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Flexible structures placed within an oncoming flow exhibit far more complex
vortex-induced dynamics than flexibly mounted rigid cylinders, because they involve
the distributed interaction between the structural and wake dynamics along the entire
span. Hence, mapping the well-understood properties of rigid cylinder vibrations to
those of strings and beams has been elusive. We show here with a combination of
experiments, conducted at Reynolds number, Re from 250 to 2300, and computational
fluid dynamics that such a mapping is possible for flexible structures in uniform flow
undergoing combined cross-flow and in-line oscillations, but only when additional
concepts are introduced to model the extended coupling of the flow and the structure.
The in-line response consists of largely standing waves that define cells, each cell
spanning the distance between adjacent nodes, over which stable vortical patterns
form, whose features (‘2S’ versus ‘P+S’) depend strongly on the true reduced velocity,
Vr = U/fyd, where U is the inflow velocity, fy is the cross-flow vibration frequency
and d is the cylinder diameter, and the phase angle between in-line and cross-flow
response; while the cross-flow response may contain travelling waves, breaking the
symmetry of the problem. The axial distribution of the highly variable effective added
masses in the cross-flow and in-line directions, and the local phase angle between
in-line and cross-flow motion determine the single frequency of cross-flow response,
while the in-line response vibrates at twice the cross-flow frequency. The cross-flow
and in-line lift coefficients in phase with velocity depend strongly on the true reduced
velocity but also on the local phase angle between in-line and cross-flow motions.
Modal shapes can be defined for in-line and cross-flow, based on the resemblance
of the response to conventional modes, which can be in the ratio of either ‘2n/n’
or ‘(2n − 1)/n’, where n is the order of the cross-flow response mode. We use
an underwater optical tracking system to reconstruct the sectional fluid forces in
a flexible structure and show that, once the cross-flow and in-line motion features
are known, employing strip theory and the hydrodynamic coefficients obtained from
forced rigid cylinder experiments allows us to predict the distributed forces accurately.
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1. Introduction
The prediction of the vortex-induced vibrations (VIV) of long flexible structures

is a challenging problem and it is encountered in a wide range of engineering
applications, such as hanging electric wires vibrating in the wind, and marine risers
and cables oscillating within ocean current. Vortex-induced vibrations may result in
severe fatigue damage (Zheng et al. 2014b), hence a large amount of research has
focused on better understanding and predicting the flexible cylinder VIV response,
as well devising suppression methods to mitigate excessive fatigue damage (Fan &
Triantafyllou 2017).

For a stationary circular cylinder with uniform cross-section placed in uniform
flow, unsteady cross-flow (CF) and in-line (IL), hydrodynamic forces (Bishop &
Hassan 1964) develop due to the shedding of alternating sign vortices in the wake
of the cylinder (Williamson 1996). In what has become a canonical fluid-structure
interaction problem, the cylinder is flexibly mounted and is allowed to vibrate in the
CF direction. A large number of publications have been devoted to understanding the
principal mechanisms of flow instability and flow-structure interaction that lead
to such vibrations (Williamson & Govardhan 2004; Gabbai & Benaroya 2005;
Williamson & Govardhan 2008; Bearman 2011; Raghavan & Bernitsas 2011). It has
been established that over a broad range of incoming velocities, different regimes of
response can be classified as initial, upper and lower branches (Khalak & Williamson
1999), and distinct vortex shedding modes were identified (Williamson & Roshko
1988; Govardhan & Williamson 2000). An important concept of the flexibly mounted
rigid cylinder VIV is that of ‘lock-in’ (Bearman 1984), wherein the vortex shedding
frequency is entrained to coincide with the CF vibration frequency. During ‘lock-in’,
moderate response amplitudes, typically self-limited to approximately one diameter,
and a wide range of synchronization frequencies have been observed. The vortex
shedding frequency can differ from the Strouhal frequency of a fixed cylinder,
because, as work via flow visualization has revealed, the relative motion between
the vibrating cylinder and the shed vortices can significantly alter the effective fluid
added mass (Sarpkaya 2004), resulting in a variable natural frequency as a function
of stream velocity (Williamson 1996).

Significant variations of the fluid forces as a function of the oncoming stream
velocity have been found for a cylinder oscillating in the CF direction, due to
changes in the vortex shedding pattern. Therefore, experiments were conducted,
where a rigid cylinder was forced to vibrate in the CF direction at prescribed
frequencies and amplitudes (Sarpkaya 1978). In particular, studies focused on the
mean drag coefficient Cd, the lift coefficient in-phase with the velocity Clv and the
added mass coefficient in the CF direction Cmy, calculated from the component of
the lift force in-phase with acceleration (Staubli 1983; Gopalkrishnan 1993; Sarpkaya
1995). A comprehensive set of experiments was performed at the MIT tow tank
facility by Gopalkrishnan (1993) by varying systematically the true reduced velocity
Vr = U/fd and non-dimensional CF amplitude Ay/d, where U is the prescribed fluid
velocity, f the prescribed motion frequency, Ay the prescribed motion amplitude and
d the cylinder model diameter. The experiments showed that regions of positive
Clv, denoting net energy transferred from the fluid to the structure over one motion
period, were located in a certain range of Vr and Ay/d. In addition, it was found
that the added mass coefficient could vary significantly from a negative value to
a large positive value around the true reduced velocity Vr = 5.9. These measured
hydrodynamic coefficients resulted in an accurate prediction of the rigid cylinder VIV
in the CF direction (Wang, So & Chan 2003), and they have served as databases for
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fluid forces in semi-empirical flexible riser VIV prediction codes (Triantafyllou et al.
1999; Larsen et al. 2001; Roveri & Vandiver 2001).

However, considerable differences were found in both structural responses as well
as wake patterns, if the cylinder was allowed to move in combined IL and CF
response (Aronsen 2007). It was found that IL motion would affect the CF vibration
substantially, even though the IL motion is usually 2–6 times smaller than the CF
motion. For low mass ratio cases, the cylinder reached larger CF amplitudes, up to
1.5d (Jauvtis & Williamson 2003) and a wider synchronization frequency range versus
Ur in the CF direction (Dahl 2008). Furthermore, some new vortex shedding patterns,
such as a ‘2T’ mode, were identified (Jauvtis & Williamson 2004). For a rigid
cylinder VIV with coupled IL and CF motions, the phase θ between the IL and the
CF motions was found to have a strong influence on the fluid forces on the oscillating
cylinder (Jauvtis & Williamson 2004). Forced vibration cylinder experiments (Dahl
et al. 2007, 2010) revealed that positive energy-in, viz. positive Clv, was strongly
associated with a phase angle θ corresponding to a counter-clockwise trajectory. The
occurrence of high harmonics (3rd and tth harmonics) in the lift force was also found
to be correlated with specific values of θ (Dahl, Hover & Triantafyllou 2008).

Fewer experimental studies have been performed on long flexible cylinder VIV.
Brika & Laneville (1993) conducted experiments on a flexible cylinder placed in
uniform flow. The first mode of vibration was excited in the CF direction, and the
amplitude response and the vortex wake were found to resemble those found in the
rigid cylinder case. In experiments performed by Huera-Huarte & Bearman (2009a,b),
both the IL and the CF motions were reported to be well synchronized with the
wake, and a steady phase between the IL and the CF trajectories was observed,
associated with different vortex modes along the span. Vandiver et al. (2006)
and Vandiver, Jaiswal & Jhingran (2009) performed field tests by towing flexible
cylinders within the Gulf Stream, exciting high mode vibrations with mixed patterns
of standing and travelling waves. Through analysis of the ‘Norwegian deepwater
programme riser high mode VIV tests’, (Braaten & Lie 2004; Modarres-Sadeghi
et al. 2010, 2011) established that a 38 m long flexible riser model exhibits chaotic
response, switching randomly between steady-state and chaotic states, with strong
high harmonic components in the lift force during steady-state response. Chaplin
et al. (2005b) conducted experiments on a flexible cylinder in a stepped incoming
flow. The authors reported the amplitude and frequency response over a wide range
of incoming velocities, highlighting multiple modes excited in both the IL and the
CF directions. The results were used to compare the results from different numerical
and semi-empirical codes (Chaplin et al. 2005a). The predictions, although capturing
some flexible cylinder VIV features, also showed discrepancies from the experiments.

A key factor for better prediction of flexible cylinder VIV is the measurement
of the hydrodynamic coefficients as distributed along the span. Inverse methods
were employed to identify the fluid force distribution by Huera-Huarte, Bearman &
Chaplin (2006), who applied a finite element method to reconstruct the fluid forces
of a flexible cylinder from its vibration responses; and by Tang et al. (2011) who
developed a master–slave technique to reduce the rotational degrees of freedom in
fluid force reconstruction. Wu (2011) developed new schemes integrating least-squares
and Kalman filter techniques and showed that the hydrodynamic coefficients along
the flexible cylinder were affected by the values of the phase angle θ . Han et al.
(2018) used a similar least-squares method to investigate the fluid forces on a
flexible cylinder placed at a large inclination angle relative to a uniform incoming
flow. A basic conclusion of the experimental results is that the local hydrodynamic
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FIGURE 1. (Colour online) Comparison between experimental measurements and
simulation results at Ur = 12.66. The black dashed line denotes θ = π (where θ ∈ [0, π]
represents counter-clockwise cross-flow and in-line trajectory, and θ ∈ [π, 2π] represents
clockwise cross-flow and in-line trajectory). Note that in the simulation, the tension is
uniform along the cylinder, while it is linearly distributed in the experiment, where the
tension at one end is 33 % larger than that at the other end.

coefficients of a flexible cylinder are qualitatively different from those for a rigid
cylinder undergoing CF oscillations.

There is a large number of published computational studies on flexible cylinder
VIV. Some works represented empirically the effect of the oncoming flow through
distributed wake oscillators along the flexible cylinder (Facchinetti, De Langre &
Biolley 2004; Violette, De Langre & Szydlowski 2007), with qualitative agreement
with experimental and direct numerical simulation (DNS) results. High fidelity DNS
using the spectral-element method were presented in Newman & Karniadakis (1997)
and Evangelinos & Karniadakis (1999) for a uniform flexible cylinder with an aspect
ratio of 4π in uniform flow at Reynolds numbers 100, 200 and 1000. Structural
response and force distribution were reported by Newman & Karniadakis (1996)
and Evangelinos, Lucor & Karniadakis (2000) in order to establish a connection
between the flexible cylinder free vibration and the rigid cylinder forced vibration.
More recently, Bourguet et al. (2011) numerically confirmed that, similar to forced
rigid cylinder vibration, θ values corresponding to counter-clockwise trajectories are
favourable to positive energy transfer from fluid to structure. However, to the best
of our knowledge, there is no direct comparison between numerical simulation and
experimental measurements for long flexible cylinders undergoing VIV.

