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The nonlinear deformation and break-up of a bubble or drop immersed in a
uniaxial extensional flow of an incompressible viscous fluid is analysed by means
of viscous potential flow. In this approximation, the flow field is irrotational and
viscosity enters through the balance of normal stresses at the interface. The governing
equations are solved numerically to track the motion of the interface by coupling
a boundary-element method with a time-integration routine. When break-up occurs,
the break-up time computed here is compared with results obtained elsewhere
from numerical simulations of the Navier–Stokes equations (Revuelta, Rodrı́guez-
Rodrı́guez & Martı́nez-Bazán J. Fluid Mech., vol. 551, 2006, p. 175), which thus
keeps vorticity in the analysis, for several combinations of the relevant dimensionless
parameters of the problem. For the bubble, for Weber numbers 36We6 6, predictions
from viscous potential flow shows good agreement with the results from the
Navier–Stokes equations for the bubble break-up time, whereas for larger We, the
former underpredicts the results given by the latter. When viscosity is included, larger
break-up times are predicted with respect to the inviscid case for the same We. For the
drop, and considering moderate Reynolds numbers, Re, increasing the viscous effects
of the irrotational motion produces large, elongated drops that take longer to break up
in comparison with results for inviscid fluids. For larger Re, it comes as a surprise
that break-up times smaller than the inviscid limit are obtained. Unfortunately, results
from numerical analyses of the incompressible, unsteady Navier–Stokes equations for
the case of a drop have not been presented in the literature, to the best of the authors’
knowledge; hence, comparison with the viscous irrotational analysis is not possible.
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1. Introduction
The break-up of bubbles and drops by a turbulent immiscible flow plays a key

role in transfer phenomena occurring in engineering applications and natural settings.
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Deformation and break-up time of a bubble or drop in uniaxial straining flow 391

The rate of mass, heat and momentum transfer between a dispersed phase and a
continuous phase strongly depends on the existing contact or interfacial area, which in
turn is determined by the deformation and break-up of the fluid particles. For instance,
this is of paramount importance for the performance of gas–liquid and liquid–liquid
chemical reactors and separators. Also, the exchange of carbon dioxide, water vapour
and other species between the oceans and the atmosphere, which has large-scale
environmental implications, is known to be associated with the bubble size distribution
resulting from interaction of the turbulence within the bulk of the water with the air
entrained by the dynamics of sea waves (Melville 1996; Martı́nez-Bazán, Montanes
& Lasheras 1999a,b, and references therein). Therefore, an understanding of the
mechanism of turbulent break-up of bubbles or drops has been central to developing
predictive models applicable to these and many other processes. In particular, the
particle break-up time is an essential parameter in the description of these phenomena.

After the pioneering works of Kolmogorov (1949) and later of Hinze (1955), it has
been established that turbulent break-up of a fluid particle results as a consequence
of the overcoming of the shape-preserving surface tension forces by the pressure
fluctuations acting on the particle. Moreover, it has been ascertained that characterizing
the local turbulent fluid dynamics prevailing around the bubble or drop suffices to
describe the changes in its morphology. Another break-up mechanism, first described
by Risso & Fabre (1998) and known as subcritical break-up, in opposition to the
supercritical mechanism just presented, consists of the occurrence of bubble resonance
with a series of consecutive, subcritical (i.e. moderate) turbulent eddies that lead to
large oscillations and eventual break-up of the bubble.

After examining available experimental data on bubble and drop break-up in a
turbulent water stream obtained by Eastwood, Armi & Lasheras (2004) and Rodrı́guez-
Rodrı́guez (2004), respectively, and by performing numerical simulations, Rodrı́guez-
Rodrı́guez, Gordillo & Martı́nez-Bazán (2006) (hereinafter RDZ) have convincingly
shown that this phenomenon can be modelled, as a first approximation, by considering
a bubble or drop, initially spherical, immersed in a uniaxial straining flow of an
incompressible fluid, using a reference frame that moves with the mean velocity of the
background flow. Although simple, this model retains the most relevant features of the
process, thus avoiding expensive three-dimensional numerical computations involving
the tracking of deforming interfaces in a turbulent flow characterized by unsteady
structures with various length scales. Indeed, the images observed by RDZ revealed
that the bubbles or drops follow a ‘cigar-shape’ elongation leading to break-up that is
nearly axisymmetric. Moreover, their observations suggest that a single turbulent eddy
is the cause of breakage and ‘whose characteristic turnover time is larger than the
break-up time’, thereby justifying the assumption of a steady flow in the far field (i.e.
fluctuations are discarded as the cause of break-up). Indeed, Risso & Fabre (1998)
observed in experiments that an initially non-deformed bubble may be deformed
and broken by turbulent eddies strong enough to generate abrupt break-up. RDZ
further assume that the particle characteristic size falls within the inertial subrange
of the turbulent energy spectrum, hence the fluids are considered inviscid. In their
simulations, the velocity field is irrotational. The numerical simulations are carried
out by RDZ using the boundary element method and the bubble or drop break-up
time is predicted as a function of the Weber number, which measures the relative
importance of the external flow inertia versus the force due to surface tension, and the
internal to external density ratio. Thus, values of the Weber number and density ratio
must be entered before running a simulation. To be able to specify a Weber number
representative of the characteristics of the turbulent flow, RDZ derived a formula
that links the magnitude of the Weber number to the dissipation rate of turbulent
kinetic energy per unit mass. Their simulations result in particle break-up when the
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actual Weber number is larger than a critical Weber number; otherwise, the bubble or
drop oscillates and does not break-up in agreement with experimental evidence. For
the case of the bubble, binary break-up is predicted; that is, the bubble breaks up
into two equal pieces in accordance with experiments (Martı́nez-Bazán et al. 1999b;
Rodrı́guez-Rodrı́guez, Martı́nez-Bazán & Montanes 2003; Andersson & Andersson
2006); the computed break-up time also agrees with experimental measurements by
Martı́nez-Bazán et al. (1999a) and Rodrı́guez-Rodrı́guez (2004).

On the other hand, in the case of the drop, the break-up is tertiary (e.g. Andersson
& Andersson 2006) as two symmetric daughter drops are formed at both ends of an
intermediate ligament that becomes slender, with length larger than the initial drop
radius for large Weber numbers, as the internal to external density ratio becomes of
order one. For Weber numbers close to the critical value, the central satellite drop is
small in volume. In this case, RDZ point out that predictions for the break-up time
and critical Weber number do not agree with the experimental measurements. They
assert that this discrepancy results because the drop takes the form of a long ligament
with a length much larger than the size of the breaking eddy. The elongated drop
thus turns around itself as observed in the experiments. Therefore, the approximation
of the local fluid motion as an axisymmetric straining motion is no longer valid.
Beyond this weakness, those authors state that the simple model is able to qualitatively
describe important features of the process as the tertiary break-up and the size of the
intermediate ligament.

Revuelta, Rodrı́guez-Rodrı́guez & Martı́nez-Bazán (2006) (hereinafter REV) add
a viscous correction to the inviscid break-up time predicted by RDZ by solving
the unsteady incompressible Navier–Stokes equations for a bubble immersed in the
uniaxial extensional flow of a liquid using a level set method on a fixed mesh. Since
viscosity enters the analysis, two additional dimensionless parameters appear in the
formulation, namely, the internal to external viscosity ratio and a Reynolds number
based upon the liquid properties, the bubble initial radius and the principal strain
rate. In terms of this Reynolds number, the correction to the break-up time is found
to be O(Re−1). They also found that for a fixed Weber number, the smaller the
Reynolds number, the longer it takes the bubble to break up. Therefore, the break-up
time computed for inviscid fluids, i.e. Re→∞, determines a lower bound. Moreover,
they obtained that for a fixed Reynolds number, the break-up time reaches a plateau
as the Weber number increases. They also found that the critical Weber number
Wec = 2.22 ± 0.005, which is almost the same as that found by RDZ, is independent
of the Reynolds number for Re > 20. In addition, REV also considered a fluctuating
principal strain rate in the far field to model the mechanism of resonance of the bubble
with passing turbulent structures, a process that has been described above.

A relevant antecedent of the work of REV is the paper by Kang & Leal (1987) on
the dynamics of a bubble in a uniaxial extensional flow with a steady strain rate. They
focused on finding the maximum critical Weber number for which a steady solution
exists by solving the unsteady incompressible Navier–Stokes equations for the external
liquid. However, they do not present results on either the break-up time or the bubble
morphology in an event of break-up. Kang & Leal (1990) also studied the bubble
dynamics when the uniaxial straining motion in the far field is time-periodic. In the
case of a drop in a uniaxial extensional flow of another liquid, the literature search
revealed, surprisingly, that the numerical solution of the incompressible Navier–Stokes
equations has been carried out only by Ramaswamy & Leal (1997), dropping the
unsteady term. Therefore, information on the drop break-up time is not provided and
their results are concerned with the critical Weber number below which a steady shape
exists. The vast majority of the computational work for the transient of this flow
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configuration has been conducted neglecting inertia in the limit of Stokes flow as
shown, for example, in the review paper by Guido & Greco (2004).

The theories of potential flow of viscous fluids, i.e. viscous potential flow and
the dissipation method, which is based upon the mechanical energy equation, have
been applied to problems of linear stability analysis of diverse origin, as well as to
problems of small wave dynamics on an interface or free surface (Joseph, Funada
& Wang 2007). Results from these analyses have shown that excellent to reasonable
agreement can be obtained with exact solutions from the linearized Navier–Stokes
equations, which retain the effects of vorticity, or with experimental data. The question
of to what extent the viscous irrotational theories, in particular, viscous potential flow,
can be used to predict the nonlinear motion of an interface is the subject of this
investigation.

