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This paper is mainly concerned with the global asymptotic behaviour of the unique
solution to a class of singular Dirichlet problems −Δu = b(x)g(u), u > 0, x ∈ Ω,
u|∂Ω = 0, where Ω is a bounded smooth domain in R

n, g ∈ C1(0,∞) is positive and
decreasing in (0,∞) with lims→0+ g(s) = ∞, b ∈ Cα(Ω) for some α ∈ (0, 1), which is
positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we
reveal the asymptotic behaviour of such a solution when the parameters on b tend to
the corresponding critical values.
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1. Introduction

This paper is concerned with the global asymptotic behaviour of the unique classical
solution to the following singular Dirichlet problem:

−Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, (1.1)

where Ω is a bounded smooth domain in R
n, Δ is the usual Laplacian operator,

b satisfies

(b1) b ∈ Cα(Ω) for some α ∈ (0, 1) is positive in Ω and g satisfies

(g1) g ∈ C1(0,∞) is positive and decreasing in (0,∞) with lims→0+ g(s) = ∞.

For convenience, we denote by ψ the solution to the following problem:∫ ψ(t)

0

dτ
g(τ)

= t, ∀ t > 0. (1.2)

We note from (g1) that{
ψ(t) → 0 if and only if t→ 0,
ψ(t) → ∞ if and only if t→ ∞.

(1.3)
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The basic model of problem (1.1) is

−Δu = b(x)u−γ , u > 0, x ∈ Ω, u|∂Ω = 0, (1.4)

where γ > 0.
Problem (1.4) arises naturally in the study of the following nonlinear heat

equation (see [19]):{
b(x)ut = upΔu, (x, t) ∈ Ω × (0,∞);

u(x, t) = u0(x), (x, t) ∈ Ω × {0} ∪ ∂Ω × (0,∞),
(1.5)

where p > 1, u0(x) � 0, x ∈ Ω and u0|∂Ω = 0.
If one considers a solution u of problem (1.5) of the form u(x, t) = T (t)v(x), then

−T ′(t) = c0T
1+p(t), (1.6)

−�v = c0b(x)v1−p, (1.7)

where c0 > 0, (1.6) has a unique global positive solution in (0,∞) (for given initial
data) and tends to zero as t→ ∞. We note that (1.7) is exactly the equation in
problem (1.4). Using the maximum principle and known results for problem (1.4),
it is rather easy to establish the global existence and regularity of solutions to
problem (1.5).

Problem (1.1) has been discussed by many authors and in many contexts; see,
for instance [1–3,5–7,9–25,27–38] and the references therein.

The following are some basic results.
For b ∈ Cα(Ω̄) with b(x) > 0, x ∈ Ω̄, when g satisfies (g1), Fulks and Maybee

[13], Stuart [28], Crandall et al. [10] derived that problem (1.1) has a unique
solution u ∈ C2+α(Ω) ∩ C(Ω̄). Moreover, they established the following result (the-
orems 2.2 and 2.5 in [10]): if ϕ1 ∈ C[0, δ0] ∩ C2(0, δ0] (δ0 > 0) is the local solution
to the problem

− ϕ′′
1(t) = g(ϕ1(t)), ϕ1(t) > 0, 0 < t < δ0, ϕ1(0) = 0, (1.8)

then there exist positive constants c1 and c2 such that

c1ϕ1(d(x)) � u(x) � c2ϕ1(d(x)) near ∂Ω, (1.9)

where d(x) = dist(x, ∂Ω), x ∈ Ω.
In particular, when g(u) = u−γ , γ > 1, u satisfies

c1(d(x))2/(1+γ) � u(x) � c2(d(x))2/(1+γ) near ∂Ω. (1.10)

In [21], by constructing a pair of global subsolution and supersolution, Lazer and
McKenna proved that (1.10) still holds on Ω̄ and u has the following properties:

(i1) if γ > 1, then u is not in C1(Ω̄);

(i2) u is not in H1
0 (Ω) if and only if γ � 3.

It is worth noting that the classical solution of problem (1.4) is not a weak solution
in the case of γ � 3.
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Berhanu et al. [3] further proved that there exists c0 > 0 such that

∣∣∣∣∣ u(x)
(d(x))2/(1+γ)

−
(

(1 + γ)2

2(γ − 1)

)1/(1+γ)∣∣∣∣∣ < c0(d(x))(γ−1)/(1+γ), ∀x ∈ Ω.

When the function g : (0,∞) → (0,∞) is locally Lipschitz continuous and
decreasing in (0,∞), Giarrusso and Porru [15] showed that if g satisfies the following
conditions:

(g01)
∫ 1

0
g(s)ds = ∞,

∫∞
1
g(s)ds <∞;

(g02) there exist positive constants δ and M with M > 1 such that

G1(s) < MG1(2s), ∀s ∈ (0, δ), G1(s) :=
∫ ∞

s

g(τ)dτ, s > 0,

then the unique solution u to problem (1.1) has the property

|u(x) − ϕ2(d(x))| < C0 d(x), ∀x ∈ Ω,

where C0 is a suitable positive constant and ϕ2 ∈ C[0,∞) ∩ C2(0,∞) is the unique
solution of ∫ ϕ2(t)

0

ds√
2G1(s)

= t, ∀t > 0. (1.11)

When b ∈ L∞(Ω), b � 0 almost everywhere and b > 0 on some sets of Ω of positive
measure, del Pino [24] shows that

(i1) for all γ > 0 there exists a unique solution u ∈ C1,α(Ω) ∩ C(Ω̄) to problem
(1.4);

(i2) assume that b satisfies

b(x) � Θ(d(x)) for almost every x ∈ Ω,

for some bounded function Θ : [0,∞) → R such that

∫ 1

0

( |Θ(s)|
sγ

)p
ds <∞ for some p > 1,

then

c1d(x) � u(x) � c2 d(x) in Ω, (1.12)

and |∇u(x)| � C0 in Ω, where c1, c2 and C0 are positive constants.