In this paper, we investigate a tension-dominated flexible cylinder of aspect ratio
of 240, moderate mass ratio of 4.0, and pinned at both ends both experimentally and
through simulation. Very good agreement between the experimental results and the
simulation results was obtained as can be seen in figure 1, where the results of the
CF amplitude Ay/d (blue line), the IL amplitude Ax/d (red line) and the phase θ

distribution (black line) are displayed side by side. The paper is organized as follows.
Section 2 presents the experimental and numerical methods. Section 3 discusses the
experimental results with an emphasis on the connection between a rigid cylinder
and a flexible cylinder. Section 4 provides the numerical simulation results of the
flexible cylinder wake patterns. Section 5 summarizes the main findings of the paper.
In the appendices, we describe the method we used to acquire sectional hydrodynamic
coefficients from the measured motion data; we provide a sample of the hydrodynamic
coefficients measured from the rigid cylinder forced vibration experiment as well as
a comparison between our experimental and simulation results.
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2. Experimental and numerical method description
2.1. Experimental method and model

The uniform flexible cylinder model has a diameter d = 0.5 cm and a length
L= 120 cm, with a resulting aspect ratio of 240. The model is constructed/moulded
via urethane rubber (density of 1.38 g cm−3) mixed with tungsten (density of
19.3 g cm−3) powder in order to reach a mass ratio of m∗ = 4.0 (the ratio between
structural mass to displaced fluid mass). In addition, a fishing line is embedded in the
centre during the moulding process to provide sufficient axial stiffness. In the current
experiment, the effect of the bending stiffness on the model’s natural frequency and
modal shape is negligible, compared to that of the tensions applied. Note that the
structural damping of the urethane rubber material is higher than the traditional metal
or ABS plastic cylinder model. Nonetheless, the damping ratio of the current flexible
model is 8.7 %, as obtained from the pluck test in the air.

We performed systematic experiments at the MIT tow tank facility with a water
depth of 1.22 m. An aluminium frame was built to provide mounting points for the
bottom of the model and a ‘6-axis ATI Gamma’ sensor was installed on top of the
frame in order to measure the model’s top tension in each experimental run. The
vertically installed model had a 97 % total immersion length, and it was clamped at
both ends. The model was towed to generate a uniform inflow with different speeds
from 0.05 to 0.46 m s−1, achieving Reynolds numbers Re from 250 to 2300 while
the reduced velocity varied from 4.8 to 36. Here, the reduced velocity Ur and the
true reduced velocity Vr are defined as follows:

Ur =
U

fn1d
,

Vr =
U
fyd
,

 (2.1)

where U is the inflow velocity, d is the model diameter, fn1 is the first modal natural
frequency, calculated based on the measured tension, assuming Cm = 1.0 along the
model, and fy is the actual vibration frequency measured in the CF direction. Figure 2
shows a sketch of the experimental set-up, while table 1 lists the experimental
parameters.

We applied our newly developed underwater optical methods using eight high-speed
cameras to capture the IL and CF vibrations for a total of 52 locations (staggered
black and white markers) along the model. Compared to the traditional strain-gauge
and accelerometer measurement for flexible cylinder VIV experiments, the optical
tracking system provides both temporally and spatially dense and direct measurements
on the model displacement response (Fan, Du & Triantafyllou 2016). Three cameras
are installed over 160d downstream of the model to measure the CF vibration while
five cameras are installed 100d besides the model to measure the IL vibration. At
the same time, four 1500-lumen underwater lights were installed to provide enough
camera background lighting. Corresponding image processing and motion tracking
code were developed to capture and follow the trajectory of either white or black
markers (Fan & Triantafyllou 2017). Figure 2(b) displays a sample frame of the raw
and processed images for one of the cameras. More details about the camera set-up
and the image process method are described in appendix A.
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Force sensor

Flexible
model

Camera

(a) (b)

FIGURE 2. (Colour online) The flexible model in the MIT tow tank: (a) a sketch of the
experimental set-up that shows the uniform incoming flow and the black and white strips
used for motion tracking purposes; (b) sample raw (top) and processed (bottom) image
shows that the red bounding box captures the motion of the white markers.

2.2. Numerical method and model
In order to obtain a quantitative understanding of the complex vortex shedding process,
we carried out a large-eddy simulation (LES) study by using the entropy-viscosity
method, which was proposed by Guermond, Pasquetti & Popov (2011a,b) and
later developed further for complex flows in Wang et al. (2018, 2019). In the
simulation, the governing equations of the incompressible flow are solved by a
Fourier/spectral-element code that employs spectral-element discretization in the
(x–y) plane and Fourier expansion along the riser axial direction (z) as presented in
Karniadakis & Sherwin (2005). The coordinate transformation method proposed in
Newman & Karniadakis (1997) is employed to deal with the boundary deformation
due to the vibration. On the (x–y) plane, the computational domain has a size of
[−6.5d, 23.5d] × [−20d, 20d], which is partitioned into 2 616 quadrilateral elements,
where d = 1 is the cylinder diameter whose centre is placed at (0, 0). On the left
boundary of the domain where x/d =−6.5, u= U, v = 0, w= 0 are imposed, where
u, v, w are the three components of velocity vector u; on the right boundary where
x/d = 23.5, p = 0 and ∂u/∂n = 0 are prescribed, where p is the pressure and n is
the normal vector; on both top and bottom boundaries where y/d =±20, a periodic
boundary condition is used.

The cylinder motion is governed by a linear beam-string equation as follows:

∂2ξJ

∂t2
+ 2ζωn

∂ξJ

∂t
+

EI
µ

∂4ξJ

∂z4
−

T
µ

∂2ξJ

∂z2
=

F
µ
, (2.2)

where ξJ is the displacement in the J direction (J = x or J = y), µ is the cylinder
mass per unit length, the damping coefficient ζ = 8.7 % is equal to that of experiment
with ωn= 2πfn1, T is the tension and EI is the bending stiffness. The above equation
is constrained by pinned boundary conditions (ξJ = 0 and ∂2ξJ/∂z2

= 0) at both ends.
Note that in the simulation, T = (UL/Urd)2(4µ+ Cmρπd2) with Cm = 1.0, where Ur
is the corresponding reduced velocity defined in equation (2.1), while the value of EI
is set as small as 0.02T , in order to mimic a tension dominated riser (see Evangelinos
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Model parameters Values

Diameter d 0.5 cm
Length L 120 cm
Aspect ratio L/d 240
Immersed ratio 97 %
Mass per unit length µ 0.0785 kg m−1

Mass ratio m∗ 4.0
Damping ratio ζ 8.7 %
Bending stiffness EI 0.000245 Nm2

Experimental runs

Towing velocity 0.05–0.46 m s−1

Reynolds number Re 250–2300
Reduced velocity Ur 4.8–36

TABLE 1. Values of the experimental parameters of the uniform flexible model.

& Karniadakis 1999). F is the J-component of the hydrodynamic force exerted on the
cylinder surface, computed from the integral of the pressure and viscous stress terms
using the following equation:

F=
∮
(−pn+ ν(∇u+∇uT) · n), (2.3)

where the integration is performed around the circumference of the circular
cross-section and n is the outward unit normal on the cylinder, ν is the kinematic
viscosity. In order to solve the governing equation (2.2), we have used the
second-order central-difference scheme in space and the Runge–Kutta method in time.
For all the simulations in this paper, unless mentioned explicitly, a cubic polynomial
is used in each element per direction and 512 Fourier planes are used along the axis
(z-direction). For each simulation, the total computational time tU∞/d > 500 with
a time step 1t = 1.5 × 10−3. In total, eight simulations using the same parameters
as those of the experiments with Ur in the range of [10.75, 17.22] were performed.
Validation tests on displacements and excited frequencies are presented in appendix E.

3. Structural response and fluid forces of the vibrating flexible cylinder: experimental
results and discussion
In this section, we first present the frequency and displacement response in the

experiment with an emphasis on the discontinuous displacement response during the
modal group switch. Subsequently, the result of the inverse hydrodynamic coefficients
distribution along the flexible model is reconstructed at each cross-section and
compared directly with the prediction from the combined CF and IL forced vibration
experiment on rigid cylinders. The newly constructed hydrodynamic database is
an extension from the previous experiments by Dahl et al. (2010) and Zheng
et al. (2014a). Despite the Re difference between the rigid and flexible cylinder
experiments, we find a good agreement between the two cases. We then pay special
attention to what happens to the lift coefficient in-phase with the velocity and
added mass coefficient distribution along the span. Moreover, we document that
the θ distribution along the flexible model is a critical factor in determining the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

73
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.738


822 D. Fan, Z. Wang, M. S. Triantafyllou and G. E. Karniadakis

z/d

0

-60

-120

-180

-240
0 5 10 15 20 25

f (Hz)

0

-60

-120

-180

-240
0 5 10 15 20 25

f (Hz)

(a) (b)

FIGURE 3. (Colour online) Frequency response along the flexible model at U =
0.19 m s−1 (Ur = 18.1): (a) in the CF direction, the model vibrates within a narrow-band
single frequency, and the inset figure plots the CF frequency response at z/d = −160;
(b) in the IL direction, the 2nd harmonic of the vibration dominates the response.

hydrodynamic coefficient distribution and its variation in and between the different
modal groups.

3.1. Frequency and displacement response
In figure 3(a), we plot the VIV frequency response of the flexible cylinder at U =
0.19 m s−1 (Ur= 18.1). The flexible model vibrates in the CF direction at one single
narrow-banded frequency along the entire span. We also see in figure 3(b) that the
exact 2nd harmonic vibration dominates the entire model although some low-frequency
responses can be spotted in the IL direction. Such vibration patterns of the single
narrow-band frequency response in the CF direction and the dominating 2nd harmonic
vibration in the IL direction were found consistent in the current experiment.

