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SUMMARY
This paper rechecks the relative degree of the end-point
tracking control system of a flexible manipulator.  New
added insights into the ill-defined behavior of the relative
degree are presented by constructing a perturbed truncation
model. The implications for the inverse dynamics motivate
us to reformulate the inverse dynamics based on the
perturbed truncation model in the extreme case of truncating
all of the flexible modes. New potential advantages arising
from this novel formulation are investigated for the inverse
dynamics control design as well.
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1. INTRODUCTION
In the past decade, the end-effector tracking control of
flexible manipulators has been well studied. The non-
minimum phase zeros arising from the noncolocated
actuator/sensor structure have a negative effect on a
feedback-based regulator's ability to reduce tracking errors1

and some fundamental limitation on transient tracking
performance exists. The inverse dynamic control approach
can overcome the transient error phenomenon; thus it is
preferred to the feedback regulation for exact tip output
trajectory tracking. The pioneering work on the inverse
dynamics of flexible manipulators can be found in Bayo et
al.,2 in which the frequency-domain approach was devel-
oped. The time-domain formulation for linear systems was
presented in Know and Book3 and successful experimental
studies were conducted by Paden et al.4 and De Luca et al.5

A major advance in the formalized treatment was made by
introducing the framework of a stable inversion based
approach in Devasia et al.6 and Chen and Paden;7 a further
extension of this idea was made by Hunt et al.,8,9 so that this
approach became applicable to aircraft guidance control
systems.10,11 The stable inversion based approach differs
from the earlier output tracking approaches in that (i) the
reference trajectories to be tracked are the tracking-task-
oriented time-functions rather than the outputs of some
exosystems like in the former regulation approach;12 (ii) the

noncausal bounded solutions of the unstable zero dynamics
are sought for nonminimum phase systems, which is in
contrast to the causal inversion approach,13 where unstable
zero dynamics lead to unbounded solutions; (iii) there is no
special initial condition settlement as is done in Di
Benedetto and Lucibello14 because the preactuation estab-
lishes the initial conditions implicitly when nonminimum
phase systems are considered.

The key to the stable inversion based approach is that the
relative degree of a system is well-defined to ensure the
recovery of the input from the output. However, as the net
displacement of the end-effector is used as the output
variable, the input-output relative degree of a flexible
manipulator is ill-defined,15,16 and the inverse dynamics
becomes ill-conditioned. This can lead to actuator high-
frequency saturation that deteriorates the tracking
performance.17 To prevent the occurrence of actuator high-
frequency saturation, one possibility is to select smooth
trajectories to be tracked; this can be done carefully by
trajectory planning.18–21 An alternative approach is to
redefine the output variable so that the relative degree is
well-defined. Wang and Vidyasagar16 introduced the
reflected tip output, a rigid body motion minus elastic
deformation, to yield a passivity transfer function with the
well-defined relative degree being two. Other well-behaved
transfer functions were studied in Barbieri.22 De Luca et al.23

showed that taking some suitable points along a link as the
output, the passivity property could be guaranteed. The
extreme case is that the joint-space based trajectory tracking
system always preserves the well-conditioned inversion.24

For large payloads, the modified output, the so-called �-tip
rate, leads to an approximate minimum phase dynamics.25

Although output-variable redefining can maintain preferable
properties for the control design, its direct application is
limited to cases where the tip position is not crucial, except
near the end of a maneuver. 

The practical implementation of the inverse dynamics
control requires a finite dimensional approximation to the
original infinite dimensional model of flexible manipulators.
For that purpose it is a common practice to remove the
modes which correspond to frequencies that lie out of the
bandwidth of sensors and actuators and to keep the modes
which directly contribute to the low-frequency dynamics. In
this way, the approximation to the tip output excludes the
contributions from the truncated high-order modes. One
known drawback of this direct truncation approach is the
poor prediction of the tip position zeros of a single-link
flexible manipulator.26 The inverse dynamics control design
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is heavily sensitive to the tip position zeros because the
poles of internal dynamics are exactly the same as these
zeros. Then the question arises: Can the finite dimensional
approximation via this direct truncation predict the ill-
defined behavior of the relative degree well? This problem
motivates this work to recheck the relative degree of the
end-point tracking control system of a flexible manipulator.
The main contribution of this paper is to provide some new
added insights into the ill-defined behavior of the relative
degree via constructing a perturbed truncation model, and to
reformulate the inverse dynamics control design in a novel
way.

