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Polymer additives can substantially reduce the drag of turbulent flows and the
upper limit, the so-called state of ‘maximum drag reduction’ (MDR), is to a good
approximation independent of the type of polymer and solvent used. Until recently, the
consensus was that, in this limit, flows are in a marginal state where only a minimal
level of turbulence activity persists. Observations in direct numerical simulations at
low Reynolds numbers (Re) using minimal sized channels appeared to support this
view and reported long ‘hibernation’ periods where turbulence is marginalized. In
simulations of pipe flow at Re near transition we find that, indeed, with increasing
Weissenberg number (Wi), turbulence expresses long periods of hibernation if the
domain size is small. However, with increasing pipe length, the temporal hibernation
continuously alters to spatio-temporal intermittency and here the flow consists of
turbulent puffs surrounded by laminar flow. Moreover, upon an increase in Wi, the
flow fully relaminarizes, in agreement with recent experiments. At even larger Wi,
a different instability is encountered causing a drag increase towards MDR. Our
findings hence link earlier minimal flow unit simulations with recent experiments and
confirm that the addition of polymers initially suppresses Newtonian turbulence and
leads to a reverse transition. The MDR state on the other hand results at these lowRe
from a separate instability and the underlying dynamics corresponds to the recently
proposed state of elasto-inertial turbulence.

Key words: drag reduction, turbulent transition, viscoelasticity

1. Introduction
The addition of small amounts of polymers to a turbulent flow is known to be one

of the most efficient drag reduction technologies. Since its discovery by Toms (1948),
it has been extensively used to mitigate friction losses in the pipeline transportation
of turbulent fluids. Polymer drag reduction has also become the subject of widespread
research aimed at understanding the physics underlying this phenomenon (see e.g.
review by White & Mungal (2008)). The amount of drag reduction that is achieved
increases with increasing polymer concentration, but it eventually saturates at an upper
limit known as the maximum drag reduction (MDR) state. A remarkable feature of
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this asymptotic limit is that it depends only weakly on the solvent and polymer
properties. While first reports on MDR trace back to the seventies (Virk, Mickley &
Smith 1970), a consensus about the nature of this limit is still lacking. The usual
observation of a continuous decrease in the friction factor with increasing polymer
concentration and the eventual saturation to MDR has led to the interpretation of
MDR as a marginal state of turbulence. However, why turbulence persists and does
not fully relaminarize, even though polymers obviously have the tendency to subdue
turbulence, has remained an open question.

It has been widely accepted for many years that MDR was a universal state
characterized by an empirical logarithmic velocity profile, i.e. Virk’s ultimate profile
(Virk et al. 1970). This motivated various theoretical efforts to derive the supposedly
universal profile (see e.g. L’vov et al. 2004; Benzi et al. 2006). However, there
is growing evidence that the mean velocity profile at MDR is neither logarithmic
nor universal (White, Dubief & Klewicki 2012; Elbing et al. 2013; White, Dubief
& Klewicki 2018). A number of phenomenological theories based on either the
viscous or elastic behaviour of the polymers have also been postulated to explain
the MDR phenomenon. It has been for example speculated that MDR might occur
when the elastic energy stored in the polymers becomes comparable to the flow
kinetic energy and polymers affect all flows scales (Sreenivasan & White 2000).
Another relevant theory was introduced by Warholic, Massah & Hanratty (1999), who
proposed that MDR takes place when the Reynolds shear stresses vanish, i.e. the
self-sustaining mechanism of Newtonian turbulence is fully suppressed, and the flow
is fully dominated by polymer stresses. Nevertheless, none of these phenomenological
theories has so far been entirely supported. More recent theories are based, to a
large extent, on direct numerical simulations using the FENE-P (finitely extensible
nonlinear elastic-Peterlin) model to describe the polymer dynamics. While the high
computational cost of viscoelastic simulations has limited numerical studies to
low-to-moderate Reynolds numbers, MDR occurs even at Reynolds numbers just
past transition, and so these studies offer valuable insights into the nature of this
phenomenon.

The interpretation of MDR as a marginal turbulent state has recently found support
in simulations performed by Xi & Graham (2010a,b, 2012a,b), henceforth referred
to as X&G, using minimal channels and a low Reynolds number (Re = 3600).
These authors observed that viscoelastic turbulence is characterized by the alternation
between intervals of high and low friction. The latter intervals, which they called
hibernating turbulence, were found to share several structural and statistical features
with MDR. Since the frequency and duration of these intervals increased gradually
with increasing polymer elasticity, they proposed that MDR might be a marginal
state of hibernating turbulence whose energy cannot be further reduced by polymer
activity. An alternative explanation to the MDR phenomenon was given by Samanta
et al. (2013). By combining experiments in pipe flow and simulations in channel flow,
they reported the existence of a secondary instability driven by the interplay between
elasticity and inertia at high polymer concentration. Such instability, which was called
elasto-inertial instability (EII), sets in at Reynolds numbers below those at which the
transition to turbulence occurs in Newtonian flows, providing an explanation to the
early turbulence phenomenon often observed in experiments (Ram & Tamir 1964;
Little & Wiegard 1970). In addition, the experiments showed that the friction factor
associated with the state resulting from the EII, named elasto-inertial turbulence (EIT),
agrees well with that of MDR. On this basis, the authors suggested that turbulent drag
reduction is eventually limited by the EII, which prevents flows from relaminarizing,
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and that the observed MDR friction factor values are simply the natural drag levels
of EIT.