Based on the dominant frequency components from the power spectral density
(PSD), the corresponding 1/10th highest peak of the IL and the CF displacement
along the model is plotted in figures 4(a) and 5(a) against Ur. With increasing
Ur, higher modes are excited in both the IL and the CF directions. In the current
experiment, the 1st to 6th CF modes and the 2nd to 11th IL modes are excited. In
general, in the CF direction, the results show on average 5–6 times larger displacement
response than that in the IL direction.

Furthermore, three different cases of Ur (Ur = 12.7, Ur = 21.6 and Ur = 32.2) are
selected to plot the displacement response along the entire model in figure 4(b) for the
CF response and figure 5(b) for the IL response. We observe an asymmetric modal
displacement response along the span in the CF direction, while in the IL direction,
a symmetric sinusoidal mode shape is consistently found. A comparison between the
case of Ur = 12.7 and the case of Ur = 32.2 shows that at lower Ur, a pure standing
wave is observed in the CF direction. In contrast, with the increasing Ur, a mixture
of standing and travelling wave response gradually appears in the CF direction. As
shown in figure 4, the CF displacement response is rather ‘flat’ and no clear node can
be easily identified. However, in the IL direction, the model displays a pure standing
wave pattern at both low and high Ur. In addition, figures 4(c) and 5(c) plot the CF
and the IL displacements as a function of Ur at three different locations (z/d=−168,
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FIGURE 4. (Colour online) Experimental results of the displacement response in the CF
direction: (a) three-dimensional (3-D) visualization of the displacement response as a
function of z/d and Ur; (b) displacement response along the flexible model at Ur = 12.7,
21.6 and 32.2; (c) displacement response versus Ur at locations z/d = −180, −120 and
−60. Note that the displacement response here is presented based on 1/10th highest peak
measurement. In the current experiment, as Ur increases, the flexible model vibrates at a
higher mode number up to 6th mode in the CF direction. The amplitude response along
the model span at higher Ur is asymmetric, a sign of mixed standing and travelling wave
response patterns.

z/d = −108 and z/d = −48) along the model, respectively. At these three locations,
both the IL and the CF displacements vary significantly with Ur.

From figures 4(a) and 5(a), the maximum amplitudes of the IL and the CF
displacement response across the span for each Ur are selected and plotted in
figures 6 and 7, together with the response frequency ratio in either the IL or the
CF direction. The response frequency ratio is defined here as the ratio between the
response frequency and the model’s first modal natural frequency predicted in still
water.

In figures 6 and 7, we first observe that the mode number of the IL and the CF
displacement responses increase with Ur. We then group all experimental cases of Ur
with the same modal group (the modal group is defined as the model displacement
response at the same modes in both the IL and the CF directions). They are labelled
together in figures 6 and 7 with the black dash arrow and corresponding modal group
name beside. We can see that within the same modal group, the maximum CF and IL
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FIGURE 5. (Colour online) Experimental results of the displacement response in the IL
direction: (a) 3-D visualization of the displacement response as a function of z/d and
Ur; (b) displacement response along the flexible model at Ur = 12.7, 21.6 and 32.2;
(c) displacement response versus Ur at locations of z/d=−180, −120 and −60. Note that
the displacement response here is presented based on 1/10th highest peak measurement.
In the current experiment, as Ur increases, the flexible model vibrates at a higher mode
number up to 11th in the IL direction. A symmetric amplitude response along the model
span is observed in our experiments.

amplitudes of the displacement response monotonically increase with Ur, but whenever
there is a switch of the dominant mode in either the IL or the CF direction, the
maximum amplitudes in both directions drop, except the switch from ‘5/3’ to ‘6/3’
in the CF direction. Similar phenomena of dropping of the displacement response
between modes have been reported by Chaplin et al. (2005b) on a larger scale model
in a non-uniform current. Moreover, it should also be noted that while the IL mode
switch accompanies the CF mode switch, the former jumps twice more frequently in
order to comply with the doubling of the CF mode number. Here, we conclude that
in the current experiment there are two types of the modal group: group ‘2n : n’ and
group ‘2n− 1 : n’, such as ‘4/2’ and ‘5/3’ shown in figure 6.

The response frequency ratios of the IL and the CF vibration are shown in figure 6
and figure 7, respectively. We see that in each modal group, the response frequency
ratio in both the IL and the CF direction changes in a stepped rather than a linear
relationship with Ur. In particular, in each modal group, the response frequency ratio
stays on the average the same, but it changes to a different value whenever the
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FIGURE 6. (Colour online) Frequency ratio and maximum amplitude of the CF
displacement along the span versus Ur. Red stars, frequency ratio fy/fn1; blue diamonds,
maximum amplitude of the CF displacement. Cases in the same modal group (same
dominant mode in both the IL and the CF directions) are labelled together with the
black dashed arrow. Starting from Ur = 8.84, in the same modal group the maximum
of Ay/d monotonically increases with Ur, but during the modal group switch, both the
maximum of Ay/d and the frequency ratio fy/fn1 jump. The fy/fn1 of the ‘2n : n’ modal
group highlighted by the black box, for example modal group ‘6/3’, shows that the actual
vibration frequency is larger than the natural modal frequency predicted in still water.
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FIGURE 7. (Colour online) Frequency ratio and maximum amplitude of the IL
displacement along the span against Ur. Red stars, frequency ratio fx/fn1; blue diamonds,
maximum amplitude of the IL displacement. Starting from Ur = 8.84, in the same modal
group the maximum of Ax/d monotonically increases with Ur, but during the modal group
switch, both the maximum of Ax/d and the frequency ratio fx/fn1 jump.
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FIGURE 8. (Colour online) Frequency response of the reconstructed fluid forces along the
span at U= 0.19 m s−1 (Ur = 18.1): (a) in the CF direction, apart from the 1st harmonic
(7.27 Hz), the 3rd force harmonic (21.81 Hz) is found, even though it is barely visible in
the displacement frequency response in figure 3(a), and the inset figure plots the frequency
response of the reconstructed fluid forces in the CF direction at z/d =−160; (b) in the
IL direction, the 2nd harmonic (14.54 Hz) dominates.

dominant mode either in the IL or the CF direction switches. More interestingly, as
highlighted by the black box in figure 6, the response frequency of the ‘2n : n’ modal
group is larger than the predicted nth modal natural frequency in still water, which
indicates that the average added mass coefficient along the model in the CF direction
is smaller than 1.0. On the contrary, the frequency response of the ‘2n− 1 : n’ modal
group stays close to the predicted natural frequency.

3.2. Inverse hydrodynamic coefficients distribution along the flexible model and
comparison with the two-dimensional rigid cylinder hydrodynamic database

The fluid forces along the flexible model are reconstructed from the measured motion
data using the method presented in appendix B. Shown in figure 8, the case of Ur=
18.1 (U= 0.19 m s−1) is selected to represent the force frequency response along the
model. In the CF direction, there are two clear force components corresponding to the
1st and 3rd harmonics, at 7.27 Hz and 21.81 Hz, despite the fact that the 3rd harmonic
motion can be barely detected in the displacement response shown in figure 3(a). The
existence of such a high harmonic force component in the CF direction has been
reported in a previous experiment on the rigid cylinder vibration (Du, Jing & Sun
2014). In the IL direction, the 2nd harmonic force component at 14.54 Hz dominates
the response.

The relative motion between the cylinder and the forming vortices can significantly
alter the VIV response, as pointed out by Sarpkaya (2004). The forced vibration
experiment on rigid cylinders with combined harmonic IL and CF motions by Dahl,
Hover & Triantafyllou (2006) revealed that in addition to the imposed vibration
frequency and amplitudes in the IL and the CF directions, the phase angle between
the IL and the CF motions, θ , is also a critical parameter that determines the variation
of the hydrodynamic coefficients. In particular, a counter-clockwise trajectory, defined
as a figure-eight motion where the IL velocity at the CF motion extremes is against
the oncoming stream, results in strong energy-in, from the flow to the structure.
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Sinusoidal motions were prescribed in the IL and the CF directions, y= cos(ωt) for
the CF motion and x= cos(2ωt+ θ) for the IL motion.

A key question is whether the hydrodynamic coefficients from the two-dimensional
(2-D) forced vibration of the rigid cylinder can predict the fluid forces along the
flexible cylinders in uniform flow. Based on equations (B 4) to (B 6) (in appendix B),
the hydrodynamic coefficients along the flexible model were calculated and were
compared directly with the newly constructed hydrodynamic coefficients database,
that also includes the database of the forced IL and CF coupled vibration performed
by Dahl (2008) and Zheng et al. (2014a). For hydrodynamic coefficient comparison,
the following four parameters (Vr, Ax/d, Ay/d and θ ) need to be matched between the
flexible cylinder vibration at each location and the rigid cylinder prescribed motion.

In figures 9(a) and 9(b), we plot the Ax/d and Ay/d, as well as θ along the flexible
model at Ur = 12.66 of modal group ‘4/2’ and at Ur = 13.61 of modal group ‘5/3’,
respectively. The black dashed line in figures 9(a) and 9(b) marks a phase angle
value of θ = π (a phase value in the range θ ∈ [0, π] represents a counter-clockwise
trajectory, while θ ∈ [π, 2π] represents a clockwise trajectory). From figures 9(c) to
9( j), we show the four hydrodynamic coefficients distribution along the model and
compare them against the rigid cylinder hydrodynamic database: Clv, Cmy, Cdv and
Cmx. Two important points can be noted. First, based on the phase and displacement
response, we observed that at the IL node, the phase undergoes a π change, and
this causes a discontinuous distribution of phase along the model, as also noted in
(Bourguet, Karniadakis & Triantafyllou 2013). Second, by comparing the flexible
model coefficients with those of the rigid cylinder experiments, despite the difference
in Reynolds numbers, (O(102) to O(103) for the flexible cylinder experiment, and
O(104) for the rigid cylinder experiment), a good match is found for hydrodynamic
coefficients between rigid and flexible cylinder experiments. It is worth noting that for
the rigid cylinder CF-only free vibration in uniform flow, the experiment conducted
by Govardhan & Williamson (2006) showed that Ay/d increases from 0.6 to 1.3 as
Re increases in from 500 to 33 000, but the current research focuses on the rigid
and flexible cylinders in both IL and CF directions, for which both the experimental
measurements by (Dahl et al. 2010) and current results show that Ay/d is not strongly
dependent on Re as the CF only vibrations are.