In this work, the dynamics of the interface of a bubble or drop of an incompressible
fluid immersed in another incompressible fluid subjected to a uniaxial extensional flow
is studied. The fluids in this system are viscous and the motion is assumed to be
irrotational for all time. For the bubble, the internal to external fluid density ratio is
set to be very small in comparison with unity and, for the case of the drop, this ratio
is of order one. The solution of the governing equations is sought through a numerical
method that couples a boundary integral formulation with a time integration scheme
following the algorithm proposed by RDZ. In a sense, this is an extension of the work
of RDZ for inviscid fluids to include the viscous effects of the irrotational motion via
the dynamic balance at the interface that contains the viscous normal stresses. The
main objective is the comparison of the interfacial shapes as time advances and the
break-up time computed using the viscous irrotational approximation with published
results obtained from the solution of the incompressible fully viscous Navier–Stokes
equations, which keep the rotational component of the flow field, for the case of
the bubble (REV). For the case of the drop, we present numerical results from the
viscous potential flow theory; however, we are not able to compare with results
from a transient analysis of a flow satisfying the Navier–Stokes equations because,
as mentioned above and to the best of the authors’ knowledge, no works have been
presented in the literature in which these computations have been performed.

This paper is organized as follows. This section is followed by a brief literature
review on the boundary element method applied to the problem of interfacial flows
for viscous fluids. Next, in § 3, the problem formulation and the numerical method
are described in detail. In § 4, the validation of the numerical method (§ 4.1) and the
results for the nonlinear deformation of a bubble (§ 4.2) and drop (§ 4.3) with viscous
effects are presented and discussed. Finally, concluding remarks are given in § 5.

2. Boundary integral methods for viscous potential flow
In the vast majority of the cases, boundary integral formulations based on the

potential theory have been implemented to compute interfacial flows of inviscid,
irrotational flows. In only a few cases has this method been applied to analyse the
interfacial flow of viscous fluids, the reason being that the effect of vorticity generated
at interfaces or solid boundaries cannot be accounted for. A viscous potential flow
analysis of the deformation of a rising three-dimensional bubble was presented by
Miksis, Vanden-Broeck & Keller (1982). They converted their problem into a system
of integro-differential equations which they solved under the conditions of small
Weber numbers and large Reynolds numbers. The boundary element method for the
potential problem has been extended to accommodate the effects of viscosity in a
purely irrotational flow by Georgescu, Achard & Canot (2002) to study a gas bubble
bursting at a free surface and by Canot et al. (2003) in their numerical simulation of
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the buoyancy-driven bouncing of a two-dimensional bubble at a horizontal wall using
the direct formulation of the boundary element method. Very recently, Gordillo (2008)
studied the necking and break-up of a bubble under the action of gravity generated
from a submerged vertical nozzle by modifying the code of RDZ for inviscid fluids to
include the viscous effects of the irrotational motion of the liquid through the viscous
normal stress at the interface, whereas the rotational effects in the gas (vorticity) are
retained through a mechanistic model based upon the incompressible Navier–Stokes
equations assuming a slender neck region that splits the gas pressure as an inviscid
plus a viscous contribution. Predictions of the instantaneous position of the interface
from this code are compared with those from a set of two-dimensional Rayleigh-like
equations deduced with the assumption that the liquid velocity field is irrotational,
and excellent agreement was found. These Rayleigh-like equations were used later by
Bolanos-Jiménez et al. (2009) to study bubble pinch-off in liquids more viscous than
water and good agreement with their experimental data was reported. They justified the
hypothesis of an irrotational liquid velocity field by stating that ‘the velocities induced
by any of the possible sources of vorticity in our setup, i.e. the boundary layer at
the needle wall and the interface curvature, are much smaller than the typical radial
velocities associated to the collapse of the neck’.

Lundgren & Mansour (1988) also included the effect of a small viscosity by
decomposing the velocity field into the sum of an irrotational and a rotational velocity,
in which the former is expressed as the gradient of a potential and the latter is
written as the curl of a vector potential. Substitution of this decomposition into the
incompressible Navier–Stokes equations and applying order-of-magnitude arguments
under the assumption of a thin vortical layer at the free surface of the drop yields a
new set of differential equations for the potentials. These equations carry weak viscous
effects and are coupled with the boundary integral formulation for potential flow based
on the vortex method.

3. Problem formulation and numerical method
In what follows, we adopt the notation and the problem formulation of the analysis

for inviscid fluids by RDZ for the most part. Differences with their formulation arise
with the inclusion here of the viscous effects of the irrotational motion, which are not
considered in their work. Regarding the numerical method, the algorithm we applied
in this work follows the major steps of the algorithm presented by those authors.
However, the numerical techniques applied here in the implementation of several of
these steps differ from those employed by RDZ.

3.1. Statement of the problem
Consider a bubble or drop initially of spherical shape with radius a containing an
incompressible Newtonian fluid of density ρi and viscosity µi and immersed in an
unbounded incompressible Newtonian fluid of density ρe and viscosity µe. The entire
smooth interface S is characterized by a uniform interfacial tension γ . It is assumed
that the bubble or drop moves with the mean velocity of the flow. With respect to a
reference frame that moves with this mean velocity, we describe the evolution of the
bubble or drop interface as a result of a steady uniaxial extensional flow. That is, far
away from the interface, the following velocity potential is prescribed

φ̂∞ = M

a
(2ẑ2 − r̂2), (3.1)

and the corresponding (irrotational) velocity field is û∞ = ∇̂φ̂∞. We adopt a
cylindrical coordinate system (ẑ, r̂, ζ ), in which the ẑ-axis is coincident with the axis
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>

FIGURE 1. Two-phase flow system considered in this study: a bubble or drop of an
incompressible fluid being deformed by an axially symmetric extensional incompressible
flow. The shape of the interface is initially spherical.

of symmetry of the motion and ζ̂ is the azimuthal angle about the ẑ-axis (figure 1).
From the potential in (3.1), the strain rate along the ẑ-direction, which is a principal
direction, is ∂2φ̂/∂ ẑ2 = 4M/a, whereas the strain rates along the other two principal
axes are the same and equal to −2M/a. Thus, the parameter M determines the
magnitude of the principal strain rates. In formulating the problem, we also make
the usual assumption of neglecting the effects of gravity including those associated
with the variation of the hydrostatic pressure. This is a necessary condition for the
interface deformation to be axisymmetric as discussed in Ramaswamy & Leal (1997).
In order to write the governing equations in dimensionless form, the magnitudes
a, a/(8M) and ρe (8M)2 are adopted as the characteristic length, time and pressure
scales, respectively.

We also assume that the internal to external velocity fields are irrotational for all
times. Hence, conservation of mass leads to a pair of Laplace’s equations

∇2φi = 0, ∇2φe = 0, (3.2)

where the subscripts i and e denote the internal and external fluids, respectively.
Dimensionless variables are written with no ‘ˆ’. For the irrotational motion of a
viscous fluid, conservation of linear momentum is given by the Bernoulli’s equation

Λ

(
∂φi

∂t
+ |∇φi |2

2

)
+ pi = 0,

∂φe

∂t
+ |∇φe |2

2
+ pe = 0, (3.3)

for the internal and external flows, respectively, and Λ = ρi/ρe. The solution of (3.2)
and (3.3) must satisfy the following boundary conditions for points at the interface

∂φi

∂ni
=−∂φe

∂ne
, (3.4)

[
−pe + 2

Re

∂2φe

∂n2
i

]
−
[
−pi + 2β

Re

∂2φi

∂n2
i

]
= 1

We
∇‖ ·ni, (3.5)

where the former establishes continuity of the normal velocity across the interface
and the latter expresses that the jump of normal stresses across the interface is
balanced by surface tension forces. Here, β = µi/µe, and the dimensionless numbers
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Sne

ni

t

FIGURE 2. Sketch of the axially symmetric domain showing the cylindrical coordinate
system (ẑ, r̂, ζ ) and the local orthogonal curvilinear coordinate system (ni, s, ζ ). Curve Γ
represents the intersection of the axisymmetric interface S with a plane containing the ẑ-axis.
The material properties of the internal and external fluids, as defined in § 3.1, are included.

Re = ρe(8M)a/µe and We = ρe (8M)2 a/γ are the Reynolds and Weber numbers,
respectively. The first number represents the ratio of inertia to viscous forces and
the second represents the ratio of inertia to surface tension forces. In (3.4) and (3.5),
ni is the unit vector normal to the interface pointing away from the internal fluid
and ne is the unit vector normal to the interface pointing towards the internal fluid,
thus ni = −ne (figure 2). Moreover, ni (ne) is the dimensionless coordinate along and
increasing in the direction of ni (ne). Note that the term added to the pressure within
the brackets corresponds to the viscous normal stress on this or that side of interface
S . Obviously, these terms, which account for the viscous effects of the irrotational
motion, were not considered in the analysis for inviscid fluids by RDZ. The term
−∇‖ · ni equals twice the mean curvature κ of the surface at a point, where ∇‖( )
is the surface gradient operator, ∇‖ = ∇ − n(n · ∇) (Joseph & Renardy 1993). Note
that ∇‖ · ni = ∇ · ni. By introducing a local orthogonal coordinate system (ni, s, ϕ),
where s is the arc-length of the plane curve Γ representing the interface increasing
counterclockwise, and ni and ϕ have been already defined, we write expressions in
appendix A for the viscous normal stress and the mean curvature both needed in (3.5).

Turning now to the evolution of the interface, let uS = dx/dt be the velocity of the
interface S at point x. With uS · ni = ∂φ/∂ni = ∂φi/∂ni = ∂φe/∂ni by continuity of
the normal velocity component, and setting uS ·t = 0 arbitrarily because this tangential
component is irrelevant in tracking the motion of the interface (Joseph et al. 2007), t
being the unit vector tangential to S along the s direction, the position of the surface
can be obtained from the equation

dx
dt
= ∂φ

∂ni
ni, x ∈S . (3.6)

Therefore, points at the interface evolved in time by moving them normal to the
interface. Other choices are found in the literature for the tangential velocity uS ·t. For
instance, Heister (1997) set this value equal to the tangential velocity of the internal
fluid at the boundary, whereas Leppinen & Lister (2003) used the average of the
internal and external fluid tangential velocities. For irrotational motion, continuity of
tangential velocities and stresses cannot be enforced.

