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CONDITIONS FOR THE SUPERSOLVABILITY OF FS(G)
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Abstract In this article, FS(G) denotes the fusion category of G on a Sylow p-subgroup S of G where
p denotes a prime. A subgroup K of G has normal complement in G if there is a normal subgroup T
of G satisfying that G =KT and T ∩ K = 1. We investigate the supersolvability of FS(G) under the
assumption that some subgroups of S are normal in G or have normal complement in G.
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1. Introduction

In recent years, the study of fusion category and fusion system theory has become a
meaningful direction in finite group theory. Plenty of findings exist regarding nilpotent
fusion systems, as well as several established conclusions concerning saturated fusion
systems, as documented in [5, 7, 10] and [11]. Lluis Puig was the first to introduce the
concept of a saturated fusion system, which has been continuously studied by a cohort
of scholars. They obtained the following important results, which will provide a train of
thought for the proof in this article. Given a finite group G and a p-subgroup S 6 G,
FS(G) is used to represent the fusion category of G on S : the objects of FS(G) are
all subgroups of S and morphisms in FS(G) are the group homomorphisms between
subgroups of S induced by conjugation in G. A fusion system over S is a category F whose
objects are all subgroups of S and whose morphisms behave as though they are induced
by conjugation inside a group including S as a p-subgroup. In [2], it was shown that for
a p-group P and F , F is solvable when there is a series of strongly F-closed subgroups
1 = P0 6 P1 6 P2 6 · · · 6 Pn = P and with Pi+1/Pi abelian for 0 6 i 6 n. A saturated
fusion system F over a p-group P is nilpotent (F = FP (P )) if and only if AutF (S) is
a p-group for each subgroup S of P. In [10], Linckelmann and Kessar generalized the
p-nilpotent theorem to fusion systems, demonstrating that F = FP (P ) if and only if
NF (Z(J(P ))) = FP (P ). Shen and Zhang in [14] investigated the p-supersolvable fusion
systems. They gave the p-supersolvability of normal subsystems and they proved that the
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models of p-supersolvable fusion systems are p-supersolvable groups. Shen also provided
a criterion for a saturated fusion system F to be nilpotent in [13]. The article draws on
information from reference [2] for a more complete description of fusion systems, and any
unfamiliar terminology or symbols can be found in that book. Additionally, Gorenstein
[9] provides explanations of certain definitions that may be unfamiliar to readers and
only finite groups will be considered.
Enlightened by current advances in the research of normality of subgroups, in [12],

Ru and Shen consider the influence of the normality of some subgroups of S on the
supersolvability of FS(G). Theorems 1.1 and 1.2 are cases in point. Following this line of
thought, we contrive to combine the normality of subgroups and complement subgroups
and we find a few conditions that make the supersolvability of FS(G) hold.

Theorem 1.1. [12] Let G be a finite group and S 6 G be a Sylow p-subgroup where
p is a prime. If all subgroups of S of order p or 4 (p = 2) are normal in G. Then FS(G)
is supersolvable.

Theorem 1.2. [12] Let G be a finite group and S 6 G is a Sylow p-subgroup where p
is an odd prime. Suppose there is a subgroup U< S with 1 < |U | < |S| and any subgroup
of S with order |U | is normal in G. Then FS(G) is supersolvable.

In this article, our target is to explore how do normal subgroups or normal complement
subgroups affect the supersolvability of FS(G). Our main theorems are as follows. Firstly,
we start with the subgroups of order p case.

Theorem A. Suppose G is finite and S 6 G is a Sylow p-subgroup where p is an odd
prime. If all subgroups of S with order p are normal in G or have normal complement in
G. Then FS(G) is supersolvable.

Next we consider the maximal subgroup case.

Theorem B. Let G be a finite group and S 6 G be a Sylow p-subgroup where p is an
odd prime. If all maximal subgroups of S are normal in G or have normal complement
in G. Then FS(G) is supersolvable.

Theorems A and B indicate that FS(G) is supersolvable. Nevertheless, G may not be
p-supersolvable. See the following example.

Example. Set G = A5 and S ∈ Syl5(G). We have S is isomorphic to C 5. Then all
maximal subgroups of S are normal in G or have normal complement in G, but G is not
5-supersolvable.

In the end, we discuss a general case.

Theorem C. Suppose G is a group and S ∈ Sylp(G) where p is an odd prime dividing
|G|. Assume S has a subgroup U satisfying 1 < |U | < |S| and any subgroup of S with order
|U | or p|U | is normal in G or has normal complement in G. Then FS(G) is supersolvable.

Remark. p=2 is a trivial case. If p = 2, then G is p-nilpotent and so FS(G) is
supersolvable. So we suppose p is an odd prime in Theorems A, B and C.
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2. Preliminaries

In this section, we provide a plethora of lemmas that we will need later. ZU (G) represents
the greatest normal subgroup of G whose G-chief factors are cyclic. As a special case of
complement subgroups, the next lemma is clear.

