylinder, at each azimuthal circular cross-section, is defined through
the zenith ϑ . Two limiting cases are identified; the first one occurs for d → ∞, which leads
to the cylindrical case, reported in the ESM. The second case occurs for d = 1, in which
the points at ϑ = −90◦ are in contact, leading to the so-called horn torus. The gravity
term g{1}

t and w read

g{1}
t (ϑ) = sin(ϑ), w(ϑ) = d + sin(ϑ). (4.2a,b)

The same procedure employed for the drainage solution of the spheroidal case is adopted.
However, in this case we cannot a priori neglect the odd terms in the asymptotic expansion,
i.e. h(ϑ, t) = H0(t) + ϑH1(t) + ϑ2H2(t) . . . . The resulting problems, at different orders in
ϑ , are reported in Appendix B. For the sake of brevity, the large-time solution at O(ϑ4)

reads

h =
√

3
2t

(
19 377ϑ4

176 000d4 − 1409ϑ3

11 000d3 − 7477ϑ4

147 840d2 + 31ϑ2

200d2

+ 91ϑ3

2640d
− ϑ

5d
+ 43ϑ4

10 752
+ ϑ2

16
+ 1

)
+ O(ϑ5) + O

(
1

t3/2

)
. (4.3)

The cylinder thickness distribution is recovered for d → ∞ (Balestra et al. 2018a).
The O(1) solution is analogous to the cylinder case for any value of d. The drainage
problem is numerically solved in the domain −π/2 < ϑ < π/2. Numerical convergence
is achieved with �ϑ = 0.5◦. Figure 5 shows a comparison between the numerical and
large-time analytical solutions of the drainage problem, for different values of d in the
range −π/2 < ϑ < π/2. The distribution is not symmetric with respect to ϑ = 0. In
particular, the thickness is larger for negative values of ϑ , i.e. on the inner side of the
torus, while for ϑ > 0 the thickness is almost constant. These differences are enhanced as
d decreases. The numerical solution compares well with the analytical one at O(ϑ4) while,
at O(ϑ2), the agreement is good only in the vicinity of the top.

At the top (ϑ = 0), K = −1 and therefore the film drains as in the cylinder case,
locally. The different thickness distributions in the two sides of the circular cross-section
of the torus result from the non-symmetric drainage with respect to ϑ . While the slope
is symmetric with respect to ϑ , the mean curvature decreases on the inner part and
decreases on the outer part. Following the discussion of § 3.1, a decreasing (respectively
increasing) curvature induces an increasing (respectively decreasing) thickness. Therefore,
much larger thicknesses are attained on the inner part than on the outer one, where the
thickness slightly decreases, in the vicinity of the top. The slight increase on the outer part
observed at large ϑ is due to the saturation of the mean curvature value, which remains
almost constant, while the substrate’s slope increases. From a quantitative point of view,
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Figure 5. (a) Sketch of the axisymmetric flow configuration for the coating of a torus. (b) Drainage solution
on a torus at t = 300, numerical (coloured dots) and analytical solutions at order O(ϑ2) (solid lines) and O(ϑ4)

(dashed lines), for d = 1.1 (blue), d = 1.25 (orange), d = 1.5 (yellow), d = 2.5 (purple), d = 5 (green).

we consider the product between the normal component of gravity and the mean curvature

(g · e3)K ≈ −
((

− 1
a2 − 1

2

)
ϑ2 + ϑ

a
+ 1

)
, (4.4)

which shows a decrease on the inner part, thus highlighting an accumulation of fluid
downstream, and vice versa. The same result could be obtained by considering how the
flux perturbs the O(1) solution.

4.2. Spreading problem
We now present the results for the spreading of a volume of fluid on a torus. We consider
an initial volume of fluid of thickness h = 1 in the region −ϑ0 < ϑ < ϑ0. The breaking
of symmetry with respect to ϑ = 0 results in two different spreading fronts for ϑ < 0
(inner side) and ϑ > 0 (outer side). However, at ϑ = 0, the drainage gravity component
is exactly zero, i.e. q{1} = h3g{1}

t h3 = 0. Therefore, the total volume on each side of the
torus is conserved since there is no flux at ϑ = 0. Note that, when hydrostatic or capillary
effects are considered, the flux is not exactly zero at the top. A preliminary analysis
showed that appreciable variations of the mass on the two sides (of the order of 2 %)
are observed for Bo = 250 and δ = 0.1, when either pure capillary or pure hydrostatic
effects are considered, in addition to drainage. For larger values of Bo or smaller values of
δ, these differences rapidly decrease. In the limit Bo → ∞ and δ = 0 (i.e. the considered
drainage problem), a zero flux at the top of the torus is numerically observed.

The conservation of mass for the two regions reads∫ ϑO
F (t)

0
h(ϑ, t)w(ϑ) dϑ =

∫ ϑ0

0
w(ϑ) dϑ,

∫ 0

−ϑ I
F(t)

h(ϑ, t)w(ϑ) dϑ =
∫ 0

−ϑ0

w(ϑ) dϑ,

(4.5a,b)

where ϑO
F (t) and ϑ I

F(t) are the front angle on the outer and inner part, respectively,
w(ϑ) = d + sin(ϑ) and h(ϑ, t) is given by (4.3). Note that the two integrals on the
right-hand side do not assume the same value, since w(ϑ) is not symmetric with respect
to ϑ = 0. Equations (4.5a,b) are implicit integrals that are solved in Matlab through the
built-in function ‘fsolve’. A first analytical approximation is found by taking the O(1)
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approximation, leading to

ϑO
F

ϑ0
= ϑ I

F
ϑ0

=
√

2t
3

, (4.6)

i.e. the solution of O(1) does not depend on d and is analogous to the spreading on a
cylinder (Balestra et al. 2018a). The thickness at the front thus reads hF = ϑ0/ϑF. A better
approximation that includes the curvature of the torus can be obtained by considering the
O(ϑ) approximation of the integrand∫ ϑO

F (t)

0

√
3
2t

(
4
5
ϑ + d

)
dϑ =

∫ ϑ0

0
(d + ϑ) dϑ

→
(
ϑO

F

)2 + 5d
2

ϑO
F −

(
5
2
(dϑ0 + ϑ2

0 /2)

)√
2t
3

= 0,

→ ϑO
F (t) = 1

2

⎛⎝−5d
2

+
√

25d2

4
+ 4(dϑ0 + ϑ2

0 /2)
5
2

√
2t
3

⎞⎠ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.7)

∫ 0

−ϑ I
F(t)

√
3
2t

(
4
5
ϑ + d

)
dϑ =

∫ 0

−ϑ0

(d + ϑ) dϑ

→
(
ϑ I

F

)2 − 5d
2

ϑ I
F +

(
5
2
(dϑ0 − ϑ2

0 /2)