Furthermore, we note from figures 9(c) and 9(d) for the lift coefficient in-phase
with the velocity Clv, that the region of positive energy transfer from the fluid to the
structure is mainly associated with a counter-clockwise (CCW) trajectory. This was
first established in the rigid cylinder experiment by Dahl et al. (2006) and flexible
cylinder simulations by Bourguet et al. (2011).

The added mass coefficient plays an important role in VIV because it can vary
as a function of frequency and amplitude, and can alter the natural frequency of the
system significantly. For example, in figures 9(e) and 9( f ), the added mass coefficient
in the CF direction Cmy is found to be drastically different between Ur = 12.66 and
Ur = 13.61. Here Cmy is found larger than 0 along the flexible model at Ur = 13.61
of the modal group ‘5/3’; on the contrary, at Ur = 12.66 of the modal group ‘4/2’,
both negative and positive values of Cmy can be observed at different locations of the
model. At Ur= 12.66, it can be seen that the positive and negative regions of Cmy are
separated by a jump at the IL node, where θ changes abruptly by π. In contrast to
the large variation Cmy along the model, the added mass coefficient in the IL direction,
Cmx, remains flat.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

73
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.738


828 D. Fan, Z. Wang, M. S. Triantafyllou and G. E. Karniadakis

A/d

Model response for Ur = 12.66

6
5
4
3
2
1
0

1.0
0.8
0.6
0.4
0.2

0

Model response for Ur = 13.61

œ

Ay/d
Ax/d
œ

Cl√

Cmy

Cd√

3
2
1
0

-1
-2-240 -180 -120 -60

Cl√ for Ur = 12.66
0

3
2
1
0

-1
-2-240 -180 -120 -60

Cl√ for Ur = 13.61
0

3
2
1
0

-1
-2

-240 -180 -120 -60
Cmy for Ur = 12.66

0

3
2
1
0

-1
-2

-240 -180 -120 -60
Cmy for Ur = 13.61

0

0.6
0.4
0.2

0
-0.2
-0.4-240 -180 -120 -60

Cd√ for Ur = 12.66
0

0.6
0.4
0.2

0
-0.2
-0.4-240 -180 -120 -60

Cd√ for Ur = 13.61
0

Cmx

3
2
1
0

-1
-2

-240 -180 -120 -60

Cmx for Ur = 12.66

0

3
2
1
0

-1
-2

-240 -180 -120 -60

Cmx for Ur = 13.61

0
z/d z/d

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)Cmx - f
Cmx - r

Cd√ - f
Cd√ - r

Cmy - f
Cmy - r

Cl√ - f
Cl√ - r

-240 -180 -120 -60 0

6
5
4
3
2
1
0

1.0
0.8
0.6
0.4
0.2

0 -240 -180 -120 -60 0

FIGURE 9. (Colour online) Displacement response and reconstructed hydrodynamic
coefficients. (a,c,e,g,i), Ur = 12.66 of modal group ‘4/2’; (b,d, f,h,j), Ur = 13.61 of modal
group ‘5/3’. Good agreement can be observed between the hydrodynamic coefficient
distribution along the span of the flexible model (solid line) and the predicted value from
the rigid cylinder database (dashed line). The two different modal groups, ‘4/2’ and ‘5/3’,
exhibit drastically different qualitative behaviour in the added mass coefficient distribution
along the model.
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FIGURE 10. (Colour online) Experimental results of the displacement and the phase
response (a,c,e) and Clv distribution (b,d, f ) along the model: (a,b) Ur = 14.54; (c,d) Ur =

16.38; (e, f ) Ur = 18.1. As the reduced velocity Ur increases, the asymmetry of the CF
amplitude (solid blue line) increases.

3.3. Cross-flow asymmetric response and distribution of lift coefficient in-phase with
the velocity

Figure 10 presents the amplitude, phase response, and Clv distribution along the
flexible model at Ur= 14.54 of the modal group ‘5/3’, Ur= 16.38 of the modal group
‘6/3’ and Ur= 18.1 of the modal group ‘6/3’. For all three values of Ur, the cylinder
responds in the 3rd mode in the CF direction. With increasing Ur, the distribution of
the CF displacement changes from a small and symmetric response to an asymmetric
response with a prominent peak. In figure 11, we plot the relative phase α of the
oscillation at different locations along the flexible model span in the CF direction.
The relative phase α is defined as zero at z/d = −240 and as the angle of the
oscillation at each location. Comparing the blue line of Ur = 14.54 and the black line
of Ur= 18.1 in figure 11, as the CF response changes from symmetric to asymmetric,
the α distribution has a smoother transition at the CF node, which indicates a stronger
mixture of travelling and standing wave responses (Bourguet et al. 2013).

Comparing the amplitude response with the Clv distribution, four interesting points
can be raised. First, in general the rigid cylinder database can capture the distribution
of Clv along the model. Second, the θ values corresponding to the CCW trajectory
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FIGURE 11. (Colour online) Relative phase α of the CF vibration at different locations
along the span of the flexible model for blue, Ur=14.54; red, Ur=16.38; black, Ur=18.1.
For visual clarity, we assign an offset for blue and black curves.

are associated with the positive energy-in from the fluid to the structure. Third, when
the CF amplitude is smaller, the Clv distribution also obtains a smaller amplitude both
positively and negatively, shown in the comparison between Ur=14.54 and Ur=16.38
(see figure 10). Last, for the asymmetric CF response with a mixture of standing and
travelling wave patterns, Clv is also found asymmetrically distributed along the flexible
model, with the region of large negative values associated with the large CF amplitude,
shown in figure 10( f ) at Ur = 18.1.

From the samples of Clv measured via the rigid cylinder forced vibration in
appendix D, we find that θ corresponding to the CCW motion are associated with
the positive Clv when Ay/d is small, while Clv is largely negative for clockwise
motion. In addition, Clv decreases with increasing Ay/d and Ax/d. In the experiment,
when the flexible cylinder vibrates at the onset of the 3rd mode in the CF direction
at Ur = 14.54, the amplitude response is small, as the true reduced frequency of
the vibration is large and far away from the Strouhal frequency. It is similar to the
low mass ratio rigid cylinder free vibration at the start of the initial branch with a
large reduced frequency corresponding to small CF amplitudes (Jauvtis & Williamson
2003). With the increase of Ur, the true reduced frequency of the flexible cylinder
decreases and gets close to the Strouhal frequency, so the fluid and structure coupling
effect becomes stronger. This results in a larger CF amplitude associated with a
stronger energy exchange between the fluid and the structure in the CF direction.
Therefore, comparing Ur = 16.38 to Ur = 14.54, shown in figures 10(b) and 10(d),
we see a larger magnitude for both negative and positive Clv distribution along the
model span. Further increasing Ur, the CF amplitude tends to get larger, and if the
CF amplitude remains symmetric and hence increases altogether along the span, more
energy is required from the fluid to the structure, as the structure dissipates more
energy via damping over one vibration cycle. However, in general, Clv decreases with
increasing Ay/d (such a trend can be seen in figure 27 in appendix B of the rigid
cylinder forced vibration) and therefore the energy balance between the fluid and the
structure cannot be maintained. Subsequently, due to the alternative clockwise (CW)
and CCW θ distribution along the flexible model, the asymmetric response in the
CF direction is allowed to grow. A large amount of fluid energy transfers into the
flexible model in its small Ay/d and CCW θ region, and then transmits inside the
flexible model, which leads to the appearance of a stable travelling wave. Due to the
finite length of the model, a standing wave response with a large amplitude forms
close to the boundary due to the reflection, and the ambient fluid helps the structure
to dissipate energy at that region with a large CF amplitude.
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3.4. Modal group switch and added mass variation in and between modal groups
In the previous sections we showed that the sectional hydrodynamic coefficients for a
flexible cylinder are predicted accurately by the forced vibration experiment on rigid
cylinders. In this section, we focus on understanding why the added mass coefficient
in the CF direction undergoes such large variations and why it is different for different
modal groups.

The spatial mean added mass coefficient Cm in either the IL or the CF direction for
the flexible cylinder is calculated for all Ur based on the following equation:

Cm =
1
L

∫ L

0
Cm(z) dz. (3.1)

The reconstructed Cm from the motion data and the corresponding predicted values
from the rigid cylinder experiments are plotted together against Ur in figure 12 for
Cmy and figure 13 for Cmx. Both figures show good agreement between the flexible
cylinder measurements and the rigid cylinder prediction. We obtained that the averaged
relative difference of Cmy between the measurement of the flexible cylinder (250 6
Re 6 2 300) and the prediction of the rigid cylinder forced vibration (Re = 5 715),
namely (|Crigid

my −Cflex
my |)/|Cflex

my |, is around 17.4 %. The Cmy exhibits different behaviour
in the modal group ‘2n : n’ (highlighted in figures 12 and 13 with a shaded region)
and the modal group ‘2n−1 :n’. Values of Cmy in the modal group ‘2n :n’ are close to
0.5, which drives the natural frequency of the flexible model to larger values than the
predicted nth modal frequency in still water, assuming Cm = 1.0. In contrast, Cmy in
the modal group ‘2n− 1 : n’ is larger than 1.0 (the black dashed line denotes Cmy= 1.0
in figure 12). The predicted true modal frequencies f true

nx and f true
ny for the IL and the

CF vibrations are given by equation (3.2) as follows:

f true
ny ' f true

ny =
n

2L

√
T

(µ+µy)
,

f true
nx ' f true

nx =
m
2L

√
T

(µ+µx)
,

 (3.2)

where µy = Cmyρ(π/4)D2 is the spatial mean added mass per unit length in the CF
direction, µx=Cmxρ(π/4)D2 is the spatial mean added mass per unit length in the IL
direction and T is the average tension along the model. The difference between f true

n

and f true
n is addressed in appendix C. In the current experiment, Cmy shows a large

variation between different modal groups, while Cmx does not vary much and stays
close to 0.5, as shown in figure 13.