To exhibit the ill-defined behavior of the relative degree
well, the contributions from all of the truncated high-order
modes should be accounted for in the finite dimensional
approximation. In this paper, we do this by retaining all of
the flexible modes in the modal expansion of the tip output.
To achieve the finite dimensional approximation, we
truncate the fast transients of the high-order flexible modes,
but embed their quasi-steady-states as perturbations into the
tip output to form the perturbed truncation model. The idea
of constructing this perturbed truncation model integrates
the model approximation approach based on the singular
perturbation method27 and the standard modal truncation
method. The related ideas of using the singular perturbation
method were reported in Siciliano and Book28 and Vande-
grift et al.,29 however, mainly for the purpose of the
joint-space based tracking control23,24 rather than the tip
tracking control. With this perturbed truncation model, new
added insights into the ill-defined behavior of the relative
degree are presented. In addition, based on the perturbed
truncation model, the reformulation of the inverse dynamics
control design is investigated. In doing this, we truncate the
fast transients of the flexible dynamics and keep only that of
the rigid dynamics. There are two potential advantages
arising from this novel formulation of the inverse dynamics
control design. First, the inverse dynamics control design
based on the perturbed truncation model can be used to
track not much smoothing trajectories, especially since it is
unnecessarily twice differentiable, thus it holds great
promise to a much wider range of practical applications.
Indeed, this advantage leads to flexibility. Second, this
formulation leads to nearly linear and time-invariant internal
dynamics with a relatively lower order for multi-link
flexible manipulators. Its simplicity makes the inverse
dynamics control design practically useful.

This paper is organized as follows: In the next section, the
motivated studies are presented in the context of a single-
link flexible manipulator for clarity. In Section 3 we extend
the main results to multi-link flexible manipulators. At the
end of this paper, numerical simulations are presented to
illustrate the methods proposed. 

2. MOTIVATED STUDY ON SINGLE-LINK
FLEXIBLE MANIPULATOR

2.1. Modal model
Consider a typical planar single-link flexible arm depicted
in Figure 1, where the inertia frame is denoted by OXY and

the rotating frame by Oxy. The tip of the link is attached to
a payload that is modeled as a concentrated mass Mt and the
other end to a hub of inertia Jh connected to the actuator that
is located at the point O and supplies the torque �. The link
is assumed to be a uniform slender beam that satisfies the
assumption of Euler-Bernoulli beam theory. Let l be the
length of the link, � the mass per length, E the Young
modulus, I the moment of inertia. The net displacement of
the flexible link is expressed approximately by

z(t, x)=x�(t)+w(t, x), (1)

where �(t) is the rotation angle of the hub, and w(t, x) is the
deflection in the rotating frame Oxy. The modal expansion
of z(t, x) is z(t, x)=��

n=0�n(x)qn(t), where qn(t) is the modal
coordinate of the nth unconstrained mode function �n(x).
For each n, qn satisfies the equation of

q̈n +	n
2qn =
n�, (2)

where 	n is the natural frequency of the nth mode and

n =d�n/dx(0) (see Appendix A). For the purpose of the tip
trajectory tracking control, define the tip net displacement
as the output

y=:z(t, l)=��

n=0

qn�n, (3)

where �n =�n(l). The endpoint sensor and root actuator
locations trivially guarantee that 
n ≠0, �n ≠ 0, n=1, 2, . . .
.

2.2 Direct truncation of modal model
Before the inverse dynamics control design can be devel-
oped, a finite dimensional approximation to the above
infinite dimensional model is necessary. For this purpose it
is common practice to truncate the high-frequency modes
which lie out of the bandwidth of interest and to retain the
rest modes which directly contribute to the low-frequency
dynamics of the system. Note that q0 corresponds to the
rigid mode and 	0 = 0. Define the vector of the first Nth
flexible coordinates as qf = [q1 . . . qN]T. The direct trunca-
tion of the first Nth flexible mode means that we retain the
first Nth flexible modes and truncate the rest high-order
modes. This procedure yields

�q̈0

q̈f
�=� 0

0T

0
��

� �q0

qf
�+�
0

�f
��, (4)

where �=diag(	1
2	2

2 . . . 	N
2 ) and �f = [
1 
2 . . . 
N]T. Here


0
 are appropriate sized submatrices consisting merely of

Fig. 1. Schematic diagram of a planar single-link flexible arm.
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zero elements. This notation will be used throughout this
paper. The resulting approximation to the output is

ỹ=�0q0 +�f
Tqf , (5)

where �f
T = [�1 �2 . . . �N].

