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We investigate the Marangoni instability in a thin polymeric liquid film heated from
the free surface. The polymeric solutions are usually a binary mixture of a Newtonian
solvent with a polymeric solute, and exhibit viscoelastic behaviour. In the presence of
a temperature gradient, stratification of these solutes can take place via the Soret effect,
giving rise to the solutocapillary effect at the free surface. Considering this cross-diffusive
effect and incorporating the effects of gravity, here we analyse the stability characteristics
of this polymeric film when bounded between its deformable free surface and a poorly
conductive rigid substrate. Linear stability analysis around the quiescent base state reveals
that, under the combined influences of thermosolutocapillarity and the elasticity of the
liquid, apart from the monotonic disturbances, two different oscillatory instabilities can
emerge in this system. The characteristics of each instability mode are discussed, and a
complete stability picture is perceived in terms of the phase diagrams, identifying the
model parameter regimes for which a particular instability mode becomes dominant.

Key words: Marangoni convection, thin films, viscoelasticity

1. Introduction

On the free surface of a pure liquid (or liquid mixture), a sufficiently strong local
variation in temperature (or concentration) can lead to the development of surface shear
stresses via the thermocapillary (solutocapillary) effect. These surface stresses have the
ability to induce motion in the bulk phase of a small-scale system (viz. thin films,
droplets, vapour bubbles, liquid bridges, etc.) typically known as Marangoni convection.
The ensuing flow emerges with the formation of beautiful surface patterns, famously
observed by Bénard (1901) and Vanhook et al. (1997) for pure liquids, and subsequently by
Zhang, Behringer & Oron (2007) and Toussaint et al. (2008) for binary liquids. Marangoni
convection is an important area of research due to its emergence in numerous physical and
engineering applications, including the drying of colloidal films (Yiantsios & Higgins
2006), crystal growth (Boggon et al. 1998), laser cladding (Kumar & Roy 2009), fusion
welding (Mills et al. 1998) and the patterning of liquid metal/polymer films (Arshad
et al. 2014). The involvement of surface effects rather than volumetric ones has made
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this convection phenomenon a potential alternative for modifications in the heat and mass
transfer characteristics in the microgravity environment.

Despite remarkable advances towards understanding Marangoni convection in
pure/binary Newtonian liquids (for a comprehensive description, see Colinet, Legros &
Velarde (2001) and Shklyaev & Nepomnyashchy (2017)), this instability phenomenon in
the context of viscoelastic fluids has remained much unexplored. Viscoelastic fluids, e.g.
polymeric solutions, biofluids, etc., are a class of non-Newtonian fluids that possesses
both viscous and elastic characters. Stress exhibits here an elastic response to the strain
characterized by the relaxation time –λ. Quite intuitively, –λ→ 0 indicates a Newtonian
liquid, while the limit –λ→ ∞ stands for the elastic solid. A detailed description of the
complex rheological behaviour of these fluids can be found in the monograph by Bird,
Armstrong & Hassager (1987). Here, we are primarily interested in investigating the
instability characteristics of this fluid for a thin polymeric film, confined between two
bounding surfaces, one rigid (bottom) and other free (top), with an imposed temperature
gradient.

Polymeric solutions are a binary mixture of a Newtonian solvent with polymeric solutes
having –λ ∼ O(10−4–10) s (Joseph 1990). Notably, –λ is a function of the concentration of
the solution and can be even larger for a highly concentrated mixture. In the presence of
a temperature gradient, stratification of these solutes can take place via the Soret effect
(also sometimes called thermodiffusion or thermophoresis) (de Gans et al. 2003; Zhang
& Müller-Plathe 2006; Würger 2007). While these solutes usually migrate towards the
colder region owing to their large masses, nevertheless, they may also move to the warmer
region depending upon the solvent quality and the temperature of the mixture. Polymeric
solutions thus interestingly demonstrate both positive and negative Soret effects. It is
important to note that such migration of solutes on a free liquid surface under the Soret
effect can lead to the development of solutocapillary stress. Hence, Marangoni convection
in a polymeric mixture with an imposed temperature gradient can be induced under the
combined influences of thermosolutocapillarity.

The stability picture of binary liquid mixtures is considerably more complicated than
the case of pure liquids. Under the confluence of thermosolutocapillarity, both monotonic
(stationary) and oscillatory (wave) disturbances can emerge in such a liquid film (Castillo
& Velarde 1982; Joo 1995; Skarda, Jacqmin & Mccaughan 1998; Podolny, Oron &
Nepomnyashchy 2005; Morozov, Oron & Nepomnyashchy 2014). The situation can be
expected to turn more intricate with the consideration of the elastic behaviour of the
mixture. A review of the existing literature on Marangoni convection in polymeric films,
however, suggests that, in the previously reported studies, this binary aspect of the
fluid was either completely ignored (Getachew & Rosenblat 1985; Dauby et al. 1993;
Parmentier, Lebon & Regnier 2000; Hu, He & Chen 2016; Lappa & Ferialdi 2018) or the
process was analysed by separately considering the thermal and solutal effects (Doumenc
et al. 2013; Yiantsios et al. 2015). Note that a combined thermosolutal model is essential
for binary liquid mixtures to capture the instability modes arising from the interaction
between thermocapillary and solutocapillary forces. Nevertheless, the previous analysis of
Getachew & Rosenblat (1985), Dauby et al. (1993) and Parmentier et al. (2000) devoted
to the case of thermocapillary-driven instability in a pure viscoelastic film suggests the
possible emergence of both monotonic and oscillatory disturbances (overstability) in the
system. Stationary convection is found in a weakly viscoelastic fluid, whereas overstability
is noticed for highly viscoelastic fluids. The oscillatory instability detected in these
works is a sole manifestation of the elastic behaviour of the fluid, which emerges in the
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short-wave form for a non-deformable free surface. Recently, for a pure viscoelastic film
confined between its deformable free surface and a poorly conducting substrate, Sarma &
Mondal (2019) demonstrated that a long-wave deformational mode could also appear in
the system. Notably, in all these analyses, the system considered was subjected to heating
from below, leaving the case of heating from above completely unexplored.

These shortcomings motivated us to address the problem of Marangoni instability in
a thin polymeric film for heating from the free surface, considering the binary aspect of
the fluid. The primary contribution of this work is to show that thermosolutocapillarity,
coupled with the elasticity of the fluid, can give rise to two different oscillatory instabilities
in the system apart from the monotonic disturbances. The characteristics of each instability
mode will be investigated here in detail, and the model parameter regimes will be identified
wherein it can become dominant. However, the solvent will be treated as non-volatile in
this investigation.