As pointed out in Dahl et al. (2010), the effective IL and CF added mass
coefficients vary collaboratively in order to reach a true natural frequency ratio of
f true
nx /f

true
ny = 2.0, and a dual resonance of stable oscillations in both the IL and the CF

directions can be achieved. For the uniform flexible cylinder VIV, the same criterion
should be held for the fluid added mass, as the system’s true natural frequency has to
be altered in order to match the external frequency. It is shown in equation (3.3) that
the system’s true natural frequency, the system vibration frequency and the external
disturbance frequency, namely the shedding vortex frequency should coincide with
each other, i.e.

fy = f true
ny , fx = f true

nx ,

fx = 2fy = 2fv,

}
(3.3)
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FIGURE 12. (Colour online) Spatial mean added mass coefficient in the CF direction Cmy

as a function of Ur. Here Cmy > 1.0 corresponds to the modal group ‘2n − 1 : n’ and
Cmy < 1.0 corresponds to the modal group ‘2n : n’. The shaded area highlights the modal
group ‘2n : n’.
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FIGURE 13. (Colour online) Spatial mean added mass coefficient in the IL direction
Cmx as a function of Ur. Unlike Cmy, Cmx < 1.0 for all modal groups. The shaded area
highlights the modal group ‘2n : n’.

where fx and fy are the vibration frequencies of the flexible cylinder in the IL and the
CF directions, respectively, f true

nx and f true
ny are the true natural frequencies of the flexible

cylinder in the IL and the CF directions and fv is the vortex shedding frequency in
the cylinder wake. When m = 2n, the added mass coefficient in the IL and the CF
directions is given by the following equation, based on equations (3.2) and (3.3),

Cmy 'Cmx. (3.4)
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When m = 2n − 1, we also derived the following equation for the added mass
coefficient in the IL and the CF directions,

Cmy '
4n2
− (2n− 1)2

(2n− 1)2
m∗ +

4n2

(2n− 1)2
Cmx. (3.5)

In figure 12, we plot the predicted Cmy (black line) based on the Cmx in figure 13 (blue
line). Equations (3.4) and (3.5) give a large variation of the Cmy between different
modal groups from a relatively constant Cmx over Ur.

Next we focus on Ur = 10.75 of the modal group ‘4/2’, Ur = 12.66 of the modal
group ‘4/2’ and Ur = 13.61 of the modal group ‘5/3’ in order to explain how the
added mass changes when Ur increases in and between modal groups.

Figures 14 and 15 present the Cmy and Cmx predictions as a function of Vr and θ
from the forced oscillating rigid cylinder with matched Ax/d and Ay/d at different
locations along the flexible cylinder at Ur = 10.75, Ur = 12.66 and Ur = 13.61.
A detailed description of the added mass coefficient in both the IL and CF directions
with respect to Vr and θ is presented in appendix D. The grey transparent slices
highlight the true reduced velocity Vr and the solid black line denotes the θ
distribution. The intersection between the Cmy and Cmx contour and the θ line is
highlighted with the yellow diamond, denoting the predicted sectional Cmy and Cmx
of the flexible model via the rigid cylinder hydrodynamic database with the same
values of Ay/d, Ax/d, Vr and θ .

The flexible cylinder in uniform flow vibrates at the same frequency along the entire
model, resulting in the same Vr at each location. The θ distribution has a π phase
jump at the IL node. As shown from the rigid cylinder forced vibration experiment
(appendix B), θ has a strong influence on Cmy, and therefore Cmy changes drastically
at the IL node along the flexible cylinder. Furthermore, the effect of Ax/d and Ay/d
on Cmy is weak, so inside a half-wavelength of the IL response mode, Cmy keeps a
relatively constant value, which results in a stepped distribution of Cmy, as shown in
figure 14. In addition, similar to Cmy, Cmx also distributes along the model in a stepped
fashion, but compared to the large variation of Cmy distribution, Cmx changes slightly,
as shown in figure 15.

Here we give more details on what happens to the fluid added mass distribution
with an increasing Ur, and explain why the flexible cylinder switches modal group.
To begin with, as Ur increases from 10.75 to 13.61 (correspondingly, the towing
velocity changes from 0.11 m s−1 to 0.14 m s−1), the vortex shedding frequency
tends to increase. In order to maintain a stable flexible cylinder VIV in the lock-in
region, for the CF vibrations, the three frequencies have to be the same: fy, fv and
f true
ny , shown in equations (3.2) and equations (3.3). In each experiment, the mean

tension T , length L and structural mass per unit length µ of the model are fixed, and
only the mode number n and the spatial average fluid added mass per unit length µ
can be altered to change the structural natural frequency.

Figures 14(a) and 14(b) shows that with the increase of Ur from 10.75 to 12.66, the
flexible model still remains in the same modal group, but in order to match f true

ny and
the increasing fv, the Vr and θ distribution are adjusted to find a proper combination of
the fluid added mass distribution. Comparing figure 14(b) at Ur= 12.66 to figure 14(a)
at Ur = 10.75, the sectional Cmy at some locations along the model approaches its
negative minimum, predicted by the rigid cylinder forced vibration experiment. Further
increasing Ur (the towing velocity increases in the experiment), if the flexible model
is in the same modal group, a smaller µy is required in order to increase f true

ny for
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FIGURE 14. (Colour online) The Cmy values along the span of the flexible model
interpolated from the rigid cylinder forced vibration experiments. The colour contours of
Cmy are computed as a function of Vr and θ from the forced oscillating rigid cylinder with
the matched Ax/d and Ay/d. The θ distribution (the solid black line) and Vr (the shaded
plane) highlight the Cmy value at each contour plane (the yellow diamond).

higher fv. However, no corresponding Vr and θ distribution can be found, as at smaller
Ur, Cmy at different locations along the flexible model has already reached or is close
to the negative minimum. Note here that not only the fluid added mass has to be
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FIGURE 15. (Colour online) The Cmx values along the span of the flexible model
interpolated from the rigid cylinder forced vibration experiments. The colour contours of
Cmx are computed as a function of Vr and θ from the forced oscillating rigid cylinder with
the matched Ax/d and Ay/d. The θ distribution (the solid black line) and Vr (the shaded
plane) highlight the Cmy value at each contour plane (the yellow diamond).

adjusted to agree with equations (3.2) and (3.3), but also the net energy between the
structure and the fluid should be balanced, and hence there are also constraints on Clv

and Cdv.
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With no possibility of finding a proper added mass distribution to keep the same
modal response in the CF direction, the mode number of the flexible model vibration
needs to switch. Comparing figure 14(c) at Ur = 13.61 to figure 14(b) at Ur = 12.66,
the flexible model switches from the modal group ‘4/2’ to the modal group ‘5/3’.
With such mode number switch, the structure natural frequency experiences a big
jump – for example, it jumps from 2fn1 for Ur = 12.66 to 3fn1 for Ur = 13.61 in the
CF direction. However, the vortex shedding frequency increases slightly due to a small
increase of Ur, so the θ distribution and the Vr value of the flexible model have to
adjust accordingly, as shown in figure 14.

4. Coupled fluid-structure analysis: wake visualization via LES

For VIV problems, a vortical flow pattern analysis is crucial for a better
understanding of the mechanisms of coupled interaction between the fluid and the
structure. In this section, we provide results of wake visualization obtained through
numerical simulation of the flexible model, using uniform tension and the same model
structural properties as in the experiment. A total of eight cases, from Ur = 10.75 to
Ur = 17.22 are chosen for the simulation, covering a modal group switch from ‘4/2’
to ‘6/3’. Since the main focus of this section is to discuss the local and overall 3-D
vortical patterns around and in the wake of the flexible cylinder and their effects on
the model response and the fluid forces, the validation of the numerical model is
presented in appendix E, including an extensive comparison with the flexible cylinder
experimental results.

Figures 16 and 17 present the simulated results of the amplitude response, 3-D wake
patterns and the hydrodynamic coefficients distribution along the flexible cylinder at
Ur = 14.54 of the modal group ‘5/3’ and Ur = 17.22 of the modal group ‘6/3’. The
vortices are represented by isosurfaces of Q = 0.1 and coloured by ωz. We observe
that the vortex formation behind the model can be separated into different cells
along the flexible span. For example, figure 17 at Ur = 17.22 of the modal group
of ‘6/3’ shows that the flexible cylinder vortical wake can be divided into six zones
consisting of two patterns, alternatively distributed along the spanwise direction. These
two patterns correspond to one region of clear straight vortex tubes and the other
one of wavy vortex tubes with strong streamwise vortices, and such a pattern of the
three-dimensional instability has been reported for the rigid cylinder vibration both
experimentally (Wu et al. 1996) and numerically (Thompson, Hourigan & Sheridan
1996); the vortical tubes of the two regions connect with each other in ways that are
reminiscent of the patterns noted in Techet, Hover & Triantafyllou (1998).

In addition, by comparing the vortex patterns and Cmy distribution along the span
of the flexible cylinder, we found that the vortex shedding mode and the sign of the
sectional Cmy are strongly correlated: the mode ‘P+S’ or ‘2P’ appears in the region
of negative Cmy; the mode ‘2S’ is related to the positive Cmy region. In figures 16
and 17, the blue shaded region denotes the locations along the flexible model where
the vortex mode ‘P+S’ or ‘2P’ can be observed. This reveals a relationship between
the sign of the sectional Cmy and the local vortex shedding mode that the negative
Cmy is accompanied with the ‘P+S’ or ‘2P’ vortex mode.