Finally, in the far field |x| →∞,

φe→ φ∞(z, r)= z2

4
− r2

8
. (3.7)
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The set of equations (3.2)–(3.3), together with boundary conditions (3.4), (3.5), (3.6)
and (3.7) describe the evolution of the interface of the bubble or drop starting from
an initial state that has S as a sphere of unit radius. The prescription of the initial
conditions is discussed below. Note that the dimensionless parameters governing the
problem are the Reynolds number Re, the Weber number We, the density ratio Λ and
viscosity ratio β, and need to be prescribed.

We may write two scalar equations resulting from the projection of the kinematic
condition (3.6) onto the axial and radial directions, respectively. This leads to

dz

dt
= nz

i

∂φ

∂ni
,

dr

dt
= nr

i

∂φ

∂ni
. (3.8)

To track the time evolution of a scalar field defined on points moving with the
interface, let us consider f to be any smooth field defined on a domain enclosing the
entire interface S . If x is a point on the interface, differentiation of f (x(t), t) with
respect to time yields

df

dt
= ∂f

∂t
+ uS ·∇f = ∂f

∂t
+ (uS ·ni)ni ·∇f = ∂f

∂t
+ ∂φ

∂ni

∂f

∂ni
. (3.9)

Expression (3.9) establishes that quantities for points at the interface are advected by
the normal component of the velocity.

Suppose now that velocity potentials φ(i,e) both belong to the same class of functions
as f . Therefore, by expression (3.9) and continuity of normal velocities, we can write

dφ(i,e)
dt
= ∂φ(i,e)

∂t
+
(
∂φ

∂ni

)2

. (3.10)

Introducing the difference function,

ϕ ≡ φe −Λφi, (3.11)

and eliminating the pressures in (3.5) by the use of Bernoulli’s equations (3.3), we
find, after rearranging terms using (3.10),

dϕ
dt
= 1

We
∇‖ ·ni + 1

2
(1−Λ)

(
∂φ

∂ni

)2

− 1
2

[(
∂φe

∂s

)2

−Λ
(
∂φi

∂s

)2
]

− 2
Re

[
∂2φe

∂n2
i

− β ∂
2φi

∂n2
i

]
, (3.12)

for the rate of change of ϕ for points on the interface that advance in time according
to (3.8).

Integration of the set of differential equations (3.8) and (3.12) gives the shape of
the interface after start-up. In order to solve this system of equations, we prescribe an
initial shape and the distribution of ϕ on the interface. Initially, we consider the bubble
(drop) to have a spherical interface. For ϕ, we choose

ϕ = 0. (3.13)

This choice is such that the potentials at the interface does not exhibit an abrupt
change with time at the instant in which the potential in the far field jumps from a
constant to the value given in (3.1) for a uniaxial extensional flow.

The set of equations (3.8) and (3.12) can be integrated numerically with initial
condition (3.13) and the boundary points (z, r) starting from the semicircumference
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z2 + r2 = 1, r > 0, to track the deformation of the interface as time advances. To
compute the right-hand side of (3.8) and (3.12), the distribution of the potentials
φi and φe, and the normal derivative ∂φ/∂ni are needed. This motivates the
reformulation of Laplace’s equations (3.2) as boundary integral equations using
Green’s representation formula for both the internal and external domains. These
integral equations involve information only at the boundary an therefore reduce the
dimensionality of the problem. For expressions (3.2), with boundary conditions (3.4)
and (3.7), and considering the axial symmetry of the problem, the boundary integral
equations have been presented in RDZ and hence are not written here. Knowing the
position of the boundary and the distribution of ϕ on it, at a given time, suffices to
determine, via the boundary integral equations, the distribution of potentials and their
normal derivative for points on the boundary.

3.2. Numerical method
Considering that the bubble or drop will undergo large deformations depicting
somewhat complex shapes driven by the uniaxial extensional flow imposed in the
far field, the solution of the system of equations established in § 3.1 must be sought by
numerical means. In this section, we describe how the approximate solution methods
for these equations may be implemented in a computer program. This program will
perform three major tasks, as follows:

(i) Implementation of the boundary element method to solve the system of integral
equations for the fluids normal velocity component at the interface and potentials
on both sides of the interface at a given time. This requires discretization of the
interface by dividing it into segments joined by nodal points; interpolation of the
geometry, potential and normal derivative of the potential; numerical evaluation
of the integrals, and assembling and solution of two linear systems of algebraic
equations obtained with the collocation method.

(ii) Numerical integration of the system of differential equations governing the time
evolution of discrete points on the interface to obtain its position at discrete times.
A Runge–Kutta fourth-order scheme with adaptive time stepping is implemented
in this stage.

(iii) Refinement and smoothing of the grid to improve resolution in regions of the
curve approaching the axis of symmetry when pinch-off is imminent and to avoid
interfacial instabilities of numerical origin.

These stages are coupled. The solution of the potential problem as described in the
first task must be accomplished for each time step. Its results are used in the time
integration procedure to march to the next time level. Then, the updated boundary
position and potential distribution are inputs for the potential problem solver to
perform again and a cycle is established. Refinement and smoothing of the mesh
does not necessarily occur after each time step.

Here, we adopt the general algorithm originally presented by RDZ with several
modifications in the details of its implementation. In various parts of the procedure,
we make choices of numerical methods that differ from those selected by those
authors. The reader is referred to Padrino (2010) where the complete details on the
implementation of the stages listed above are described.

To compute the integrals arising in the boundary element method, the potential and
normal derivative are assumed to vary linearly within an element with the arc-length
coordinate, s. Quintic splines are used to interpolate the spatial coordinates. The
sum of the distance between consecutive nodes is used as a spline parameter. Four
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end conditions are required to compute the splines: the z coordinate must satisfy
dz/d` = d3z/d`3 = 0 at both ends, whereas, for the r coordinate, d2r/d`2 = d4r/d`4 =
0. Here, ` denotes the spline parameter. A linear system of equations is formed by
applying the collocation method. Well-known fits for the complete elliptic integral
appearing in the axisymmetric kernels of the boundary integral equations are employed
(Abramowitz & Stegun 1964). When the collocation point belongs to the element
over which the integration is being carried out, a weak (logarithmic) singularity arises
from the complete elliptic integral of the first kind. These singular integrals are
computed with the special logarithmic quadrature using six points (Stroud & Secrest
1966). For the non-singular (regular) integrals, standard Gauss–Legendre quadrature
with six points is applied. Since the matrices appearing in the boundary element
method are fully populated, the linear systems are solved using LU decomposition.
The derivatives of the potential needed in (3.8) and (3.12) are computed using a
quintic spline interpolation with end conditions as for the z coordinate. Rodrı́guez-
Rodrı́guez et al. (2006) reported the use of quartic splines for interpolation and the
singularity substraction technique for the weakly singular integrals.

Owing to the initial shape and the boundary conditions satisfied by the solution
of the problem subject of analysis, the flow field is symmetric with respect to the
plane z= 0. Therefore, one can substantially reduce the computational effort needed in
the solution of the linear systems by enforcing equatorial symmetry in the geometry
coordinates, potentials φ(i,e) and normal velocity ∂φ/∂ni. In this work we have two
versions of the boundary element method algorithm, namely, one in which equatorial
symmetry is not assumed and another in which equatorial symmetry is enforced (see
also the discussion below).

The time step is dynamically modified in order to properly resolve the shape of
the interface when approaching pinch-off and its value is found by requiring that no
nodal point will move beyond a fraction of the smallest element size. This time step
cannot be larger than the time step needed to resolve inviscid capillary waves with the
smallest grid dimension (Leppinen & Lister 2003).

It is desirable to have grid refinement by having shorter separation between
nodes in particular regions of the boundary. This allows for greater detail in the
resolution of the shape of the boundary at the instants before pinch-off. In the present
computations, we adopt a refinement scheme similar to that of Leppinen & Lister
(2003). Interpolating the coordinates of the nodes on the boundary using quintic
splines, the separation between adjacent nodal points {xj, xj+1} was set to 0.1D, where
D is the distance between point xj and the point (zmin, 0) where (zmin, rmin) are the
coordinates of the nodal point on the interface with the minimum radius in the neck
region, that is, the node closest to the axis of symmetry in the neck, when this region
appears. In this notation, the index j = 1 corresponds to the node with coordinates
(zmin, rmin) and increases towards both ends of the boundary. This grid spacing was
restricted to be no larger than an upper bound defined as an input to the code. This
grid refinement strategy was applied in the version of the code for which equatorial
symmetry was considered in the solution of the discrete boundary integral equation.
This version of the code is used in the case of a drop, where break-up takes place,
because of symmetry, simultaneously at two different points away from the plane
z = 0 in the cases considered in this work. In the version of the code that does not
enforce equatorial symmetry, the grid refinement strategy described above is modified
by setting zmin = 0 for all times, this abscissa being associated with the node N/2 + 1,
with N being the (even) total number of elements. This version of the code is used to
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simulate the deformation of a bubble, i.e. small Λ, in which case the minimum radius
of the neck is expected to be located at zmin = 0.

The grid refinement method has been combined with the smoothing strategy of
node staggering in a manner similar to that implemented by Oguz & Prosperetti
(1990). The staggering technique is applied to prevent the development of ‘zig-zag’
instabilities on the interface when simulations run for relatively long time intervals
(Longuet-Higgins & Cokelet 1976; Lundgren & Mansour 1988; Hilbing, Heister &
Spangler 1995; Heister 1997). Filtering schemes based on fast Fourier transforms that
eliminates high-frequency components, which were used by RDZ, are not employed in
our program.