To test these theories, Choueiri, Lopez & Hof (2018), hereafter C,L&H, investigated
the effect of increasing the polymer concentration on turbulent pipe flow in
experiments at constant Reynolds numbers. Surprisingly, for not too large Reynolds
numbers (Re < 4000), the addition of polymers resulted in full relaminarization.
Here, shear rates and concentrations were moderate, so that the EII had not occurred
yet while Newtonian turbulence was fully suppressed. Further addition of polymers,
however, destabilized the laminar flow and triggered the EII. Subsequently, the drag
increased and MDR was approached from the laminar limit. This scenario strongly
suggests that MDR is a state disconnected from Newtonian turbulence, thereby
supporting the theory that MDR is caused by the EII. On the other hand, the authors
observed that prior to relaminarization the flow becomes spatio-temporally intermittent
and consists of slugs and puffs. This is in principle in line with the temporal
intermittency observed by X&G. The main difference is that they proposed that the
low drag (or hibernating) phases correspond to the eventual MDR state, whereas the
intermittency in time and space observed by C,L&H is part of a reverse transition
and not the asymptotic state. To clarify this point, we carry out direct numerical
simulations of viscoelastic pipe flow at a similar Reynolds number (Re = 3500),
using short streamwise domain length (twice as long as in X&G), and following a
path in parameter space comparable to that of C,L&H. As will be shown below, the
dynamical scenario is in good agreement with that of X&G in that low drag periods
become longer and longer and appear to approach some asymptotic level as the
Weissenberg number (Wi) increases. However, for even larger Wi, the flow abruptly
relaminarizes.

Moreover, when the small computational domain is increased to more realistic
sizes, i.e. pipe lengths sufficiently large to contain a puff, the temporal intermittency
changes to spatio-temporal intermittency, revealing that, as reported in the experiments
by C,L&H, indeed, a reverse transition occurs with increasing Wi. At the same time,
the approach towards an almost constant drag level reported by X&G, and also found
in the small domains in the present study, does not persist in the large domains.
Instead, the flow returns to intermittent puffs and subsequently fully relaminarizes.
For even larger Wi, an instability occurs that, like in the experiments, leads to a
separate fluctuating dynamical state. Our computations hence qualitatively agree
with the experiments of C,L&H. While the dominant flow structures reported in
experiments of EIT are large scale streamwise streaks (Choueiri et al. 2018), in
simulations of EIT (Samanta et al. 2013; Dubief, Terrapon & Soria 2013) only small
near wall spanwise oriented vortical structures were found. In the present case we
find the same near wall spanwise vortical structures. These structures are found to
be localized and they give rise to large scale streamwise streaks, similar to those
observed in experiments.

2. Problem formulation and numerical methods

We investigate numerically the dynamics of a dilute polymer solution flowing
through a straight circular pipe at a constant flow rate. Polymer dynamics is
modelled using the FENE-P model (Bird, Dotson & Johnson 1980). Individual
polymer molecules are represented in this model as two inertialess spherical beads
connected by a straight nonlinear spring. The orientation and elongation of each
polymer molecule is determined by the end-to-end vector q connecting the two
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beads. The ensemble average of the tensor product of all end-to-end vectors defines
a positive–definite symmetric polymer conformation tensor, C= 〈q⊗ q〉, which allows
the problem to be formulated from a continuum medium approach.

2.1. Governing equations and dimensionless parameters
The governing equations are presented directly in dimensionless form. The pipe radius
R, the laminar centreline velocity ulc and the dynamic pressure ρu2

lc were chosen as
characteristic scales for length, velocity and pressure respectively; q was normalized
with
√

kTe/H, where k denotes the Boltzmann constant, Te is the absolute temperature
and H is the spring constant. The maximum polymer extension is indicated by the
dimensionless parameter L = q0/

√
kTe/H, where q0 is the maximum separation

between beads allowed by the spring. Cylindrical coordinates (z, θ, r) are used.
The temporal evolution of C is obtained by solving the following constitutive

equation

∂tC + v · ∇C = C · ∇v + (∇v)T · C − τ , (2.1)

where v = (u, v, w) is the velocity vector field and τ is the polymer stress tensor.
The first two terms on the right-hand side of (2.1) model polymer stretching due to
hydrodynamic forces, whereas τ represents the relaxation forces bringing the polymers
back to its equilibrium configuration. τ is computed using the Peterlin closure

τ =
1

Wi

 C

1−
tr(C)

L2

− I

 , (2.2)

where tr(C) denotes the trace of the polymer conformation tensor, I is the unit tensor
and Wi is the Weissenberg number; a dimensionless number quantifying the ratio of
the polymer relaxation time λ to the characteristic flow time scale R/ulc.

The fluid motion is governed by the continuity and Navier–Stokes equations

∇ · v = 0, (2.3)

∂tv + v · ∇v =−∇P+
β

Re
∇

2v +
(1− β)

Re
∇ · τ +

4(1+ α)
Re

êz, (2.4)

where P is the pressure, β = νs/ν measures the relative importance between the
solvent viscosity νs and the viscosity of the solution at zero shear rate ν, Re= ulcR/ν
is the Reynolds number and α is the fluctuating pressure gradient required to keep
a constant mass flux. Polymers modify the dynamics of Newtonian flows through
polymer stresses. These are incorporated into the conventional Navier–Stokes equation
through the divergence of the polymer stress tensor. The (1−β) prefactor multiplying
this term indicates the contribution of the polymers to the total viscosity and must
be small for a dilute polymer solution. Periodic boundary conditions are used in the
streamwise z and azimuthal θ directions, whereas the no-slip condition is imposed at
the pipe wall r= R.

In all simulations presented in this paper the Reynolds number was fixed to Re=
3500, for which the flow is turbulent in the Newtonian case, and Wi was used as
control parameter. We also fixed β to 0.9 which is the value corresponding to the
experiments of C,L&H at a concentration of 90 ppm. Given the values of β and
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L, polymers can be characterized by their extensibility number Ex = 2L2(1 − β)/3β
(Xi & Graham 2010b). For our simulations we have considered two different polymers
with very different extensibilities. The maximum extension of the first polymer type,
L= 30, was chosen so that its extensibility number, Ex = 66.6, coincides with one of
the cases presented in Xi & Graham (2010b). The second polymer type has a very
high extensibility, Ex= 2962.96 for L= 200, and it corresponds to the parameters used
in simulations of elasto-inertial turbulence by Dubief et al. (2013). These two cases
will be henceforth referred to as moderate extensibility ME and large extensibility LE
cases, respectively.

2.2. Numerical methods
The governing equations are solved in primitive variables using a highly scalable
pseudo-spectral solver recently developed in house. The code is parallelized using a
combination of the MPI and OpenMP programming models (see Shi et al. (2015)
for further details). Spatial discretization in the two periodic directions, z and θ ,
is accomplished via Fourier–Galerkin expansions, whereas central finite differences
on a Gauss–Lobatto–Chebyshev grid are used in r. Pressure and velocity in (2.4)
are decoupled through a pressure Poisson equation (PPE) formulation. An influence
matrix is used to impose the free divergence boundary condition directly on velocity,
thereby avoiding the use of artificial pressure boundary conditions. The equations
for the azimuthal and radial velocity components v and w are decoupled using the
change of variables, u+ =w+ iv and u− =w− iv (Orszag & Patera 1983).