To check the relative degree of the above finite dimen-
sional approximation, the output ỹ(t) needs to be
differentiated successively until the input � (t) appears in the
derivative expression. This leads to

¨̃y = ��f
T�qf + �̃N�, (6)

where �̃N =�0
0 +�f
T�f. It is easy to see that the relative

degree of the above finite dimensional approximation is
equal to two. According to the asymptotical analysis of the
unconstrained modes (see Appendix A), we have that
�̃N =(�1)N�O((N+1)�2)�. Reducing singularity effects
requires the reduction of the index N. The extreme case of
N=0 is to recover the rigid system. However, excluding the
modes which lie within the bandwidth of the actuator can
lead to instability. Thus there exists a limitation on the
reduction of the truncation index N. Actually, this limitation
attributes to the poor prediction of the ill-defined behavior
of the relative degree via the direct truncation. This point
will be explained later.

For a given reference tip trajectory yd, the procedure for
solving the inverse dynamics is as follows. With ÿd instead
of ¨̃y inverting (6) gives

�̃d = �̃N
�1(ÿd +�f

T�qf). (7)

Substituting this into (4) yields for the flexible modes

q̈f = (��+ �̃N
�1�f �f

T�)qf + �̃N
�1�f ÿd, (8)

and for the rigid mode

q̈0 =
0�f
T�qf + �̃N

�1
0ÿd. (9)

(8) describes the so-called internal dynamics. To distinguish
from the solutions of (4), q̃f and q̃0 denote the solutions of
(8) and (9), respectively. Once the stable solution of the
internal dynamics (8), q̃f(t), is found, the nominal torque
�̃d(t) is followed from (7), and the desired trajectory of the
rigid mode coordinate, q̃0, can be obtained by (9). It should
be noted that the internal dynamics (8) has no poles on the
imaginary axis but has poles in the half right plane; thus, the
bounded solutions of the inverse dynamics must be
noncausal. These noncausal solutions can be solved in the
time domain3 or in the frequency domain.30

2.3 Perturbed truncation of modal model
To show the ill-defined behavior of the relative degree well,
the contributions from all of the truncated high-order modes
should be accounted for in the finite dimensional approx-
imation. We do this by retaining all of the flexible modes in
the modal expansion of the tip output. To achieve the finite
dimensional approximation, we truncate the fast transients
of the high-order flexible modes but embed their quasi-
steady-states as perturbations into the tip output to form the
perturbed truncation model. This idea integrates the model
approximation approach based on the singular perturbation
method27 and the standard modal truncation method.

Note that 	n
2 =O(n4) (see Appendix A). This reveals the

multi-time-scale characteristics in the modal model. Based

on the truncation index N, we split the flexible modes into
two groups: slow modes {qn}

N
n = 1 and fast modes {qn}

�
n=N+1.

According to the singular perturbation analysis,27 for the
fast modes, we can represent (2) as the singular perturbation
form of

�n
2�̈n +�n =
n�, (10)

where �n =	n
�1 is the time scale or the singular perturbation

parameter, and qn =�n
2�n. Making the singular parameter

�n =0 in (10) yields the following degenerated form as

�̄n =
n�,

which is the first-order approximation to (10) with respect to
the perturbation parameter. Thus for each n > N, qn can be
approximated by

qn � q̄n =	n
�2
n�. (11)

For all of n > N, substituting (11) into the output (3) gives
the perturbed approximation to the output as

ȳ= ỹ+ �̄N�=�0q0 +�f
Tqf + �̄n�, (12)

where �̄N =��
n=N+1	n

�2
n�n. (4) and (12) together form the
finite dimensional approximation via the perturbed trunca-
tion of the modal model, that is, the perturbed truncation
model.