The outline of this paper is the following. In § 2, we describe the physical system
considered for investigation and present the governing equations and the related boundary
conditions. Identifying the base state, a linear stability analysis is then carried out in § 3.
The numerical scheme employed to solve the eigenvalue problem and its validation is
briefly discussed in § 4. Our numerical results, presented in § 5, are structured as follows:
in § 5.1, we discuss the characteristics of the monotonic mode; the behaviour of the
oscillatory disturbances is discussed in § 5.2. The contributions of fluid elasticity, and
the thermocapillary and solutocapillary forces towards producing these disturbances are
also examined in § 5.2. We plot the phase diagrams in § 6, and discuss the application of
the model to practical settings in § 7. Finally, the main conclusions from this study are
summarized in § 8.

2. Mathematical formulation

2.1. Governing equations and boundary conditions
Figure 1 schematically illustrates the problem under present investigation. We study the
Marangoni instability in a thin layer of an incompressible viscoelastic polymer solution,
initially resting on a flat rigid substrate (of lower thermal conductivity compared with the
liquid) in the gravitational field g. This laterally infinite, two-dimensional film is separated
from the ambient gas phase by its deformable free surface located at z = h(x, t). The
polymeric solution is defined by its relaxation time –λ, viscosity μo, density ρ, thermal
conductivity κ , thermal diffusivity α, mass diffusivity D and surface tension σ .

The entire liquid film is subjected to a uniform transverse temperature gradient, specified
to be −ϑ at the z = 0 plane. Thus, a negative (positive) ϑ indicates the case of heating
the film from the air–liquid interface (substrate). Here, we are interested in investigating
the instability phenomenon only for the former case (i.e. heating the fluid layer at the
air–liquid interface). This applied temperature gradient induces a concentration gradient
in the film via the Soret effect. The heat and mass fluxes in the bulk of the liquid layer are
thus given by (de Groot & Mazur 2011)

J H = −κ∇T, (2.1)

J M = −ρD(∇c + S∇T), (2.2)

respectively, where T is the temperature, c is the solute concentration and S is the Soret
diffusion coefficient of the mixture. For a polymeric solution, S can be either positive or
negative depending upon the solvent quality and the mole fractions of the components, as
well as being based on the temperature of the mixture, as mentioned in § 1. However, the
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Hot air

T∞

Viscoelastic binary liquid

JH = –κ�T, JM = –ρD(�c + S�T)

Rigid substrate

dT/dz|z=0 = –ϑ

x

g

z

Free surface: σ = f (T, c)|z=h(x, t)

FIGURE 1. Schematic of the physical system under investigation. Marangoni instability is
induced in a thin viscoelastic polymer film confined between its deformable free surface (located
at z = h(x, t)) and a flat substrate (at the z = 0 plane) when subjected to heating from above.
The polymeric solution is a binary mixture of a Newtonian solvent with a polymeric solute. The
incorporation of the Soret effect signifies the combined thermosolutal instability in the system.

Dufour effect, through which the concentration gradient couples back to the dynamics of
the temperature field, is neglected in this analysis owing to its exceedingly weak impact
on liquids. Equations (2.1) and (2.2) indicate that, in the conductive state with H as the
unperturbed film thickness, the applied heat flux generates a temperature difference�T =
|ϑ |H across the film, which, in turn, produces a concentration difference c = −S�T via
the Soret effect.

Now, above a certain critical temperature gradient, the thermocapillary and
solutocapillary forces on the free liquid surface induce Marangoni convection in the liquid
film. Here, we assume the surface tension to vary monotonically with temperature and
concentration of the mixture, dictated by the relationship

σ = σo − σT(T − Tr)+ σc(c − cr), (2.3)

where σo is the surface tension at the reference temperature Tr and concentration cr. For
most polymer blends σT (= −∂σ/∂T|T=Tr) > 0, while σc (= ∂σ/∂c|c=cr) can be either
positive or negative. The effects of buoyancy are neglected in this study considering the
small thickness of the film (H � O(1) cm; Pearson 1958). Furthermore, except for σ , all
other thermophysical properties are assumed to remain invariant throughout the analysis.
Therefore, the evolutions of the film velocity v ≡ {u(x, z, t),w(x, z, t)}, pressure p(x, z, t),
temperature T(x, z, t) and solute concentration c(x, z, t) with time t over the horizontal
range x ∈ (−∞,∞) and the vertical range z ∈ [0, h] are governed by

∇ · v = 0, (2.4)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · τ − ρgk, (2.5)

∂T
∂t

+ v · ∇T = α∇2T, (2.6)

∂c
∂t

+ v · ∇c = D∇2c + SD∇2T, (2.7)
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respectively, where τ =
[

τ xx τ xz

τ zx τ zz

]
is the deviatoric stress tensor, k is the unit vector

in the z-direction and ∇ ≡ {∂/∂x, ∂/∂z}. Note that the dynamics of the gas and liquid
phases are decoupled here considering the large ratios between their densities, viscosities
and thermal diffusivities.

The boundary conditions that accompany the set of governing equations (2.4)–(2.7)
are as follows. At the rigid substrate, we impose the no-slip, no-penetration condition for
velocity, a specified heat flux and the mass impermeability conditions, represented by

v = 0,
∂T
∂z

= −ϑ, ∂c
∂z

= Sϑ at z = 0, (2.8a–c)

respectively.
At the deformable free surface, i.e. at z = h(x, t), the boundary conditions comprise the

kinematic condition

w = ∂h
∂t

+ u
∂h
∂x
, (2.9a)

which states that the velocity of the free surface is equal to the velocity of the liquid, thus
giving its location. The balance of the tangential and normal stress components at the free
surface reads

1√
1 + (∂h/∂x)2

{
τxz

[
1 −

(
∂h
∂x

)2
]

+ τzz
∂h
∂x

− τxx
∂h
∂x

}
= ∂σ

∂x
+ ∂σ

∂z
∂h
∂x
, (2.9b)

−p + 1
1 + (∂h/∂x)2

[
τzz + τxx

(
∂h
∂x

)2

− 2τxz
∂h
∂x

]
= σH, (2.9c)

where H = (∂2h/∂x2)[1 + (∂h/∂x)2]−3/2 is the mean curvature.
The thermal boundary condition at the free surface includes the balancing of heat

flux across the interface. This heat exchange process with the ambient gas phase is
approximated in this analysis by the heat transfer coefficient q between the liquid and
the gas phase as follows:

− κ

(
∂h
∂x

∂T
∂x

− ∂T
∂z

)
+ q(T − T∞)

√
1 + (∂h/∂x)2 = 0, (2.9d)

where T∞ is the uniform gas temperature.
Finally, for this non-volatile binary mixture, the mass flux vanishes at the free surface.