)√
2t
3

= 0,

→ ϑ I
F(t) = 1

2

⎛⎝5d
2

−
√

25d2

4
− 4(dϑ0 − ϑ2

0 /2)
5
2

√
2t
3

⎞⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.8)

Figure 6(a,b) shows the behaviours of ϑO
F , ϑ I

F and the front thicknesses hO
F and hI

F on
the inner and outer sides of the torus, respectively, for different values of d and ϑ0. As
concerns panel (a), for a fixed time, the front angle on the inner side is always larger than
the one on the outer side. An increase of d leads to a decrease (respectively increase) of
ϑF on the inner (respectively outer) side. The front thickness does not strongly depend
on d, even if some differences can be appreciated on the inner side, for large values of
ϑO

F . The O(1) approximation gives a reasonable agreement in the prediction of the front
angle and thickness. In particular, it appears to be the lower (respectively upper) limit for
the inner (respectively outer) sides, as d increases. The order O(ϑ) approximations follow
well the implicit relations (4.5a,b). We compare these analytical results with a numerical
simulation of the complete model (2.4) with parameters d = 1.25, Bo = 500, δ = 10−3,
hpr = 0.005, initial condition

h(ϑ, 0) = hi − hpr

2
(1 − tanh(100(ϑ − ϑ0))) + hpr, for ϑ > 0, (4.9)

h(ϑ, 0) = hi − hpr

2
(1 − tanh(100(−ϑ − ϑ0))) + hpr, for ϑ < 0, (4.10)

and ϑ0 = 10◦ (see figure 6c). The agreement between the numerical front angle, given
by the maximum thickness location, and the theoretical one is very good, and also the
maximum thickness well follows the front thickness predicted by the theory.
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Figure 6. Spreading of an initial volume of fluid on a torus. (a) Variation of the front angle ϑF with time
and (b) of the thickness at the front hF with ϑF , for different values of the initial angle ϑ0 and d. The solid
and dot-dashed lines denote the values of ϑF and hF on the outer and inner sides, respectively. The black
and red dashed lines correspond to the O(1) and O(ϑ) analytical approximations of the relation ϑF(t) and
hF(ϑF), respectively, while the stars are the values recovered by a numerical simulation of the complete model
with d = 1.25, Bo = 500, δ = 10−3, precursor film thickness hpr = 0.005. (c) Numerical thickness distribution
obtained from the complete model with d = 1.25, Bo = 500, δ = 10−3 as a function of ϑ at different times: t =
10 (blue), t = 20 (orange), t = 30 (yellow), t = 40 (purple). The black dashed lines denote the corresponding
large-time drainage solutions.

In analogy with the drainage solution, the faster spreading attained on the inner region
is related to the substrate geometry. For a fixed angular distance from the top, the area
covered by the spreading fluid is larger on the outer region than on the inner one. Therefore,
for a fixed time, the fluid spreads faster on the inner region, reaching larger values of ϑF
than on the outer region. Interestingly, the solution at O(1) does not capture the symmetry
breaking, since, at the top, a torus locally coincides with a cylinder. Nevertheless, the O(ϑ)

approximation already captures the asymmetry of the substrate.
The torus case shows non-symmetric drainage and spreading along the zenith direction.

In the following, we present how these analyses can be extended to non-axisymmetric
substrates which are characterized by a three-dimensional, non-uniform along the
azimuthal direction, drainage. We chose as a testing ground an ellipsoid with three
different axes.

5. Three-dimensional drainage and spreading: coating of an ellipsoid

5.1. Numerical drainage solution
In this section, we study the coating of an ellipsoidal substrate of horizontal semiaxes
aR, bR and vertical semiaxis R (see figure 1); gravity is pointing downward. In
non-dimensional form, the following parameterization holds:

X (ϑ, ϕ) = (a sin ϑ cos ϕ, b sin ϑ sin ϕ, cos ϑ). (5.1)

We identify different limiting cases, depending on the values of a and b. If a = b = 1,
we recover the spherical case; if a = b /= 1 the resulting substrate is an axisymmetric
ellipsoid of unitary height and equatorial radius a = b, whose results can be recovered
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from those of § 3.1. Note that the time scale is different since the in-plane directions and
substrate variables are non-dimensionalized with the height and not with the equatorial
radius, in the present section. When a /= b the axisymmetry is broken since the two
axes at the equator are different. In the following, we assume that b � a and consider
the range 0.4 < a, b < 2. Note that the solutions for a > b can be recovered by simply
translating of ϕ = 90◦ the solution for b � a (obtained by swapping the desired values of
a and b).

The metric components vary along the ϕ direction; in particular, the metric tensor is not
diagonal (see the ESM). The local coordinates system defined by the parameterization is
thus non-orthogonal and a second gravity component g{2}

t (ϑ, ϕ), appears. The square root
of the determinant of the metric and the gravity terms now read

w(ϑ, ϕ) =
√

sin4(ϑ)
(
a2 sin2(ϕ) + b2 cos2(ϕ)

) + a2b2 sin2(ϑ) cos2(ϑ), (5.2)

g{1}
t (ϑ, ϕ) = sin(ϑ)

(
a2 sin2(ϕ) + b2 cos2(ϕ)

)
sin2(ϑ)

(
a2 sin2(ϕ) + b2 cos2(ϕ)

) + a2b2 cos2(ϑ)
, (5.3)

g{2}
t (ϑ, ϕ) = sin(ϕ) cos(ϕ)

(
a2 cos(ϑ) − b2 cos(ϑ)

)
a2b2 cos2(ϑ) cos2(ϕ) + a2b2 cos2(ϑ) sin2(ϕ) + a2 sin2(ϑ) sin2(ϕ) + b2 sin2(ϑ) cos2(ϕ)

.