For convenience, we denote

(b2) there exist σ ∈ R and positive constants bi (i = 1, 2) such that

b1(d(x))−σ � b(x) � b2(d(x))−σ, x ∈ Ω.
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When b is a nonnegative bounded measurable function, which satisfies (b2) with
σ � 0, Gui and Lin [19] (theorem 2.1) further established the following results to
problem (1.4).

(i1) If −σ − γ > −1, then (1.12) holds.
(i2) If −σ − γ = −1, then there exist positive constants c1, c2 and c3 such that

c1d(x)(c3 − ln(d(x)))1/(1+γ) � u(x) � c2d(x)(c3 − ln(d(x)))1/(1+γ), x ∈ Ω.

(i3) If −σ − γ < −1, then there exist positive constants c1, c2 such that

c1(d(x))(2−σ)/(1+γ) � u(x) � c2(d(x))(2−σ)/(1+γ), x ∈ Ω.

For convenience, let λ1 be the first eigenvalue and φ1 ∈ C1(Ω̄) ∩ C2+α(Ω) be the
corresponding eigenfunction of the problem

− Δφ = λφ, x ∈ Ω, φ|∂Ω = 0. (1.13)

It follows from the Höpfs maximum principle that ∇φ1(x) 
= 0, ∀x ∈ ∂Ω, and
there exist δ0 > 0 and positive constants ci (i = 1, 2) such that

|∇φ1(x)| > 0, ∀x ∈ Ω̄δ0 ; c1d(x) � φ1(x) � c2d(x), ∀x ∈ Ω, (1.14)

where ∇φ1(x) is the gradient of φ1(x) and Ωδ0 = {x ∈ Ω : d(x) < δ0}.
Without losing generality, let

max
x∈Ω̄

φ1(x) < exp(−μ), (1.15)

where μ > 1 is given as in the following (b5).
In this paper, we show the optimal global asymptotic behaviour of the unique

solution to problem (1.1) for more general g under the following local structure
conditions:

(g2) there exists Cg � 0 such that

lim
s→0+

g′(s)
∫ s

0

dτ
g(τ)

= −Cg;

(g3) there exists Eg � 0 such that

lim
s→∞ g′(s)

∫ s

0

dτ
g(τ)

= −Eg.

We also give some results with regard to the nonexistence of classical solutions
to problem (1.1). Moreover, we reveal the asymptotic behaviour of such a solution
when the parameters on b tend to the corresponding critical values.

Some basic examples of g in (g2) and (g3) are

(i1) When g(s) = s−γ with γ > 0 and s > 0, Cg = Eg = γ/(1 + γ). Moreover,

ψ(t) = ((1 + γ)t)1/(1+γ) and − tg′(ψ(t)) ≡ γ

1 + γ
, ∀t > 0. (1.16)
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(i2) When g(s) = s−γ1 with γ1 > 0 and s ∈ (0, 1), Cg = γ1/(1 + γ1). Meanwhile,
when s is large, g(s) = s−γ2 with γ2 > 0, Eg = γ2/(1 + γ2). Moreover, ψ(t) =
((1 + γ1)t)1/(1+γ1) for sufficiently small t > 0, and ψ(t) ∼= ((1 + γ2)t)1/(1+γ2) as
t→ ∞.

(i3) When g(s) = (− ln s)γ1 with γ1 > 0 and s ∈ (0, 1/3), Cg = 0. Meanwhile,
when s is large, g(s) = (ln s)−γ2 with γ2 > 0, Eg = 0.

(i4) When g(s) = exp(s−γ1) with γ1 > 0 and s ∈ (0, 1), Cg = 1. Meanwhile, when
s is large, g(s) = exp(−sγ2) with γ2 > 0, Eg = 1.

(i5) When g(s) = s−γ1 with γ1 > 0 and s ∈ (0, 1), Cg = γ1/(1 + γ1). Meanwhile,
when s is large, g(s) = (ln s)−γ2 with γ2 > 0, Eg = 0.

(i6) When g(s) = s−γ1 with γ1 > 0 and s ∈ (0, 1), Cg = γ1/(1 + γ1). Meanwhile,
when s is large, g(s) = exp(−sγ2) with γ2 > 0, Eg = 1.

(i7) When g(s) = (− ln s)γ1 with γ1 > 0 and s ∈ (0, 1/3), Cg = 0. Meanwhile,
when s is large, g(s) = s−γ2 with γ2 > 0, Eg = γ2/(1 + γ2).

(i8) When g(s) = (− ln s)γ1 with γ1 > 0 and s ∈ (0, 1/3), Cg = 0. Meanwhile,
when s is large, g(s) = exp(−sγ2) with γ2 > 0, Eg = 1.

(i9) When g(s) = exp(s−γ1) with γ1 > 0 and s ∈ (0, 1), Cg = 1. Meanwhile, when
s is large, g(s) = (ln s)−γ2 with γ2 > 0, Eg = 0.

(i10) When g(s) = exp(s−γ1) with γ1 > 0 and s ∈ (0, 1), Cg = 1. Meanwhile, when
s is large, g(s) = s−γ2 with γ2 > 0, Eg = γ2/(1 + γ2).