The time integration was carried out using a second order accurate predictor–
corrector scheme based on the Crank–Nicolson method (Willis 2017). For a generic
variable X at a time n the predictor equation reads(

1
δt
− ic∇2

)
Xn+1

1 =

(
1
δt
+ (1− ic)∇2

)
Xn
+Nn, (2.5)

where N denotes the nonlinear terms, δt is the time step size and the constant ic
defines the implicitness of the method (ic = 0.5 in our simulations). The initial
estimate Xn+1

1 is then refined following an iterative correction procedure. At each
corrector iteration the nonlinear terms are re-evaluated and Xn+1

j is obtained solving
the following equation(

1
δt
− ic∇2

)
Xn+1

k+1 =

(
1
δt
+ (1− ic)∇2

)
Xn
+ icNn+1

k + (1− ic)Nn, (2.6)

where k= 1, 2, . . . . The iteration loop stops when ‖Xn+1
k+1−Xn+1

k ‖6 10−6. Convergence
usually occurs after one iteration of the corrector step. The additional computational
cost of computing the advective terms twice at each time step is compensated by
the larger δt allowed by this temporal scheme in comparison with other conventional
methods. The source terms in (2.1) and the term containing the divergence of the
polymer stress tensor in (2.4) are treated as nonlinear terms. Note that (2.1) is
hyperbolic and does not have any diffusive term (∇2X). This lack of dissipation
leads to numerical error accumulation which often causes spurious instabilities and
numerical breakdown. To avoid these problems we incorporate a small amount
of artificial diffusion to our simulations which enhances numerical stability. This
is accomplished by adding a Laplacian term (1/ReSc)∇

2C to the right-hand side
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Section Pipe length (R) mr mθ mz

3 (Sc = 0.5) 10 64 64 128
3 (Sc = 2) 10 128 128 256
4 20 64 64 256
4 40 64 64 512
4 100 64 64 1280
5 (EIT) 10 64 100 256
5 (EIT) 40 64 100 1280

TABLE 1. Number of radial nodes, mr, and Fourier modes, mθ and mz, used in the
simulations.

of (2.1), where Sc = ν/κ is the Schmidt number quantifying the ratio between
the viscous and artificial diffusivities. Unless otherwise specified, the simulations
presented in this paper were performed using Sc = 0.5. This yields an artificial
diffusion coefficient (1/ReSc)∼O(10−4) which is of the same order of magnitude as
in Xi & Graham (2010b), and quite below those of early works, e.g. Ptasinsky et al.
(2003), Sureshkumar, Beris & Handler (1997), where (1/ReSc) ∼ O(10−2). With the
inclusion of this Laplacian term two boundary conditions are needed: as suggested
in Beris & Dimitropoulos (1999) we impose that C at r = R must be the same as
without artificial diffusion, whereas symmetry boundary conditions are used at r= 0.

The numerical resolution of the simulations presented in this paper is shown in
table 1; δt is dynamically adjusted to ensure that the Courant–Friedrichs–Lewy (CFL)
condition always remains below 0.25.

3. Dynamics of viscoelastic pipe flow turbulence in short computational domains
Because of the additional equations for C and τ , viscoelastic turbulence simulations

are in computational terms far more demanding than Newtonian simulations.
A common approach to minimize the computational cost is to choose the smallest
domain size that computes reasonably accurate dynamics. On that basis, we have set
the pipe length to Lz = 10R, which is nearly the minimum size needed in Newtonian
pipe flow simulations to ensure that these are unaffected by streamwise periodicity.
The simulations were performed according to the following procedure. Starting from
a fully turbulent Newtonian solution, we increased Wi progressively by one unit, with
the exception of the range 66Wi6 8 in the LE case, where Wi was varied in intervals
of 0.25. The simulations were run over 2000R/ulc time units and as initial condition
we used a previously computed solution with Wi close to that being computed. The
averaged drag reduction percentage was calculated as DR%= (fN − f )/fN , where fN and
f are the average friction factors for the Newtonian and viscoelastic cases respectively.
The former is given by the Blasius friction law, fN = 0.079Re−0.25, whereas the latter
is calculated from the Fanning friction formula, f = τw/2ρU2

b , where Ub, τw and ρ
are the bulk velocity, average wall shear stress and fluid density respectively. For
each Wi, a set of 10 simulations was performed and the drag reduction level was
computed by averaging over the ensemble of the simulations.

As shown in figure 1(a), even for two simulations mimicking different polymers,
the same qualitative scenario in terms of drag reduction is obtained. The amount of
drag reduction increases continuously with increasing Wi up to a critical threshold
after which the flow relaminarizes. A clear effect of increasing the maximum polymer
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FIGURE 1. (Colour online) Evolution of the drag reduction percentage DR % with
increasing Wi up to where relaminarization occurs in pipe flow simulations performed
at Re = 3500. (a) Simulations carried out in a 10R long pipe using two polymers with
different extensibilities: LE (large extensibility, L= 200) and ME (moderate extensibility,
L = 30). Diamonds (purple line) illustrate the effect of reducing the global artificial
diffusion. (b) Variation of DR % as the pipe length is varied for the LE case. The green
and brown dashed lines show the drag reduction level of the laminar and MDR states,
respectively, whereas the remaining dashed lines indicate the maximum drag reduction
achieved in each case. Arrows indicate the Wi at which flow relaminarization occurs.