(5.4)

We solve (2.6) by imposing periodic boundary conditions in 0 < ϕ < 2π and the initial
condition h(ϑ, ϕ, 0) = 1. Numerical convergence is achieved with a characteristic mesh
size of 0.9◦. Figures 7 and 8 respectively show the resulting film distributions and a section
at ϑ = π/4 for different values of a and b, at t = 100. We first increase the value of b, with
a = 1. For b = 1.2 (panel (a)), the thickness presents modulations along the azimuthal
direction, with a maximum thickness localized at ϕ = kπ (k = 0, 1, 2), i.e. along the
direction of the smaller axis a. These modulations are enhanced as b increases (panel (b)),
with larger values of the attained thickness. Two regions of low thickness are localized at
ϕ = π/2 + kπ, along the larger axis b. The same trends are observed further increasing
b (panel (c)). When b = 1 and a decreases (panel (d)), the thickness also presents
modulations along the azimuthal direction, but the thickness always increases moving
downstream. The thickness decreases as a decreases. Similar patterns are also obtained
when small values of a and large values of b are considered. The numerical solution
of (2.6) shows the presence of modulations of the thickness along the azimuthal direction.
According to § 3.1, spheroids with small (respectively large) height were characterized by
a decrease (respectively increase) of the thickness. We can extend these considerations to
an ellipsoid by considering the drainage along the principal directions defined by (x, y),
see figure 1(c). Since the drainage component along the azimuthal direction is identically
zero along the two principal semiaxes, the flow locally behaves like the spheroidal case of
§ 3.1. Therefore, we expect to follow these trends along the two semiaxes, depending on
a and b. In the axisymmetric case, the thickness increases downstream for height–radius
ratios larger than 0.74, which corresponds to a, b � 1.35. Therefore, when a, b � 1.35
we always observe an increase of the thickness with ϑ , as observed in figure 9(a–c) (see
also figure 3 for the cases with c > c∗). However, the thickness presents clear modulations
owing to the non-uniform drainage when a /= b. Similarly, when a, b � 1.35 one expects
a decrease of the thickness followed by a slight increase at large ϑ , with modulations if
a /= b, as shown in figure 9(d–g). The intermediate situation occurs when a � 1.35 and
b � 1.35, characterized by an increase of the thickness along the x direction and a decrease
along the y direction, as observed in figure 7(b,c,g).
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Figure 7. Numerical solution of (2.6) at t = 100 as a function of (ϑ, ϕ), for different values of the semiaxes a
and b, with a � 1 and b � 1.
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Figure 9. Numerical solution of (2.6) at t = 100 as a function of (ϑ, ϕ), for different values of the semiaxes a
and b, with a, b < 1 and a, b > 1.

The modulations of the thickness distribution are related to the variation of drainage
with the azimuth. In the vicinity of the minor semiaxis, the tangential gravity component
along the zenith is larger than close to the major semiaxis. Higher velocities are thus
attained along the minor semiaxis, displacing more fluid downstream than along the major
semiaxis. This process induces transport of fluid from progressively farther and farther
regions and thus a secondary flow from the major semiaxis (associated with low velocities)
to the minor semiaxis (associated with large velocities). In the light of this discussion, one
may wonder if these patterns persist with time or merely represent a snapshot of a more
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intricate evolution. In the following, we also aim at clarifying this aspect by deriving an
analytical solution for the drainage problem.

5.2. Analytical drainage solution
In this section, we derive an analytical drainage solution and compare it with the numerical
results of the previous section. In analogy with § 3.1, we perform an asymptotic expansion
in powers of ϑ , with ϑ � 1. The solution at order O(1) does not depend on ϕ since the
solution at the pole has to be unique. We thus consider the following expansion, in which
the odd terms have been removed because of symmetry:

h(ϑ, ϕ, t) = H0(t) + ϑ2H2(ϕ, t) + ϑ4H4(ϕ, t) + ϑ6H6(ϕ, t) + . . . . (5.5)

We expand (2.6) at various orders in ϑ . At order O(1), one obtains the following
ordinary differential equation (ODE):

1
3

(
1
a2 + 1

b2

)
H0(t)3 + H′

0(t) = 0 → H0(t) = 1√
2
3

t
(

1
a2 + 1

b2

)
+ 1

= 1√
αt + 1

,

(5.6)

where α = 2
3(1/a2 + 1/b2). Also in this case, the O(1) solution reduces to (3/(2Kpt))1/2

at late time, with Kp = (1/a2 + 1/b2). The equation at order O(ϑ2) reads

∂H2(ϕ, t)
∂t

=
H0(t)2((b2 − a2) sin(2ϕ)

∂H2

∂ϕ
+ 2H2((a2 − b2) cos(2ϕ) − 2(a2 + b2)))

2a2b2

+
H0(t)3((a4(b2 − 2) − a2b4 + 2b4) cos(2ϕ) + 2(a4(−(b2 − 1))

+a2(b2 − b4) + b4))

6a4b4 , (5.7)

which is a parabolic partial differential equation (PDE) in H2(ϕ, t). We numerically
solve (5.7) with initial condition H2(ϕ, 0) = 0. The periodic boundary conditions at
ϕ = [0, 2π] are automatically imposed thanks to a Fourier spectral collocation method
implemented in Matlab. The time stepping is performed by employing the built-in
function ‘ode23t’, with a tolerance of 10−6. Numerical convergence is achieved with 100
collocation points.

Figure 10(a) shows the spatio-temporal evolution of the second-order solution H2(ϕ, t),
for a = 0.5 and b = 1.5. An initial growth in absolute value until t ≈ 0.3 is followed by
a slow decay at large times. In figure 10(b) we report the H2 profiles rescaled with H0,
at different times in the slow-decay regime. The second-order solution H2 is π-periodic
and the maximum is attained at ϕ = kπ, i.e. along the smaller axis of the ellipsoid.
At ϕ = kπ/2, i.e. along the larger axis of the ellipsoid, the correction reaches much
smaller values. As time increases, the profiles collapse on a single curve, suggesting
that a large-time solution characterized by a separation of variables is possible, i.e.
H2(ϕ, t) = H0(t)H∗

2(ϕ). We introduce this decomposition in (5.7). Exploiting (5.6), the
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Figure 10. Drainage on an ellipsoid with a = 0.5 and b = 1.5. (a) Spatio-temporal evolution of H2:
iso-contours of H2 in the (ϕ, t) plane. (b) Second-order correction H∗

2 = H2/H0 ≈ H2
√

αt as a function of ϕ

at different times: t = 0.4 (blue), t = 1 (orange), t = 5 (yellow), t = 10 (purple) t = 30 (green), t = 50 (cyan),
t = 70 (maroon), t = 90 (black), t = 100 (red). The black stars denote the late-time analytical solution for H∗

2
from (5.9).

temporal dependence disappears and the following ODE for H∗
2(ϕ) is obtained:

− a4b2 cos(2ϕ) + 2a4b2 + 2a4 cos(2ϕ) − 2a4 + a2b4 cos(2ϕ) + 2a2b4

+ 3a2b2(a2 − b2) sin(2ϕ)H∗′
2 (ϕ) − 2a2b2H∗

2(ϕ)(3(a2 − b2) cos(2ϕ) − 5(a2 + b2))

− 2a2b2 − 2b4 cos(2ϕ) − 2b4 = 0, (5.8)

whose solution reads

H∗
2(ϕ) = C1 sin(2ϕ) sin−5(a2+b2)/3(a2−b2)(ϕ) cos5(a2+b2)/3(a2−b2)(ϕ)

− 1
8a2b2(4a2 + b2)(a2 + 4b2)

(a6(7b2 − 4) + 26a4(b4 − b2)