Lemma 2.1. [4] Suppose G is finite and N P G. Then N/Φ(N) 6 ZU (G/Φ(N)) if
and only if N 6 ZU (G).

Lemma 2.2. Suppose G is finite and H P G.
(1) If M has normal complement in G and M 6 N 6 G, then M has normal complement

in N.
(2) If M has normal complement in G and M contains H, then M/H has normal

complement in G/H.

Based on [1, Lemma 3.7], we obtain the following lemma.

Lemma 2.3. Let S be a normal p-subgroup of G. Suppose there exists a subgroup U of
S with 1 < |U | < |S|. If all subgroups of S of order |U | and p|U | have normal complement
in G, then S 6 ZU (G).

Lemma 2.4. Let S be a normal p-subgroup of G where p is an odd prime. If all
subgroups of S with order p are normal in G or have normal complement in G, then
S 6 ZU (G).

Proof. We use the induction method on |G|+|S| to solve this statement. If all minimal
subgroups of S are normal in G, then Ω1(S) P G and all chief factors of G that lie
below Ω1(S) are cyclic with order p. This means Ω1(S) 6 ZU (G). The lemma holds if
S = Ω1(S). So let Ω1(S) < S. Pick a ∈ S such that o(a) = p2 and g be any element
in G. Then 〈ap〉 P G and (ag)p = (ap)g = api = (ai)p for some integer i. Thus we
have (ag(ai)−1)p = 1, which indicate ag(ai)−1 ∈ Ω1(S). Then ag = aiy where y ∈
Ω1(S). Now all minimal subgroups of S/Ω1(S) are normal in G/Ω1(S) and so S/Ω1(S) 6
ZU (G/Ω1(S)) by induction on |G|+ |S|. If follows from Ω1(S) 6 ZU (G) that S/Ω1(S) 6
ZU (G)/Ω1(S). Hence S 6 ZU (G). Therefore, there exists a subgroup H of S with order p
such that H 6P G and H has normal complement in G. Then there is a normal subgroup
L of G such that G =HL and H ∩ L = 1. Note that S = G ∩ S = HL ∩ S = H(L ∩ S)
and L ∩ S P G. So all minimal subgroups of L ∩ S are normal in G or have normal
complement in G, which means L ∩ S 6 ZU (G) by our induction. Furthermore, since
S/L∩ S P G/L∩ S and |S/L∩ S| = p, we have S/L∩ S 6 ZU (G/L∩ S). If follows from
ZU (G/L ∩ S) = ZU (G)/(L ∩ S) that S 6 ZU (G). �

Lemma 2.5. [3] Suppose G is finite and S 6 G is a Sylow p-subgroup. Assume for
any proper subgroup K<G satisfying S ∩K ∈ Sylp(K) and Op(G) < S ∩K, FS∩K(K)
is supersolvable. If Op(G) 6 ZU (G), FS(G) is supersolvable.

Lemma 2.6. [8] Let R, S and T be subgroups of G, then the following statements are
equivalent:
(1) R ∩ ST = (R ∩ S)(R ∩ T ).
(2) RS ∩RT = R(S ∩ T ).
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Lemma 2.7. See [14] Let F be a p-supersolvable fusion system on a p-group. Suppose
F1 is a normal subsystem of F . Then F1 is p-supersolvable.

Now with these lemmas in the hand, we are able to offer the proof of our main theorems,
showing the supersolvability of FS(G).

3. Main results

3.1. Proof of Theorem A

Proof. If the theorem is false, we consider a counterexample F = FS(G) for which
|G| is smallest. If any subgroup of Op(G) with order p is normal in G or has normal com-
plement in G, by Lemma 2.4, Op(G) 6 ZU (G). Next choose L<G with S ∩L ∈ Sylp(L).
Then the subgroups in S ∩ L with order p are normal G or have normal complement
in G. Applying Lemma 2.2, these subgroups are normal in L or have normal comple-
ment in L. Then FS∩L(L) is supersolvable due to the minimality of F . Now if L<G
with S ∩ L ∈ Sylp(L) and Op(G) < S ∩ L, we have FS∩L(L) is supersolvable. Using
Lemma 2.5, FS(G) is supersolvable. �

3.2. Proof of Theorem B

Proof. Assume the theorem is wrong and let F = FS(G) be a counterexample for
which |G| is smallest.
Step 1. Op′(G) = 1.
Set Q = Op′(G). If Q 6= 1, then SQ/Q ∈ Sylp(G/Q). Set M/Q as a maximal subgroup

of SQ/Q. Then we have a maximal subgroup S 1 of S with M = S1Q. If S 1 has a normal
complement in G, by Lemma 2.2, M/Q = S1Q/Q has a normal complement in G/Q. If
S1 P G, S1Q/Q P G/Q. In both cases, the minimality of F shows that FSQ/Q(G/Q) is
supersolvable and hence FS(G) is supersolvable, a contradiction.
Step 2. Let N be a minimal normal subgroup, then FSN/N (G/N) is supersolvable.
Choose M/N as a maximal subgroup of SN/N . So we can find a maximal subgroup

S 1 of S with M = NS1 and S ∩N = S1 ∩N ∈ Sylp(N). If S 1 has normal complement
in G, there is a normal subgroup T of G satisfying G = S1T and T ∩ S1 = 1. Note that
G/N = (S1N/N)(TN/N). Since (|N : S1 ∩N |, |N : T ∩N |) = 1, we have (S1 ∩N)(T ∩
N) = N = G ∩ N = S1T ∩ N . Therefore TN ∩ NS1 = (S1 ∩ T )N by Lemma 2.6. So
(S1N/N) ∩ (TN/N) = (NS1 ∩ NT )/N = (S1 ∩ T )N/N = 1. Then M/N has normal
complement in G/N . If S1 P G, then M = NS1 is also normal in G, which means
M/N P G/N . Therefore, the assumption in the theorem is valid for (G/N,S/N). The
minimal choice of F shows FSN/N (G/N) is supersolvable.
Step 3. The minimal normal subgroup N of G is unique.
If not, assume that there is a minimal normal subgroup N 1 with N 6= N1. Then

Step 2 tells us that FSN/N (G/N) and FSN1/N1
(G/N1) are both supersolvable. Thus we

conclude from the fact N1 ∩N2 = 1 and [15, Theorem 3.2] that FS(G) is supersolvable,
a contradiction.
Step 4. N � Φ(S).
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If all of the maximal subgroups of S are normal in G, then all of them are nor-
mal in FS(G). Therefore, we obtain from Theorem 1.2 that FS(G) is supersolvable,
which is impossible. Therefore, there exists some maximal subgroup S 1 of S which is
not normal in G. This implies that S 1 has a normal complement K of G. Obviously
K must contain N by the uniqueness of N, so that S1 ∩ N = 1. Hence N � Φ(S), as
required.
Step 5. 1 < N ∩ S < S.
If N ∩ S = S, then S 6 N, contradicting to the minimality of N. Since p divides |N |

by Step 1, N ∩ S 6= 1.
Step 6. Op(F) = 1.
If not, then N 6 Op(F). In view of Step 4, we choose a maximal subgroup S 0 of S

with S = NS0. If S0 P G, then N ∩ S0 P G. By the minimal choice of N, N ∩ S0 = N
or N ∩ S0 = 1. If N ∩ S0 = N, then N 6 S0, a contradiction. Thus N ∩ S0 = 1,
which indicates that |N | = p. If follows from Step 2 that FS(G) is supersolvable, a
contradiction. If S 0 has normal complement in G. Then there is a normal subgroup K of
G such that G = S0K and S0 ∩ K = 1. By the uniqueness of N, we have N 6 K and
|Kp| = p, which indicates |N | = p. Then by Step 2, we have FS(G) is supersolvable, a
contradiction.
Step 7. Final contradiction.
By Step 5, there exists a maximal subgroup S 1 of S such that N ∩ S 6 S1. By

assumption, if S1 P G, then S1∩N P G. By the choice of N, S1∩N = N or S1∩N = 1.
If S1 ∩N = 1, then |N | = p and hence FS(G) is supersolvable. If S1 ∩N = N, N 6 S1.
So N is a normal p-subgroup of G and N 6 Op(F) = 1 by Step 6, a contradiction.
If S 1 has normal complement in G, then there is a normal subgroup L of G such that
G = S1L and S1 ∩ L = 1. Notice that N ∩ L P G and hence N ∩ L = 1 or N ∩ L = N .
If N ∩ L = N, then N 6 L. So N ∩ S 6 L ∩ S1 = 1. This indicates N is a p

′
-group,

contrary to Step 1. If N ∩L = 1, then N 6 Op(F). This is contrary to Step 6, asserting
Op(F) = 1. The contradiction ends the proof. �

3.3. Proof of Theorem C

Proof. Assume the result is false and set F = FS(G) be a minimal counterexample
for which |G| is the smallest.
Step 1. Op′(G) = 1.
If Op′(G) 6= 1, then SOp′(G)/Op′(G) ∈ Sylp(G/Op′(G)). So SOp′(G)/Op′(G)

and G/Op′(G) satisfy the assumption in the theorem. By the minimal choice of F ,
FSOp′ (G)/Op′ (G)(G/Op′(G)) is supersolvable. Therefore we conclude from [6, Theorem