Mathematically, this is expressed by

κ

(
− ∂h
∂x

∂c
∂x

+ ∂c
∂z

)
− Sq(T − T∞)

√
1 + (∂h/∂x)2 = 0. (2.9e)

2.2. Constitutive equation for the fluid
Viscoelastic fluids exhibit complex rheology owing to both the viscous and elastic
properties. To depict the rheology of these fluids, a wide variety of constitutive models
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have been developed over the years. The rheology of the fluid is approximated in this work
by the Maxwell model (Bird et al. 1987)

τ + –λ
Dτ

Dt
= μo[(∇v)+ (∇v)T], (2.10)

which characterizes the fluid by a single relaxation time –λ (= μo/G, where G is the elastic
modulus). Out of the spectrum of relaxation time exhibited by the liquid, –λ in (2.10) is
interpreted as the longest relaxation time. Moreover, in (2.10),

Dτ

Dt
= ∂τ

∂t
+ (v · ∇)τ − (∇v)T · τ − τ · (∇v) (2.11)

is the upper convected derivative. However, in this investigation, since a linear stability
analysis will be carried out for small perturbations around an initially quiescent state, the
nonlinear terms in (2.11) will not make any contributions towards the final results. Hence,
Dτ/Dt ≡ ∂τ/∂t for the present analysis. From (2.10) it is clear that, in the limit –λ→ 0,
the Maxwell model depicts the Newtonian fluid behaviour.

2.3. Non-dimensionalization
Let us now non-dimensionalize the boundary value problem (BVP) formulated by
(2.4)–(2.9). Considering the unperturbed film thickness H as the characteristic length
scale, the thermal diffusion time H2/α as the characteristic time scale and |ϑ |H as the
temperature scale, we define the following set of dimensionless variables:

(x̄, z̄) = (x, z)
H

, h̄ = h
H
, t̄ = t

H2/α
, (ū, w̄) = u,w

(α/H)
, τ̄ = τ

μoα/H2
,

p̄ = p
μoα/H2

, T̄ = T − T∞
|ϑ |H , c̄ = c

σT |ϑ |H/σc
.

⎫⎪⎬
⎪⎭
(2.12)

It may be noted that the characteristic scale adopted in (2.12) coincides with the
previous works by Pearson (1958), Shklyaev, Nepomnyashchy & Oron (2009), helping
to compare this work with these previously reported studies. Dropping the overbar from
the non-dimensional variables for convenience in presentation, we finally arrive at the
following set of dimensionless governing equations:

∇ · v = 0, (2.13)

Pr−1

(
∂ v

∂ t
+ v · ∇ v

)
= −∇p + ∇ · τ − Ga k, (2.14)

∂T
∂t

+ v · ∇T = ∇2T, (2.15)

∂c
∂ t

+ v · ∇c = Le(∇2c + χ∇2T). (2.16)

The boundary conditions (2.8) and (2.9) now take the form

v = 0,
∂T
∂z

= −Q, ∂c
∂z

= χQ at z = 0, (2.17a–c)
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and

w = ∂h
∂t

+ u
∂h
∂x
, (2.18a)(

∂T
∂z

− ∂h
∂x

∂T
∂x

)
+ Bi T

√
1 + (∂h/∂x)2 = 0, (2.18b)

(
∂c
∂z

− ∂h
∂x

∂c
∂x

)
− χBi T

√
1 + (∂h/∂x)2 = 0, (2.18c)

−p + 1
1 + (∂h/∂x)2

[
τzz + τxx

(
∂h
∂x

)2

− 2τxz
∂h
∂x

]
= �

∂2h/∂x2

[1 + (∂h/∂x)2]
3/2 , (2.18d)

1√
1 + (∂h/∂x)2

{
τxz

[
1 −

(
∂h
∂x

)2
]

+ τzz
∂h
∂x

− τxx
∂h
∂x

}

= Ma
[
∂ c
∂ x

− ∂T
∂x

+
(
∂ c
∂z

− ∂T
∂z

)
∂h
∂ x

]
at z = h(x, t),

(2.18e)

while the Maxwell constitutive model (2.10) reads

τ + De
∂τ

∂t
= (∇v)+ (∇v)T. (2.19)

Note that, the non-dimensional parameter Q = ϑ/|ϑ | introduced in (2.17) indicates the
direction of applied temperature gradient. The value Q = 1 represents the case of heating
the fluid layer from below, while Q = −1 stands for heating from above. Besides Q, the
BVP (2.13)–(2.19) is further governed by the following set of dimensionless parameters:
the Marangoni number Ma, the Soret number χ , the Deborah number De, the (inverse)
Lewis number Le, the Biot number Bi, the Prandtl number Pr, the Galileo number Ga, and
the (inverse) capillary number �:

Ma = σT |ϑ |H2

μoα
, χ = Sσc

σT
, De =

–λα

H2
, Le = D

α
,

Bi = qH
κ
, Pr = μo

ρα
, Ga = ρgH3

μoα
, � = σH

μoα
.

⎫⎪⎪⎬
⎪⎪⎭ (2.20)

The Marangoni number governs the present instability phenomenon. It gives the critical
temperature difference across the film (|ϑ |H) for which convection sets in, overcoming the
stabilizing actions of viscous and thermal diffusion. The Soret number takes into account
the relative contributions of the thermocapillary and solutocapillary forces towards the
free surface force. Depending upon the Soret coefficient S , χ can assume both positive
and negative values for a polymeric mixture. The Deborah number quantifies the elastic
behaviour of the fluid through the magnitude of –λ. In this analysis, De = 0 indicates a
Newtonian binary mixture (–λ = 0), whereas increasing values of De signify enhanced
elasticity of the mixture. The (inverse) Lewis number compares the characteristic mass
diffusion time scale (H2/D) with the thermal diffusion time scale (H2/α). The Biot
number characterizes the heat transfer rate across the free surface. The Prandtl number
is a material property of the fluid, representing the ratio between thermal diffusion time
scale (H2/α) and viscous diffusion time scale (ρH2/μo). The Galileo number and the
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Viscoelastic fluid Polymer molecular weight (×106 g mol−1) –λ (s)

10 % poly(styrene) in decalin 2 5.8 × 10−4

4 % poly(isobutylene) in toluene 1 3.6 × 10−3

2 % poly(methyl methacrylate) in
diethyl malonate

1 0.038

1 % poly(ethylene oxide) in water 4 0.47
2 % poly(styrene) in benzene 20.6 2

TABLE 1. Typical values of relaxation time for different viscoelastic fluids (from Adam &
Delsanti 1983; Joseph 1990; Ebagninin, Benchabane & Bekkour 2009).

(inverse) capillary number take into account the deformability of the free surface through
the magnitude of g and σ , respectively.