+ a2b4(7b2 − 26) + (a2 − b2)(a4(b2 + 4) + a2b2(b2 + 14) + 4b4)

× cos(2ϕ) − 4b6), (5.9)

where C1 is a constant to be determined. However, it is observed that C1 /= 0 implies an
unbounded behaviour. Therefore, we impose C1 = 0 to prevent non-physical solutions.
The analytical result for H∗

2 is reported in figure 10(b), with an excellent agreement with
the numerical solution. We then investigate the effect of a and b by considering different
cases at t = 100, reported in figure 11. An increase of b for fixed a = 0.5 (panel (a)) leads
to a decrease of H∗

2 in the region ϕ = kπ/2, while an increase in a for fixed b = 1.5 (panel
(b)) shows an overall decrease of H∗

2 . Also for these cases, an excellent agreement with the
analytical solution is observed. At O(ϑ2), the large-time analytical solution can be written
in compact form as

h ≈ H0(t)(1 + ( f (a, b) + g(a, b) cos(2ϕ))ϑ2). (5.10)

The modulations observed in the numerical simulations of the previous section are
captured by the O(ϑ2) term, which is a π-periodic function of the azimuth. These
modulations are present as long as g(a, b) = (a2 − b2)(a4(b2 + 4) + a2b2(b2 + 14) +
4b4) /= 0. The only case in which modulations are absent occurs when g(a, b) = 0 and thus
a = b, i.e. the spheroidal case. In the latter case, the solution reads H∗

2 = 1
10(3/b2 − 2) and

is formally analogous to the second-order solution of the spheroid with c = 1/b (see § 3.1).
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Figure 11. (a) Second-order correction H∗
2 = H2/H0 ≈ H2

√
αt as a function of ϕ at t = 100, for a = 0.5

and increasing b: b = 0.6 (blue), b = 0.8 (orange), b = 1 (yellow), b = 1.2 (purple), b = 1.4 (green), b = 1.6
(cyan), b = 1.8 (maroon), b = 2 (black); (b) H∗

2 as a function of ϕ at t = 100, for b = 1.5 and increasing a:
a = 0.4 (blue), a = 0.6 (orange), a = 0.8 (yellow), a = 1 (purple), a = 1.2 (green), a = 1.4 (cyan). The black
stars denote the late-time analytical solution for H∗

2 from (5.9).
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Figure 12. Comparison at three different azimuthal sections between the numerical (coloured dots) and the
quasi-analytical solution for an ellipsoid at O(ϑ2) (solid lines) and O(ϑ6) (dashed lines) at t = 100, for different
values of a and b.

The faithfulness of the analytical solution is verified against the numerical simulations
of § 5.1 in figure 12. For the comparison, we consider the solution at orders O(ϑ2) and
O(ϑ6). The higher-order problems, together with their solutions H4 and H6, are reported
in Appendix C. The same large-time behaviour is observed. In general, the analytical
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Figure 13. Iso-contours of the numerical solution for the spreading of (2.4), at different times, for an ellipsoid
and Bo = 100, δ = 10−2, precursor film hpr = 0.02 and ϑ0 = 20◦; (a) a = 0.8, b = 1, (b) a = 0.8, b = 1.6,
(c) a = 1, b = 1.6, (d) a = 1.4, b = 1.8.

solutions at O(ϑ6) compare well with the numerical ones, while those at O(ϑ2) are
accurate only in the vicinity of the pole. The analytical solution at O(ϑ6) deviates from
the numerical one for a < 0.8. The agreement for a > 0.8 is satisfactory for any value
of b.

In this section, we derived an analytical approximation for the drainage problem. The
problem was solved by employing an asymptotic expansion in a first stage, followed by a
separation of variables at each order of the expansion. The final structure of the analytical
approximation (5.10) is characterized by a time dependence separated by the spatial one,
similarly to the previous cases. Nevertheless, the power-series expansion presents terms
that depend on the azimuth. The simple form of (5.10) captures well the π-periodicity of
the drainage solution, induced by the differences in drainage along the minor and major
axes. In the spreading problem, these modulations may play a crucial role.

5.3. Spreading problem
In this section, we consider the spreading of an initial volume of fluid of height hi = 1
contained in the region 0 < ϑ < ϑ0, 0 < ϕ < 2π. Figure 13 shows the evolution of the
film thickness with time, for different values of a and b, obtained employing the complete
model (2.4) with initial condition formally analogous to (3.11), i.e. invariant along the
azimuthal direction. For t = 10, the maximum thickness position, at which the front is
located, is modulated along the azimuthal direction. This modulation accentuates with
time and a region of large thickness forms at ϕ = kπ (along the shorter axis) while the
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Figure 14. Iso-contours of the numerical spreading solution at different times of (2.4) for an ellipsoid with
a = 1, b = 1.4, Bo = 1000, δ = 10−2, precursor film hpr = 0.02 and ϑ0 = 10◦. The black solid lines denote
the streamlines of the volume flux per unit length q and the white line the average front ϑ̄F .

thickness is much lower at ϕ = kπ/2. Therefore, the front presents two peaks of large
thickness aligned along the shorter axis. This effect is enhanced when larger (respectively
lower) values of b (respectively a) are considered.

In figure 14, we report a zoom in the region 0 < ϕ < π for one simulation of the
complete model (2.4) with Bo = 1000 and δ = 10−2, together with a three-dimensional
rendering of the spreading on the ellipsoid, viewed from the top. The black lines denote
the streamlines of the flux q = q{1}e1 + q{2}e2. The flux streamlines are almost parallel to
the azimuthal direction at low values of ϑ , then bend and align along the zenith direction as
ϑ increases. An exception to this behaviour is observed at ϕ = 0, π/2, in which the flow
streamlines are always parallel to the zenith direction. The three-dimensional rendering
highlights the formation of two, finger-like, front peaks of large thickness along the shorter
axis, while the fluid slowly spreads along the larger axis.