The scheme described above is implemented as a sequential code; it was run in a
single node of a 307-node cluster, each containing two dual-core 2.6 GHz processors
sharing 8 GB of main memory.

4. Results and discussion
The problem described in § 3.1 is solved numerically using the procedure detailed

in § 3.2. Here, we present and discuss the results of the simulations for the case of
a bubble, for which the density ratio is very small, and for the case of a drop, for
which the density ratio is O(1). Before doing so, we discuss the validation stage for
the numerical method employed.

4.1. Validation of the numerical set-up
The validation of the axisymmetric solver is carried out first by comparing its
predictions with analytic results for the small oscillations of a bubble or drop about
the spherical shape from both inviscid (Lamb 1932) and viscous potential flow (Joseph
et al. 2007; Padrino, Funada & Joseph 2008). In this case the motion is driven by
capillary forces as a result of an initial deformation imposed on the interface in the
absence of any prescribed flow in the far field. The dimensionless equations presented
in § 3.1 are still valid for this setting. However, since the flow strength M = 0 in the
far field, one must choose a different velocity scale,

√
γ /(ρea) in this case, so that

the Weber number is now fixed, We= 1, and the Reynolds number is Re=√ρeγ a/µe,
which is simply Oh−1

e , where Ohe is the Ohnesorge number for the exterior fluid. Two
independent modes of oscillation are considered, namely, the second and fourth modes,
which are set by an initial interfacial shape of the form 1 + εPn(cos θ) with n = 2
and 4, respectively, and ε is a ‘small’ number; Pn are the Legendre polynomials of
order n. With these modes, the interface evolves preserving equatorial symmetry.

Figure 3 shows the variation with time of the normalized amplitude of the right end
of the bubble or drop obtained with the numerical method presented above for both
inviscid and viscous fluids and 128 elements. In the latter case, we chose Re = 100
and a viscosity ratio β = 0.01 for the bubble and β = 0.1 for the drop. These choices
give a decay rate such that the interface oscillates over several time periods without
decaying too fast, thereby allowing the analysis of the signal. Figure 3(a) and (b)
correspond to the second mode and ε = 0.05, whereas figure 3(c) and (d) correspond
to the fourth mode and ε =−0.05. Density ratio in these cases is Λ= 0.0012 (bubble
case). The frequency of oscillations increases by increasing n. In the inviscid case
(figure 3a and c), nonlinear effects can presumably be observed as the amplitude of
the oscillations slightly deviates from a constant value. In figure 3(e–f ) the initial
deviation of the bubble interface is reduced (in absolute value) to ε = −0.005. By
comparing figure 3(c) and (e), one can note that the amplitude of the oscillations tend
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FIGURE 3. Amplitude of the right end of the bubble or drop zend(t) = |xend(t)|, where
xend(t) = (z(t), 0), as a function of time. This amplitude is presented in normalized fashion,
(zend(t) − 1)/ε. The motion of the system is due to an initial perturbation of the spherical
interface of unit radius given by |x(0)| = 1 + εPn(cos θ), where Pn are the Legendre
polynomials of order either n = 2 or 4, and θ is the polar angle. The fluid is at rest in the
far field. The figures on the left correspond to inviscid potential flow, whereas the figures on
the right result from viscous potential flow simulations with a Reynolds number Re = 100.
Panels (a) and (b) are obtained with n = 2, ε = 0.05 and density ratio Λ = 0.0012 (bubble).
For panels (c) and (d), n = 4, ε = −0.05 and Λ = 0.0012, whereas for panels (e) and (f ),
n = 4, a much smaller (in absolute value) deviation ε = −0.005 and Λ = 0.0012. Panels (g)
and (h) results from n = 4, ε = −0.005 and Λ = 0.8 (drop). The frequency and decay rate of
the oscillations are compared with the linear, viscous potential flow theory, from which the
dashed lines shown in the figures on the right are obtained.
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FIGURE 4. Minimum neck radius rmin as a function of the time to break-up τ = tb − t for a
bubble in uniaxial straining motion; the density ratio Λ = 0.0012 and the fluids are inviscid.
For the interval shown, the fit of the scaling rmin ∼ τ α is presented, where α is an ‘effective’
exponent. The thin solid line corresponds to a Weber number We = 10 and the dashed line
corresponds to We→∞.

to a constant value as ε becomes smaller in the inviscid case. Finally, figure 3(g) and
(h) show the change in amplitude for a drop (Λ= 0.8), n= 4 and ε =−0.005. Results
for a drop and ε = −0.05 were also obtained but are not shown here as they conform
to those results already depicted. In all of the cases, the frequency of the oscillations
shows excellent agreement with the theoretical results obtained in the linearized case
by Lamb (1932) for fluids with zero viscosity and by Joseph et al. (2007) for two
viscous fluids (see Padrino et al. 2008). The relative error in all of the cases lies
within 0.4 %. In the viscous case, figure 3 also demonstrates a very good match
between the theoretical and numerical results for the decay rate of the oscillations.

This is perhaps the first time in which the linear viscous potential flow theory for
the small oscillations of a bubble or drop is used to validate a numerical method
developed to solve the nonlinear deformation of an interface shared by two viscous
fluids whose motion is assumed to be irrotational. The linear inviscid theoretical result
by Lamb (1932) has been used elsewhere to validate, in the small deformation case,
algorithms solving boundary integral equations to simulate the inviscid motion of an
interface or free surface (Hilbing et al. 1995; RDZ). It should also be mentioned
that Lundgren & Mansour (1988) used a boundary integral formulation to study the
oscillations of a drop with ‘weak’ viscous effects. Their formulation, which differs
from the viscous potential flow approach followed here, was validated using the result
from Lamb’s viscous dissipation approximation. The viscous dissipation approximation
is different from the linearized viscous potential flow method employed in the present
validation and, therefore, one should not expect agreement between results from these
two methods.

Nonlinear (large) deformations of a bubble (Λ = 0.0012) or a drop (Λ = 0.8) in a
uniaxial extensional motion according to the problem formulation in § 3.1 for inviscid
fluids are computed with the algorithm described here and compared in appendix B
with results obtained by RDZ, where excellent agreement is shown. In figure 4 we
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FIGURE 5. Power of the minimum neck radius r3/2
min as a function of time t approaching

pinch-off for an inviscid drop within another inviscid liquid with density ratio Λ = 0.8 and
Weber number (a) We = 3 and (b) We = 10. The figures show that the minimum neck radius
approaches pinch-off following the scaling rmin ∼ τ 2/3 as the time to pinch-off τ = tb − t→ 0.

show the variation of the minimum neck radius rmin with the time to break-up τ = tb−t
for a bubble neglecting the fluids viscosity; here, tb is the break-up time. The fitting of
the law rmin ∼ τ α, where α is an effective exponent, gives rise to values of α somewhat
larger than 0.5, as expected (Gordillo et al. 2005), and closer to values determined
from experimental data for a bubble detaching from a nozzle due to gravity (α = 0.56
by Keim et al. 2006 and α = 0.57 by Thoroddsen, Etoh & Takehara 2007). The slight
difference with our results may be due to the fact that their experimental setting is
different from the configuration studied here, as the precise value of α depends on the
initial and boundary conditions and also, perhaps, to the range of rmin fitted in these
graphs. We note that the ranges plotted here for τ and rmin are similar to those used by
Gordillo et al. (2005).

The evolution of the neck minimum radius rmin as pinch-off is approached for a
drop (Λ = 0.8) is shown to follow the law rmin = τ 2/3 in figure 5 for the time interval
considered for both Weber numbers We = 3 and 10 in agreement with analyses and
numerical predictions (Keller & Miksis 1983; Chen & Steen 1997; Day, Hinch &
Lister 1998; Leppinen & Lister 2003). Here, we show only the cone to the right of
the equatorial plane z = 0. In the initial stages of the deformation, a local minimum
appears at the equatorial plane (z = 0). At a certain time, the interface local minimum
is shifted out of this plane yielding two new local minima, having the same radial
coordinate, at positions that are symmetric with respect to the equatorial plane. This is
illustrated in figures 11 and 17, where the evolution of the shape of a drop is shown.
For a drop and We = 3, figure 6(a) shows the evolution of the interface in the neck
region as it approaches pinch-off. Note that the interface overturned before breaking
up and so both the steep and shallow parts of the interface being connected by the
necking region depict negative slopes with respect to the reference frame shown. As
time progresses, the interface tend to attain a cone shape about the minimum radius
and rmin→ 0 in a finite time creating a kink. Also note the dense grid for the last
instant included in the figure, for which the interface is discretized by 605 nodal points
(initially we set 129 nodes) and the final (adaptive) time steps are of order 3 × 10−9.
In figure 6(b), we present the scaled profiles near drop pinch-off rs versus zs using
the coordinates of the neck (zmin, rmin) as indicated in the figure’s caption at each
instant depicted. With this new set of coordinates the profiles show a clear tendency
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FIGURE 6. (Colour online available at journals.cambridge.org/flm) Interface shapes for
various times approaching pinch-off for a drop of an inviscid fluid in another inviscid liquid;
the density ratio is Λ = 0.8 and the Weber number is We = 3. In panel (a) the coordinates
r versus z are shown; for the last instant, the node distribution over the interface is depicted,
highlighting the high nodal density of the grid around the neck region. In panel (b) the shapes
tend to collapse onto a conical shape when rescaled with the minimum neck radius rmin and
centred on zmin, i.e. zs = (z− zmin)/rmin and rs = r/rmin, thereby suggesting self-similarity. Two
decades of variation of rmin with time are shown in the legend.

to collapse onto a single smooth curve as the time to break-up τ and thus rmin both
go to zero; therefore, in this scaled set of coordinates, this inviscid break-up process
is self-similar, as expected (Leppinen & Lister 2003). It should be mentioned that tests
have been conducted by duplicating the initial number of elements and refining further
the spatial and temporal discretizations near break-up for the cases leading to figures 5
and 6 and the new graphs do not overlap with those shown in figure 5 but some
discrepancy is obtained. Therefore, the results presented in figures 5 and 6 should be
taken with some caution. Nevertheless, the scaling law rmin ∼ τ 2/3 is maintained. We
emphasize that the description of the evolution of the interface from a macroscopic
point of view and the prediction of the break-up time with the viscous potential
flow theory are the central features of our study. The focus is not the description of
the local dynamics of the necking region when pinch-off is imminent. To undertake
such an analysis, one may need to implement improved interpolation methods for the
variables at the interface and perhaps more sophisticated refinements techniques for
positioning the nodes.