Formulating the problem, we now conclude this section by discussing the physically
permissible range of the above-mentioned non-dimensional parameters. For a viscoelastic
binary mixture, Pr � 1 and Le typically ranges between O(10−5) � Le � O(10−1).
Furthermore, we analyse here both the separate cases of χ > 0 and χ < 0, and vary Bi
within the range 0 < Bi < 1. To study the stability characteristics of both the weakly
and highly viscoelastic fluids, we consider a broad spectrum for De: 0 � De � O(10).
Note that, for a 0.1 mm thick polymeric film with α ≈ O(10−7) m2 s−1, this range of De
encompasses the fluids having –λ ≈ O(0–10) s. Typical values of –λ for different polymeric
solutions are given in table 1.

Moreover, to understand the role of surface deformability on the onset of instability in
the system, we consider here both the cases of a deformable and a non-deformable free
surface. Since increasing gravitational and surface tension forces reduce the deformability
of a free surface, we consider the conditions (Ga, �) = (0.1, 103) to depict a deformable
free surface. For a 0.1 mm thick layer of the polymeric solution with ρ ≈ O(103) kg m−3

and μo ≈ O(10−2) Pa s, the above-mentioned values of Ga and � refer to g ≈ 0.1 m s−2

and σ ≈ 0.01 N m−1. On the other hand, the free surface is treated as non-deformable in
the limit (Ga, �) → ∞, which typically refers to a liquid layer with significantly high
surface tension in the terrestrial environment.

3. Base state and linear stability analysis

In the absence of convection in the liquid film, the BVP (2.13)–(2.19) satisfies a no-flow,
laterally uniform base state with constant film thickness. This set of steady solutions is
given by

vo = 0, τ o = 0, ho = 1, po = Ga(1 − z),

To = Q(1 − z + Bi−1), co = Qχz + const.

}
(3.1)

In this section, we carry out a linear stability analysis for infinitesimal perturbations
around this conductive state of the system. To proceed, we define the following set of
two-dimensional perturbed fields (denoted by a tilde):

v = vo + ṽ(x, z, t), τ = τ o + τ̃ (x, z, t), p = po + p̃(x, z, t),

T = To + θ̃ (x, z, t), h = ho + ξ̃ (x, z, t), c = co + c̃(x, z, t).

}
(3.2a–f )
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Substituting the perturbed fields into (2.13)–(2.18), and subsequently linearizing about the
base state by neglecting the terms nonlinear in perturbations, we obtain

∇ · ṽ = 0, (3.3)

Pr−1 ∂ ṽ

∂t
= −∇p̃ + ∇ · τ̃ , (3.4)

∂θ̃

∂t
− Qw̃ = ∇2θ̃ , (3.5)

∂ c̃
∂t

+ Qχ w̃ = Le(∇2c̃ + χ∇2θ̃ ), (3.6)

with the boundary conditions

ṽ = 0,
∂θ̃

∂z
= 0,

∂ c̃
∂z

= 0 at z = 0, (3.7a–c)

and

∂ξ̃

∂t
= w̃,

∂θ̃

∂z
= −Bi(θ̃ − Qξ̃ ), ∂ c̃

∂z
= χBi(θ̃ − Qξ̃ ),

τ̃xz = Ma
∂

∂x
(c̃ − θ̃ + Qξ̃ + Qχξ̃), −p̃ + Ga ξ̃ + τ̃zz = �

∂2ξ̃

∂x2
at z = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8a–e)
while the constitutive relation (2.19) reads

τ̃ + De
∂ τ̃

∂t
= (∇ṽ)+ (∇ṽ)T. (3.9)

For convenience, this BVP is now cast in terms of the stream function ψ̃ (x, z, t), such
that

ũ = ∂ψ̃

∂ z
, w̃ = −∂ψ̃

∂x
, (3.10a,b)

which eliminates p̃ from the system of equations (3.3)–(3.8). Introducing the stream
function relationships (3.10) along with the constitutive equation (3.9), we finally arrive at

Pr−1

(
∂

∂t
∇2ψ̃ + De

∂2

∂t2
∇2ψ̃

)
= ∇4ψ̃, (3.11)

∂θ̃

∂t
+ Q∂ψ̃

∂x
= ∇2θ̃ , (3.12)

∂ c̃
∂ t

− Qχ ∂ψ̃
∂x

= Le(∇2c̃ + χ∇2θ̃ ), (3.13)
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with the boundary conditions

ψ̃ = 0,
∂ψ̃

∂ z
= 0,

∂θ̃

∂z
= 0,

∂ c̃
∂z

= 0 at z = 0, (3.14a–d)

∂ξ̃

∂t
= −∂ψ̃

∂x
,

∂θ̃

∂z
= −Bi(θ̃ − Qξ̃ ), ∂ c̃

∂z
= χBi(θ̃ − Qξ̃ ), (3.15a–c)

∂2ψ̃

∂ z2
− ∂2ψ̃

∂ x2
= Ma

∂

∂ x
(c̃ − θ̃ + Qξ̃ + Qχξ̃)+ Ma De

∂2

∂t∂x
(c̃ − θ̃ + Qξ̃ + Qχξ̃),

(3.15d)(
1 + De

∂

∂t

)(
�
∂3ξ̃

∂x3
− Pr−1 ∂

2ψ̃

∂t∂z
− Ga

∂ξ̃

∂x

)
= − ∂

∂z

(
3
∂2ψ̃

∂x2
+ ∂2ψ̃

∂z2

)
at z = 1.

(3.15e)

It is important to note that, since the basic state (3.1) is invariant with respect to x and
t, we can employ the Fourier decomposition to separate the x and t dependences of the
perturbed fields (ψ̃, θ̃ , c̃, ξ̃ ) from that with z:

(ψ̃(x, z, t), θ̃ (x, z, t), c̃(x, z, t), ξ̃ (x, z, t)) = (
�

ψ(z),
�

θ(z), �c(z),
�

ξ(z))exp(ikx −Ωt).
(3.16)

In (3.16), (
�

ψ,
�

θ,
�c,

�

ξ) represent the amplitude of perturbations, k denotes the
dimensionless horizontal wavenumber and Ω = ϕ + iω refers to the decay rate of the
perturbations, with ω (a real quantity) as the perturbation frequency. The dynamics of
these infinitesimal perturbations is now governed by the following eigenvalue problem
(EVP):

Pr
d4 �

ψ

dz4
− (Ω2De −Ω + 2Prk2)

d2 �

ψ

dz2
+ (Ω2De −Ω + Prk2)k2 �

ψ = 0, (3.17)

d2�θ

dz2
+ (Ω − k2)

�

θ = ikQ �

ψ, (3.18)

Le
d2�c
dz2

+ (Ω − Lek2)
�c = −Leχ

(
d2�θ

dz2
− k2�θ

)
− ikQχ �

ψ; (3.19)

with

�

ψ = 0,
d

�

ψ

dz
= 0,

d
�

θ

dz
= 0,

d�c
dz

= 0 at z = 0, (3.20a–d)

ik
�

ψ = Ω
�

ξ,
d
�

θ

dz
= −Bi(

�

θ − Q�

ξ),
d�c
dz

= Biχ(
�

θ − Q�

ξ), (3.21a–c)

d2 �

ψ

dz2
+ k2 �

ψ = iMa k(1 − DeΩ)(�c − �

θ + Q�

ξ + Qχ�

ξ), (3.21d)

Pr
d3 �

ψ

dz3
+ (Ω −Ω2De − 3Prk2)

d
�

ψ

dz
= ik Pr(1 −ΩDe)(Ga +�k2)

�

ξ at z = 1.