Carberry, Sheridan & Rockwell (2005) performed an experiment on controlled
transverse-only oscillations of the rigid cylinder in uniform flow, and obtained that the
phase between the oscillating lift force and cylinder motion jumped discontinuously
when the vibration frequency was close to a threshold frequency (a frequency close
to the Strouhal frequency of a fixed rigid cylinder in the flow). Such phase jump led

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

73
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.738


VIV of flexible cylinder in uniform inflow 837

2 4
œ

60

-60

-120

-180

Ay/d
Ax/d
œ/π

-240
0 0.5

A/d

z/d

1.0
-1.2-0.6 0 0.6 1.2

Cmy
Cl√

-2 0 2
Cmy/Cl√

2
1
0

-1
-2

y

x
0 1 2 3 4 5 6 7 8 9 10

2
1
0

-1
-2

y

x
0 1 2 3 4 5 6 7 8 9 10

2
1
0

-1
-2

y

x
0 1 2 3 4 5 6 7 8 9 10

2
1
0

-1
-2

y

x
0 1 2 3 4 5 6 7 8 9 10

2
1
0

-1
-2

y

x
0 1 2 3 4 5 6 7 8 9 10

(a) (b) (c)

FIGURE 16. (Colour online) Simulation results at Ur = 14.54 of modal group ‘5/3’
(Re = 750). (a) Amplitude and phase response along the span of the flexible cylinder,
and the black dashed line denotes θ = π; (b) snapshot of the vortices behind the
flexible model. Here vortices are represented by isosurfaces of Q = 0.1 and coloured
by ωz; (c) hydrodynamic coefficients of Clv (red dashed line) and Cmy (black solid line)
distribution along the span of the flexible cylinder, and the blue shaded region denotes the
sections along the flexible cylinder where the ‘P+S’ or ‘2P’ vortex mode is found locally,
while in the white region, the ‘2S’ vortex mode can be observed.
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FIGURE 17. (Colour online) Simulation results at Ur = 17.22 of modal group ‘6/3’
(Re = 900). (a) Amplitude and phase response along the span of the flexible cylinder,
and the black dashed line denotes θ = π; (b) snapshot of the vortices behind the
flexible model. Here vortices are represented by isosurfaces of Q = 0.1 and coloured
by ωz; (c) hydrodynamic coefficients of Clv (red dashed line) and Cmy (black solid line)
distribution along the span of the flexible cylinder, and the blue shaded region denotes the
sections along the flexible cylinder where the ‘P+S’ or ‘2P’ vortex mode is found locally,
while in the white region, the ‘2S’ vortex mode can be observed.
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to a sign switch of Cmy and a transition between the wake states: the mode ‘2P’ with
Cmy < 0; the mode ‘2S’ with Cmy > 0.

Note that for the uniform flexible cylinder in uniform flow, the true reduced velocity
Vr is constant along the entire model, so the appearance of the different vortex modes
must be the result of the change in the phase θ of the IL and the CF trajectories,
instead of the change in the frequency ratio between the vibration frequency and the
Strouhal frequency.

4.1. Three-dimensional wake structure behind the flexible cylinder: distortion of shed
vortices at IL nodes

In order to assess the spanwise correlation of the wake structure behind the flexible
model, a frequency and phase analysis is applied to the cross-flow component of the
flow velocity, located at three diameters downstream from the mean IL displacement.

Figures 18 and 19, each presents the PSD (subfigure c) and the phase distribution
(subfigure d) of the cross-flow component of the flow velocity at Ur = 14.54 and
Ur= 17.22, together with the IL and the CF amplitude response (subfigure a) and the
PSD of the CF displacement (subfigure b). Comparing subfigures (b) and (c) from
figures 18 and 19, it is shown that the ‘lock-in’ happens along the entire model span,
as the CF vibration frequency is equal to the vortex shedding frequency everywhere.
However, the phase analysis on the cross-flow velocity component reveals that at IL
nodes the phase of the flow velocity changes drastically, whereas it keeps a relatively
constant value along the half-wavelength between two adjacent IL nodes. At IL nodes,
the phase θ between the IL and CF trajectory undergoes a phase jump by π, which
leads to a change in the vortical structures, as reflected in the snapshots of the local
vortex shedding around IL nodes over one vibration cycle in figure 18(e) at Ur=14.54
and in figure 19(e) at Ur = 17.22. We can see that there is a shift of the vortex tubes
(positive vortex in yellow) in space as well as a vortex pattern switch above and below
the black dash line denoting one of the IL nodes along the flexible model.

Specifically, at Ur = 17.22, along the span of the cylinder, the vortices shed in
cells that are separated by the IL nodes, and the relative motion between the local
cylinder oscillation and vortex formation also breaks into the same cells, which
explains the variation of the added mass along the flexible model span, shown in
figure 17(c). At Ur = 14.54, the response is a modal group ‘5/3’ (model group type
‘2n− 1/n’), but unlike case of Ur = 17.22, here the IL and CF nodes do not coincide
with each other. As shown in figure 18, apart from the dislocation of the vortex
tube around z/d = −50, z/d = −94, z/d = −146 and z/d = −189 where IL nodes
reside in, an interesting phenomenon called the ‘void’ vortex shedding region could
be observed at z/L =−82 and z/L =−158, both of which are CF nodes. A similar
phenomenon has been reported experimentally by Gilbert & Sigurdson (2010) and
Bangash & Huera-Huarte (2015). However, note that in the previous experiments,
the ‘void’ regions appear at IL node and CF anti-node, which is different from
the current simulation results. The difference may be due to different Re, vibration
mode number and, perhaps more importantly, the IL vibration amplitude. Unlike the
current simulation, the IL amplitude is much smaller than the CF amplitude in the
aforementioned two experiments. The ‘void’ vortex shedding region is accompanied
with the local vortex pattern change, e.g. an attached symmetric non-shedding vortex
pair behind the cylinder as reported by Bangash & Huera-Huarte (2015), which leads
to a large local variation of Cmy, shown in figure 18 of z/d=−70 to z/d=−90 and
z/d=−150 to z/d=−170.
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FIGURE 18. (Colour online) Linking the structural response (a–d) with the wake
patterns (e). The simulation results show the dislocation of the shed vortex tubes around IL
nodes at Ur = 14.54, highlighting the ‘2S’ mode both above and below the black dashed
line: (a) the IL and the CF amplitude response; (b) the PSD of the CF displacement;
(c) the PSD of the CF flow velocity; (d) phase difference α of the CF flow velocity; (e) a
series of snapshots of the vortex shedding over one period at t= 0, t= 1

4 T , t= 1
2 T , t= 3

4 T
and t = T from left to right, where T is the vibration period at Ur = 14.54. The black
dashed line marks location z/d = −48. Note that the CF flow velocity is taken at three
diameters downstream from the mean IL displacement and the vortices are represented by
isosurfaces of Q= 0.1 and coloured by ωz.

4.2. Cross-sectional 2-D wake pattern: CF motion versus local vortex shedding
As pointed out by Sarpkaya (2004), in flexibly mounted rigid cylinder experiments,
a slight change of the relative motion between the cylinder oscillation and vortex
formation can alter the hydrodynamic coefficients and the VIV response significantly.
In this section, we use the 2-D snapshots of the spanwise field around the oscillating
cylinder to explain the noted changes in the hydrodynamic coefficients.

Figures 20 to 23 provide five consecutive 2-D snapshots of the ωz field around the
flexible cylinder at a given location for Ur= 14.54 and Ur= 17.22 over one period of
the CF vibration. In subfigures ( f ), we plot the time trace of the cylinder CF motion
(black) as well as the lift coefficient (blue) at the corresponding location, with the red
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FIGURE 19. (Colour online) Linking the structural response (a–d) with the wake patterns
(e). The simulation results show the dislocation of the shed vortex tubes around IL nodes
at Ur=17.22, highlighting the ‘2S’ mode above the black dashed line and the ‘P+S’ mode
below the black dashed line: (a) the IL and the CF amplitude response; (b) the PSD of
the CF displacement; (c) the PSD of the CF flow velocity; (d) phase difference α of the
CF flow velocity; (e) a series of snapshots of the vortex shedding over one period at t= 0,
t = 1

4 T , t = 1
2 T , t = 3

4 T and t = T from left to right, where T is the vibration period at
Ur = 17.22. The black dashed line marks location z/d = −200. Note that the CF flow
velocity is taken at three diameters downstream from the mean IL displacement and the
vortices are represented by isosurfaces of Q= 0.1 and coloured by ωz.

circles denoting the time of the snapshots. At z/d=−210 for Ur= 17.22 in figure 20,
Cmy is a small negative value, as the subfigures ( f ) show that the fluctuating lift force
of a small amplitude is in-phase with the acceleration. Subfigures (a) to (e) display
a flow pattern as follows: at the bottom of the cylinder trajectory (subfigures a), one
CCW vortex is about to detach from the cylinder rear, while a CW vortex forms in
the upper shear layer. In subfigures (b), as the cylinder moves upwards, the CW vortex
extends across the cylinder rear and pairs with the rolled-up CCW vortex in the wake.
In subfigures (c), the cylinder then moves to the top of its oscillation where the CW
vortex is stretched to split into two CW vortices. When the cylinder moves downwards
in the second half-cycle of the oscillation (subfigures d), one of the two CW vortices
moves together with the previously shed positive vortex, resulting in a vortex pair
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FIGURE 20. (Colour online) Simulation results of 2-D snapshots of the vortices at
z/d = −185 for Ur = 17.22 over one period of CF oscillation: (a–e) instantaneous field
of ωz; ( f ) time trace of the cylinder CF motion (a–c) and the oscillating lift force (d–f ).
The red circle highlights the corresponding time from (a) to (e).
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FIGURE 21. (Colour online) Simulation results of 2-D snapshots of the vortices at
z/d = −210 for Ur = 17.22 over one period of CF oscillation: (a–e) instantaneous field
of ωz; ( f ) time trace of the cylinder CF motion (a–c) and the oscillating lift force (d–f ).
The red circle highlights the corresponding time from (a) to (e).

detaching from the cylinder in the lower half of the wake. In the meantime, the other
CW vortex rolls up and is ready to detach from the cylinder in the upper half of the
wake. This results in a shedding mode of ‘P+S’ (Williamson & Govardhan 2008).
Meanwhile, at z/d =−185 for Ur = 17.22 in figure 21, Cmy exhibits a large positive
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FIGURE 22. (Colour online) Simulation results of 2-D snapshots of the vortices at
z/d = −90 for Ur = 14.54 over one period of CF oscillation: (a–e) instantaneous field
of ωz; ( f ) time trace of the cylinder CF motion (a–c) and the oscillating lift force (d–f ).
The red circle highlights the corresponding time from (a) to (e).

value, as the subfigures ( f ) show that the fluctuating lift force of a large amplitude is
in anti-phase with acceleration. Subfigures (a) to (e) display a different flow pattern of
a classical ‘2S’ mode, compared to the ‘P+S’ mode found in the CW Cmy region, as
follows: at the bottom of the cylinder trajectory (subfigures a), one CW vortex is about
to leave the cylinder in the upper half of the wake, while a CCW vortex forms on
the upper half of the cylinder rear. In subfigures (b), as the cylinder moves upwards,
the upper negative shear layer grows at the cylinder back and, in the meantime, the
CCW vortex rolls up and is ready to detach. In subfigures (c), the cylinder then moves
to its top of the oscillation where the CCW vortex moves downstream in the lower
half of the wake. When the cylinder moves downwards in the second half-cycle of
the oscillation (subfigures d), another CW vortex grows in strength in the upper half
of the wake and then the whole process repeats from subfigures (a).