4.2. Bubble analysis for viscous fluids
In this section, the time evolution of the interface of a bubble in a uniaxial extensional
flow is computed using the numerical method described in § 3.2 considering
irrotational motion and the internal and external fluids to be viscous. The goal is
to compare the results obtained here under these assumptions with the results given
very recently by REV from the numerical solution of the incompressible, fully viscous
Navier–Stokes equations using a projection method with suitable spatial and time
discretizations of the various terms combined with a level set method to track the
evolution of the interface. They dimensionalized their governing equations with the
same scales as those used in § 3.1. In their numerical study, the initially spherical
bubble starts from rest, the density and viscosity ratios Λ = 0.001 and β = 0.01 and
the remaining controlling parameters, i.e. the Reynolds and Weber numbers, as defined
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FIGURE 7. Total bubble axial dimension D as a function of time for various Reynolds
numbers Re and a subcritical Weber number, We = 1.5. Here, the density ratio Λ = 0.001
and viscosity ratio β = 0.01. The bubble shows an oscillatory motion with large amplitude.
Decreasing the Reynolds number significantly damps the amplitude of the oscillations until
steady state is reached. Therefore, the bubble reaches steady state faster for the lowest Re.
Solid line, viscous potential flow results from the present work; dotted line, inviscid potential
flow results from the present work; symbols, results from simulations of the fully viscous
Navier–Stokes equations by REV, where N corresponds to the highest Re and � to the
smallest. Very good agreement is observed between these two approaches.

in § 3.1, take different values. REV point out that the errors in the computation of
the (bubble) mass were within 1 %, except for high Reynolds numbers and low Weber
numbers, where the errors were within 3 %.

In figure 7, the change of the total axial dimension of the bubble D with time is
presented for five different values of Re and also for the inviscid case, Re→∞, for
a fixed We = 1.5. This magnitude is lower than the critical Weber number Wec above
which inertia effects are strong enough to overcome the surface tension effects that
tend to preserve the integrity of the bubble, thereby leading to break-up. REV found
Wec ≈ 2.22 ± 0.005 and independent of Re for Re > 20. Therefore, for We = 1.5, the
bubble does not break up. It is shown that the oscillations are more rapidly attenuated
as the Reynolds number decreases as a result of viscous dissipation and the bubble
shape quickly reaches steady state. The figures show very good agreement between the
calculations from the potential flow of viscous fluids of the present work (solid lines)
and the fully viscous Navier–Stokes equations by REV (symbols) for up to t ≈ 8,
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indicating that viscous effects are mostly associated with the irrotational motion during
this stage. Because the initial condition is irrotational, the viscous results for the
largest Reynolds numbers, i.e. Re = 200, 500 and 1000, match the inviscid solution,
at least for the first cycle, as in the case of Re = 200. This is not the case for the
smallest values of Re considered, Re = 20 and 50, for which discrepancies with the
inviscid results are evident almost from the start. Finally, note that the results from the
fully viscous Navier–Stokes equations seem to get damped abruptly, especially for the
largest Re, a phenomenon that may be regarded as unexpected and it is not discussed
by REV. In our numerical solutions for the subcritical cases, the maximum error in
the computation of the volume of the bubble lies within 0.02 %. For the set of values
of Re mentioned above, we conducted tests with our code and found about the same
critical value Wec as that reported by REV, with a very weak dependence on Re. With
respect to the trend for inviscid fluids, we expect that, theoretically, a true periodic
regime be reached after several cycles. However, the error associated with a numerical
approximation of the solution may prevent such a behaviour to occur (e.g. mass loss or
gain as time progresses).

In passing, it should be mentioned that bubble break-up still may take place for
subcritical We < Wec if the strength M of the extensional flow in the far field is set
to fluctuate and a mechanism of resonance occurs with the bubble oscillations (see
Kang & Leal 1990; REV); however, this case is out of the scope of this research as
the strength M does not change with time in the present analysis. Note also that REV
predict that Wec decreases towards zero as Re→ 0. In comparing their critical values
for We with those reported by Kang & Leal (1990) for intermediate and large Re,
substantial discrepancies are obtained. REV explained these differences arguing that
the initial conditions that they imposed and the criterion used to determine Wec are not
the same as those used by Kang & Leal (1990).

Now turning our attention to the case of supercritical Weber numbers, figure 8
shows the break-up time tb as a function of the Weber number We for several
magnitudes of the Reynolds number Re obtained from the viscous potential flow
computations. These predictions are compared with results from the solution of the
fully viscous Navier–Stokes equations. In addition, results for inviscid fluids are also
included. The vertical dashed-dotted line corresponds to the critical value reported by
REV (Wec = 2.22). As explained above, for higher values of We the bubble breaks
up. For 3 6 We 6 6, predictions from both theories show very good agreement. This
result is important because it is known (RDZ) that We of order 5 are found in practical
applications (e.g. atomization). On the other hand, for We > 6, discrepancies become
noticeable, with the largest differences found to be of 13 % for Re = 20, the smallest
value used in the analysis, as expected. For the largest Re, differences between viscous
potential theory and the results from the Navier–Stokes equations are small. Note
that viscous potential flow underpredicts the break-up time, that is, the bubble breaks
up in shorter time for viscous potential flow than for the motion resulting from the
Navier–Stokes equations. Thus, as Re decreases and We increases, rotational effects
(vorticity) generated at the interface become influential in the dynamics. From this
figure, it is also evident that the break-up time increases as We decreases for fixed Re.
Examining the results of REV one can notice that for the smallest Re considered
in their work, a plateau is obtained in the graphs of break-up time versus We.
That is, for fixed Re, there exists certain We above which break-up time becomes
almost independent of the Weber number. This trend is not reproduced by the viscous
potential flow results. It should be mentioned that the break-up time in most of the
simulations presented in this work is obtained by stopping the computations when the
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FIGURE 8. Bubble break-up time tb as a function of the Weber number We for various
Reynolds numbers Re. Here, the density ratio Λ = 0.001 and viscosity ratio β = 0.01. Solid
line, viscous potential flow results from the present work; dashed line, inviscid potential
flow results from the present work; symbols, results from simulations of the fully viscous
Navier–Stokes equations by REV, where N corresponds to Re = 20, 4 to Re = 50, H to
Re = 200 and O to Re = 500. The vertical dashed line represents the cross-over from a
subcritical condition (no break-up) to a supercritical condition (break-up).

minimum radius in the neck region reaches rmin < 2 × 10−3 or, in some cases, 10−4.
For a typical initial bubble radius of the order of 1 mm, this criterion establishes a
neck dimension smaller than 2 µm to stop the computations. The time for which the
bubble or drop actually breaks up will be very shortly after the value determined by
the criterion, because one expects the time to break-up to be of the order of or smaller
than the minimum radius. In other words, continuing the computations beyond the
aforementioned limit will not significantly modify the break-up time reported in the
figures.

The time evolution of the bubble interface for different combinations of Re and We
obtained with the method presented here is compared with the profiles presented by
REV in figure 9. For the latter, three instants before pinch-off are presented. It should
be mentioned that REV did not show the bubble interface at the instant of pinch-
off, but before and after pinch-off (the latter is not reproduced here). Overall, the
predictions from the boundary element formulation for viscous potential flow agrees
well with the profiles given by the level set method used by REV coupled with a
Navier–Stokes solver. In particular, the match is very good for the instants well before
pinch-off as the effects of the vorticity created at the interface are still inconsequential.
For cases (a), (b) and (c), our irrotational solution clearly underpredicts the break-up
time; case (a), i.e. Re= 50 and We= 50, shows the most conspicuous difference since
we predict tb = 1.235 whereas computations by REV result in 1.32 < tb < 1.4. For
case (d), however, the present computation predicts a larger break-up time tb = 2.78,
whereas REV indicate 2.65 < tb < 2.72. This is evidence that for supercritical We
close to the critical value, there exists discrepancies between the viscous potential flow
and the Navier–Stokes results. These differences are difficult to appreciate in figure 8.
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Re = 50, We = 50 0.8 1.15t = 0
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FIGURE 9. Bubble break-up profiles with density ratio Λ = 0.001, viscosity ratio β = 0.01,
Reynolds numbers Re = 50 and 500 and Weber numbers We = 2.4 and 50. The solid lines
represent results from the viscous potential flow analysis of the present work. Symbols
correspond to results from simulations of the fully viscous Navier–Stokes equations given
by REV. The profiles by REV for the last instant shown in the figures, and denoted by H, do
not correspond to the instant of break-up.

10–1

10–2

10–4 10–3 10–2 10–1

0.52

0.56

0.60

0.65

rmin

FIGURE 10. Minimum neck radius rmin as a function of the time to break-up τ = tb − t for
a bubble in uniaxial straining motion; the density ratio Λ = 0.001 and the fluids are viscous
with viscosity ratio β = 0.01. For the interval considered in the figure, the fit of the scaling
rmin ∼ τ α is shown, where α is an ‘effective’ exponent. The thin solid line corresponds to
a Reynolds number Re = 50 and Weber number We = 2.4; the dashed line corresponds to
Re = 50 and We = 50; the dash-dotted line corresponds to Re = 500 and We = 2.4; and the
thick solid line corresponds to Re= 500 and We= 50.