(3.21e)
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The eigenvalues Ω and Ma depend on the parameter set (k, Bi, De, Le, χ , Ga, �, Pr) and
also on Q.

4. Numerical implementation

Solving the EVP for Q = −1 one can now study the stability characteristics of the
system for the case of heating from the free surface. However, the complexity of
the solvability conditions here restrains us from taking an analytical approach to find the
eigenvalues Ω and Ma. We thus solve equations (3.17)–(3.21) numerically using the
fourth-order Runge–Kutta method and employing the shooting technique. It should be
noted that the adoption of this technique eliminates the possibility of any spurious
eigenvalues, as frequently encountered in the case of the spectral method (Schmid &
Henningson 2001).

The EVP posed by (3.17)–(3.21) suggests the possible emergence of two different
instability modes in the system: (i) monotonic mode (Ω = 0 at the instability threshold
for this mode); and (ii) oscillatory mode (for this mode, Ω attains a purely imaginary
value (= iω) at the instability threshold).

4.1. Validation of the numerical scheme
Before proceeding further, let us first verify the accuracy of the employed numerical
scheme. Note that, although a few studies on the Marangoni instability in a pure
viscoelastic liquid film have been reported in the literature (Getachew & Rosenblat 1985;
Dauby et al. 1993; Parmentier et al. 2000), an investigation considering the binary
aspect of the fluid has not been carried out before. Furthermore, in contrast to these
works, a slightly different system configuration is adopted in the present work (instead
of temperature, its gradient at the solid substrate is specified in this problem). Therefore,
we first test the validity of our numerical scheme for a system with boundary conditions
identical to the present study. In figure 2(a) the results of the present computations
are compared against the well-known results of Pearson (1958) (for the monotonic
mode in purely thermocapillary-driven instability in a Newtonian liquid film, i.e. for
(Ω,De, χ,Q) = (0, 0, 0, 1)) and Shklyaev et al. (2009) (for the oscillatory mode in
thermosolutal Marangoni instability in a Newtonian binary liquid film, i.e. for (De,Q) =
(0, 1)). It can be observed that an excellent quantitative agreement exists between the
results of the present numerical implementation and the above-cited papers for the entire
range of wavenumbers.

Another attempt is made in figure 2(b) to verify the accuracy of our numerical scheme,
this time for a viscoelastic fluid, against the results of Getachew & Rosenblat (1985).
In order to do so, we consider

�

θ = 0 in (3.20c) and (χ,Q) = (0, 1). In figure 2(b), we
compare our results with the numerical computations of Getachew & Rosenblat (1985) for
a wide range of De (= (0.12, 0.45), top panel) and Pr (= (0.1, 10), bottom panel). As
can be seen from figure 2(b), a fairly good agreement exists between the results for each
value of the parameter set (De, Pr). These comparisons ensure the accuracy of the present
numerical implementation.

5. Results

We now proceed to analyse the stability picture for both the long-wave, k < O(1), and
short-wave, k ≥ O(1), perturbations. Here, we are primarily interested in investigating
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FIGURE 2. Validation of the numerical method. (a) Comparison of the present results with
Pearson (1958) and Shklyaev et al. (2009) via the neutral stability curve for the monotonic
and oscillatory instability mode. To replicate the case of a Newtonian liquid film with
an insulated, non-deformable free surface subjected to heating from below, we consider
(Bi,De) = 0, (Ga, �) → ∞ and Q = 1. For the binary mixture: Pr = 2, χ = −0.2 and
Le = 10−3. (b) Comparison of the present results with Getachew & Rosenblat (1985) for pure
thermocapillary-driven instability in a viscoelastic liquid film. To reproduce the results of the

above-cited paper, we consider
�

θ = 0 in (3.20c), (Bi, χ) = 0, Q = 1 and (Ga, �) → ∞. Lines
marked by 1, 2, 3 and 4 correspond to (De,Pr) = (0.12, 1), (0.45, 1), (0.5, 0.1) and (0.1, 10),
respectively.

how viscoelasticity in the presence of the Soret effect deviates the stability of the system
from its Newtonian counterpart. Let us first start with the monotonic instability mode.

5.1. Monotonic mode
The neutral stability curves Ma(k) for the monotonic instability mode are displayed in
figure 3. The solid line and the symbols ♦ (dotted line and the symbols ✩) refer here to
a liquid layer with a deformable (non-deformable) free surface. It can be observed that,
for the entire range of wavenumbers k, there exists a minimum Marangoni number Ma
(denoted by the mark ‘©’) only above which the instability sets in in the system. We
call this Ma the critical Marangoni number (Mac), and the corresponding k and ω as the
critical wave number (kc) and critical oscillation frequency (ωc), respectively.

Figure 3 shows that, for the system subjected to heating from the gas–liquid interface,
the monotonic disturbances always emerge in the long-wave form (kc = 0), irrespective of
the deformability of the free surface. Confirming the results of Podolny et al. (2005), this
study re-establishes the fact that increasing deformability of the free surface leads to a mild
enhancement in the stability of the system against these long-wavelength perturbations.
On the other hand, Mac for the onset of stationary convection is found to be independent
of the elasticity of the fluid. The indication is that both the Newtonian and viscoelastic
binary liquids show identical behaviour towards this particular instability mode. This is
also apparent from the EVP (3.17)–(3.21), which becomes independent of De for Ω = 0.

Now, in order to examine the relative contributions of the thermocapillary and
solutocapillary forces in producing these stationary disturbances, we plot in figure 4 the
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FIGURE 3. Neutral stability curves Ma(k) for the monotonic instability mode at χ = −0.5,
Bi = 0.1, Le = 10−2 and Pr = 10. The solid line and the symbols ♦ depict the stability boundary
for a system with a deformable free surface (Ga, �) = (0.1, 103). The dotted line and the
symbols ✩ show the stability threshold for a system possessing a non-deformable free surface
(Ga, �) → ∞. The circle (©) mark on each neutral curve represents the critical point of the
curve.