Comparing the vortex formation around the oscillating cylinder between the regions
of Cmy < 0 and Cmy > 0, a clear difference can be seen in the timing of the vortex
formation relative to the cylinder motion. Furthermore, it is found that for the
positive Cmy region with the ‘2S’ mode, the shedding vortex forms close to the
moving cylinder, compared to the negative Cmy region with the ‘P+S’ mode, which
is also observed in the CF-only rigid cylinder vibration of controlled trajectory by
Carberry et al. (2005). Nonetheless, in order to thoroughly understand the coupling
mechanism between the vortex shedding and cylinder vibration, more simulations
and experiments of the rigid cylinder vibrating with controlled in-line and cross-flow
coupled trajectories are needed, as well as more studies of the effect of the in-line
motion on the forces and the wake patterns.

Furthermore, at z/d = −90 and z/d = −145 for Ur = 14.54 of the model group
‘5/3’ figures 22(a–e) and 23(a–e) display a flow pattern of the classical ‘2S’ mode,
similar to the flow pattern in the region of large positive Cmy for Ur= 17.22. However,
at Ur = 14.54, the vortices no longer form at the upper- or lower-half side of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

73
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.738


844 D. Fan, Z. Wang, M. S. Triantafyllou and G. E. Karniadakis

0 1 2 3 4 5 6 7 8 9 10
x

0 1 2 3 4 5 6 7 8 9 10
x

0 1 2 3 4 5 6 7 8 9 10
x

0 1 2 3 4 5 6 7 8 9 10
x

0 1 2 3 4 5 6 7 8 9 10
x

2
1
0

-1
-2

y

2
1
0

-1
-2

2
1
0

-1
-2

2
1
0

-1
-2

2
1
0

-1
-2

y

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

tU∞/d

0.2
0

-0.2

0.2
0

-0.2

Cl

A y
/d

(a) (b) (c)

(d) (e) (f)

-4 -3 -2 -1 0 1 2 3 4

FIGURE 23. (Colour online) Simulation results of 2-D snapshots of the vortices at
z/d = −145 for Ur = 14.54 over one period of CF oscillation: (a–e) instantaneous field
of ωz; ( f ) time trace of the cylinder CF motion (a–c) and the oscillating lift force (d–f ).
The red circle highlights the corresponding time from (a) to (e).

cylinder, instead they appear directly at the rear of the cylinder, close to the centre
line of the cylinder CF oscillation. As a result, the cylinder wake is narrower with
the cores of the alternating CCW and CW vortices aligned with the centre line of
the cylinder CF motion. In contrast, in figure 20 of ‘2S’ vortex mode, CCW and CW
vortices distinctively occupy the upper- and lower-half of the wake, which leads to a
wider wake.

5. Conclusion
We studied experimentally and numerically the vortex-induced vibrations of a long

flexible cylinder in uniform flow over a wide range of reduced velocity, aiming
at answering key questions for flexible cylinder VIV prediction namely: what is
the relation between the hydrodynamic data for a rigid cylinder versus those for a
flexible model, and what is the role of the variable added mass coefficients. Based on
a comparison between the hydrodynamic coefficients measured through rigid cylinder
forced oscillation at Re= 5 715, and the sectional fluid coefficients reconstructed from
the flexible cylinder vibration at Re in the range of 250−−2 300, we conclude that
a rigid cylinder undergoing the same prescribed cross-flow and in-line motion as a
section of the flexible cylinder, can predict the sectional hydrodynamic coefficients
at that location accurately. Furthermore, by studying the extensive hydrodynamic
database constructed via rigid cylinder forced oscillation, we elucidate some of the
complex physics behind the flexible cylinder VIV in uniform flow, as follows.

The phase θ between cross-flow and in-line response has a strong influence on the
hydrodynamic coefficients for both rigid and flexible cylinders.

The lift coefficient in-phase with the velocity Clv along the oscillating flexible
cylinder is found to be strongly correlated with the phase θ . The positive Clv region,
where energy is transferred from the fluid to the structure, favours a phase of
θ ∈ [0,π] corresponding to counter-clockwise IL and CF trajectories. In addition, the
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cylinder vibration amplitude and the true reduced velocity are key factors affecting
Clv. As the reduced velocity is increased while the flexible cylinder vibrates at
the same cross-flow mode, an asymmetric amplitude response appears along the span
containing a mixture of standing and travelling waves. Positive Clv of large magnitude
is found in locations with small cross-flow amplitude and counter-clockwise phase
distribution, while a vibration of large amplitude damps out the energy transferring it
from the structure to the fluid.

The added mass coefficient in the cross-flow direction Cmy varies significantly along
the flexible cylinder due to the effect of the phase θ distribution along the span; a
similar change of Cmy as a function of the phase angle was found also in rigid cylinder
experiments (Dahl 2008). At two different reduced velocities, the Cmy distribution may
be significantly different, adjusting the system’s true natural frequency in the cross-
flow direction in order to match the vortex shedding frequency.

The added mass coefficient in the in-line direction Cmx is found to have a smaller
variation along the flexible cylinder and as a function of the reduced velocity,
compared to Cmy. However, the span-averaged Cmx and Cmy are interrelated, in
order to reach a dual resonance in both the in-line and the cross-flow directions.

Identifying the wake patterns behind an oscillating flexible cylinder is essential to
explain the form of the hydrodynamic coefficient distribution and predict the structural
response of the system. Using LES, we found that in the wake of the oscillating
flexible cylinder in uniform flow, vortices shed spanwise in cells defined between
adjacent IL nodes; continuous vortex tubes dislocate in space at IL nodes, while the
interesting phenomenon of a ‘void’ vortex shedding region is observed at a CF node
provided the same point is not also an IL node. Hence, the IL motion changes in
phasing along the span can affect the cross-flow vibration due to different timing of
the vortex formation as well changes in the vortex shedding mode. In particular, a
negative cross-flow added mass coefficient Cmy is strongly correlated with the vortex
shedding mode ‘P+S’.
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Appendix A. Underwater optical measurement system
In current experiments, the underwater optical measurement system uses sports

cameras ‘GoPro Hero 4 Black’, the technical details of which can be found in
GoPro (2014). The camera resolution calibration is performed in the water for the
mode ‘240 FPS + 720 p’ (the sampling rate is 240 Hz and the frame size is
1280 × 720 pixel), and the following equation of the resolution per pixel (R) as a
function of the distance between camera and cylinder (x) centre is found:

R= A+ Bx, (A 1)

where x is the distance between the camera and cylinder centre in units of cm,
A is found to be 0.0009, B is found to be 0.003961 and R is the resolution per
pixel in units of mm pixel−1. For the entire measurement system, three cameras are
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Flexible
Cylinder model
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ATI 6axis

FIGURE 24. (Colour online) Schematic and photograph of the flexible cylinder experiment
set-up in the tow tank: (a) top view of downstream and side cameras 160d and 100d away
from the centre of the model; (b) front view of five cameras downstream of the model;
(c) side view of three cameras on the side of the model; (c) photo, the actual set-up of
the flexible model on the supporting frame in the tow tank.

installed over 160d downstream of the model and five cameras are installed 100d
beside the model to measure CF and IL vibrations, respectively, along the entire
flexible cylinder, shown in figure 24. Taking one of the cameras downstream of the
model as an example, the resolution per pixel of the camera for the model plane is
0.3178 mm pixel−1, which means that one diameter of the cylinder d = 5 mm has
15.74 pixels.

In order to capture and follow the trajectory of the white and black markers, a code
for image processing and motion tracking has been developed (Fan & Triantafyllou
2017), which follows the general protocol of the motion-based multiple object tracking
method (Moeslund & Granum 2001). The key steps of image processing are shown
in the flowchart of figure 25. For each camera, in the rest step, an appropriate colour
threshold is selected to convert colour images into binary frames. Second, via blob
analysis, the centroids and the bounding boxes of the objects will be detected in the
current frame, and then the track prediction/assignment subroutine is executed. To
follow the object accurately, noise must be reduced. Based on the Euclidean distance
between the assigned track location of the current frame and the Kalman filter
predicted track location, it will decide whether to update the track position or delete
the track as it is viewed as noise. Furthermore, the eight cameras are synchronized
by the background lighting before running the each experiment. To this end, four
1500-lumen underwater lights will be switched on, creating a one video frame for
each camera with a sharp contrast background lighting as the synchronization signal.
Last, the calibration is applied on the measured marker movement in units of pixels
to the dimensionless vibration amplitude along the model.
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FIGURE 25. (Colour online) Flowchart of the imaging process and motion track method
for underwater optical measurement system with multiple cameras.

Appendix B. Inverse vortex force/coefficients in the experiment
Neglecting the bending stiffness contribution, the flexible cylinder can be modelled

as a taut string subject to distributed external forces, described by the following
equation:

µ
∂2u(x, t)
∂t2

−
∂

∂x

(
T
∂u(x, t)
∂x

)
+ β

∂u(x, t)
∂t

= F(x, t), (B 1)

where µ is the structural mass per unit length (without hydrodynamic added mass), T
is the model tension, β is the structural damping, u(x, t) is the displacement in either
the IL or the CF direction and F(x, t) is the external hydrodynamic force per unit
length on the model. With the dense temporal and spatial measurement of the model
displacement in the IL and the CF directions, we are able to inversely calculate the
vortex force Fj

i exerted on the model node j at time ti directly, as follows:

Fj
i =µ

uj
i+1 + uj

i−1 − 2uj
i

1t2
− T j u

j+1
i + uj−1

i − 2uj
i

1x2
+ β

uj
i+1 − uj

i−1

21t
. (B 2)

In the current experiment, the string model was clamped at both ends with boundary
conditions u0

= un
= 0. Therefore, the fluctuating non-dimensional hydrodynamic

coefficient at different locations along the model is calculated as follows:

C̃( j, t)=

Fj
i −

1
n

n∑
i=1

Fj
i

0.5ρU2d
, (B 3)

where ρ is the fluid density and U is the towing speed for each experiment case.
The force coefficient in-phase with the velocity Cv, the force coefficient in-phase

with the acceleration Ca, and the added mass coefficient Cm in either the IL or the
CF direction at location j along the model can be calculated as follows:

Cv( j)=

2
Ts

∫
Ts

(C̃( j, t) ˙̃ξ( j, t)) dt√
2
Ts

∫
Ts

(
˙̃
ξ 2( j, t)) dt

, (B 4)
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Ca( j)=

2
Ts

∫
Ts

(C̃( j, t) ¨̃ξ( j, t)) dt√
2
Ts

∫
Ts

(
¨̃
ξ 2( j, t)) dt

, (B 5)

Cm( j)=−
2U2

πd2
·

∫
Ts

(C̃( j, t) ¨̃ξ( j, t)) dt∫
Ts

(
¨̃
ξ 2( j, t)) dt

, (B 6)

where ξ̃ is the IL or the CF displacement non-dimensionalized by the model diameter
d, and ˙̃ξ and ¨̃ξ are the first and second derivatives of ξ with respect to time, namely
the non-dimensional velocity and acceleration.