In figure 10, graphs of minimum neck radius rmin as a function of τ are shown
when the interface approaches pinch-off for four cases corresponding to supercritical
conditions that combine the values Re= 50 and Re= 500, with We= 2.4 and We= 50.
For the interval plotted, a fit of the relation rmin ∼ τ α is shown, with the ‘effective’
coefficient α ranging between 0.52 and 0.65. For We = 50, when Re decreases
from 500 to 50 (i.e. increasing liquid viscosity with everything else fixed, including
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interfacial tension), the exponent increases from α = 0.60 to 0.65, a result that follows
a tendency observed in numerical simulations performed for a bubble detaching from
a nozzle due to gravity (Quan & Hua 2008). Although we are comparing different
physical settings, the exponents α follow a similar tendency here and there. In any
case, as mentioned above, α depends on the initial and boundary conditions (Bolanos-
Jiménez et al. 2009). The increment of α with liquid viscosity has been obtained in
experiments for a bubble coming out of a nozzle (Burton, Waldrep & Taborek 2005;
Thoroddsen et al. 2007; Bolanos-Jiménez et al. 2009), even though in this case surface
tension might vary as the liquids are changed to modify the viscosity. In contrast,
for We = 2.4, decreasing Re also reduces the exponent α; we argue that this trend
is due to the fact that this We is close to the critical value and thus the break-up
times are longer (see figures 8 and 9), and the effects of the vorticity might therefore
become important. Note also that when the strain rate, fluid densities and viscosities
and bubble initial radius are held fixed and surface tension decreases, We increases
with Re fixed and our model predicts an increment in α, a trend that agrees with
previous numerical results for the collapse of a bubble coming out of a nozzle (Quan
& Hua 2008).

4.3. Drop analysis for viscous fluids
In this section we present results for the deformation of a drop in the uniaxial
straining flow of a liquid. In this case, we set Λ = 0.8. The results discussed here
are obtained from the viscous potential flow approach and the numerical method of
§ 3.2. No comparison is presented for the evolution of the drop interface computed
here with profiles resulting from numerical solutions of the unsteady incompressible
Navier–Stokes equations, since, unexpectedly, this type of computation has not been
found in the literature, as commented in § 1.

Figure 11 shows the interface profiles for a drop in a uniaxial extensional flow
according to the numerical results from the viscous potential flow theory, with density
ratio Λ = 0.8, viscosity ratios β = 0.1 and β = 1, Reynolds numbers Re = 20 and
Re = 200 and Weber number We = 3. We have chosen these values of Weber and
Reynolds numbers because they are in the same order as those used for the bubble. In
particular, Re = 20 should correspond to a regime in which both inertia and viscosity
affect the flow dynamics. First, one notices that, as in the inviscid case for the drop,
the break-up is tertiary. Comparing cases (a) and (b) for Re = 200 and cases (c)
and (d) for Re = 20 indicates that increasing the viscosity ratio from β = 0.1 to 1
increases the break-up time, a result that can be anticipated because of the resistance
that a more viscous liquid offers to motion. In addition, for a fixed β, decreasing
Re, e.g. increasing the viscous effects in the flow, leads to higher break-up times and
much more elongated drops; in particular, the length of the intermediate satellite drop
considerably increases and the size of the daughter drops on the sides, which are large
for Re = 200, diminishes. A comparison between cases (a) and (b) reveals that for
Re = 200 changing β from 0.1 to 1 is of little consequence for the drop morphology,
whereas for Re = 20 the final length of the drop increases in a rather noticeable
amount, although the overall shapes are similar.

Contrasting with the inviscid case of figure 17(a) of appendix B, adding the viscous
effects of the irrotational motion for Re = 200 in figure 11(a,b), yields a stretching
of the axial drop dimension and, in particular, the intermediate satellite drop stretches
about 26 % at the time of break-up. Surprisingly, for Re = 200, cases (a) and (b),
the drops break-up in a shorter time than for the inviscid case (tb = 7.425). This is
in contrast to the bubble case in which the break-up time for the inviscid system
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FIGURE 11. Deformation of a drop in a uniaxial straining flow from a viscous potential flow
analysis with density ratio Λ = 0.8, Weber number We = 3.0 and (a) β = 0.1 and Re = 200,
(b) β = 1.0 and Re= 200, (c) β = 0.1 and Re= 20 and (d) β = 1.0 and Re= 20.

is a lower bound for the viscous system (see figure 8). Performing computations
with Re > 200, for We = 30 and Λ = 0.8 (not shown here), we obtained break-up
times increasing with Re towards the inviscid limit. This result, that the break-up
time is shorter than the time for the inviscid case for Re = 200 whereas it is longer
for Re = 20, perhaps has to do with the unequal distribution of the liquid in the
drop: for Re = 200, it mostly occupies two big lateral drops each of them having
similar axial length as the slender satellite drop bridging them. On the other hand, for
Re= 20, cases (c) and (d), the drops attain large elongations of about four times those
attained in the case of Re= 200, hence the process of deformation takes longer before
pinch-off in comparison with the inviscid case of figure 17(a) and the viscous case
of Re = 200. Finally, the volume changes in the drop during the entire deformation
resulting from the numerical solutions are within 0.07 % for all of the cases presented
in figure 11.

As discussed by RDZ for the inviscid case, extremely elongated drops, such as those
depicted in figure 11(c,d) for Re= 20, become of the same size as the eddy that tends
to break them up and, therefore, the axisymmetric configuration is not preserved as the
ligament is bent by the action of the background flow and the model assumed in this
work no longer holds on quantitative terms. However, some relevant features of the
drop shape are still reproduced, i.e. the drop length and tertiary break-up pattern.

As a reference, for the bubble case represented in figure 9(c), the number of
elements after the last time step was 412, whereas for the drop represented in
figure 11(c) this number was 1248. The initial number of elements in both cases
was 128. The number of Runge–Kutta steps for the bubble was about 39 000; for the
drop this number was 2.5 times that for the bubble. The code execution time for the
drop in this particular case was about 50 times that for the bubble.

The evolution of the drop minimum neck radius rmin with time t and time to
pinch-off τ = tb − t when the interface approaches pinch-off is plotted in figures 12
and 13, respectively, for We = 3, β = 0.1 and two values Re = 20 and 200. Figures
12(b) and 13(b) show that rmin ∼ τ 2/3 for Re = 200, in agreement with the inviscid
potential regime (Leppinen & Lister 2003), as expected for such a large value of the
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FIGURE 12. Power of the minimum neck radius r3/2
min as a function of time t approaching

pinch-off for a viscous drop within another viscous liquid with density ratio Λ = 0.8, Weber
number We = 3, viscosity ratio β = 0.1 and Reynolds number (a) Re = 20 and (b) Re = 200.
The figures show that the minimum neck radius approaches pinch-off following the scaling
rmin ∼ τ 2/3 as the time to pinch-off τ = tb − t→ 0. In figure (a) a change to the scaling
rmin ∼ τ occurs when rupture is imminent.
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FIGURE 13. Minimum neck radius rmin as a function of the time to break-up τ = tb − t for a
viscous drop within another viscous liquid with density ratio Λ= 0.8, Weber number We= 3,
viscosity ratio β = 0.1 and Reynolds number (a) Re = 20 and (b) Re = 200. The numerical
results from the present work are given by the thick solid line. The labels next to the straight
lines refer to the scaling laws rmin ∼ τ 2/3 and rmin ∼ τ .

Reynolds number. This scaling law is governed by inertia and surface tension. On the
other hand, in figures 12(a) and 13(a), obtained for Re = 20, a transition is observed
as rmin→ 0 and τ = tb − t→ 0 from the inviscid scaling to the scaling rmin ∼ τ . The
latter has been identified in the literature with a regime where viscous effects are
significant for the dynamics of the interface, as explained by Eggers (1993) for the
case of a viscous drop in a passive ambient, and by Lister & Stone (1998) when the
interaction with an external viscous fluid is considered. According to these figures, the
transition to this regime occurs for rmin ≈ 5× 10−3–7× 10−3. The inset in figure 12(a)
shows that the change in rmin unexpectedly starts to deviate from the latter scaling at
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FIGURE 14. (Colour online) Interface shapes for various times approaching pinch-off for a
drop of a viscous liquid in another viscous liquid computed with the viscous potential flow
approach; the density ratio is Λ = 0.8, the viscosity ratio is β = 0.1, the Reynolds number
is Re = 20 and the Weber number is We = 3. In figure (a) the coordinates r versus z are
shown; for the last instant, the node distribution over the interface is depicted, highlighting the
high density of the grid around the neck region. In figure (b) the shapes are rescaled with the
minimum neck radius rmin and centred on zmin, i.e. zs = (z − zmin)/rmin and rs = r/rmin but they
do not tend to collapse and the formation of a cylindrical section is predicted. Two decades of
variation of rmin with time are shown in the legend.

about rmin ≈ 1.5 × 10−3 as τ → 0, a response that may be explained by figure 14 (see
below), whereas according to figure 13(a), this deviation occurs at rmin ≈ 2.5 × 10−3.
This difference may be due to the magnitude of tb (see the comment below). The
break-up time tb used to generate figure 13 is estimated from an extrapolation of
the data for rmin = 0; this value is slightly higher than the final time reached in the
simulations, for which rmin > 0 (this is the magnitude of tb reported in figure 8). The
trend exhibited by the curve rmin versus τ = tb − t for the smallest values of rmin in
figure 13 is influenced by the value of tb.