10–310–210–1

101

102

–χ

Mac

 

 

Stable

FIGURE 4. Effect of χ on the stability threshold for the monotonic instability mode at Bi =
10−2, Le = 10−2 and Pr = 10. The solid and dotted lines demonstrate the stability boundary for
a liquid layer with a deformable (Ga,�) = (0.1, 103) and a non-deformable (Ga, �) → ∞ free
surface, respectively.

variation of Mac with χ for both cases of a deformable and non-deformable free surface.
One can see that, irrespective of the surface deformability, the system remains always
stable to such disturbances for χ ≥ 0, and the instability emerges only when χ < 0.
The disappearance of this instability mode for χ = 0, and a reducing Mac with |χ |,
suggests that the monotonic disturbances are the sole outcome of the solutocapillary effect.
The thermocapillarity plays here a stabilizing role. An increasing solutocapillary force
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FIGURE 5. (a) Neutral stability curves Ma(k) and the corresponding (b) oscillation frequency
ω for the oscillatory-I mode at χ = −0.5, Bi = 0.1, De = 1, Le = 10−2 and Pr = 10. The
dashed and solid lines depict the stability boundary for a deformable free surface, while their
adjacent dotted line demonstrates the stability threshold for a non-deformable free surface (for
the same De). The circle (©) mark on each neutral curve represents the critical point (the global
minimum) of the curve.

corresponding to higher values of |χ | promotes the onset of instability in the system, as
can be observed from figure 4. Interestingly, we will demonstrate later that, for a shorter
mass diffusion time scale (H2/D), this interplay between the two driving forces can give
rise to an oscillatory instability in the system (see § 5.2.2).

5.2. Oscillatory mode
Let us now focus our attention on the disturbances that emerge with temporal oscillations.
Previous investigations (Getachew & Rosenblat 1985; Dauby et al. 1993; Parmentier et al.
2000) on the Marangoni instability in a pure viscoelastic film suggest that such a liquid
layer is highly vulnerable to this kind of disturbance (i.e. overstability, as discussed in
§ 1). Here, we will demonstrate that thermosolutocapillarity, together with the elasticity
of the fluid, can give rise to two different oscillatory instabilities in the system. We call
them the oscillatory-I and oscillatory-II modes. In what follows, we systematically study
the characteristics of both instability modes by identifying the mechanism behind their
origination.

5.2.1. The oscillatory-I instability
Figure 5 plots the neutral stability curves and the corresponding oscillation frequencies

for the oscillatory-I mode. The solid and dashed lines represent here the results for a
deformable free surface, while their adjacent dotted lines correspond to a non-deformable
free surface. It can be clearly seen that each neutral curve consists of two branches, both
characterized by a distinct local minimum. Of these two local minima, while one lies
in the long-wave regime (kc < O(1)), the other one resides in the short-wave regime
(kc ≥ O(1)). Accordingly, we call these branches the long-wave and short-wave branches,
respectively.

Figure 5(a) shows that the reducing deformability of the free surface leads to a
substantial increment in the Mac pertaining to the long-wave branch. Thus, for a
non-deformable surface, the oscillatory-I disturbances emerge only in the short-wave form.
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FIGURE 6. Effect of fluid elasticity on the instability threshold for the oscillatory-I mode.
The dashed and dotted lines depict the variation for a liquid layer with a deformable
(Ga,�) = (0.1, 103) and a non-deformable free surface (Ga,�) → ∞, respectively; Mac refers
to the global minimum of the Ma(k) neutral curve. Other parameters: Bi = 0.1, Le = 10−2

and Pr = 10.

For a given De, the critical parameters (Mac, kc, ωc) for this short-wave branch remain
unaffected by the deformability of the free surface. On the other hand, for a liquid layer
with a deformable free surface, Mac corresponding to the long-wave branch attains the
global minimum, resulting in the first bifurcation to occur into the long-wave oscillatory-I
mode. It is therefore apparent that, depending upon the deformability of the free surface,
a competition between the long-wave and short-wave oscillatory-I disturbances can also
take place in the system.

Earlier reported studies on the Marangoni instability in a Newtonian binary mixture
(Skarda et al. 1998; Bestehorn & Borcia 2010), however, suggest that, for the case of
heating from above, a liquid layer remains always stable to oscillatory disturbances.
We will now demonstrate that, for this particular direction of heating, the oscillatory-I
instability is experimentally feasible only in the case of a highly viscoelastic film and not
in the Newtonian or a weakly viscoelastic film.

From figure 6, one can find that Mac ≈ O(104) for De ≈ O(10−2), whereas Mac ≈
O(10) for De ≈ O(1). Thus, for a 0.1 mm thick film with σT ≈ O(10−4) N m−1 K−1,
μo ≈ O(10−2) Pa s and α ≈ O(10−7) m2 s−1, the critical temperature difference (|ϑ |H)
required to be maintained across the film for the onset of oscillatory-I convection is
103 K for De ≈ O(10−2), whereas for De ≈ O(1) it is |ϑ |H ≈ 1 K. Since Mac follows
an inverse correlation with De, the necessary temperature difference will be even higher
for De < O(10−2), which seems to be unrealistic considering the thickness of the film. On
the other hand, for De ≥ O(1), one has |ϑ |H � 1 K, and is experimentally feasible.

Competition between the thermocapillary and solutocapillary forces Continuing our
discussion on the oscillatory-I mode, we now plot in figure 7(a) the variation of Mac
with χ , essentially to understand the relative contributions of the thermocapillary and
solutocapillary forces in triggering these disturbances in the system. Note that Mac refers
here to the global minimum of the Ma(k) neutral curve. The emergence of oscillatory-I
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FIGURE 7. Variation of the (a) critical Marangoni number Mac and (b) critical wave number kc

with χ for the oscillatory-I instability mode at Bi = 10−2, De = 1, Pr = 10 and Le = 10−3.
In both panels the dash-dotted line represents the results for a deformable free surface
(Ga,�) = (0.1, 103), while the dotted line depicts the results for a non-deformable free surface
(Ga,�) → ∞.

instability even for χ = 0, and a reducing Mac with De (see figure 6), suggests that
thermocapillarity, coupled with the elasticity of the fluid, primarily gives rise to these
disturbances. (This behaviour of the oscillatory-I mode complies with the behaviour of
oscillatory disturbances detected previously by Getachew & Rosenblat (1985), Dauby et al.
(1993) and Parmentier et al. (2000) for a pure viscoelastic liquid film heated from below.
Thus, the oscillatory-I perturbations are essentially the oscillatory disturbances observed
therein.) The solutocapillarity has only a mild influence in producing this particular
instability mode.

From figure 7(a) it is clear that, irrespective of the nature of the Soret effect (i.e.
whether S is positive or negative), the oscillatory-I instability can appear for any χ ∈ R.
Nevertheless, it is important to note that, for χ > 0, the solutocapillary force promotes the
onset of instability in the system, whereas it weakly enhances the stability of the system for
χ < 0. Interestingly, this contribution of the solutocapillarity to the instability threshold
varies with the deformability of the free surface. Figure 7(b) shows that, for a deformable
free surface, the oscillatory-I disturbances emerge in the long-wave form, while the
perturbations appear in the short-wave form in the case of a non-deformable surface.
Hence, it seems reasonable to infer that, compared with the short-wave disturbances, the
solutocapillary effect is more dominant for the long-wave perturbations.