5.20] that FSOp′ (G)/Op′ (G)(G/Op′(G)) is isomorphic to FS(G)/(Op′(G) ∩ S) = FS(G)

by the fact that Op′(G) ∩ S = 1, which implies that FS(G) is supersolvable, a
contradiction.
Step 2. p < |U |.
If |U | 6 p, then all subgroups of S with order p are normal in G or have normal

complement in G. So we have that FS(G) is supersolvable in view of Theorem A, which
is a contradiction. So p < |U |.
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Step 3. p|U | < |S|.
By assumption in the theorem, |S| ≥ p|U |. If |S| = p|U |, then all maximal subgroups

of S are normal in G or have normal complement in G. Then by Theorem B, FS(G) is
supersolvable, a contradiction.
Step 4. Let N 6 S be a minimal normal subgroup of G. Then N <S.
Since Op′(F) = 1 and S ∩ Op(G) ∈ Sylp(O

p(G)), we have S ∩ Op(G) 6= 1. If any
subgroup of S with order |U | is normal in G, then FS(G) is supersolvable by Theorem 1.2,
a contradiction. So there exists a subgroup R of S with order |U | satisfying R 6P G.
Then R has normal complement in G. There is a normal subgroup K of G such that
G =RK and G/K is a p-group. By the properties of p-groups, there exists a maximal
subgroup M of G such that K 6 M P G and |G/M | = p. Since |U | < |M | and
Op(G) 6 M, FS∩Op(G)(O

p(G)) is supersolvable. We obtain S∩Op(G) P G by S∩Op(G)
char Op(G) P G.
If N = S, then Step 3 shows |S| = |N | > p|U |. Choose T <N with order |U |. By

assumption, if T P G, then T =1 by the minimality of N, a contradiction. Thus T has
normal complement in G. So there exists a normal subgroup K of G satisfying G =TK
and T ∩K = 1. Note that G =NK and N ∩K is also normal in G. If N ∩K = N, then
N 6 K. This shows that G = NK = K, a contradiction. If N ∩K = 1, then T = N, a
contradiction. So Step 4 holds.
Step 5. |U | > |N | for an arbitrary minimal normal subgroup N of G contained in

S ∩Op(G).
Suppose p < |U | < |N |. Since N < S, then N and G meet the assumption in

Lemma 2.3, so we have N 6 ZU (G). Therefore |N | = p ≥ p|U |, which indicates that
|U | = 1. This contradicts Step 2.
Suppose |U | = |N |. So the assumption in Theorem A is valid for (G/N,S/N) by

Lemma 2.2. Then FS/N (G/N) is supersolvable. Pick R/N as a minimal normal subgroup
of S/N and then |R/N | = p. We denote R = N〈a〉, where a 6∈ N and ap ∈ N . If
N = Φ(R), R = 〈a〉 is cyclic and so N is cyclic. This means |N | = p and so FS(G) is
supersolvable, a contradiction. Then N > Φ(R). Since Φ(R) char R P S, Φ(R) P S.
We choose N 1 as a maximal subgroup of N such that Φ(R) 6 N and N1 P S. Write
H = N1〈a〉. It follows from ap ∈ Φ(R) 6 N1 that |N | = |H| = |U |. If H P G, by
the minimality of N, H = 1, a contradiction. Therefore, H has normal complement
in G. There is a normal subgroup T of G such that G =HT and H ∩ T = 1. Since
N 6 Op(G) 6 T, N1 = H ∩N 6 H ∩ Op(G) 6 H ∩ T = 1. This means N is of order p
and so FS(G) is supersolvable, a contradiction.
Step 6. Complete the proof.
Since |U | > |N |, by Lemma 2.2, S/N and G/N satisfy the assumption in this theorem

and so FS/N (G/N) is supersolvable, by the minimal choice of F . Note that N � Φ(G).
We choose a maximal subgroup V of G such that G =NV. In addition, S = N(S ∩ V )
and S ∩ V 6= 1. We pick S 1 as a maximal subgroup of S containing S ∩ V . So S = NS1

and N ∩ S1 < N . If N ∩ S1 = 1, then |N | is a prime and hence FS(G) is supersolvable,
a contradiction. Then N ∩ S1 6= 1. We select a subgroup E of S 1 containing N ∩ S1

satisfying |E| = |U | and E P S. Then N ∩ E = N ∩ S1 6= 1. By assumption, if E is
normal in G, then N ∩ E P G. Since N ∩ E = N ∩ S1 < N, by the minimality of N,
N ∩ E = 1, a contradiction. If E has normal complement in G, then there is a normal
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subgroup F of G such that G =EF and E∩F = 1. Now N ∩E 6 Op(G)∩E 6 F ∩E = 1
and thus N ∩ E = 1. This is a contradiction. �
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