A scaling law for the spreading front and thickness is obtained by neglecting the
modulations of the front, and assuming a constant average value along the azimuth, i.e.
ϑ̄F = 1/(2π)

∫ 2π

0 ϑF(ϕ, t) dϕ. The conservation of volume reads

∫ 2π

0

∫ ϑ̄F(t)

0
h(ϑ, ϕ, t)w(ϑ) dϑ dϕ =

∫ 2π

0

∫ ϑ0

0
w(ϑ) dϑ dϕ, (5.11)

where h = H0(t) + ϑ2H2(ϕ, t) + ϑ4H4(ϕ, t) + ϑ6H6(ϕ, t) is the asymptotic solution
obtained in the previous section, and w is given by (5.2). Also in this case, an analytical
approximation is found by employing the large-time O(ϑ) approximation (5.6), with
w = abϑ + O(ϑ2), leading to the following expressions for the average front position and
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Figure 15. Spreading of an initial volume of fluid on an ellipsoid. (a) Variation of the average front angle ϑ̄F
with time and (b) of the average thickness at the front h̄F with ϑ̄F , for a = 0.6 (dash-dotted lines), a = 1 (solid
lines) and different values of the initial angle ϑ0 and b. The black dashed lines correspond to the analytical
approximation of the relation ϑ̄F(t) and h̄F(ϑF), while the stars are the values recovered by a numerical
simulation of the complete model with a = 1, b = 1.4, Bo = 1000, δ = 10−2, precursor film hpr = 0.02 and
ϑ0 = 10◦.

thickness:

ϑ̄F = ϑ0

(
2
3

(
1
a2 + 1

b2

)
t
)1/4

, h̄F =
(

ϑ0

ϑ̄F

)2

. (5.12a,b)

The azimuth-averaged numerical solution of (5.11) and the analytical approximation
(5.12a,b) are reported in figure 15, displaying a good agreement for low values of ϑ0 and
large values of a, while the results start to diverge for large ϑ0 and small a.

Figure 16 shows the evolution of the front position and thickness with time, obtained
from a numerical simulation of the complete model with a = 1, b = 1.4, Bo = 1000, δ =
10−2, precursor film hpr = 0.02 and ϑ0 = 10◦. The values of front position and thickness
are averaged and compared with the analytical prediction. The analytical and numerical
simulation results show similar trends. However, at large times, the modulations of the
front are very large and the front travels much faster along the shorter axis than along the
longer one.

The spreading problem on an ellipsoid is characterized by a different front speed along
the azimuthal direction, which leads to an accumulation of fluid and a faster spreading
along the smaller axis. Peaks of large thickness form together with a modulation of the
front, prior to any fingering instability. These modulations are similar to those observed
in the previous section for the drainage solution. As already explained, larger velocities
induce transport of fluid from regions of lower velocity to regions of larger velocity. As a
result, fluid accumulates and forms the observed peaks of large thickness. These velocity
differences lead to a progressively more pronounced bending of the front. Therefore, a
fingering instability analysis necessarily needs to consider the non-uniform spreading of
the fluid along the ellipsoid, which may lead to the preferential formation of fingers. While
this analysis focused on the spreading in the absence of surface tension, further studies may
involve the formation of fingers resulting from the driven contact-line instability.

In this section, we described the drainage and spreading solution for the coating on an
ellipsoid. We obtained an analytical solution that compares well with the numerical one.
We showed the potential of general coordinates and asymptotic expansions to obtain a
two-dimensional analytical solution suitable for a physical interpretation of the drainage
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Figure 16. Maximum thickness (a) position and (b) value recovered from the numerical spreading simulation
with a = 1, b = 1.4, Bo = 1000, δ = 10−2, precursor film hpr = 0.02 and ϑ0 = 10◦. Different colours denote
different times 10 � t � 120, with step size �t = 10. In the insets, we report a comparison between theoretical
(black dashed line) and numerical (red dots) (a) average front position and (b) average front thickness.

and spreading process, in complement to the previous results for axisymmetric geometries.
A large-time solution characterized by the separation of temporal and the two spatial
dependencies was obtained. Modulations of the drainage solution and spreading front were
explained in terms of the different slopes along the principal semiaxes, which induce an
accumulation of fluid along the minor axis.

6. An experimental comparison

Our work focuses on developing analytical and numerical treatments of gravity-driven
coatings on curved substrates. In this section, we compare our predictions with
experiments. Rather than using Newtonian fluids, we use curable elastomers which drain
until they solidify (Lee et al. 2016; Jones et al. 2021). As shown in Lee et al. (2016),
this allows us to easily measure the final film thickness distribution by peeling off the
solidified layer. Moreover, because of the large amount of fluid poured on the surface (20 g,
leading to an initial thickness of ≈2 mm) and since the time required for the elastomer to
solidify (∼10 min) is much longer than the characteristic drainage time (τ ∼ 10 s), the
solidified film thickness becomes insensitive to initial condition and does not depend on
the pouring condition (see Lee et al. 2016). The experimental film thickness is compared
with the late-time drainage solution, here modified to account for the change of viscosity
of the elastomer melt over time (Lee et al. 2016; Jones et al. 2021). The experimental
procedure is shown in figure 17 (and supplementary movie 1). We start by 3-D printing a
mould with the desired geometry (Anycubic i3 Mega). The resulting surface is rough, with
vertical steps of the order of the printer layer height: 0.1 mm (figure 17a). We smooth the
surface by applying a first coating using a rapidly curing elastomer (Zhermack VPS-16,
see Jones et al. (2021) for more details on the elastomer mixing procedure). This first layer
is sufficiently thin compared with the substrate characteristic size (ĥ/R ∼ 10−3) so that we
assume that the substrate curvature remains unchanged after coating. After solidification
of the first layer (figure 17b), we proceed to the experiment and coat the sample with
a second layer of elastomer (Zhermack VPS-32, figure 17c). After solidification of the
second layer, thin strips of the solid shell (containing both layers) are cut, peeled from the
substrate and imaged with a microscope (figure 17d). Dyes are mixed to both elastomers to
enhance contrast, thereby allowing us to automatically extract the second layer thickness
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3-D printing Smoothing layer Coating Measurement
Microscope image
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h

R = 30 mm: a = 0.8, b = 1
R = 25 mm: a = 1, b = 1.8
R = 20 mm: a = 1.6, b = 2
R = 30 mm: a = 0.8, b = 1.6

R = 30 mm: c = 0.4
R = 25 mm: c = 1.6
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R = 30 mm: d = 1.5
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m
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2ρgK̂pt†
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Figure 17. Different steps of the experimental procedure. (a) The 3-D printing of the moulds. (b) Smoothing
of the mould via a first layer of polymer. (c) Coating and curing of the second layer. (d) Peeling of a thin
stripe, whose thickness is measured through a microscope. The thickness of the second layer is compared with
the analytical and numerical solutions. (e) Pole thickness, measurements for ellipsoids (circles), spheroids
(squares) and tori (diamonds). The black line denotes the theoretical prediction.

as a function of the arclength ĥ(ŝ). The errors introduced through the cutting procedure
and subsequent image analysis are smoothed by binning the thickness over 50 pixels in
the horizontal direction. The standard deviation within each bin defines the experimental
uncertainty. Finally, we map the dimensionless arclength s back to the zenith angle ϑ with
the relation

s(ϑ) =
∫ ϑ

0

√
a2 sin2(ϑ ′) cos2 ϕ + b2 sin2(ϑ ′) sin2 ϕ + c2 cos2 ϑ ′ dϑ ′. (6.1)