The relative degree of the perturbed truncation model is
equal to zero because � appears in the output itself. Using
the asymptotical expressions of the unconstrained modes
again, we see that �̄N =(�1)N+1�O((N+1)�6) (see Appendix
A) and the relative degree becomes ill-defined as the index
N increases. The term �̄N� can be viewed as the perturbations
arising from the truncated high-order modes. Ignoring this
term leads to the recovery of the finite dimensional
approximation via the direct truncation and the relative
degree jumps from zero to two. Let r̄(�̄N) and r̃(�̃N) denote
the relative degree of the perturbed truncation model and the
direct truncation model, respectively. The above analysis
results are summarized in Table I. In short, the perturbed
truncation model exhibits the jumping behavior of the ill-
defined relative degree.

Now we image four possible scenarios for the infinite
dimensional system (2) with the tip output (3), which lead to
four different finite dimensional approximations: the per-
turbed truncation model with N > 0, the direct truncation
model with N > 0, the perturbed truncation model in the
extreme case of N=0, the direct truncation model in the
extreme case of N=0. From Table I we see that the
perturbed parameter �̄N decays to zero at a much faster rate
than �̃N as the index N increases and the singularity effect is
much worse than that in the second, so the first scenario is
not computationally attractive for developing the inverse
dynamics control design. Actually, as N > 0, the perturbed

Table I. Ill-defined behavior of the relative degree.

Truncation index N 0 0 < N < � �

�̄N �	1
�2
1�1 (�1)N+1�O((N+1)�6)� 0

�̃N 
0�0 (�1)N�O((N+1)�2)� 0
r̄(�̄N) 0 0 ill-defined
r̃(�̃N) 2 2 ill-defined
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truncation model can be approximated well by ignoring the
small perturbations as done in Hauser et al.;32 this practice
can make the first scenario degenerate to the second. Thus
the second scenario rather than the first is justifiable for
developing the inverse dynamics control design as done in
the preceding literature. Unfortunately, the second scenario
cannot predict the jumping behavior of the ill-defined
relative degree. The third scenario can exhibit the jumping
behavior of the ill-defined relative degree. This can be seen
easily from the perturbed truncation model in the third
scenario as

q̈0 =
0�, (13)

with the perturbed approximate output

ȳ=�0q0 + �̄0�. (14)

Moreover, note that (�1)n	n
2
n�n > 0 decreases strictly as n

increases, thus there exists 0 < � < 1 such that

�̄0 =��

n = 1

	�2
n 
n�n =�	�2

1 
1�1 < 0.

It is straightforward that the system (13) with output (14)
has an unstable zero. In other words, even in this extreme
case, the nonminimum phase feature due to the flexibility
can be retained in the perturbed truncation model. This is in
contrast to the fourth scenario, where the rigid dynamics
model is recovered excluding the flexible dynamics com-
pletely. Based on the above observations, the third scenario
is not trivial but challenging. Thus it is necessary to explore
potential advantages arising from the third scenario for the
inverse dynamics control design. This will be done for a
single-link flexible manipulator in the remainder of this
section, and for a multi-link flexible manipulator in the next
section.

2.4. Inverse dynamics control design
Based on the perturbed truncation model, the procedure for
deriving the inverse dynamics is repeated as follows. With yd

instead of ȳ, inverting (12) gives

�̄d = �̄N
�1(yd ��0q0 ��f

Tqf). (15)

Substituting this into (4) yields 

�q̈0

q̈f
�=���̄N

�1
0�0

��̄N
�1�f�0

��̄N
�1
0�f

T

����̄N
�1�f�f

T� �q0

qf
�+ �̄N

�1�
0

�f
�yd,

(16)

which is the internal dynamics. To distinguish from the
solution of (4) again, [q̄0 q̄f

T]T denotes the solution of (16)
later. Once the stable solution of (16) is found, the nominal
torque is followed from (15). As mentioned above, we are
interested in the inverse dynamics control design via the
perturbed truncation in the extreme case of N=0. In this
case, the internal dynamics (16) reduces to

¨̄q0 =�q̄0 +�yd, (17)

where �=��̄0
�1
0�0 > 0 and �= �̄0

�1
0. Let �=[q̄0
˙̄q0]

T. We
can rewrite (17) as

�̇=�0
�

1
0��+�0

�
�yd. (18)

The requirement for a stable solution of (18) can be
formulated as �(±� )=0. We explicitly find this bounded
solution by first decomposing (18) into the acausal and
causal decoupled form as

żac =�1/2zac +�yd/�2,

żc =��1/2zc +�yd/�2,

where

�zac

zc
�=

1
�2� �1/2

��1/2

1
1��,

and then integrating along the stable manifold forward in
time, and backward along the unstable manifold to obtain
the only stable solution as

zac(t)=
1

�2� 0

��

e�1/2��yd(t��) d�,

zc(t)=
1

�2� �

0
e��1/2��yd(t��) d�.