5.2.2. The oscillatory-II instability
In § 5.1, we have pointed out that an oscillatory instability can develop in the present

system for χ < 0 at higher values of Le. Clearly, this is a different mode of oscillatory
instability from the previous one (i.e. the oscillatory-I mode, which can develop for any
χ ∈ R). We call it the oscillatory-II mode. Below, we demonstrate that the characteristics
of this mode are quite different from those of the oscillatory-I mode.

The typical neutral stability curves for the oscillatory-II mode are presented in figure 8.
It is immediately clear that this is a long-wavelength instability with kc ≈ O(10−3). At
higher values of k, the neutral curve for the oscillatory-II mode merges with the neutral
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FIGURE 8. (a) Neutral stability curves Ma(k) and the corresponding (b) oscillation frequency ω
for the oscillatory-II mode at χ = −0.5, Bi = 0.1, De = 1, Le = 10−2, Pr = 10 and (Ga,�) =
(0.1, 103). The circle (©) mark on each neutral curve in panel (a) represents the critical point
of the curve. At higher values of k, the neutral curves for the oscillatory-II mode merge with the
neutral curve for the monotonic mode.

curve for the monotonic instability mode. This limits the appearance of these disturbances
only in the long-wave form. Another key observation from figure 8(a) is that Mac for the
oscillatory-II mode is independent of the values of De. This indicates that the instability
threshold of the system for this particular mode is not affected by the elastic behaviour of
the binary mixture.

Figure 8(b) plots the corresponding oscillation frequencies of the neutral perturbations.
As expected, ω for the oscillatory-II mode is not affected by the viscoelasticity of the fluid.
A comparison between figures 5 and 8 now reveals that kc,Osc.-II � kc,Osc.-I and ωc,Osc.-II �
ωc,Osc.-I , even for the long-wave oscillatory-I mode. Thus, compared with the oscillatory-I
mode, the oscillatory-II disturbances emerge with much larger convection cells possessing
higher oscillation periods. This is discussed in more detail in § 7.

Competition between the thermocapillary and solutocapillary forces Now, in order
to explore the physical mechanism behind the origination of the oscillatory-II instability
in the system, we plot in figure 9 the variation of the critical Marangoni number with the
Soret number. It is found that, similar to the monotonic mode, an increasing |χ | promotes
the onset of oscillatory-II perturbations as well. Notably, this particular instability mode
emerges in the system only for Le ≥ O(10−2), i.e. for a shorter mass diffusion time
(H2/D) compared with the thermal diffusion time (H2/α). The disappearance of these
perturbations for χ = 0 and a reducing Mac with |χ | thus suggests that, at a higher rate
of solute diffusivity, the increasing competition between the destabilizing solutocapillary
and the stabilizing thermocapillary forces give rises to the oscillatory-II mode. It should be
noted that, similarly to the solutocapillary-dominated monotonic mode, for this mode too
the disturbances always appear in the long-wave form. However, unlike the former one,
the oscillatory-II instability can develop only in a deformable free surface. One can see
in figure 10 that, on reducing the deformability of the free surface, the stability threshold
increases and the oscillation frequency decays. Finally, ω ≈ 0 in the limit (Ga, �) → ∞,
leading to the disappearance of the oscillatory-II mode in a non-deformable free surface.
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FIGURE 9. Variation of the critical Marangoni number Mac with χ for the oscillatory-II mode
(dotted line) at Bi = 10−2, De = 1, Le = 10−2, (Ga,�) = (0.1, 103) and Pr = 10. Here Mac – χ
variations for the monotonic (solid line) and oscillatory-I (dashed-dotted line) modes are plotted
for reference. The inset shows the zoomed-in view for χ → 0.
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FIGURE 10. Effect of free surface deformability on the (a) instability threshold and (b)
oscillation frequency of the neutral perturbations for the oscillatory-II mode at Bi = 0.1, De = 1,
χ = −0.1, Le = 10−2 and Pr = 10.

6. Phase diagrams

Now, to obtain a clear perception of the stability picture, we plot in this section the
phase diagrams. These diagrams are helpful in identifying the regions of model parameters
for which a particular instability mode becomes dominant in the system (for bifurcation
around the conductive base state). Note that, since we are studying here the stability
characteristics of a viscoelastic binary mixture under the influence of the Soret effect, the
phase diagrams are plotted in the χ–De plane for different combinations of the parameters
(Le,Ga, �) holding Bi and Pr fixed. This helps in finding out the parameter regimes
for each instability mode. In figure 11(a–d), regime 1 represents the monotonic mode,
regime 2 the long-wave oscillatory-I mode, regime 3 the short-wave oscillatory-I mode,
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FIGURE 11. Phase diagrams summarizing the boundaries between different dominant
instability modes in the (De, χ) plane for different values of Le: (a,b) deformable free
surface (Ga, �) = (0.1, 103), and (c,d) non-deformable free surface (Ga,�) → ∞. Other
parameters: Bi = 10−2 and Pr = 10. In all panels: regime 1, monotonic instability; regime 2,
long-wave oscillatory-I instability; regime 3, short-wave oscillatory-I instability; and regime 4,
oscillatory-II instability.

and regime 4 refers to the oscillatory-II mode. Any dataset corresponding to the boundary
between the adjacent instability modes (shown by the dashed line) indicates a competition
between them to become the dominant instability mode in the system.

Figure 11(a) plots the phase diagram for a liquid layer with a deformable free surface at
Le = 10−3. For this system, the monotonic disturbances (regime 1) emerge for χ < 0, and
the long-wave oscillatory-I instability (regime 2) appears for χ ≥ 0. On the other hand, for
a higher rate of solute diffusivity (i.e. Le = O(0.1)), figure 11(b) shows that, for χ < 0,
instead of the monotonic mode, the conductive state first bifurcates into the oscillatory-II
mode (regime 4). However, for χ ≥ 0, the long-wave oscillatory-I instability prevails in the
system. It is important to note that a competition between the long-wave and short-wave
oscillatory-I disturbances may also take place in the system for χ ≥ 0 depending upon the
deformability of the free surface (cf. figure 5a).
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For a non-deformable free surface, figure 11(c,d) show that, irrespective of the
diffusivity ratio Le, the disturbances emerge in either the monotonic or the short-wave
oscillatory-I mode. No long-wave oscillatory instability appears here due to the dampening
out of such disturbances by the increased gravitational and surface tension forces.
However, it should be noted that, at a higher rate of solute diffusivity (figure 11d), regime
1 shrinks drastically, for which the conductive state is more likely to lose its stability into
the elasticity-dominated short-wave oscillatory-I mode.