In all cases considered, the Bond number is in the range 177 < Bo = R2/�2
c < 400, where

�c ≈ 1.5 mm is the capillary length of the polymer, while the final thickness is of order
10−1 mm, leading to δ ∼ 10−2–10−3. These values of Bo and δ ensure the accuracy of
the drainage solution everywhere except close to the edge of the mould where capillary
effects play a central role by creating a rim or bead. We exclude from our results this rim,
intrinsically induced by capillarity. Following the results of the asymptotic expansion for
ϑ � 1, the dimensional large-time thickness can be written as ĥ = hpf (geometry), where
f embeds the spatial distribution and depends only on the geometry, and hp is the thickness
at the pole which depends on the rheology of the polymer melt during the drainage.
For a Newtonian fluid the pole thickness is given by (2.11), or in dimensional units

hp =
√

3μ/2ρgK̂pt with K̂p the dimensional pole curvature. For a solidifying elastomer,
we must account for the change of viscosity of the melt during curing μ(t) and the pole
thickness is given by

hp =
√√√√√ 3

2ρgK̂p

∫ ∞

τw

1
μ(t)

dt
, (6.2)

where τw is the time after mixing at which we start the drainage, τw ≈ 6 min in our
experiments. The rheology of VPS-32 is reported in Lee et al. (2016)

μ(t) =
{

μ0 exp(βt), if t � τc,

μ1tα, if t > τc,
(6.3)
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Polymer μ0 (Pa s) α β (×10−3) τc (s)

VPS-32 7.1 ± 0.2 5.3 ± 0.7 2.06 ± 0.09 574 ± 11

Table 1. Properties of VPS-32, extracted from Lee et al. (2016).
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Figure 18. Comparison between experimental measurements of h/hp (coloured dots) and the theoretical
prediction from (a) § 3.1 for two spheroids with c = 0.4 and R = 30 mm, c = 1.6 and R = 20 mm, and (b) § 4
for two tori with R = 30 mm, and d = 1.2, 1.5. The coloured solid thick lines denote the analytical solutions,
and the dashed ones the numerical solutions.

with μ1 = μ0 exp(βτc)τ
−α
c . Upon integration, the pole thickness reads hp =√

3μ0/(2ρgK̂pt†), where t† = {(e−βτw − e−βτc)/β} + {τce−βτc/(α − 1)}. The values of
the parameters, together with the uncertainties, are reported in table 1. In figure 17(e),
the theoretical prediction is compared with the experimental measurements for different
substrates, showing an overall good agreement, valid for all substrates as highlighted in
§ 2.3.

In the following, we rescale the measured thickness with the pole thickness so as
to compare the spatial distributions, independently of the fluid rheology, i.e. ĥ/hp =
f (geometry). Figure 18 shows experimental measurements (dots) for two spheroids (a)

and two tori (b) compared with the numerical (dashed line) and analytical (solid line)
solutions at order O(ϑ6) for the spheroids, and O(ϑ4) for the tori. In all cases, the
trend of analytical, numerical and experimental results are similar. For the spheroids, the
thickness decreases when moving from the apex to the equator for c = 0.4. Instead, for
c = 1.6 the thickness is found to increase. For the latter case, a favourable agreement
for large ϑ is obtained with the numerical solution (dashed line), in agreement with
previous discussions. Similar favourable agreements are obtained for tori. In particular, the
analytical solution captures the increase in thicknesses observed for ϑ < 0, i.e. in the inner
part of the torus. In figure 19, we show experimental measurements (dots) for the thickness
along the long (ϕ = π/2) and short (ϕ = 0) axes of ellipsoids with various aspect ratios
and compare them with the numerical (dashed lines) and analytical (solid lines) solutions.
We recover the three thickness distributions predicted, i.e. (a) thickness increasing both
on the short and long axes for a, b � 1.35, (b,c) thickness increasing along the short
axis and decreasing on the long axis for a � 1.35 � b, (d) thickness decreasing along
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Figure 19. Comparison between analytical (solid lines), numerical (dashed lines) solutions and experimental
measurements, in analogy with figure 19, for ellipsoids with (a) a = 0.8, b = 1 and R = 30 mm, (b) a = 1,
b = 1.8 and R = 25 mm, (c) a = 0.8, b = 1.6 and R = 30 mm, (d) a = 1.6, b = 2 and R = 20 mm.

both axes a, b � 1.35. In all cases, the experimental measurements show the same trends
as the numerical solutions and highlight the different thickness distributions previously
described. However, some local discrepancies can be noticed. With reference to figure 18,
the thickness predicted from the nonlinear simulations for case c = 1.6 of panel (a) is
larger than the measured one, in the vicinity of the equator, while in case d = 1.2 of
figure 18(b) the measured thickness is larger than the predicted one. These discrepancies
may be induced by the previously described edge effect that creates a rim or bead, where
capillarity and hydrostatic effects dominate. Cases (b) and (d) of figure 19 instead show a
peak in the thickness for small ϑ , with experimental values larger than the ones predicted
by the theoretical and numerical results. These thickness variations are likely due to defects
in the cutting process (shown in supplementary movie 1), or to the target shape not being
exactly attained, even after the first coating employed to smoothen the stepped surface in
the vicinity of the pole, where the substrate inclination is small.

7. Conclusion

This work studied the coating problem on a generic substrate with a focus on
three-dimensional drainage and spreading. We analysed different substrate geometries and
derived analytical solutions for the drainage and spreading of an initial volume of fluid,
under the assumption of very large Bond number and very thin film compared with the
substrate characteristic length. We derived a general solution for the thickness evolution on
a local maximum of the substrate. The thickness was found to be inversely proportional to
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the square root of the mean curvature at the pole, i.e. h = √
3/(2Kpt). The latter represents

how the components of the gravitational field, tangential to the substrate, vary across the
surface in the vicinity of the pole. Therefore, a larger drainage and a faster decrease of
the thickness are obtained with increasing mean curvature. We then investigated the role
of the substrate geometry in modifying the thickness distribution away from the local
maximum. We considered as a test case the coating on a spheroid of dimensionless height
c, whose solution was derived through an asymptotic expansion in the vicinity of the pole.
For c < c∗, the thickness decreases as we move away from the pole while it increases
for c > c∗. These thickness variations result from a competition between the slope and
curvature which balance each other for c = c∗ = √