In short, for a given reference output yd(t)� L� (�), we can
obtain the stable solution � as

�=�q̄0(t)
˙̄q0(t)

�=���1/2(zac(t)�zc(t))/�2
(zac(t)+zc(t))/�2 �.

Now we cast our case into the stable inversion based
tracking control framework as follows. At the extreme case
of N=0, (15) becomes

�̄d = �̄0
�1(yd ��0q̄0),

which can be used to generate the bounded nominal torque
trajectory as the feedforward input when we obtain the
stable solution q̄0 of the internal dynamics (17) for a given
reference output yd(t). At this off-line stage, all fast
transients of the flexible dynamics are ignored in the
perturbed truncation model; thus, the error dynamics
arises27 and needs to be stabilized for preventing the so-
called control spillover phenomenon.33 We can merge this
task into the online feedback stabilizing stage. Note that the
quasi-steady-states of the fast modes are almost constant
during fast transient, that is, ˙̄qn = ¨̄qn =0, n ≥ 1. Let �e denote
the additional torque that is used to stabilize the error
dynamics. Applying �= �̄d +�e to the tip tracking control
system (2) yields the error dynamics of

ën +	n
2en =
n�e, (19)

where en =qn � q̄n. The resulting tip tracking error can be
expressed by

ye =��

n=0


nen. (20)
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Recall (1) and note that �̄=��

n=0

q̄n
n and �=��

n=0

qn
n. Let

�e =���̄. For any kp > 0, consider the following energy
based Lyapunov function

V=
1
2

� e
2kp +

1
2�

�

n=1

en
2	n

2 +
1
2�

�

n=0

ėn
2.

Time differentiation of this function is

V̇= �̇ekp�e +��

n=0

ėn(en	
2
n +ën)

= �̇ekp�e +	��

n=0

ėn
n
�e

= �̇e(kp�e +�e).

We take the feedback control law as

�e =�kp�e �kd�̇e, (21)

where kd > 0, this leads to

V̇(t)=�kd�̇ e
2 < 0.

This means that the error dynamics can be asymptotically
stabilized by the joint-based PD type feedback law in (21),
that is, for each n, en(t) → 0 as t → � , thus ye(t) → 0 as
t → � .

Before ending this section, we make the following
remark. Based on the perturbed truncation model, the
inverse dynamics control design can be used to track not so
much trajectories, especially, being unnecessarily twice
differentiable. That is, finding the bounded nominal torque
�d(t) � L� (�) only requires that the reference output yd(t) is
in L� (�).8 This is different from the situation via the direct
truncation that requires yd(t) to be necessarily twice
differentiable and y(2)

d (t) in L� (�) (as required by a rigid
system). This advantage attributes to the link flexibility. In
the next section, the further potential advantages arising
from the perturbed truncation model in this extreme case
will be explored for the inverse dynamics control design of
a multi-link flexible manipulator.

3. MAIN RESULTS FOR MULTI-LINK FLEXIBLE
MANIPULATOR

3.1. System description
Consider an open kinematic chain structure, with a fixed
base and N moving flexible links, interconnected by
revolute joints. To model the flexible manipulator, all links
are assumed to be uniform slender beams that satisfy the
assumption of Euler-Bernoulli beam theory and link
flexibility is limited to the plane of nominal rigid motion.
For the i-th link, the deflection in the i-th rotating frame can
be expressed by modal expansion as

wi (t, xi)=�mi

j=1

qij(t)�ij(xi), 0 ≤ xi ≤ li,

where {�ij(xi)}j=1
mi are the orthogonal normalized clamped

modes of link i, li is the length of link i. Define the vector of
generalized coordinate q as

q=
q0

T

q10 . . . qN0 q11 . . . q1m1
. . . qN1 . . . qNmN

]T

qf
T

= [qT
0 qf

T]T.