extension L is that the dynamics is accelerated: the polymer with higher extensibility
LE produces for the same Wi significantly larger drag reduction than the ME polymer,
and it eventually causes relaminarization at a much lower value of Wi, Wilam = 7.75,
than in the ME case, Wilam = 16. We note here that, as Wilam is approached, the
simulations become sensitive to the initial condition and turbulence does not always
survive over the time threshold chosen. The critical values for relaminarization Wilam
given above correspond to the highest values of Wi for which turbulence survives
in more than 50 % of the simulations performed. There are also certain ranges of
Wi at which polymer extensibility does not appear to play any role. For example, at
very low Wi (W 6 3), the degree of polymer stretching is low and both polymers,
despite having very different extensibility, produce nearly the same drag reduction.
A much more surprising effect occurs at larger Wi prior to relaminarization. Here, the
drag reduction approaches an almost constant level, 31 %, regardless of the polymer
extensibility. This levelling off was observed in the earlier study of Xi & Graham
(2010b) and suggested as an asymptotic regime (AR). In the present study, the AR
occurs over a narrow range of Wi, and since dynamical changes take place faster for
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FIGURE 2. (Colour online) Temporal intermittency. (a) Shows the temporal evolution of
the friction factor f for the ME case and Wi= 13, whereas (b,c) illustrate instantaneous
mean velocity profiles at low and high friction events. Note that here velocity (U+) and
radius (r+) are expressed in inner units, i.e. normalized with the friction velocity (uτ =√
τw/ρ) and the viscous length (δν = ν/uτ ) respectively.

higher extensibility, it is much more evident in the ME case, 12 6 Wi 6 16, than in
the LE case, 6.75 6 Wi 6 7.75.

A key feature of the dynamics in these simulations is the presence of temporal
intermittency, with periods of low friction which are interspersed with other periods
of higher friction, as shown in figure 2. This intermittent dynamics is also in
agreement with the simulations of Xi & Graham (2010b, 2012b), who dubbed the
low and high friction intervals as hibernating and active turbulence, respectively.
The frequency and duration of hibernating events increases progressively with
increasing Wi, and the friction associated with active turbulent events decreases
as Wi increases, leading to the gradual growth in average drag reduction shown in
the figure 1(a). To further illustrate the distinction between hibernating and active
turbulence, the bottom panel in figure 2 shows instantaneous velocity profiles in
inner units corresponding to each state. The black and red dashed lines in these
figures show the logarithmic laws that have been traditionally used to describe the
mean velocity profile in the logarithmic layer (30 / r+ / 60, for Re= 3500) for wall
bounded Newtonian turbulence (Prandtl–Kármán law) and viscoelastic turbulence at
MDR (Virk’s asymptote), respectively. It should be noted that the functional form of
the mean velocity profile at MDR is not truly logarithmic (White et al. 2012; Elbing
et al. 2013) and so the Virk’s asymptote should be understood as an idealization
of velocity profiles in this limit. Hibernating events are characterized by velocity
profiles that notably deviate from the Prandtl–Kármán law and become nearly parallel
to Virk’s asymptote profile throughout the logarithmic layer. By contrast, in active
turbulence events, although friction may be substantially lower than that for pure
Newtonian turbulence, the profile in the log layer has a comparable slope to the
Prandtl–Kármán law. On the basis of similar observations, it has been argued that
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states of active turbulence have similar properties to Newtonian turbulence, whereas
hibernating events could be directly connected to MDR. More specifically, it was
suggested that MDR might be a state fully dominated by hibernation, which is
achieved asymptotically as Wi is increased (Xi & Graham 2010a). However, in our
simulations, as well as in previous simulations reporting this intermittent scenario,
the flow eventually relaminarizes with increasing Wi and an asymptotic state (the
AR) is reached only over a narrow range of Wi prior to relaminarization. Since
the AR exhibits some features of MDR: saturation of the drag reduction level with
increasing Wi and comparable results are obtained for different polymer properties, it
has been interpreted as the first numerical evidence of MDR. However, there is also
evidence which appears to indicate that the AR does not correspond to MDR. Firstly,
while hibernation is prominent in this regime, active turbulence events also occur
frequently, and so the average drag reduction level at AR (31 %) is considerably less
than that of MDR at Re = 3500 (49.5 %). Another distinctive feature is that in the
AR the saturation of drag reduction occurs over a finite range of Wi and upon further
increase in Wi the flow relaminarizes. In contrast, MDR is a persistent state and the
drag reduction level remains nearly unchanged as Wi increases. Finally, it should
also be noted that temporal intermittent dynamics such as that previously described
has not been reported in experiments at MDR. It is therefore unclear whether the
dynamics of the AR may be related to MDR.

Before proceeding further, we want to briefly discuss the impact that the artificial
diffusion added to (2.1) has on the reported scenario. Sid, Terrapon & Dubief (2018)
recently showed that adding polymer diffusion substantially weakens the elastic scales
at large Wi. They found that this effect is particularly relevant in the elasto-inertial
turbulent regime, where elastic scales play a crucial role in feeding turbulence and
thus an excessive polymer diffusion leads to flow relaminarization. As will be shown
later, the simulations described in this section do not correspond to the elasto-inertial
regime. However, it is important to clarify whether the relaminarization observed
might also be an artefact of the artificial polymer diffusion. If the relaminarization
were caused by the diffusive term, one would expect that as Sc is increased, i.e. as
the amount of diffusion is reduced, the relaminarization threshold would progressively
shift towards larger values of Wi, until eventually, at a sufficiently large Sc, the
relaminarization does not take place any more. To examine how the polymer
diffusion affects the relaminarization threshold, simulations for the case of moderate
extensibility, decreasing the amount of diffusion by a factor of 4 (Sc = 2), were
performed following the same procedure described above. As seen in figure 1(a)
(diamonds), the flow relaminarization in these simulations was found to occur at the
same value of Wi (Wilam = 16) as in the simulations using Sc = 0.5. This insensitivity
of the relaminarization threshold to changes in Sc suggests that the relaminarization
phenomenon is not driven by polymer diffusion but rather a robust feature of these
simulations. We also note that, while quantitative differences exist between simulations
with Sc= 0.5 and 2, i.e. less polymer diffusion produce less drag reduction, the same
qualitative scenario is observed in both cases: the amount of drag reduction increases
with increasing Wi up to a regime is reached (the AR) where it remains nearly
constant. Based on these observations, we argue that polymer diffusion only has a
moderate influence at these Wi and does not affect significantly the results discussed
in this paper.