In figure 14(a), we plot interface profiles for various times approaching pinch-off
for Re = 20, We = 3, Λ = 0.8 and β = 0.1. We note that as rmin→ 0, the interface
develops a cylindrical section whose length increases with time; this cylinder seems to
start forming at about rmin = 1.5 × 10−3 in accordance with the deviation depicted in
the inset of figure 12(a) and in figure 13(a). In figure 14(b), we observe that the scaled
profiles rs versus zs do not tend to collapse as τ → 0, and hence are not self-similar
with respect to this scaling, as the necking region adopts the shape of a cylindrical
thread. This behaviour is in contrast with the tendencies described in figure 6 for the
inviscid case, in which the interface forms cones with an apex-like necking region and
the scaled coordinates evolve in a self-similar manner towards pinch-off. Experiments
by Cohen et al. (1999) for a viscous drop dripping through another viscous liquid
and simulations by Sierou & Lister (2003) for a large range of viscosity ratios have
shown self-similar behaviour for the drop pinch-off; however, in their studies, the limit
of no inertia (i.e. Stokes flow) is guaranteed even at macroscopic scales, and thus
their conditions differ from those in our simulations. On the other hand, Doshi et al.
(2003) conducted experiments for a water drop dripping through a very viscous liquid
such that β = 10−4, which is much lower than the value used here, and they observed
the formation of a long thread bridging two conical sections of the drop. Another
difference between the results of this work and the experiments of Cohen et al. (1999)
and Doshi et al. (2003) is that in those experiments, overturning of the steep side
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of the interface around the neck does not occur when the thread is formed and its
slope remains lower than 90◦ measured from the positive z-semi-axis. In summary,
we do not know whether the predicted formation of a cylindrical necking section for
β = 0.1 is physically realizable or it is an artefact resulting from the lack of vorticity
in our model. The results in figures 12 and 14 should be taken cautiously because
the analysis of convergence carried out by increasing the initial number of elements
and refinement of the spatial grid and time step did not render overlapping graphs in
figure 12 but some variation was attained. Despite of this, the remarks on the scaling
laws and the appearance of a transition from one scaling to the other remain valid. The
position of this transition, however, varied with the simulation parameters listed above
(see the comments at the end of § 4.1).

In addition, we performed simulations with β = 1 and found (not plotted here)
that, after transitioning from the inviscid scaling, the linear scaling region rmin ∼ τ
persists all of the way towards the last instant considered in the simulations, for which
rmin = 1.8 × 10−3; this value of rmin is about an order of magnitude higher than the
final rmin for β = 0.1 (see figure 14b). Perhaps, continuing the computations would
have revealed the formation of a cylindrical neck section; unfortunately, continuing
the simulation was impractical for this case. The point of transition to the linear
scaling is observed at rmin ≈ 8 × 10−3 in agreement with the predictions of the theory
rmin ∼ β−1Oh2

i (Lister & Stone 1998), obtained from scaling arguments that takes into
account viscous effects of the internal and external fluids, and valid when both fluids
have comparable viscosities or the internal fluid is more viscous than the external fluid.
Lister & Stone showed that Stokes flow is the final regime that describes the flow
in the neighbourhood of the point of drop break-up as the time to pinch-off goes to
zero, provided that molecular scales are not reached first. Here, Ohi ≡ µi/

√
ρiγ a is the

Ohnesorge number based upon the properties of the internal fluid, which can be easily
computed combining We, Re, Λ and β to eliminate parameter M. With β = 1 and the
other parameters known as well (We= 3, Re= 20, Λ= 0.8), we have Ohi = 0.097 and
rmin = 9 × 10−3. As in the case of β = 0.1, the conclusions drawn for β = 1 may be
contingent upon the values set for the simulation parameters mentioned above.

Even though data for the transient of interface deformation from the solution of the
unsteady incompressible Navier–Stokes equations have not been found for the problem
considered here, a comparison with data from computations of rotational flows is still
possible in the case of steady shapes, since Ramaswamy & Leal (1997) obtained
numerical solutions for those equations, dropping the unsteady terms, for the case of
a drop in a uniaxial extensional flow for a wide range of density and viscosity ratios,
varying the Weber number, and considering several values of the Reynolds number.
They presented the results in terms of the deformation parameter, Df ≡ (lz− lr)/(lz+ lr),
where lz and lr are half the dimension of the drop measured on the z-axis and on the
r-axis (plane z = 0), respectively (see figure 2); Df is identically zero for a spherical
interface. Results assuming the potential flow of viscous fluids for Λ = 1, β = 1 lead
to Df = 0.13 for the pair (Re,We) = (10, 1), Df = 0.05 for (100, 2) and Df = 0.07
for (100, 2.4), whereas they reported Df = 0.16 for (10, 1), Df = 0.09 for (100, 2)
and Df = 0.12 for (100, 2.4), using our notation. Therefore, although qualitatively our
predictions follow the trend of their results, large quantitative differences are observed
and their results are underpredicted by ours. Because a very long time period passes
between start-up and the reaching of the steady state in comparison with typical
break-up times in the supercritical conditions (steady state is reached in time periods
about an order of magnitude longer than typical drop break-up times, roughly), the
distribution of vorticity in the actual flow away from the interface where it is generated
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produces strong deviations of the actual velocity field from irrotationality. In fact, for
a steady interface, the fluid is at rest everywhere within the drop from the potential
flow solution, whereas the external flow slips at the interface. On the other hand,
when vorticity is allowed, the non-slip condition at the boundary drives the motion of
the internal fluid. Based on the prediction of the deformation parameter for a steady
drop, viscous potential flow turns out to be an inadequate approximation for the cases
considered in this exercise.

5. Concluding remarks
The deformation of a bubble or drop in a uniaxial extensional flow starting from a

spherical shape is studied in this work. The problem formulation adopted here assumes
the potential flow of two viscous, incompressible fluids; hence, the effects of the
vorticity are neglected in this approximation. The parameters governing the bubble or
drop break-up process studied here are the ratios of internal to external fluid densities
and viscosity, Λ and β, respectively, and the Reynolds and Weber numbers, Re and
We, respectively, defined in terms of the external fluid properties and the principal
strain rate in the far field.

Owing to the irrotational assumption, a boundary integral method for axisymmetric
potential problems on both interior and exterior domains with appropriate constraints
at the interface was chosen. The governing equations are solved by adopting the
numerical method proposed by RDZ, who considered the same physical setup although
for the flow of inviscid fluids.

We presented the comparison of the results obtained here for the bubble with results
from computations involving the unsteady, incompressible Navier–Stokes equations
carried out by REV using a level-set method. Such a comparison was not possible for
the drop, since numerical works of this class have not been reported in the literature
known to us. From the analysis of the results presented in this work, the following
conclusions can be drawn. First, for the case of the bubble for which the density and
viscosity ratios Λ� 1 and β� 1, we draw the following conclusions:

(i) For the subcritical condition, for which We < Wec so that the bubble does not
break up, the results from the viscous irrotational solution show good agreement
with the predictions from the Navier–Stokes solver for the time variation of the
bubble axial dimension and during various cycles of oscillations, not only for
the largest Reynolds numbers considered, i.e. Re = 200, 500 and 1000, but also
for Re = 20 and Re = 50, for which the amplitude of the oscillations are rapidly
damped. This tendency is a consequence of the irrotational initial condition.

(ii) For the supercritical condition, for which We is such that the bubble breaks up,
the viscous potential flow computations result in interface shapes evolving towards
pinch-off that are very similar to the bubble shapes obtained from the solution
of the Navier–Stokes equations. For a fixed Reynolds number, the break-up time
decreases as the Weber number increases. For a set of intermediate and large
Reynolds numbers, the break-up time computed here shows good agreement with
Revuelta’s predictions in the interval 3 6 We 6 6. For We > 6 and up to the
maximum value considered in this study (We = 100), viscous potential flow tends
to underpredict the break-up time, especially for the lowest Reynolds numbers
considered, namely, Re = 20 and Re = 50. For the largest Re, differences are
relatively small between the irrotational and rotational theories. The predictions
from the inviscid theory provide a lower bound for the break-up time, which
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decreases with increasing Re for fixed We. In the interval Wec < We < 3,
discrepancies between both theories become noteworthy.

In the case of the drop, which in the supercritical condition breaks up into three
daughter drops, we highlight the following findings from the computations performed
considering potential flow of two viscous fluids:

(i) From the evolution of the shape of a drop computed for a density ratio Λ = 0.8,
a Reynolds number Re = 200, viscosity ratios β = 0.1 and 1 and Weber number
We = 3, the morphology and length scales are similar to those for the inviscid
case. Decreasing to Re = 20 renders totally different shapes: approaching pinch-
off, the drop becomes very elongated and slender, with lateral daughter drops
having a smaller volume than the intermediate cylindrical daughter drop. For these
elongated drops with Re = 20, the break-up time is longer than for the Re = 200
case. Unexpectedly, the break-up time for Re = 200 was shorter than for the
inviscid case, in contrast to the more viscous case of Re= 20.

(ii) Comparison of the deformation parameter for the steady-state shapes from
viscous potential flow with those from the Navier–Stokes equations reveal large
discrepancies. This may be explained by the fact that, in the actual flow, a
rotational flow exists within the drop as a result of the non-slip condition, whereas
in the irrotational solution, the internal fluid is at rest.

(iii) For two cases determined by Re = 20 and Re = 200, We = 3, Λ = 0.8 and
β = 0.1, the neck minimum radius evolves with time towards pinch-off as
rmin ∼ τ 2/3 following the inviscid scale; however, for Re = 20, a transition occurs
to the scaling rmin ∼ τ , for which viscous effects become relevant for the interface
motion. As the motion proceeds, the change in the neck radius deviates from
this linear variation presumably because of the formation of a cylindrical thread.
Finally, for Re = 20, the approach to pinch-off for rescaled interface shapes was
not self-similar according to viscous potential flow when the interface coordinates
are normalized with the minimum radius.