Thus, together, figure 11(a–d) help in identifying the model parameter spaces that give
rises to a particular instability mode once the critical temperature difference across the
film is attained. Figure 11 is expected to be helpful for carrying out an experimental
investigation of the present problem, especially in studying the pattern dynamics of any
particular instability mode.

7. Potential experimental settings

Let us now discuss the conditions at which one may experimentally observe the
instability modes detected in this study. This will also shed some light on the differences
between the oscillatory-I and oscillatory-II instability characteristics. We begin by
considering two different physical systems: (i) a 0.01 mm thick film of water–ethanol
mixture, and (ii) a 0.1 mm thick film of polystyrene–benzene solution. The physical
properties of both the binary mixtures are presented in table 2.

Using the properties from table 2 for the water–ethanol system in the terrestrial
environment, we obtain

(De, χ,Le,Pr,Ga, �) ≈ (0,−0.4, 0.01, 20, 0.1, 103), (7.1)

whereas for the polystyrene–benzene solution, we get

(De, χ,Le,Pr,Ga, �) ≈ (1, 0.5, 2 × 10−3, 1.8 × 103, 0.7, 176). (7.2)

From § 5 we have learned that the oscillatory-II disturbances emerge only in liquid
mixtures with χ < 0 and Le ≥ O(10−2). The critical parameters (Mac, kc, ωc) for this
instability mode remain unaffected by the elastic behaviour of the mixture. On the other
hand, the critical parameters for the oscillatory-I mode are weakly influenced by the values
of (Le, χ) but governed by the elasticity of the fluid.

It is therefore clear from (7.1) and (7.2) that the monotonic and oscillatory-II
disturbances can emerge only in the water–ethanol mixture. For the parameter values in
(7.1), Mac,Mon. = 1 and Mac,Osc.-II = 0.3 (cf. figure 9). But since Mac,Osc.-II < Mac,Mon., the
conductive state for the water–ethanol film first bifurcates into the oscillatory-II mode.
This bifurcation occurs for a temperature difference (|ϑ |H) of 0.1 K across the film. Note
that the oscillatory-I instability sets in in this liquid film only when (|ϑ |H) > 2 × 103 K
(see figure 6, Mac,De=0 > 104), which is at least four orders higher than the temperature
difference required for the onset of oscillatory-II instability. Hence, only the oscillatory-II
mode is likely to appear for heating the water–ethanol mixture from the free surface. The
characteristics wavelength of the convective structure is estimated to be 1 cm with an
oscillation period of 104 s.

On the other hand, the parameter values in (7.2) suggest that the oscillatory-I instability
emerges in the polystyrene–benzene solution with (Mac, kc, ωc) ≈ (0.18, 3.7, 235). For a
0.1 mm thick film, this critical Marangoni number is attained at the temperature difference
of 0.4 K across the film. The corresponding size of the convective pattern is calculated to
be 0.03 mm with an oscillation period of 4 × 10−4 s.
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H (mm) S (K−1) –λ (s) σ (N m−1) σT (N m−1 K−1) σc (N m−1) D (m2 s−1) α (m2 s−1) μo (Pa s) ρ (kg m−3)

Water–ethanol mixture (10 %
w/w)

0.01 0.005 0 0.02 0.6 × 10−4 −5.1 × 10−3 0.85 × 10−9 0.82 × 10−7 1.4 × 10−3 800

Polystyrene
(Mw = 20.6 × 106 g mol−1)

benzene solution (0.7 %
w/w)

0.1 0.05 0.12 0.03 10−4 10−3 2 × 10−10 10−7 0.187 997

TABLE 2. Physical properties of water–ethanol mixture (from Wang & Fiebig 1995; Kita, Wiegand & Luettmer-Strathmann 2004; Khattab et al.
2012) and polystyrene–benzene solution (from Adam & Delsanti 1983; Mark 1999; Hartung, Rauch & Köhler 2006; Singh 2007).
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However, an important remark which needs to be added here is that, for a binary mixture,
the parameters (μo,

–λ,S) are a strong function of the concentration of the solution.
Therefore, the instability characteristics may vary significantly while dealing with the
same fluid at different concentrations.

8. Concluding remarks

To sum up, for the first time, we reported the Marangoni instability in a viscoelastic
liquid film for heating from the free surface. The system considered here for investigation
comprised a thin layer of polymeric solution confined between its deformable free surface
and a rigid substrate. Performing a linear stability analysis around the quiescent base state
of this system, we have numerically studied the stability characteristics of the system for
both long-wave and short-wave perturbations. A detailed investigation of the stability
picture reveals that, apart from the monotonic disturbances, two different oscillatory
instabilities, namely oscillatory-I and oscillatory-II, can appear in this system under the
influences of thermosolutocapillarity and the elasticity of the fluid.

The monotonic instability emerges only for χ < 0, and is solely caused by the
solutocapillary force. The thermocapillarity plays here a stabilizing role, and the instability
threshold also remains unaltered by the elasticity of the fluid. Irrespective of the
deformability of the free surface, such disturbances always emerge in the long-wave
form (kc = 0).

The oscillatory-I mode is a direct manifestation of the elastic behaviour of the fluid,
and can therefore ideally appear for any χ ∈ R. Thermocapillarity, combined with the
elasticity of the fluid, primarily give rises to this instability mode. The solutal effect
plays here a secondary role. However, the role of surface deformability is crucial in the
emergence of these disturbances in the long-wavelength form, which otherwise appear in
the short-wave form for a non-deformable free surface.

The oscillatory-II instability appears only for χ < 0 in a liquid film with a deformable
free surface. For a shorter mass diffusion time scale (i.e. Le ≥ O(10−2)), the competition
between the destabilizing solutocapillary and the stabilizing thermocapillary forces
give rises to these long-wave disturbances. Compared with the oscillatory-I mode, the
oscillatory-II disturbances emerge with much larger convective patterns possessing a
significantly high oscillation period. Furthermore, while the increasing elasticity of
the fluid promotes the onset of oscillatory-I disturbances, the oscillatory-II instability
threshold remains essentially unaffected by this rheological behaviour of the fluid.

Thus, the present study establishes that, for heating a thin polymeric film from the
free surface, the solutocapillary force often can destabilize a system which otherwise
remains stable under the action of thermocapillarity. Importantly, for an externally applied
temperature gradient, the non-uniformities in solute concentration in the present system
are solely caused by the Soret effect. This necessitates the consideration of a complete
thermosolutal model to study the Marangoni instability in a polymeric film. We believe the
results obtained in this study set up an interesting foundation based on which further
theoretical and experimental investigations can be carried out to understand the pattern
dynamics in the nonlinear regime.
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