4. Simulations in larger computational domains: reverse transition
To assess the influence of the pipe length in the results of § 3, the same

computational procedure was repeated using larger pipes (20R and 40R). A comparison
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of the drag reduction scenario obtained for the LE polymer when the pipe length
was varied is shown in figure 1(b). A first interesting observation is that, consistent
with other works on viscoelastic turbulence (Li, Sureshkumar & Khomami 2006;
Wang, Shekar & Graham 2017), viscoelasticity increases the streamwise correlation
length with respect to Newtonian simulations. Hence, while at these low Re a
streamwise length of 10R is enough to obtain realistic statistics in Newtonian pipe
flow, viscoelastic simulations are still affected by streamwise periodicity and result
in lower drag reduction than those obtained when larger pipes are used. Simulations
performed in 20R and 40R long pipes produce nearly the same drag reduction up
to Wi∼ 6.75, but differ both quantitatively and qualitatively when relaminarization is
approached. For simulations using a 20R long pipe, the same qualitative scenario as
in the 10R long pipe simulations is found: the drag reduction remains nearly constant
over a finite range of Wi, 6 6 Wi 6 8, before relaminarization takes place. However,
when a pipe of 40R is used, this AR disappears and the drag reduction increases
monotonically with increasing Wi until the flow relaminarizes. This observation
suggests that rather than being a manifestation of MDR, the AR might be a
consequence of the streamwise periodicity imposed in the simulations and thus it
might lack practical significance.

An additional test to confirm that the dynamics at the AR is different from that at
MDR is to compare the flow structures in our simulations with recent experimental
visualizations of MDR structures in pipe flow at low Reynolds numbers (Choueiri
et al. 2018). These experiments showed that turbulence at MDR substantially differs
from Newtonian type turbulence and it is characterized by very elongated streaks
which are slightly inclined away from the wall (see figure 3 in Choueiri et al.
(2018)). If the dynamics at the AR corresponded to MDR, similar flow structures
should be observed in our simulations, provided that the computational domain is
long enough to accommodate them. To examine this possibility, we have performed
a new set of simulations using a pipe of 100R in the axial direction, which is
approximately twice the size of the shortest structures observed by Choueiri et al.
(2018). Figure 3 illustrates the dynamical evolution of the turbulence structures as Wi
was increased in these simulations. It shows, at a certain time instant, the variation of
the centreline velocity uc along the pipe (a) and isocontours of the radial velocity w
(e) for several Wi representative of different dynamical regimes in the ME case. Note
that a Newtonian case (figure 3a) has also been included for comparison. At low drag
reduction (Wi < 6), the dynamics is very similar to that of the Newtonian case (see
panels (a) and (b) in the figure). Turbulence always fills the pipe entirely and the
centreline velocity exhibits comparable fluctuation levels in both cases. Nevertheless,
the flow structures in the viscoelastic case are broader and slightly more elongated
in the axial direction than those in pure Newtonian turbulence, reflecting the drag
reduced nature of the flow in viscoelastic simulations. Another clear distinction is
that, while turbulence extends across the entire pipe diameter in the Newtonian case,
there are several areas in the drag reduced flow where the near wall turbulence has
been suppressed by polymer activity. As Wi increases (between Wi = 7 and 11), the
dynamics exhibits a complex spatio-temporal behaviour. As shown in figure 3(c)
for Wi = 8, turbulence is confined to streamwise localized patches known in the
Newtonian pipe flow literature as slugs. The distance between the turbulent fronts,
i.e. the interfaces separating laminar from turbulent flow, increases progressively with
time until the turbulence eventually fills the entire pipe. This space-filling turbulent
state does not persist long and turbulence takes back the form of slugs, thereby
restarting the cycle again. With further increase in Wi, coinciding with those Wi at
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which the AR occurs in shorter pipes, 126Wi6 16, turbulence becomes permanently
localized in the streamwise direction taking the form of turbulent puffs. As seen in
figure 3(e), these viscoelastic puffs are very similar to Newtonian puffs: arrow-headed
structures where turbulence is mainly concentrated in the sharp upstream edge and
progressively diffuses away as the puff is followed downstream. Unlike slugs, puffs
keep their size constant and travel downstream at a nearly constant speed. We also
found that these puffs sporadically split into two smaller puff-like structures (see
figure 3d). However, since the domain is not large enough to contain two full-size
puffs, there is a strong interaction between them which causes the downstream puff
to quickly relaminarize (Hof et al. 2010). We note here that, although the pipe length
in these simulations is enough to identify spatially localized structures, these are still
affected by the finite size of the computational domain. As a result, laminar flow
is not fully recover, i.e. the centreline velocity does not recover its laminar value
uc= 1, and the length of the simulated puffs is slightly shorter than that in laboratory
experiments. Finally, when Wi is increased above 16 the flow fully relaminarizes,
showing that this is a robust feature of these simulations which occurs at the same
Wi regardless of the pipe length considered.

The dynamical scenario described above raises two important points. Firstly,
increasing Wi in these simulations leads to a relaminarization scenario which follows
the same sequence of states as the transition to turbulence in the Newtonian case
but in reverse direction, i.e. turbulence, slugs, puff splitting, puffs and laminar flow.
We will henceforth refer to the dynamics of this relaminarization scenario as reverse
transitional dynamics. Secondly, the dynamics at the Wi corresponding to the AR,
12 6 Wi 6 16, is characterized by puffs and this is qualitatively very different from
the structures observed at MDR in experiments. It should, however, be noted that
the reported scenario only occurs at Re near the turbulence transition and so the
conclusions reached from these results strictly apply only in this regime.