We notice that (i2)–(i10) are new.
A complete characterization of g in (g2) and (g3) is provided in lemmas 2.7

and 2.8.
Our main results are summarized as follows.

Theorem 1.1. Let g satisfy (g1)–(g3) and b satisfy (b1).

(i1) If b satisfies the additional condition that
(b3) there exist σ � 2 and positive constant b1 such that

b(x) � b1(φ1(x))−σ, x ∈ Ω,

then problem (1.1) has no classical solutions.
(i2) Let b satisfy (b2). If

σ = 1 and Cg > 0 or σ ∈ (1, 2), (1.17)

then problem (1.1) has a unique classical solution uσ satisfying

ψ(ξ1(2 − σ)−1φ2−σ
1 (x)) � uσ(x) � ψ(ξ2(2 − σ)−1φ2−σ

1 (x)), (1.18)

where ψ is given as in (1.2), ξ1 and ξ2 are positive constants with ξ1 � ξ2.
Moreover, we have limσ→2− minx∈Ω1 uσ(x) = ∞ and

(
b1
C0

)1−Eg

� lim inf
σ→2−

uσ(x)
ψ((2 − σ)−1)

� lim sup
σ→2−

uσ(x)
ψ((2 − σ)−1)

�
(
b2
c0

)1−Eg

,

(1.19)
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uniformly for x ∈ Ω1, which is an arbitrary compact subset of Ω, where

C0 = max
x∈Ω̄

(
λ1φ

2
1(x) + |∇φ1(x)|2

)
(1.20)

and

c0 = min
x∈Ω̄

(
λ1φ

2
1(x) + |∇φ1(x)|2

)
. (1.21)

In particular, when Eg = 1

lim
σ→2−

uσ(x)
ψ((2 − σ)−1)

= 1, ∀x ∈ Ω.

(i3) If 2σ + 2Cg(2 − σ) < 3, then uσ ∈ H1
0 (Ω); and uσ does not in H1

0 (Ω) provided
2σ + 2Cg(2 − σ) > 3.

Remark 1.2. The existence and uniqueness of solutions to problem (1.1) follows
from theorem 4.1 in [33].

From (1.16), we show that (3.6) (in the following proof of theorem 1.1) holds for
an arbitrary ξ > 0, σ ∈ (1 − γ, 2) and β = 2 − σ, i.e.

(
1 − β + βΨ(ξβ−1φβ1 (x))

)|∇φ1(x)|2 =
γ − 1 + σ

1 + γ
|∇φ1(x)|2 > 0, x ∈ Ωδ0 .

Thus, we obtain the following results directly.

Corollary 1.3. When g(s) = s−γ , s > 0 with γ > 0 in theorem 1.1, we have

(i1) If b satisfies (b3), then problem (1.4) has no classical solutions.
(i2) If b satisfies (b2) with σ ∈ (1 − γ, 2), then problem (1.4) has a unique classical

solution uσ satisfying

mσ(φ1(x))θ � uσ(x) � Mσ(φ1(x))θ, x ∈ Ω (1.22)

and

uσ ∈ Cθ(Ω̄), (1.23)

where θ = (2 − σ)/(1 + γ), θCσm1+γ
σ = b1, θcσM

1+γ
σ = b2, with

Cσ = max
x∈Ω̄

(
λ1φ

2
1(x) + (1 − θ)|∇φ1(x)|2

)
and

cσ = min
x∈Ω̄

(
λ1φ

2
1(x) + (1 − θ)|∇φ1(x)|2

)
.

Moreover, there hold

lim
σ→2−

min
x∈Ω1

uσ(x) = ∞
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and (
b1(1 + γ)

C0

)1/(1+γ)

� lim inf
σ→2−

(
(2 − σ)1/(1+γ)uσ(x)

)
� lim sup

σ→2−

(
(2 − σ)1/(1+γ)uσ(x)

)

�
(
b2(1 + γ)

c0

)1/(1+γ)

,

uniformly for x ∈ Ω1, which is an arbitrary compact subset of Ω.

In particular, when n = 1, Ω = (−R,R) for some R > 0, if the condition (b2) is
replaced by

(b′
2) b(x) = b(r) = b0(R2 − x2)−σ (b0 > 0) and 2σ + γ = 3,

then

uσ(x) =
(
b0
R2

)1/(1+γ)

(R2 − x2)1/2

is the unique solution to problem (1.4).
(i3) uσ ∈ H1

0 (Ω) if and only if γ + 2σ < 3.

When b is in a borderline case near the boundary ∂Ω, we have the following result.

Theorem 1.4. Let g satisfy (g1)–(g3) and b satisfy (b1).

(i1) If b satisfies the additional condition that
(b4) there exist μ � 1 and positive constants b1 such that for x ∈ Ω

b(x) � b1(φ1(x))−2(− ln(φ1(x)))−μ, x ∈ Ω,

then problem (1.1) has no classical solutions.
(i2) If b satisfies the additional condition that
(b5) there exist μ > 1 and positive constants bi (i = 1, 2) such that for x ∈ Ω

b1(φ1(x))−2(− ln(φ1(x)))−μ � b(x) � b2(φ1(x))−2(− ln(φ1(x)))−μ,

then problem (1.1) has a unique classical solution uμ satisfying

ψ(ξ3(μ− 1)−1(− ln(φ1(x)))1−μ) � uμ(x) � ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ),
(1.24)

where ξ3 and ξ4 are positive constants with ξ3 � ξ4.