The authors gratefully acknowledge the support of the Applied Mathematics
Division of the National Science Foundation under ARRA, and grant number 0302837.
J.C.P. acknowledges the support of the University of Minnesota Graduate School
Dissertation Fellowship, awarded for the academic year 2007–2008. Computational
resources used to carry out this investigation have been provided by the Minnesota
Supercomputer Institute for Advance Computational Research at the University of
Minnesota. We thank D. Leppinen for his kindness in providing his code for
computing quintic splines that served as basis for our own code. We also acknowledge
enlightening conversations with J. M. Gordillo and J. Rodrı́guez-Rodrı́guez on their
formulation for the inviscid case and numerical scheme, and with W. A. Sirignano
about the problem set-up. We are indebted to the anonymous reviewers; their
thoughtful comments and inquiries have improved the paper significantly. The first
draft of this paper was assembled during the stay of J.C.P. at the Department of
Mechanical and Aerospace Engineering of the University of California, Irvine, in the
winter of 2010. This author is grateful for their support and hospitality.

Appendix A. Normal component of the strain rate and mean curvature
The notation used in (3.5) for the normal component of the viscous stress comes

from standard vector differential formulae presented in terms of a local orthogonal
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curvilinear coordinate system that describes the position of points on the interface and
includes coordinate ni as defined above (see Batchelor 1967, Appendix 2). With this
aid, one can readily show that the normal component of the dimensionless strain rate
at points on the interface can be written as

ni ·∇ ⊗∇φ(i,e) ·ni = ∂
2φ(i,e)

∂n2
i

(A 1)

and the two subscripts i and e are needed because this quantity, in general, is
discontinuous across the interface (see below). This identity has been used in (3.5).

For an axisymmetric problem, it is convenient to introduce the set of local
orthogonal curvilinear coordinates (ni, s, ζ ), where ni and ζ have been defined
above and s is the (dimensionless) arclength measured on a meridian curve Γ that
results from the intersection of the surface S representing the interface with a plane
containing the axis of symmetry (z-axis); s increases in the counterclockwise direction
according to figure 2. Because ∂( )/∂ζ = 0, and using Laplace’s equations for the
potentials φ(i,e) written in terms of these curvilinear coordinates, one can show that

ni ·∇ ⊗∇φ ·ni = ∂
2φ

∂n2
i

=−∂
2φ

∂s2
+ 2κ

∂φ

∂ni
− 1

r

∂r

∂s

∂φ

∂s
for r > 0 and (A 2a)

ni ·∇ ⊗∇φ ·ni = ∂
2φ

∂n2
i

=−2
∂2φ

∂s2
+ 2κ

∂φ

∂ni
for r = 0, (A 2b)

where κ denotes the mean curvature of the interface (see below). For simplicity, φ is
written in (A 2) without subscripts (i, e). Note that even though ∂φ/∂ni is continuous
across the interface by condition (3.4), the second derivatives ∂2φi/∂n2

i 6= ∂2φe/∂n2
i ,

in general, because tangential derivatives ∂φ/∂s and ∂2φ/∂s2 are discontinuous as a
consequence of the jump in potential φ.

Regarding the surface tension term in the right-hand side of (3.5), by using the set
of orthogonal coordinates (ni, s, ζ ), we have

−∇‖ ·ni = 2κ =−∂z

∂s

∂2r

∂s2
+ ∂r

∂s

∂2z

∂s2
+ 1

r

∂z

∂s
for r > 0 and (A 3a)

−∇‖ ·ni = 2κ = 2
∂2z

∂s2
for r = 0, (A 3b)

where the latter expression is obtained by recognizing that ∂z/∂s = 0 and ∂r/∂s = 1
at r = 0. Similar expressions to those in (A 2) and (A 3) have been presented by
Georgescu et al. (2002).

Appendix B. Additional validation steps
Results for the time evolution of a bubble or drop in a uniaxial straining flow from

boundary integrals simulations by RDZ considering inviscid fluids are used to further
validate our code in the case of large deformations. They considered that initially the
interface is spherical. If the viscosity is set to zero, the parameters controlling the
dynamics are the Weber number and the density ratio. Their results indicate that above
a certain critical value of We, the bubble breaks up, whereas for values of We below
that threshold, the bubble undergoes large oscillations without breaking up. For the
purpose of comparison, we have chosen some of the cases considered by RDZ. First,
we consider a bubble with density ratio Λ = 0.0012 and Weber numbers We = 1.0,
2.19, 10.0 and We→∞; the first two values correspond to subcritical conditions
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FIGURE 15. Deformation of a bubble in a uniaxial straining flow from an inviscid potential
flow analysis with density ratio Λ = 0.0012 and different Weber numbers: (a) We = 1.0, (b)
We = 2.19, (c) We = 10.0 and (d) We→∞. The solid lines represent the results from the
present work and the ∆ denotes results from RDZ. This comparison is part of the validation
stage of the computational code developed in this work.

and the last two cases result in break-up. RDZ have found a critical Weber number
Wec = 2.3. Figure 15 shows our numerical simulations using the numerical method
presented in § 3.2 for various times. For the final time in each case, the predictions
by RDZ are shown with symbols and the agreement is excellent. It should also be
mentioned that the final time tb from our simulations agree very well with their
final time. The largest difference is for case (c), for which our tb = 1.221 and theirs
tb = 1.230; this amounts to a discrepancy of −0.7 % that we consider insignificant.
Since the fluids are incompressible, the volume of the bubble or drop must remain
constant; by numerical integration of a body of revolution around the z-axis, this
volume has been computed after every time step and errors within 0.02 % where
obtained for the four cases shown in figure 15. This demonstrates the mass preserving
attribute of the numerical scheme used in this work. As a reference, with 129 nodes,
the relative error (%) in the computation of the volume for the initial sphere is about
2× 10−12.

The results shown in figure 15 were computed using 128 elements, with node
staggering and grid refinement. Owing to the latter feature, the number of elements
increased with time leading to a number of elements in the order of 350 at the
last instant of the computations. Test computations with double the initial number of
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2 t = 1.095 1.216
1.221

r
r m
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FIGURE 16. Normalized bubble profile approaching pinch-off for a Weber number We =
10.0, density ratio Λ = 0.0012 and inviscid fluids. Here, rmin denotes the minimum radius
of the bubble neck. The various curves are very well fitted by the parabolic profile
z/rmin = 1 + ar2/r2

min, where rmin = 0.220 and a = 0.152 for t = 1.095; rmin = 0.035 and
a= 0.060 for t = 1.216 and rmin = 0.002 and a= 0.016 for t = 1.221.

–3 –2 –1 0 1 2 3
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(b)
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0

0.5
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r
t = 0

4.7687 6.2198 (6.252)1.5875 3.175

FIGURE 17. Deformation of a drop in a uniaxial straining flow from an inviscid potential
flow analysis with density ratio Λ = 0.8 and Weber numbers (a) We = 3.0 and (b) We = 10.
The solid lines represent the results from the present work and the ∆ denotes results from
RDZ. This comparison is part of the validation stage of the computational code developed in
this work.

elements lead to the same profiles as those shown here. In addition, using a maximum
allowable time step of 10−5 (recall that we are using an adaptive time stepping) instead
of our standard maximum of 10−4 did not render significant changes either. Similar
tests were also conducted for a few of the cases reported here for the inviscid drop
as well as for the calculations concerning the irrotational motion of viscous fluids,
and the results for the overall interface shape and break-up time show insignificant
variation with both the increment of the number of elements at start-up and the
reduction of the maximum time step size.

Owing to the symmetry imposed by the initial and boundary conditions, the
deformed interface shows reflectional symmetry and the minimum radius is attained
at the equatorial plane when the necking region develops in the cases considered here
for the bubble. If the coordinates of the interface are normalized by the minimum
radius rmin (figure 16), the normalized profile becomes slender as time progresses,
since the length scale in the radial direction decreases faster than the scale along the
axial direction, as reported by Gordillo et al. (2005). A parabolic function fits these
curves very well.

Figure 17 depicts the time evolution of the interface for an inviscid drop within
an inviscid fluid with a density ratio Λ = 0.8 and two different Weber numbers. In
contrast to the case of a bubble where break-up has been observed to be binary in
experiments, for the case of a drop the tertiary break-up has been reported (see § 1).
This is reproduced by the simulations. For the smallest We = 3, the slender satellite
drop and the two large droplets on the sides have similar axial length scales. On the
other hand, for the largest We= 10 considered, a central elongated ligament is formed
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with axial length of about 12 times the initial drop length, and break-up occurs near
the ends of the slender drop. Also, break-up times attained for the drop are larger
than in the case of the bubble. Comparison of the shapes predicted by our code
with those by RDZ (symbols) for We = 3 demonstrate very good agreement, which
is also obtained for the break-up time. For We = 10, the drop shape predicted by the
present code is similar to that by RDZ; however, discrepancies arise in the neck region
(pinch-off area) and in the shape of the daughter drops at the tips. This is because
we implemented grid refinement in our simulations, whereas RDZ did not. Indeed,
when we disable grid refinement and enforce equally spaced nodes, our result with 513
nodes (not shown) and that by RDZ coincide in shape. We also highlight that volume
is preserved in the simulations for the drop up to the final time within 0.09 %, even in
the case where the axial length scale changes so dramatically (e.g. We= 10).

R E F E R E N C E S

ABRAMOWITZ, M. & STEGUN, I. A. (eds.) 1964 Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. US Department of Commerce, tenth printing,
December 1972.

ANDERSSON, R. & ANDERSSON, B. 2006 On the breakup of fluid particles in turbulent flows.
AIChE J. 52, 2020–2030.

BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
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