Finally, we note that a comparison between temporal dynamics in small (minimal)
domains and spatio-temporal dynamics in larger domains at similar Reynolds numbers
was also presented in Wang et al. (2017). This study established the similarity
between statistics obtained from time series analysis in minimal domains and those
obtained by thresholding and conditional average in larger domains. Nevertheless, the
axial length for the large domain simulations in this study was fixed to Lz ∼ 40h
(h is the channel half-width, equivalent to R in our simulations) and thus the
effect of further increasing Lz was not assessed. When using similar computational
domains (Lz = 40R), our simulations reveal that the flow is significantly affected
by finite-size effects. The pipe length here is smaller than the axial extent of the
turbulent patches shown in figure 3. Hence, using periodic boundary conditions create
artificial interactions between the upstream and downstream edges of these turbulent
structures. This results in flow states characterized by space-filling turbulence whose
intensity varies in space and time, which are similar to those analysed in Wang
et al. (2017). An example of these states is shown in figure 4, corresponding to a
simulation for Wi = 16 using a 40R long pipe. In contrast to the simulation in a
100R long pipe (figure 3e), where a clear puff is observed, here the flow does not
exhibit laminar regions and significant velocity fluctuations coexist with regions of
weaker fluctuations along the entire pipe. We argue that, as occur in our simulations,
if the simulations presented in Wang et al. (2017) were extended to larger axial
domains, the spatio-temporal alternation between hibernating and active turbulent
regions described in this paper might turn into the coexistence of fully laminar and
turbulent flow regions.
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FIGURE 3. (Colour online) Evolution of the spatio-temporal dynamics and turbulence
structures as Wi increases when the simulations are carried out in a long pipe of 100R in
the streamwise direction. (a) Shows the streamwise variation of the centreline velocity, uc,
whereas (e) illustrates isosurfaces of the radial velocity. The flow direction is from left to
right. Note that the aspect ratio of the pipe has been increased to facilitate visualization
of the structures.
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FIGURE 4. (Colour online) Same as in figure 3(e) when a pipe of 40R in the streamwise
direction is used.

5. Comparison with experimental results

The question now is whether the reverse transitional dynamics captured by our
simulations provides a meaningful description of viscoelastic pipe flow dynamics,
i.e. whether or not these simulations reproduce experimental observations. To answer
this question we provide in this section a detailed description of the dynamical
scenario found by Choueiri et al. (2018) in pipe flow laboratory experiments at a
similar Reynolds number, Re= 3150, when the polymer concentration c is increased
progressively from Newtonian turbulence to MDR (for details about the experimental
set-up, see supplementary material in Choueiri et al. (2018)). Note that the control
parameter in these experiments is polymer concentration, whereas in simulations it
is the polymer relaxation time λ, i.e. Wi, that varies. These two magnitudes are
however directly correlated. It has been shown that even in dilute polymer solutions
the relaxation time grows with increasing polymer concentration (Giudice, Haward &
Shen 2017). Hence, increasing Wi in our simulations is related to increasing polymer
concentration in experiments. Figure 5(a) shows the variation of the drag reduction
percentage as polymer concentration was varied in the experiments. Similarly to
what occurs in the simulations, the amount of drag reduction DR% increases initially
with increasing polymer concentration until a threshold value is reached, c∼ 23 ppm
(parts per million by weight), at which the flow fully relaminarizes. The flow remains
laminar regardless of the imposed perturbations over a significant range of polymer
concentration (c∼ 23–43 ppm). However, for c> 43 ppm, the flow becomes chaotic
again and the drag reduction level approaches progressively that of Virk’s asymptote.

Figure 5(b–f ) illustrates how the dynamics changes as the polymer concentration
increases. More specifically, these figures show the temporal variation of the centreline
velocity uc obtained from laser Doppler velocimetry (LDV) measurements at a central
streamwise location. The x-axis has been inverted to facilitate comparison with the
instantaneous streamwise distribution of uc shown in figure 3. Note that, as in the
simulations, uc is normalized with the centreline velocity of the laminar state. In
the absence of polymers (see figure 5b) the flow is fully turbulent and uc exhibits
persistent random amplitude fluctuations. As the polymer concentration is increased
(c>13 ppm), time intervals where uc strongly fluctuates alternate with others at which
it nearly recovers its laminar value (see figure 5c and compare to the analogous case
in the simulations, figure 3c). This temporal intermittency between turbulent and
laminar states indicates that the dynamics at this regime is characterized by spatially
localized structures. Furthermore, since the duration of these turbulent and laminar
intervals is highly variable, and both trailing and leading edge interfaces show a
sharp adjustment of the centreline velocity, it is evident that these localized structures
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FIGURE 5. (Colour online) (a) Evolution of the drag reduction percentage DR% with
increasing polymer concentration (expressed in parts per million by weight ppm) in the
experiments of C,L&H for Re= 3150. (b–f ) LDV measurements of the centreline velocity
uc illustrating the changes in the dynamics as polymer concentration increases.
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correspond to slugs (Wygnanski & Champagne 1973). With further increase in
concentration (c> 18 ppm), slugs are replaced by puffs (see figure 5d and analogous
case in the simulations, figure 3e). These structures are clearly distinguishable because
of their long diffusive tail and sharp velocity variation associated with the upstream
edge. As occurs in the simulations (figure 3d), splitting events are also frequently
encountered in the experiments (see figure 5e), leading either to the emergence of
slugs or trains of puffs depending on the polymer concentration. When 23 ppm
< c < 43 ppm, turbulence is fully suppressed by the polymers and uc remains
constant and equal to the laminar value. It should be emphasized at this point that
the dynamics taking place in the experiments is in excellent qualitative agreement
with the reverse transition found in the simulations. Ultimately, for c > 43 ppm (see
figure 5f ), the flow reaches MDR and uc exhibits again persistent oscillations. The
frequency and amplitude of these oscillations are however much lower than those for
a fully turbulent Newtonian flow, and the deviation of uc from laminar flow always
remains less than 10 %.

The existence of a wide range of polymer concentrations at which the flow is
laminar makes a clear distinction between two regimes where polymers play different
dynamical roles. In the first regime the role of the polymers is to suppress turbulence
and cause a reverse transition. As discussed in § 4, the dynamics in this regime
is dominated by the same flow structures as in the Newtonian case and polymers
simply act to delay the transition scenario. In the second regime, for c > 43 ppm,
the interplay between high polymer elasticity and inertial effects drives an instability,
dubbed in Samanta et al. (2013) the elasto-inertial instability (EII), which results in
a new turbulence type, elasto-inertial turbulence (EIT). As shown in figure 5(a), the
drag reduction level associated with EIT is close to that of Virk’s asymptote and it
remains unchanged as polymer concentration increases. These observations suggest
that at these low Reynolds numbers EIT may be directly related to MDR.