Moreover, we have limμ→1+ minx∈Ω1 uμ(x) = ∞ and(
b1
C1

)1−Eg

� lim inf
μ→1+

uμ(x)
ψ((μ− 1)−1)

� lim sup
μ→1+

uμ(x)
ψ((μ− 1)−1)

�
(
b2
c1

)1−Eg

, (1.25)

uniformly for x ∈ Ω1, which is an arbitrary compact subset of Ω. Where C1 and c1
have given as in the following Corollary 1.5.
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In particular, when Eg = 1

lim
μ→1+

uμ(x)
ψ((μ− 1)−1)

= 1, ∀x ∈ Ω.

From (1.15) and (1.16), we show that (3.11) (in the following proof of theorem 1.4)
holds for an arbitrary ξ > 0 and μ > 1, i.e.

(1 − μ(− ln(φ1(x)))−1 + (μ− 1)(− ln(φ1(x)))−1

× Ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ))|∇φ1(x)|2

=
(

1 − μ+ γ

1 + γ
(− ln(φ1(x)))−1

)
|∇φ1(x)|2 > 0, near ∂Ω.

Thus, we obtain the following results directly.

Corollary 1.5. When g(s) = s−γ with γ > 0 in theorem 1.4, we have

(i1) If b satisfies (b4), then problem (1.4) has no classical solutions.
(i2) If b satisfies (b5), then problem (1.4) has a unique classical solution uμ

satisfying for x ∈ Ω

mμ(− ln(φ1(x)))−(μ−1)/(1+γ) � uμ(x) � Mμ(− ln(φ1(x)))−(μ−1)/(1+γ),
(1.26)

where

Mμ =
(
b2
cμ

)1/(1+γ)(1 + γ

μ− 1

)1/(1+γ))

,

mμ =
(
b1
Cμ

)1/(1+γ)(1 + γ

μ− 1

)1/(1+γ))

, (1.27)

Cμ = max
x∈Ω̄

(
λ1φ

2
1(x) +

(
1 − μ+ γ

1 + γ
(− ln(φ1(x)))−1

)
|∇φ1(x)|2

)
,

cμ = min
x∈Ω̄

(
λ1φ

2
1(x) +

(
1 − μ+ γ

1 + γ
(− ln(φ1(x)))−1

)
|∇φ1(x)|2

)
.

Moreover, limμ→1+ minx∈Ω1 uμ(x) = ∞, and

(1 + γ)1/(1+γ)
(
b1
C1

)1/(1+γ)

� lim inf
μ→1+

((μ− 1)1/(1+γ)uμ(x))

� lim sup
μ→1+

((μ− 1)1/(1+γ)uμ(x)) � (1 + γ)1/(1+γ)
(
b2
c1

)1/(1+γ)

,

uniformly for x ∈ Ω1, which is an arbitrary compact subset of Ω.

The outline of this paper is as follows. In § 2, we give some preliminaries. The proofs
of theorems 1.1 and 1.4 are provided in § 3.
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2. Some preliminaries

In this section, we present some basics of Karamata regular variation theory in
order to show not only the complete characterization of g in (g1)–(g3) but also the
exact behaviour near zero and infinity of ψ in (1.3).

Incidentally, Ĉırstea and Rǎdulescu [8] first introduced the theory to study the
boundary behaviour of large solutions of semi-linear elliptic equations.

Definition 2.1 [26, definition 1.1]. A positive continuous function g defined on
(0, s0], for some s0 > 0, is called regularly varying at zero with index ρ ∈ R, denoted
by g ∈ RV Zρ, if for each ξ > 0,

lim
s→0+

g(ξs)
g(s)

= ξρ. (2.1)

In particular, when ρ = 0, g is called slowly varying at zero.

Clearly, if g ∈ RV Zρ, then L(s) := g(s)/sρ is slowly varying at zero.
Some basic examples of slowly varying functions at zero are

(i1) every continuous function on (0, s0) which has a positive limit at zero;
(i2) (− ln s)γ and (ln(− ln s))γ , γ ∈ R, s ∈ (0, 1/3);
(i3) exp((− ln s)γ), 0 < γ < 1, s ∈ (0, 1).

Proposition 2.2 (Uniform convergence theorem [26, theorem 1.1]). If g ∈ RV Zρ,
then (2.1) holds uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2. Moreover, if ρ < 0, then
uniform convergence holds on intervals of the form [c1,∞) provided g is bounded on
[c1,∞); if ρ > 0, then uniform convergence holds on intervals (0, c2] for all c2 > 0.

Proposition 2.3 (The Karamata representation theorem) [26, theorem 1.4]. A
function L is slowly varying at zero if and only if it may be written in the form

L(s) = l(s) exp
(∫ s0

s

y(τ)
τ

dτ
)
, s ∈ (0, s0], (2.2)

where the functions l and y are continuous and for s→ 0+, y(s) → 0 and l(s) → c0,
with c0 > 0.

Definition 2.4 ([26], p. 7). We call that

L̂(s) = c0exp
(∫ s0

s

y(τ)
τ

dτ
)
, s ∈ (0, s0], (2.3)

is normalized slowly varying at zero, and

g(s) = sρL̂(s), s ∈ (0, s0], (2.4)

is normalized regularly varying at zero with index ρ (and denoted by g ∈ NRV Zρ).