Here q0��N is the vector of N joint angles and qf��Nf is the

vector of Nf flexible coordinates, and Nf = �N

j=1
mj. Ignoring

the joint viscous friction and gravitational effects, the
dynamics of the multi-link flexible manipulator are gov-
erned by the following motion equation

H(q)q̈+Keq+Deq̇+Hc(q, q̇)=B�, (22)

or

�H00(q0, qf)
HT

0f(q0, qf)
H0f(q0, qf)
Hff(q0, qf)

� �q̈0

q̈f
� + �0

0
0
K� �q0

qf
�

+�0
0

0
D��q̇0

q̇f
� + �Hc0(q0, qf, q̇0, q̇f)

Hcf(q0, qf, q̇0, q̇f)
�=�I

0��, (23)

where I is an N � N identity matrix, � is the vector of the
joint torques, H(q), Ke and De are the generalized inertia
matrix, stiffness matrix and damping matrix, respectively.
Hc(q, q̇) is the vector of the generalized Coriolis and
centrifugal forces, which can be expressed as

Hc(q, q̇)=Ḣ(q)q̇�
1
2

�

�q
(q̇TH(q)q̇)=C(q, q̇)q̇.

We assume that the above motion equation is derived from
the system Lagrangian. Some well-known properties of this
dynamic model under the small deformation assumption are
listed in Appendix B.

Here the net displacement of each link is used as the
output variable. Define

�0 =diag(l1, l2, . . . , lN),

�f =diagblock(�1, �2, . . . , �N),

where �i = [�i1(li)�i2(li) . . . �imi
(li)]

T, i=1, 2, . . . , N. Then
the output can be expressed as

y=�0q0 +�f
Tqf. (25)

3.2. Inverse dynamics
In this section, the inverse dynamics based on the perturbed
truncation model in the extreme case of N=0 for the single-
link flexible manipulator is extended to the multi-link
flexible manipulator described above. The procedure of
doing this is outlined as follows: Firstly, we construct the
perturbed truncation model in the extreme case of truncating
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all of the flexible modes. Then the issue of the inverse
dynamics is reformulated based on this perturbed truncation
model for generating a feedforward command. Finally,
potential advantages arising from this novel formulation are
discussed.

According to the multi-time-scale characteristics, the
generalized coordinate vector q is partitioned into two
groups: the slow part q0 (rigid modes) and the fast part qf

(flexible modes). Again based on the singular perturbation
analysis,27 (23) can be represented as the singular perturba-
tion form of

H00(q0, �2	f)q̈0 +H0f(q0, �2	f)�
2	̈f

+Hc0(q0, �2	f, q̇0, �2	̇f)=�, (26)

H0f
T (q0, �2	f)q̈0 +Hff(q0, �2	f)�

2	̈f +	f +D�2	̇f

+Hcf(q0, �2	f, q̇0, �2	̇f)=0, (27)

where �2 =K�1 is also diagonal and its diagonal elements
are the time scalars or the singular perturbation parameters,
and qf =�2	f. Making �=0 in (26) and (27) results in the
following degenerated form

H00(q̄0) ¨̄q0 +Hc0(q̄0, ˙̄q0)=�, (28)

H0f
T (q̄0) ¨̄q0 + 	̄f +Hcf(q̄0, ˙̄q0)=0, (29)

which are the first-order approximations to (26) and (27)
with respect to the perturbation parameters. Solving for ¨̄q0

from (28) and substituting it into (29) yields

	̄f =H0f
T (q̄0)H00

�1(q̄0)(Hc0(q̄0, ˙̄q0)��)�Hcf(q̄0, ˙̄q0). (30)

As done for a single-link manipulator, qf is approximated
by

qf � q̄f =K�1H 0f
T (q̄0)H00

�1(q̄0)(Hc0(q̄0, ˙̄q0)��)

�K�1Hcf (q̄0, ˙̄q0). (31)

Substituting (31) into (25) gives the perturbed approxima-
tion to the output as

ȳ=�0q̄0 +
(q̄0, ˙̄q0)+�(q̄0)�, (32)

where

�(q̄0)=��f
TK�1H0f

T (q̄0)H00
�1(q̄0), (33)