An additional remark about EIT (and thus MDR) is that as seen in figure 5( f ), it
is always space filling and no spatio-temporal intermittency is observed in this regime.
This is an important feature that can help distinguish realistic MDR dynamics from
other regimes with similar statistical properties. An example of the latter are the puffs
found prior to relaminarization. We found in both simulations and experiments that
the average friction coefficient and mean velocity profiles associated with these puffs
are nearly identical to those at MDR (not shown). Hence, the circumstance that time
averaged statistical quantities match those of MDR (main criterion to identify MDR in
many earlier studies) is a necessary but not sufficient condition to identify this regime
in numerical simulations. An analysis of the spatio-temporal dynamics must also be
carried out to discern whether or not the simulated flows belong to the MDR regime.

6. Elasto-inertial turbulence
We have shown so far that our FENEP-NS (Navier–Stokes) simulations qualitatively

reproduce the dynamics observed in experiments up to the point where relaminarization
occurs. The next question is therefore whether by increasing Wi beyond the
relaminarization threshold these simulations are also capable of capturing the EII
and MDR. To address this question we have performed several simulations at Wi
ranging from 20 to 80 in both the ME and LE cases. The pipe length was initially
set again to 10R. The simulations were initialized from the base flow, previously
computed, which was perturbed by adding a pair of streamwise localized rolls
(v = A(g+ rg′) cos(θ)e−10 sin2(πz/Lz) and w= Ag sin(θ)e−10 sin2(πz/Lz), where g= (1− r2)2
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FIGURE 6. (Colour online) Global scenario, in terms of drag reduction, obtained in
simulations using a 10R long pipe and polymers with moderate (L = 30) and large
extensibility (L= 200). The arrows delimit regions with distinct dynamical features. The
acronyms NT and EIT denote the Newtonian dominated regime and the elasto-inertial
turbulent regime, respectively. The data corresponding to the simulations of EIT presented
in § 6 are encircled by a (red) dotted rectangle. Note that the EIT regime was only found
in the case of large polymer extensibility.

and A is the amplitude of the disturbance). The results of these simulations, in
terms of drag reduction, are shown in figure 6 (see squares encircled by the dotted
rectangle), which extend figure 1(a) to larger Wi. In all simulations carried out
for the ME case, the energy of the disturbance grows initially due to the lift-up
mechanism, but after approximately 150R/ulc time units it decays gradually with time
and the flow fully relaminarizes. For the LE case, however, we find that a secondary
instability sets in for Wi > 30. While similarly to the ME case transient growth
and subsequent decay in energy are initially observed, here the energy increases
again as the time evolves and eventually saturates to a new flow state significantly
less energetic than that of Newtonian type turbulence. A possible explanation for
this behaviour is as follows. Due to the initial disturbance polymers are greatly
stretched and accumulate a significant amount of elastic energy. In response to this
stretch, polymers generate stresses which act to weaken and eventually suppress this
turbulence. As the turbulence intensity decays, polymers relax and the elastic energy
they store is progressively transferred to the fluid. As a result, the kinetic energy
increases again and a new form of instability takes place.

Figure 7(a) shows the time and area averaged Reynolds shear stress, 〈−u′v′〉, for
Newtonian turbulence and elasto-inertial turbulence in experiments (symbols) and
simulations (solid lines). As seen, one of the prominent features of elasto-inertial
turbulence as compared with Newtonian turbulence is its low Reynolds shear stress
level. This is indicative that only a small fraction of the turbulent kinetic energy
is produced by the conventional mechanisms of Newtonian turbulence, i.e. the
self-sustaining cycle. Instead, turbulence here is primarily sustained by polymer
stresses (Warholic et al. 1999). Note that while excellent agreement between
simulations and experiments is obtained in the Newtonian case, the Reynolds shear
stress level at EIT is larger by a factor of 3 in the simulations (see figure 7b). This
may be a consequence of the artificial diffusion used in the simulations, which is
known to mitigate the polymer stresses, thereby leading to larger levels of Reynolds
shear stress. The maximum of 〈−u′v′〉, which in the Newtonian case occurs near
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FIGURE 7. (Colour online) (a) Reynolds shear stress 〈−u′v′〉, normalized with the friction
velocity uτ , for pure Newtonian turbulence and elasto-inertial turbulence in experiments
(symbols) and simulations (solid lines). In simulations, the elasto-inertial turbulent state
shown was computed at Wi = 60 for the LE case, whereas the experimental results
correspond to a polymer concentration of 100 ppm, where the state of maximum drag
reduction has already been achieved. Note that the experimental profiles do not extend all
the way to the wall as reliable velocity measurements near the wall were not possible.
(b) Zoom of (a) to facilitate comparison between experiments and simulations in the
elasto-inertial turbulent regime.

the wall, is located at an intermediate distance between the wall and the centreline,
r= 0.52 and 0.59 in simulations and experiments, respectively. This is consistent with
the thickening of the viscous buffer layer associated with high drag reduced flows
(White et al. 2018). In contrast to Warholic et al. (1999), where zero Reynolds shear
stresses were measured at high drag reduction, our results show low but finite values,
in line with other simulations of EIT (Samanta et al. 2013). There is, however, a
substantial difference in Re between our work (and other works on EIT) and that of
Warholic et al. (1999), and so a direct comparison between these results may not be
appropriate.

The topological structure of the new flow state is illustrated in figure 8 through
isocontours of the second invariant of the velocity gradient tensor Q. Note that this
quantity has been chosen to facilitate comparison with other works on EIT (Samanta
et al. 2013; Dubief et al. 2013). Regions of intense vorticity (Q > 0, red) are found
to alternate with strain-dominated regions (Q < 0, blue) creating a chaotic pattern of
elongated spanwise oriented structures aligned in streamwise direction. The vortices
are localized in the near wall region and are essentially two-dimensional with rotation
being in the r–z plane. We note that this spatial arrangement of structures in the near
wall region is very different from Newtonian type turbulence, where the dominant
structures are oriented in the streamwise direction. This flow state reproduces two
essential features of MDR: the drag reduction level associated with this state remains
nearly constant as Wi increases, and although the average friction factor ( f ∼ 0.0047)
is slightly below that corresponding to Virk’s asymptote ( f = 0.0051), it is reasonably
close to it. It should be noted that Virk’s asymptote is a fit of empirical data
collected from different experiments. As such, it should be used as an estimate for the
friction of the MDR state rather than as a categorical result. All these observations
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FIGURE 8. (Colour online) Isosurfaces of the second invariant of the velocity gradient
tensor Q = −0.005 and 0.005 illustrating the topological structure of elasto-inertial
turbulence. (a) Shows a three-dimensional view of the pipe highlighting the near wall
localization of the structures. (b) Shows the characteristic pattern, with alternating regions
of rotational and extensional/compressional behaviour, in a cylindrical section θ–z at the
wall. The state shown corresponds to a simulation conducted at Wi= 60 for the LE case.
The second invariant of the velocity gradient tensor is computed as Q = (1/2)(‖Ω‖2

−

‖Γ ‖2), where Ω = (1/2)(∇v −∇vT) is the vorticity tensor and Γ = (1/2)(∇v +∇vT) is
the rate-of-strain tensor.