Equivalently, a function g ∈ NRV Zρ if and only if

g ∈ C1(0, s0] for some s0 > 0 and lim
s→0+

sg′(s)
g(s)

= ρ. (2.5)
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Proposition 2.5 [4, proposition 1.3.6]. If functions L, L1 are slowly varying at
zero, then

(i1) Lρ for every ρ ∈ R, c1L+ c2L1 (c1 � 0, c2 � 0 with c1 + c2 > 0), L · L1,
L ◦ L1 (if L1(s) → 0 as s→ 0+), are also slowly varying at zero.

(i2) For every ε > 0 and s→ 0+, sεL(s) → 0 and s−εL(s) → ∞.
(i3) For ρ ∈ R and s→ 0+, ln(L(s))/ln s→ 0 and ln(sρL(s))/ln s→ ρ.

Proposition 2.6 (Asymptotic behaviour), [4, propositions 1.5.8 and 1.5.10]. If a
function L is slowly varying at zero, then for s0 > 0 and s→ 0+

(i1)
∫ s
0
τρL(τ)dτ ∼= (1 + ρ)−1s1+ρL(s), for ρ > −1;

(i2)
∫ s0
s
τρL(τ)dτ ∼= (−ρ− 1)−1s1+ρL(s), for ρ < −1.

Similarly, for a positive continuous function f defined on [S0,∞), for some S0 > 0,
we can give the definitions of regularly varying and normalized regularly varying
at infinity and present some basic properties. Here we omit them.

Lemma 2.7 [36, lemma 2.2]. Let g satisfy (g1).

(i1) If g satisfies (g2), then Cg � 1.
(i2) (g2) holds with Cg ∈ (0, 1) if and only if g ∈ NRV Z−γ with γ > 0. In this

case γ = Cg/(1 − Cg).
(i3) (g2) holds with Cg = 0 if and only if g is normalized slowly varying at zero.
(i4) If (g2) holds with Cg = 1, then g grows faster than any s−p (p > 1) near zero.
(i5) If g ∈ C2(0, s0) for some s0 > 0 and

g′′(s) > 0, ∀s ∈ (0, s0); lim
s→0+

g(s)g′′(s)
(g′(s))2

= 1, (2.6)

then g satisfies (g2) with Cg = 1.

Similarly, we have the following results.

Lemma 2.8. Let g satisfy (g1).

(i1) If g satisfies (g3), then Eg � 1.
(i2) (g3) holds with Eg ∈ (0, 1) if and only if g is normalized regularly varying at

infinity with index −γ with γ > 0. In this case γ = Eg/(1 − Eg).
(i3) (g3) holds with Eg = 0 if and only if g is normalized slowly varying at infinity.
(i4) If (g3) holds with Eg = 1, then g grows faster than any s−p (p > 1) at infinity.
(i5) If g ∈ C2(S0,∞) for some large S0 > 0 and

g′′(s) > 0, ∀s ∈ (S0,∞); lim
s→∞

g(s)g′′(s)
(g′(s))2

= 1, (2.7)

then g satisfies (g3) with Eg = 1.

For completeness, we give its proof.

https://doi.org/10.1017/prm.2020.52 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.52


1126 Z. Zhang

Proof. By using (g1), we show that

0 <
∫ s

0

dτ
g(τ)

� s

g(s)
, ∀s > 0,

i.e.

0 < g(s)
∫ s

0

dτ
g(τ)

� s, ∀s > 0. (2.8)

Thus

lim
s→0+

g(s)
∫ s

0

dτ
g(τ)

= 0. (2.9)

(i1) Let

I(s) = −g′(s)
∫ s

0

dτ
g(τ)

, ∀s > 0.

Integrating I(t) from 0 to s and using integration by parts, we obtain by (2.9)
that ∫ s

0

I(t)dt = −g(s)
∫ s

0

dτ
g(τ)

+ s, ∀s > 0,

i.e.

0 <
g(s)

∫ s
0

dτ/g(τ)
s

= 1 −
∫ s
0
I(t)dt
s

, ∀s > 0.

It follows from the l’Hospital’s rule that

0 � lim
s→∞

g(s)
∫ s
0

dτ/g(τ)
s

= 1 − lim
s→∞ I(s) = 1 − Eg. (2.10)

So (i1) holds.
(i2) When (g3) holds with Eg ∈ (0, 1), it follows from (2.10) that

lim
s→∞

g(s)
sg′(s)

= lim
s→∞

g(s)
∫ s
0

dτ/g(τ)
sg′(s)

∫ s
0

dτ/g(τ)
= − 1

Eg
lim
s→∞

g(s)
∫ s
0

dτ/g(τ)
s

= −1 − Eg
Eg

,

i.e. g is normalized regularly varying at infinity with index −Eg/(1 − Eg).
Conversely, when g is normalized regularly varying at infinity with index −γ with

γ > 0, i.e. lims→∞ sg′(s)/g(s) = −γ and there exist positive constant S0 > 0 and
L̂, which is normalized slowly varying at infinity such that g(s) = s−γL̂(s), s ∈
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(S0,∞). By using the result similar to proposition 2.6 (i1), we have

− lim
s→∞ g′(s)

∫ s

0

dτ
g(τ)

= − lim
s→∞

sg′(s)
g(s)

lim
s→∞

g(s)
∫ s
0

dτ/g(τ)
s

= γ lim
s→∞ s−(1+γ)L̂1(s)

∫ s

0

τγ(L̂1(τ))−1dτ =
γ

1 + γ
= Eg.