2/3. In particular, the fluid tends to
accumulate in regions of lower curvature while a slope increase induces film thickening.
The drainage solution was then employed to study the spreading of an initial volume of
fluid contained in a region close to the pole. The spreading velocity was found to increase
with the spheroid height. We related this behaviour to the increase of the drainage gravity
component with c in the vicinity of the pole. We then studied the coating of a substrate
in which the symmetry of the spreading is broken, i.e. the torus. The coating solution
presented much larger values of the thickness on the inner part than on the outer part.
The inner part presents a decreasing mean curvature, thus leading to larger values of
the thickness than those observed on the outer part, where the mean curvature slightly
increases since gravity is symmetric. The spreading of an initial volume of fluid occurred
much faster on the inner region than on the outer region since the area to be invaded is
smaller on the inner region, giving rise to two different spreading fronts. We concluded
the analysis by applying the method to the three-dimensional spreading problem on a
non-axisymmetric ellipsoidal substrate, i.e. with three different axes. We first derived a
large-time analytical drainage solution which agrees well with the numerical simulations.
Depending on the ellipsoid geometry, the thickness can increase or decrease away from the
pole, with a behaviour similar to the spheroid one along the principal axes. The solution
was characterized by π-periodic modulations along the azimuthal direction, related to
the different drainage along the two principal axes of the ellipsoid, which tend to move
fluid from the major axis to the minor one. These modulations reflect in a spreading
which does not occur uniformly along the azimuthal direction, but shows an accumulation
of fluid and a faster spreading along the shorter axis. These modulations in the front
position occur prior to any fingering instability. We obtained a scaling for the average front
which fairly agrees with numerical results. We finally compared the spreading results with
experimental measurements and found a good agreement in terms of spatial distributions.

The scope of the present work is to give a coherent and formal framework for the
study of the drainage and coating on generic substrates based on the generalization and
targeted application of previous analytical developments. These analyses show a crucial
effect of the substrate curvature in defining the leading-order thickness distribution and
the spreading front of a gravity-driven coating. The natural extension of this work is
the focus on the destabilization of these spreading fronts. While previous works focused
on the fingering instability of two-dimensional fronts (Troian et al. 1989a; Bertozzi &
Brenner 1997; Balestra et al. 2019), similar studies in which the primary front can bend
and evolve together with fingering instabilities still need to be pursued. These analyses are
not necessarily constrained by the considered configuration, but can be also extended to
converging flows and more complex substrates. Besides, the performed analyses are valid
in the absence of capillary and hydrostatic pressure effects. This assumption is respected
when the film is very thin and the substrate does not present regions with infinite or zero
curvature. If one of these hypotheses is violated, then other effects may play a crucial role.
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Hydrostatic pressure gradients become non-negligible if the film becomes thicker or the
substrate presents flat regions, e.g. a saddle point. Following the work of Lister (1992)
for a flat substrate, the role of hydrostatic pressure gradients in these situations still needs
to be investigated. These findings may find several applications both in environmental
studies and thin film technologies. The interweaving between differential geometry and
asymptotic theory showed great potential in the evaluation of analytical and numerical
solutions for the coating on complex geometries, which may find further developments
not only in the study of contact-line instabilities, but in several coating flow phenomena
such as Marangoni, inertia-driven and Rayleigh–Taylor instabilities.

Supplementary material and movie. Supplementary material and movie are available at https://doi.org/
10.1017/jfm.2022.758.

Acknowledgements. P.G.L. is grateful to A. Bongarzone for the precious suggestions regarding the ellipsoid
analytical solution. P.G.L. also acknowledges S. Djambov for the fruitful discussions on the geometrical
interpretation of the results.

Funding. This work was supported by the Swiss National Science Foundation (grant no. 200021_178971 to
P.G.L.).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Pier Giuseppe Ledda https://orcid.org/0000-0003-4435-8613;
M. Pezzulla https://orcid.org/0000-0002-3165-8011;
E. Jambon-Puillet https://orcid.org/0000-0003-2453-0578;
P.-T. Brun https://orcid.org/0000-0002-4175-0604;
F. Gallaire https://orcid.org/0000-0002-3029-1457.

Appendix A. Spheroid: higher-order drainage problems

In this section, the higher-order drainage problems are described. We report only the ODE
to be solved since their expressions are cumbersome. The ODE at O(ϑ4) reads

H2
0

((
11c
3

− 5c3
)

H2 + 6cH4

)
+ 1

36
c(48c4 − 66c2 + 19)H3

0 + 6cH0H2
2 + H′

4 = 0,

H4(0) = 0.

⎫⎪⎬⎪⎭
(A1a,b)

At O(ϑ6), the problem reads

− 1
3

cH0H2((21c2 − 16)H2 − 48H4)

+ H2
0

(
−7c3H4 +

(
6c5 − 17c3

2
+ 13c

5

)
H2 + 16

3
cH4 + 8cH6

)
(A2)

+
(

−5c7

3
+ 31c5

9
− 257c3

120
+ 49c

135

)
H3

0 + 8
3

cH3
2 + H′

6 = 0, H6(0) = 0. (A3a,b)
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Appendix B. Torus: drainage solution

Also in this section, we report only the problems when their relative solution is
cumbersome. The problems for increasing orders read

H0
′(t) = −1

3
H0(t)3, H0(0) = 1 → H0(t) = 1√

2t
3

+ 1

, (B1a,b)

H′
1(t) = −

(
H0(t)3

3d
+ 2H0(t)2H1(t)

)
, H1(0) = 0,

→ H1(t) = −8
√

3t3 − 36
√

3t2 − 54
√

3t + 27
√

2t + 3 − 27
√

3
5d(2t + 3)7/2 ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B2)

H′
2(t) = −

(
−
(
d2 + 2

)
H0(t)3

6d2 + H0(t)2(3dH2(t) + H1(t))
d

+ 3H0(t)H1(t)2

)
,

H2(0) = 0,

→ H2(t) = 1
50d2(2t + 3)11/2

{
4
√

3
(

25d2 + 62
)

t5 + 30
√

3
(

25d2 + 62
)

t4

+90
√

3
(

25d2 + 62
)

t3 + 27t2
(

125
√

3d2 + 8
√

2t + 3 + 310
√

3
)

+81t
(

25
√

3d2 + 8
(√

2t + 3 + 5
√

3
))

−486
(√

3 − √
2t + 3

)}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B3)

72d3H0(t)H1H2 − 6d3H0(t)2H1 + 36d3H0(t)2H3(t) + 12d3H3
1 + 9d3H′

3(t) + 9d2

H0(t)H2
1 + 9d2H0(t)2H2 − 2d2H0(t)3 − 9dH0(t)2H1 + 3H0(t)3 = 0, H3(0) = 0,

}
(B4)

720d4H0(t)H1(t)H3(t) − 60d4H0(t)H1(t)2 + 360d4H0(t)H2(t)2 − 60d4H0(t)2H2(t)

+ 360d4H0(t)2H4(t) + d4H0(t)3 + 360d4H1(t)2H2(t) + 72d4H′
4(t)