Appendix C. Predicted true natural frequency

Using the mean tension T along the flexible cylinder and spatial average added mass
per unit length in either the IL or the CF direction µx and µy, the predicted modal
natural frequencies in either the IL or the CF direction f true

nx and f true
ny are given by the

following equation (C 1):

f true
nx =

n
2L

√
T

µ+µx
,

f true
ny =

m
2L

√
T

µ+µy
,

 (C 1)

Taking into consideration the non-uniform added mass Cm and tension T distribution,
based on the string vibration equation (B 1), we can form the following mass matrix
M with n nodes:

M =


µ+µ

(2)
x/y 0 . . . 0

0 µ+µ
(3)
x/y . . . 0

...
. . . 0

0 . . . 0 µ+µ
(n−1)
x/y

 , (C 2)

where µ( j)
x/y is the added mass per unit length in either the IL or the CF direction at

node j. We can also form the following stiffness matrix K :

K =
1
1x2


2T (2) −T (3) . . . 0
−T (2) 2T (3) . . . 0
...

. . . −T (n−1)

0 . . . −T (n−2) 2T (n−1)

 , (C 3)

where T ( j) is the tension at node j.
We can then acquire the corresponding eigenvalues of the system, namely the

predicted true modal natural frequency without damping f true
n . In figure 26, we
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FIGURE 26. (Colour online) Ratio between f true
ny1 and f true

ny1 over various reduced velocity
Ur. The difference between f true

ny1 and f true
ny1 is less than 5 %.

plot the ratio between the predicted true 1st modal natural frequency in the CF
direction f true

ny1 and the predicted 1st modal natural frequency in the CF direction f true
ny1

over different reduced velocities, and it shows that the difference between the two
predictions is less than 5 %. Hence, we can conclude that the predicted modal natural
frequency f true

n based on the spatial average added mass and mean tension along the
span is a good representative for the predicted true modal natural frequency in the
current experiment.

Appendix D. Hydrodynamic coefficients of the rigid cylinder in forced vibration
We have conducted extensive experiments for the rigid cylinder subject to forced

vibrations in uniform inflow with prescribed IL and CF motions. We combined these
new results with previous experimental results by Dahl (2008) and Zheng et al.
(2014a) to construct a hydrodynamic database for rigid cylinder VIV of coupled IL
and CF vibrations. In this section, we present some of these results of hydrodynamic
coefficients in order to quantify the general trend of the fluid forces of the rigid
cylinder undergoing IL and CF coupled oscillations.

D.1. The lift coefficient in-phase with the velocity Clv

The lift coefficient in-phase with the velocity Clv describes the energy transfer between
the structure and the fluid: when Clv is larger than zero, positive energy is transferred
from the fluid to the structure, and, on the other hand, when Clv is negative, the fluid
helps the structure to dissipate energy.

Figure 27 shows Clv contours as a function of Ax/d and Ay/d for the selected Vr and
θ from rigid cylinder forced vibration experiments. Comparing between figures 27(a)
and 27(b), we see that Clv is largely negative for clockwise motion, while it is positive
at small Ay/d for counter-clockwise motion. Furthermore, in general Clv decreases
with increasing Ay/d and Ax/d. In addition, shown in figures 27(b) and 27(d) for
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FIGURE 27. (Colour online) Contours of the lift coefficient in-phase with the velocity as
a function of Ax/d and Ay/d from the hydrodynamic coefficient database: (a) here Vr=5.5
and θ = 3π/2; (b) Vr = 5.5 and θ =π/2; (c) Vr = 4.75 and θ = 3π/2; (d) Vr = 4.75 and
θ = π/2. Bold black dashed line highlights the contour line of Clv = 0, and bold white
dashed line highlights the contour line of Clv =−2.

CCW trajectories, as Vr increases from 4.75 to 5.5 (namely the reduced frequency
fr decreases from 0.21 to 0.18), the positive area of Clv gets larger. By examining
figures 27(a) and 27(c), as Vr decreases from 5.5 to 4.75, generally the magnitude of
negative Clv decreases as well, indicated by the Clv =−2 contour line.

D.2. The added mass coefficient in the CF direction Cmy and in the IL direction Cmx

Due to the change of the relative timing between the cylinder motion and shedding
vortex, the true added mass coefficient of the cylinder may vary significantly during
the vortex-induced vibration. Figure 28 shows sample contours of the CF added mass
coefficient Cmy as a function of Vr and θ from the forced vibration experiment on
rigid cylinders for three different Ax/d and Ay/d combinations. We find that Cmy for
the coupled IL and CF vibration is strongly dependent not only on Vr but also on θ .
We note that:

(i) With increasing Vr, the area where Cmy is negative becomes larger (the bold black
dashed line highlights the contour line of Cmy = 0).

(ii) Negative values of Cmy are associated with θ values between π/2 and 3π/2.
(iii) The Cmy has a minimum value around Vr = 7 and θ =π.
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FIGURE 28. (Colour online) Contours of the added mass coefficient in the CF direction as
a function of Vr and θ from the hydrodynamic coefficient database: (a) here Ax/d= 0.15
and Ay/d= 0.80; (b) Ax/d= 0.10 and Ay/d= 0.80; (c) Ax/d= 0.10 and Ay/d= 0.50. The
bold black dashed line highlights the contour line of Cmy = 0.

In contrast to the effects of the reduced velocity and phase angle, as shown
in figures 28(b) and 28(c), the CF amplitude has a very weak influence on Cmy.
Figures 28(a) and 28(b) shows that the area with negative Cmy increases slightly with
increasing Ax/d. Figure 29 shows the contours of the IL added mass coefficient Cmx

as a function of Vr and θ from the forced vibration experiment on rigid cylinders.
The same as Cmy, Cmx strongly depends on Vr and θ , while the effect of Ax/d and
Ay/d is weak. Overall, Cmx varies more gently than Cmy.

Appendix E. Comparison between the simulations and experiments

In this section, we present the numerical simulation results and compare them with
the corresponding flexible cylinder experiments on the frequency and displacement
response.

We performed eight simulations with Ur from 10.75 to 17.22, covering the modal
group 4/2, 5/3 and 6/3. The simulation parameters in terms of mass ratio, aspect
ratio, structural damping ratio, Reynolds number and reduced velocity match with
those of the experiment well. Note that in the simulation the tension along the
flexible model is constant, while in the experiment the tension along the flexible
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FIGURE 29. (Colour online) Contours of the added mass coefficient in the IL direction as
a function of Vr and θ from the hydrodynamic coefficient database: (a) here Ax/d= 0.15
and Ay/d= 0.80; (b) Ax/d= 0.10 and Ay/d= 0.80; (c) Ax/d= 0.10 and Ay/d= 0.50. The
bold black dashed line highlights the contour line of Cmx = 0.

model linearly varies due to the gravity effect. Such difference will indeed affect the
modal shape of the displacement response. However, from the simulation result, we
observe that the main phenomenon of the modal group switch agrees well with the
experiment.

The frequency and the 1/10th highest peak of the displacement response in both the
IL and the CF directions are shown in figure 30 at Ur = 12.66 and figure 31 at Ur =

14.54. The simulation result here shows that the model responds in a narrow-band
single frequency pattern in the CF direction, while in the IL direction a dominating
2nd harmonics exists. The corresponding experimental displacement response at the
same reduced velocity Ur is plotted in the subfigures (b,d) of figures 30 and 31. The
simulation can reproduce accurately the modal group switch as that in the experiment,
e.g. the modal group 4/2 at Ur = 12.66 and the modal group 5/3 at Ur = 14.54. In
figures 32 and 33, we plot the 1/10th highest peak of the displacement response in
the IL and the CF directions for both the simulation (red) and the experiment (blue).
The simulation prediction agrees well with the experiment.

The maximum of the 1/10th highest peak of the displacement response in the IL
and the CF directions along the span is plotted in figure 34, together with the non-
dimensional frequency response (the blue dot represents the experiment, and the red
circle denotes the simulation). The results here show that the simulation reproduces
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FIGURE 30. (Colour online) Comparison between the simulation and the experiment on
the displacement response at Ur = 12.66: (a) the CF frequency response; (b) the CF
displacement response; (c) the IL frequency response; (d) the IL displacement response.

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

fd/U

0

-60

-120

-180

-240

0

-60

-120

-180

-240

z/d

z/d

(a)

(c) 0.15

0.10

0.05

0

1.0

0.8

0.6

0.4

0.2

0

A x
/d

A y
/d

(b)

(d)

0-60-120-180-240

0-60-120-180-240

z/d

Experiment
Simulation

FIGURE 31. (Colour online) Comparison between the simulation and the experiment on
the displacement response at Ur = 14.54: (a) the CF frequency response; (b) the CF
displacement response; (c) the IL frequency response; (d) the IL displacement response.
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FIGURE 32. (Colour online) Comparison between the simulation and the experiment on
the CF displacement response from Ur = 10.75 to Ur = 17.22.
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FIGURE 33. (Colour online) Comparison between the simulation and the experiment on
the IL displacement response from Ur = 10.75 to Ur = 17.22.

the phenomena of the increasing displacement response in the same modal group as
well as the displacement and frequency response jump between the different modal
groups. In addition, note that at Ur = 13.61, the simulation result of frequency and
displacement is different from the different initial conditions starting from either Ur=

12.66 or Ur = 14.54, which shows an interesting hysteresis phenomenon between the
modal group switch of the flexible cylinder.
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from Ur = 10.75 to Ur = 17.22: (a) the maximum of CF displacement response; (b) the
maximum of CF displacement response; (c) the non-dimensional frequency response in
the CF direction.
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