(i3) By Eg = 0 and (2.10), one can see that

lim
s→∞

sg′(s)
g(s)

= lim
s→∞

sg′(s)
∫ s
0

dτ/g(τ)
g(s)

∫ s
0

dτ/g(τ)

=
(

lim
s→∞

g(s)
s

∫ s

0

dτ
g(τ)

)−1

lim
s→∞ g′(s)

∫ s

0

dτ
g(τ)

= 0,

i.e. g is normalized slowly varying at infinity.
Conversely, when g is normalized slowly varying at infinity, i.e. lims→∞ sg′(s)/

g(s) = 0, it follows by (2.8) that

0 <
g(s)

∫ s
0

dτ/g(τ)
s

� 1, ∀s > 0,

and

lim
s→∞ g′(s)

∫ s

0

dτ
g(τ)

= lim
s→∞

sg′(s)
g(s)

g(s)
∫ s
0

dτ/g(τ)
s

= 0.

(i4) By Eg = 1 and the proof of (i2), we show that lims→∞ g(s)/sg′(s) = 0, i.e.
lims→∞ sg′(s)/g(s) = −∞. Consequently, for an arbitrary p > 1, there exists S0 > 0
such that

−g′(s)
g(s)

> (p+ 1)s−1, ∀s � S0.

Integrating the above inequality from S0 to s, we obtain

ln(g(S0)) − ln(g(s)) > (p+ 1)(ln s− lnS0), ∀s > S0,

i.e.

0 < g(s)sp <
g(S0)S

p+1
0

s
, ∀s > S0.

Letting s→ ∞, we show that g grows faster than any s−p (p > 1) at infinity.
(i5) By a direct calculation and the l’Hospital’s rule, we show that

lim
s→∞ g′(s)

∫ s

0

dτ
g(τ)

= lim
s→∞

∫ s
0

dτ/g(τ)
(g′(s))−1

= − lim
s→∞

(g′(s))2

g(s)g′′(s)
= −1.

�

Lemma 2.9 [36, lemma 2.3]. Let g satisfy (g1) and (g2). Then we have
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(i1) ψ′(t) = g(ψ(t)), ψ(t) > 0 for t > 0, ψ(0) = 0, ψ′(0) := limt→0+ ψ′(t) =
limt→0+ g(ψ(t)) = ∞, and ψ′′(t) = g(ψ(t))g′(ψ(t)), t > 0;

(i2) limt→0+ tg(ψ(t)) = 0, limt→0+ tg′(ψ(t)) = −Cg and limt→0 ξtg
′(ψ(ξt)) =

−Cg holds uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2;
(i3) ψ ∈ NRV Z1−Cg

and ψ′ ∈ NRV Z−Cg
.

Similarly, we have the following result.

Lemma 2.10. Let g satisfy (g1) and (g3). Then we have

(i1) limt→∞ ψ(t) = ∞;
(i2) limt→∞ tg′(ψ(t)) = −Eg and limt→∞ ξtg′(ψ(ξt)) = −Eg holds uniformly for

ξ ∈ [c1, c2] with 0 < c1 < c2;
(i3) ψ is normalized regularly varying at infinity with index 1 − Eg, and ψ′ is

normalized regularly varying at infinity with index −Eg.
Lemma 2.11 [21, lemma]. Let Ω be a bounded smooth domain in R

n. We have∫
Ω

(d(x))λ dx <∞

if and only if λ > −1.

Lemma 2.12 [33, theorem 4.1]. Let b satisfy (b1). If g satisfies (g1), then problem
(1.1) has a unique solution u ∈ C2+α(Ω) ∩ C(Ω̄) if and only if the linear problem

− Δv(x) = b(x), v > 0, x ∈ Ω, v|∂Ω = 0, (2.11)

admits a unique solution v0 ∈ C2(Ω) ∩ C(Ω̄).

Lemma 2.13. Let b satisfy (b1).

(i1) If b satisfies (b3), then problem (2.11) has no solutions in C2+α(Ω) ∩ C(Ω̄).
(i2) If b satisfies (b4), then problem (2.11) has no solutions in C2+α(Ω) ∩ C(Ω̄).

Proof. (i1) Let vε = M0ε
−p(φ1(x))ε, x ∈ Ω, where p, ε ∈ (0, 1) and M0 = b1/C0,

here C0 is given as in (1.20). By using (1.15) and σ � 2, we have that

(φ1(x))ε−2 � (φ1(x))−σ, x ∈ Ω

and

−Δvε(x) = M0ε
1−p(φ1(x))ε−2

(
λ1φ

2
1(x) + (1 − ε)|∇φ1(x)|2

)
� M0C0ε

1−p(φ1(x))ε−2 � b1(φ1(x))−σ � b(x), x ∈ Ω,

i.e. vε = M0ε
−p(φ1(x))ε is a subsolution to problem (2.11) in Ω. Thus, if v were a

classical solution to problem (2.11), it would then follow from (g1) and the maxi-
mum principle that v(x) � M0ε

−p(φ1(x))ε, ∀x ∈ Ω. Since ε ∈ (0, 1) is an arbitrary
constant, we show that

lim
ε→0

v(x) = +∞, ∀x ∈ Ω.

This is a contradiction. Thus, problem (2.11) has no classical solutions.
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(i2) Let ε ∈ (0, 1) be an arbitrary constant with − ln(φ1(x)) > 1 + ε, x ∈ Ω. By
using μ � 1, we show that

min
x∈Ω̄

(
λ1φ

2
1(x) +

(
1 − (1 + ε)(− ln(φ1(x)))−1)|∇φ1(x)|2

)
> 0,

and

(− ln(φ1(x)))−ε−1 � (− ln((φ1(x))))−μ, x ∈ Ω.