50R

(a)

(b)

(c)

Q

u�

FIGURE 9. (Colour online) (a) Shows the deviation of the streamwise velocity from the
mean flow u′ in a state of EIT for experiments conducted at Re= 3150. The velocity was
measured using PIV in a pipe cross-section of nearly 6R in the axial direction. The image
shown was obtained by assuming Taylor’s frozen hypothesis, i.e. turbulence is advected
downstream quickly and changes in time are slow. (b,c) Show u′ and Q respectively for
a simulation performed at Re= 3500 and Wi= 30 in a 40R long pipe. Two isocontours
u′ =±0.1u′max and Q=±0.005 were used in each case.

are consistent with previous reports of elasto-inertial turbulence in channel flow
simulations (Samanta et al. 2013; Dubief et al. 2013).

Figure 9(a) illustrates the typical flow structures of EIT in the experiments. It
shows the streamwise velocity deviation with respect to the mean flow u′ over
a length of 50R. Note that in (a) the velocity was obtained from particle image
velocimetry (PIV) in a section of nearly 6R in the axial direction and Taylor’s frozen
turbulence hypothesis was then assumed to reconstruct the structures shown. As
seen, the structure of EIT is clearly dominated by very elongated streaky structures
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aligned in the flow direction with a slight slope towards the centreline. The axial
length of these structures is highly variable, ranging approximately from 50R to 200R,
being more elongated near the instability onset. As polymer concentration increases,
the structures become shorter and increasingly more chaotic but still preserve their
characteristic inclination. Unlike in the simulations, vortical structures could not be
resolved in the near wall region in the experiments. The vortical structures observed
in the simulations are considerably weaker than Newtonian flow structures, which
makes a detection in experiments difficult. In addition they are located close to
the wall where the measurement accuracy is lower. In the simulations the problem
is the opposite. Because of the Gauss–Lobatto–Chebyshev grid used in the radial
direction the computational nodes are clustered near the wall, enabling an accurate
resolution of the flow in this area. Nevertheless, the necessity of very dense grids
in the streamwise direction to properly resolve the near wall structures makes it
extremely costly to use axial domains sufficiently large as to capture the large scale
structures observed in the experiments. A direct comparison of the structure of EIT
between experiments and simulations is thus challenging. It is however tempting to
investigate whether large scale structures can also be identified in simulations, and
if their length approaches that of the structures in experiments as the computational
domain is increased. To that extent, we have performed an additional simulation at
Wi = 30 using a pipe of 40R in streamwise direction. EIT could only be captured
transiently in this simulation and after approximately 2500 time units the flow went
back to laminar. Nevertheless, some interesting dynamical aspects could be inferred
from this simulation. As seen in figure 9(c), if the same threshold Q = ±0.005 as
in figure 8 is used, the near wall vortices appear localized over a short region of
nearly 2R in the streamwise direction. Large scale streamwise velocity structures (see
figure 9(b)) seem to emerge from the area where the vortices are located and extend
almost over the entire domain. These structures become thinner as they are followed
downstream and take an arrow shape at the leading edge which closely resembles the
inclination away from the wall observed in the experiments. This structural similarity
between EIT in simulations and experiments suggests that the flow in both cases may
be driven by the same instability. However, the precise dynamical relation between the
small near wall structures and these elongated streaks still remains to be determined
and will be the focus of a future investigation.

7. Conclusions

We have investigated numerically the dynamics of viscoelastic pipe flow at
Re = 3500, where in the Newtonian case flows are fully turbulent (Barkley et al.
2015). In agreement with recent experimental observations, we find that the dynamics
as Wi increases can be categorized into two regimes. The first regime takes place
for low-to-moderate Wi and the dynamics is essentially of the Newtonian type.
The influence of polymers on this regime manifests itself as a reverse transition:
the flow goes from the turbulent to the laminar state following the same stages
as in the Newtonian laminar–turbulence transition, but in reverse order, i.e. fully
turbulent, slugs, puff splitting, puffs and laminar. The second regime occurs at large
Wi and could only be captured in the simulations when considering polymers with
very large extensibility. The amount of drag reduction associated with this regime
is near that of Virk’s asymptote and remains unchanged as Wi increases. These
properties are consistent with the state of MDR, suggesting that, at these low Reynolds
numbers, elasto-inertial turbulence and MDR may correspond to the same flow state.
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Separating the Newtonian and elasticity dominated regimes, there is a significant
range of Wi for which the flow relaminarizes regardless of the initial condition. The
existence of this laminar regime implies that the dynamics at the elasticity dominated
regime is disconnected from Newtonian type turbulence, and consequently it would
have to originate from a separate instability (EII). The robustness of the described
dynamics has been recently corroborated by Shekar et al. (2019), who also reported
relaminarization followed by a second transition leading to EIT in simulations of
channel flow at low Reynolds numbers.

We would like to emphasize again that the results discussed in this paper correspond
to simulations and experiments at Reynolds numbers near transition. Hence, our
conclusions only apply to this regime. At larger Re, the relaminarization reported
here does not take place and elasto-inertial turbulence coexists with Newtonian
turbulence (Choueiri et al. 2018; White et al. 2018) at high Wi. It can therefore be
expected that the properties of MDR will change with increasing Re, supporting the
non-universality of this state (White et al. 2012).

We also show that MDR in simulations cannot be identified based on average
profiles and friction values alone. While in the hibernating regime these quantities are
close to those of MDR, larger domain studies identify this regime as spatio-temporal
intermittency and as part of a reverse transition scenario. The asymptotic MDR
regime is only approached for even larger Weissenberg numbers.
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