+ 144d3H0(t)H1(t)H2(t) − 48d3H0(t)2H1(t) + 72d3H0(t)2H3(t) + 24d3H1(t)3

− 72d2H0(t)H1(t)2 − 72d2H0(t)2H2(t) + 20d2H0(t)3 + 72dH0(t)2H1(t)

− 24H0(t)3 = 0, H4(0) = 0. (B5)

Appendix C. Ellipsoid: higher-order drainage solutions

The PDE for H4(ϕ, t) reads

7 cos(2ϕ)H3
0

36a2 + cos(2ϕ)H3
0

2a6 + cos(2ϕ)H3
0

6a4b2 + 13 cos(2ϕ)H3
0

18b4 + cos(4ϕ)H3
0

8a6 + cos(4ϕ)H3
0

6a2b2

+ cos(4ϕ)H3
0

8b6 + 19H3
0

72a2 − cos(4ϕ)H3
0

12a4 − 13 cos(2ϕ)H3
0

18a4 − 23H3
0

36a4 + 3H3
0

8a6 − 7 cos(2ϕ)H3
0

36b2

+ 19H3
0

72b2 − 5H3
0

9a2b2 − cos(4ϕ)H3
0

8a4b2 + 7H3
0

24a4b2 − cos(4ϕ)H3
0

12b4 − 23H3
0

36b4 − cos(2ϕ)H3
0

6a2b4
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Figure 20. Drainage on an ellipsoid with a = 0.5 and b = 1.5. (a) Spatio-temporal evolution of H4:
iso-contours of H2 in the (ϕ, t) plane. (b) Second-order correction H∗

4 = H4/H0 ≈ H4
√

αt as a function of
ϕ at different times: t = 0.4 (blue), t = 1 (orange), t = 5 (yellow), t = 10 (purple), t = 20 (green), t = 30
(cyan), t = 40 (maroon), t = 50 (black), t = 60 (red), t = 70 (light green), t = 80 (dark blue), t = 90 (light
yellow), t = 100 (light cyan).

H∗
4

0 2 4
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Figure 21. (a) Fourth-order correction H∗
4 = H4/H0 ≈ H4

√
αt as a function of ϕ at t = 100, for a = 0.5 and

increasing b: b = 0.6 (blue), b = 0.8 (orange), b = 1 (yellow), b = 1.2 (purple), b = 1.4 (green), b = 1.6
(cyan), b = 1.8 (maroon), b = 2 (black). (b) Second-order correction H∗

4 as a function of ϕ at t = 100, for
b = 1.5 and increasing a: a = 0.4 (blue), a = 0.6 (orange), a = 0.8 (yellow), a = 1 (purple), a = 1.2 (green),
a = 1.4 (cyan).

− cos(4ϕ)H3
0

8a2b4 + 7H3
0

24a2b4 − cos(2ϕ)H3
0

2b6 + 3H3
0

8b6 + 4 cos(2ϕ)H2H2
0

3a2 + 2 cos(2ϕ)H2H2
0

b4

+ cos(4ϕ)H2H2
0

2a2b2 + 11H2H2
0

6a2 + 11H2H2
0

6b2 + 2 cos(2ϕ)H4H2
0

a2 + 3H4H2
0

a2 + 3H4H2
0

b2

+
cos(2ϕ) sin(2ϕ)

∂H2

∂ϕ
H2

0

4a4 +
cos(2ϕ) sin(2ϕ)

∂H2

∂ϕ
H2

0

4b4 +
sin(2ϕ)

∂H2

∂ϕ
H2

0

4a4

+
sin(2ϕ)

∂H2

∂ϕ
H2

0

4b2 +
sin(2ϕ)

∂H4

∂ϕ
H2

0

2b2 −
sin(2ϕ)

∂H4

∂ϕ
H2

0

2a2 −
sin(2ϕ)

∂H2

∂ϕ
H2

0

4a2

− 2 cos(2ϕ)H2H2
0

a4 − cos(4ϕ)H2H2
0

4a4 − 7H2H2
0

4a4 − 2 cos(2ϕ)H4H2
0

b2 − 4 cos(2ϕ)H2H2
0

3b2
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Figure 22. Drainage on an ellipsoid with a = 0.5 and b = 1.5. (a) Spatio-temporal evolution of H6:
iso-contours of H6 in the (ϕ, t) plane. (b) Second-order correction H∗

6 = H6/H0 ≈ H6
√

αt as a function of
ϕ at different times: t = 0.4 (blue), t = 1 (orange), t = 5 (yellow), t = 10 (purple), t = 20 (green), t = 30
(cyan), t = 40 (maroon), t = 50 (black), t = 60 (red), t = 70 (light green), t = 80 (dark blue), t = 90 (light
yellow), t = 100 (light cyan).

b a

2 4
ϕ

6

1.5

1.0

0.5

0 2 4
ϕ

60

H∗
6

(a) (b)

10–4

10–2

100

Figure 23. (a) Sixth-order correction H∗
6 = H6/H0 ≈ H6

√
αt as a function of ϕ at t = 100, for a = 0.5 and

increasing b: b = 0.6 (blue), b = 0.8 (orange), b = 1 (yellow), b = 1.2 (purple), b = 1.4 (green), b = 1.6
(cyan), b = 1.8 (maroon), b = 2 (black). (b) Second-order correction H∗

6 as a function of ϕ at t = 100, for
b = 1.5 and increasing a: a = 0.4 (blue), a = 0.6 (orange), a = 0.8 (yellow), a = 1 (purple), a = 1.2 (green),
a = 1.4 (cyan).

− 3H2H2
0

2a2b2 −
cos(2ϕ) sin(2ϕ)

∂H2

∂ϕ
H2

0

2a2b2 − cos(4ϕ)H2H2
0

4b4 − 7H2H2
0

4b4 −
sin(2ϕ)

∂H2

∂ϕ
H2

0

4b4

+ 2 cos(2ϕ)H2
2H0

a2 + 3H2
2H0

a2 + 3H2
2H0

b2 +
H2 sin(2ϕ)

∂H2

∂ϕ
H0

b2 −
H2 sin(2ϕ)

∂H2

∂ϕ
H0

a2

− 2 cos(2ϕ)H2
2H0

b2 + ∂H4

∂t
= 0, (C1)

whose numerical solution is reported in figures 20 and 21. Figure 20(b) shows that the
values of the rescaled fourth-order solution H∗

4 = H4
√

αt collapse to the same curve as
time increases, thus suggesting that also in this case a large-time separation of variables is
possible.

Because of its size, we do not write the PDE for H6 here; however, the solutions are
shown in figures 22 and 23. In analogy with the solutions at order O(ϑ2) and O(ϑ4),
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the behaviour of the large-time solution suggests that a solution H∗
n(ϕ) = Hn(ϕ, t)/H0(t)

satisfies the problem.
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