Let vε = M1ε
−p(− ln(φ1(x)))−ε, x ∈ Ω, where p ∈ (0, 1) and M1 satisfies

M1 max
x∈Ω̄

(λ1φ
2
1(x) + (1 − (− ln(φ1(x)))−1)|∇φ1(x)|2) = b1.

We have from a direct computation that

−Δvε(x) = M1ε
1−p(− ln(φ1(x)))−ε−1(φ1(x)))−2

× (λ1φ
2
1(x) +

(
1 − (1 + ε)(− ln(φ1(x)))−1

)|∇φ1(x)|2
)

� b1(− ln(φ1(x)))−μ(φ1(x)))−2 � b(x), x ∈ Ω,

i.e. vε = M1ε
−p(− ln(φ1(x)))−ε is a subsolution to problem (2.11) in Ω.

The rest of the proof is similar to (i1) and the proof is omitted here. �

3. Global asymptotic behaviour

In this section, we prove theorems 1.1 and 1.4.
Firstly, we introduce a sub-supersolution method with the boundary restriction

to the following more general problem:

−Δu = f(x, u), u > 0, x ∈ Ω, u|∂Ω = 0, (3.1)

where f(x, s) is locally Hölder continuous in Ω × (0,∞) with exponent α ∈ (0, 1)
and continuously differentiable with respect to the variables s.

Definition 3.1. A function u ∈ C2+α(Ω) ∩ C(Ω̄) is called a subsolution to problem
(3.1) if

−Δu � f(x, u), u > 0, x ∈ Ω, u|∂Ω = 0. (3.2)

Definition 3.2. A function ū ∈ C2+α(Ω) ∩ C(Ω̄) is called a supersolution to
problem (3.1) if

−Δū � f(x, ū), ū > 0, x ∈ Ω, ū|∂Ω = 0. (3.3)

The basis for our subsequent discussions is the following lemma, which is
formulated in terms of supersolution and subsolution.

Lemma 3.3 [12, lemma 3]. Suppose problem (3.1) has a supersolution ū and a
subsolution u such that u � ū on Ω, then problem (3.1) has at least one solution
u ∈ C2+α(Ω) ∩ C(Ω̄) in the order interval [u, ū].
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For convenience, let

Ψ(t) := −tg′(ψ(t)), t > 0, (3.4)

we show from lemmas 2.9 and 2.10 that Ψ(t) is positive and bounded on (0,∞).
Next, we prove theorem 1.1.

Proof of theorem 1.1. The result (i1) follows from lemmas 2.12 and 2.13 (i1)
directly.

(i2) Let β = 2 − σ. It follows from lemma 2.9 (i2) and (3.4) that

lim
t→0

Ψ(ξβ−1t) = lim
d(x)→0

Ψ(ξβ−1φβ1 (x)) = Cg (3.5)

holds uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.
From (1.14), we show that there is a sufficiently small δ1 ∈ (0, δ0), which is

independent of ξ ∈ [c1, c2], such that for x ∈ Ωδ1 ,

(1 − β + βΨ(ξβ−1φβ1 (x)))|∇φ1(x)|2 > 0. (3.6)

Moreover, we have from lemma 2.10 (i2) that

0 � inf
t>0

Ψ(t) � Ψ(t) � sup
t>0

Ψ(t) <∞, t > 0.

Denote

Ψ̄(x) =

⎧⎪⎪⎨
⎪⎪⎩

Ψ(ξβ−1φβ1 (x)), d(x) � δ1
2
,

sup
t>0

Ψ(t), d(x) � δ1
2

;
(3.7)

and

Ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩

Ψ(ξβ−1φβ1 (x)), d(x) � δ1
2

;

inf
t>0

Ψ(t), d(x) � δ1
2
.

(3.8)

Let ūσ = ψ(ξ2β−1φβ1 (x)), x ∈ Ω, where ξ2 satisfies

ξ2 inf
x∈Ω̄

(
λ1φ

2
1(x) +

(
1 − β + βΨ(x)

)|∇φ1(x)|2
)

= b2.

By using (b2) and a direct computation, we show that for x ∈ Ω

−Δūσ(x) = ξ2φ
−σ
1 (x)g(ψ(ξ2β−1φβ1 (x)))

(
λ1φ

2
1(x) +

(
1 − β

+ βΨ(ξ2β−1φβ1 (x))
)|∇φ1(x)|2

)
� b2φ

−σ
1 (x)g(ψ(ξ2β−1φβ1 (x))) � b(x)g(ūσ(x)),

i.e. ūσ = ψ(ξ2β−1φβ1 (x)) is a supersolution to problem (1.1) in Ω.
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In a similar way, we can show that uσ = ψ(ξ1β−1φβ1 (x)) is a subsolution to
problem (1.1) in Ω, where ξ1 satisfies

ξ1 sup
x∈Ω̄

(
λ1φ

2
1(x) +

(
1 − β + βΨ̄(x)

)|∇φ1(x)|2
)

= b1.

Obviously, ū � u on Ω. Hence lemma 3.3 and remark 1.2 imply that problem
(1.1) has a unique solution uσ ∈ C2+α(Ω) ∩ C(Ω̄) in the order interval [u, ū], i.e.
(1.18) holds. Using lemma 2.10 (i3), we show that

lim
s→∞

ψ(ξs)
ψ(s)

= ξ1−Eg , (3.9)

holds uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2, and thus

lim
σ→2−

ψ(ξ2(2 − σ)−1φ2−σ
1 (x))

ψ((2 − σ)−1φ2−σ
1 (x))

=
(
b2
c0

)1−Eg

, ∀x ∈ Ω,

i.e. (1.19) holds.
(i3) Note that when L is slowly varying at zero, we have∫ s0

0

sρL(s)ds

{
<∞ if ρ > −1,

= ∞ if ρ < −1.
(3.10)

In fact, when ρ > −1, let ρ0 ∈ (−1, ρ), using proposition 2.5 (i2), we show that
lims→0+ sρ−ρ0L(s) = 0, and there exists a sufficiently small δ ∈ (0, s0) such that
sρ−ρ0L(s) < 1, ∀s ∈ (0, δ]. It follows that∫ s0

0

sρL(s)ds =
∫ s0

0

sρ0sρ−ρ0L(s)ds �
∫ δ

0

sρ0ds+
∫ s0

δ

sρL(s)ds <∞.

Similarly, we can show
∫ s0
0
sρL(s)ds = ∞ provided ρ < −1.

In addition, from lemma 2.9, we show that ψ(t)g(ψ(t)) is normalized regu-
larly varying at zero with index 1 − 2Cg and ψ(t)g(ψ(t)) = t1−2Cg L̂(t), here L̂ is
normalized slowly varying at zero.

So

(φ1(x))−σψ(φ2−σ
1 (x))g(ψ(φ2−σ

1 (x))) = φ
(2−σ)(1−2Cg)−σ
1 L̂(φ2−σ

1 (x)).

Since uσ ∈ H1
0 (Ω) if and only if

−
∫

Ω

uσ(x)Δuσ(x)dx =
∫

Ω

|∇uσ(x)|2dx =
∫

Ω

b(x)uσ(x)g(uσ(x))dx,

we show from (b2), (1.14), (1.18), (3.10) and lemma 2.11 that∫
Ω

b(x)uσ(x)g(uσ(x))dx

� b2

∫
Ω

(φ1(x))−σψ(ξ2(2 − σ)−1φ2−σ
1 (x))g(ψ(ξ1(2 − σ)−1φ2−σ

1 (x)))dx

<∞
provided (2 − σ)(1 − 2Cg) > σ − 1.
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Similarly, since

b1

∫
Ω

(φ1(x))−σψ(ξ1(2 − σ)−1φ2−σ
1 (x))g(ψ(ξ2(2 − σ)−1φ2−σ

1 (x)))dx

� b1

∫
Ω

(φ1(x))−σuσ(x)g(uσ(x))dx �
∫

Ω

b(x)uσ(x)g(uσ(x))dx,

one can see that ∫
Ω

b(x)uσ(x)g(uσ(x))dx = ∞

provided

(2 − σ)(1 − 2Cg) < σ − 1.

The proof is finished. �

Finally, we prove theorem 1.4.

Proof of theorem 1.4. The result (i1) follows from lemmas 2.12 and 2.13 (i2)
directly.

(i2) It follows from (1.15) that

− ln(φ1(x)) > μ, ∀x ∈ Ω̄.

Let ūμ = ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ), x ∈ Ω, where ξ4 satisfies

ξ4 min
x∈Ω̄

(
λ1φ

2
1(x) +

(
1 − μ(− ln(φ1(x)))−1

+ (μ− 1)(− ln(φ1(x)))−1 inf
t>0

Ψ(t)
)
|∇φ1(x)|2

)
= b2.

Since

lim
d(x)→0

(
1 − μ(− ln(φ1(x)))−1 + (μ− 1)(− ln(φ1(x)))−1

Ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ)
)

= 1

holds uniformly for ξ4 ∈ [c1, c2] with 0 < c1 < c2.
We show that there is a sufficiently small δ1 ∈ (0, δ0), which is independent of

ξ ∈ [c1, c2], such that for x ∈ Ωδ1 ,

|∇φ1(x)|2(1 − μ(− ln(φ1(x)))−1 + (μ− 1)(− ln(φ1(x)))−1

× Ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ)) > 0.
(3.11)

It follows that for x ∈ Ω

λ1φ
2
1(x) + (1 − μ(− ln(φ1(x)))−1 + (μ− 1)(− ln(φ1(x)))−1

× Ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ))|∇φ1(x)|2 > 0.
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By using (b5) and a direct computation, we have that for x ∈ Ω

−Δūμ(x) = ξ4(φ1(x))−2(− ln(φ1(x)))−μg(ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ))

×
(
λ1φ

2
1(x) +

(
1 − μ(− ln(φ1(x)))−1 + (μ− 1)(− ln(φ1(x)))−1

× Ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ)
)
|∇φ1(x)|2

)
� b2(φ1(x))−2(− ln(φ1(x)))−μg(ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ))

� b(x)g(ūμ(x)),

i.e. ūμ = ψ(ξ4(μ− 1)−1(− ln(φ1(x)))1−μ) is a supersolution to problem (1.1) in Ω.
In a similar way, we can show that uμ = ψ(ξ3(μ− 1)−1(− ln(φ1(x)))1−μ) is a

subsolution to problem (1.1) in Ω, where ξ3 satisfies

ξ3 max
x∈Ω̄

(
λ1φ

2
1(x) +

(
1 − μ(− ln(φ1(x)))−1

+ (μ− 1)(− ln(v(x)))−1 sup
t>0

Ψ(t)
)
|∇φ1(x)|2

)
= b1.

Obviously, ūμ � uμ on Ω. The rest of the proof is similar to that of theorem 1.1
and the proof is omitted here. �
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