(q̄0, ˙̄q0)=��(q̄0)Hc0(q̄0, ˙̄q0)��f
TK�1Hcf(q̄0, ˙̄q0). (34)

Until now (28) with the perturbed output (32) forms the
perturbed truncation model in the extreme case of truncating
all of the flexible modes. Before the inverse dynamics
control design is developed, the relative degree of this
perturbed truncation model needs to be checked. We
trivially assume that H0f(q̄0) is a full-rank matrix. The logic
behind this assumption is that any rigid motion can cause
the link deformation; this is clearly consistent with
mechanical intuition. Thus the matrix �(q̄0) is nonsingular
and the relative degree is uniform for all output variables
and equal to zero. Ignoring the perturbation term �(q̄0)� in
(32) leads to the relative degree jumping from zero to two as
the situation of a single-link flexible manipulator.

With a given reference output yd instead of ȳ, inverting
(32) gives

�̄d =��1(q̄0) (yd ��0q̄0 �
(q̄0, ˙̄q0)). (35)

Substituting this into (28) yields the internal dynamics as

¨̄q0 =�(q̄0)q̄0 +
(q̄0, ˙̄q0)+�(q̄0)yd, (36)

where

�(q̄0)=H00
�1(q̄0)�

�1(q̄0)=� (�f
TK�1H0f

T (q̄0))
�1, (37)

�(q̄0)=��(q̄0)�0, (38)


(q̄0, ˙̄q0)=�(q̄0)�f
TK�1Hcf (q̄0, ˙̄q0). (39)

Again, the stable solution of (36) must be firstly sought for
calculating the nominal torque by (35). At this stage,
potential advantages arising from this novel formulation are
emphasized via the following remarks.

Remark 1. In the existing formulation of the inverse
dynamics of a multi-link flexible manipulator, the internal
dynamics is a completely fast (flexible) dynamic model
driven by a reference trajectory being necessarily twice
differentiable. Also, the response of this fast internal
dynamics can cause high-frequency saturation effects that
deteriorate tracking performance. In this new formulation,
the internal dynamics given by (36) is a slow but slightly
nonminimum phase (rigid) dynamic model driven by a
reference trajectory being unnecessarily twice differen-
tiable. Moreover, this internal dynamics excludes the fast
transients of the flexible dynamics and its behavior is well-
conditioned at high frequencies so that high-frequency
saturation effects can be alleviated.

Remark 2. In the existing formulation of the inverse
dynamics, the order of the internal dynamics is equal to the
total truncation number Nf of the flexible modes. But in this
new formulation, the order of this internal dynamics is
always the same as the link number N which is usually
lower than Nf.

Remark 3. There are two main difficulties in solving
bounded solution of the internal dynamics in existing
formulation of the inverse dynamics of a multi-link flexible
manipulator. One is the nonlinearities due to the strongly
nonlinear forward dynamics, another is the configuration-
dependent time-varying feature. In what follows, we show
that this new formulation of the inverse dynamics leads to a
nearly linear and time-invariant internal dynamics, thus the
computation of solving bounded solutions of the inverse
dynamics becomes efficient.

Actually, when the matrix H0f(q̄0) is slowly time-varying,
a rather common practice is to approximate it by a constant
matrix Ĥ0f under the small deformation assumption.24 In this
case, it follows from (24) that

Hcf(q̄0, ˙̄q0)=Ḣ0f
T (q̄0) ˙̄q0 �0,

thus 
(q̄0, ˙̄q0)�0. Then the internal dynamics (36) can be
approximated by the time-invariant linear system in the
form of

¨̂q0 = �̂q̂0 + �̂yd, (40)

where �̂=� (�f
TK�1Ĥ0f

T )�1 and �̂=� �̂�0. It is natural to
expect that the internal dynamics (40) has unstable poles
like the situation of a single-link flexible manipulator, thus
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we assume that �̂ is positive definite and noncausal bounded
solutions must be sought. Let �=[q̂0

T ˙̂q0
T]T. We can rewrite

(40) as

�̇=�0
�̂

I
0��+�0

�̂
�yd. (41)

The requirement for a stable solution of (41) can be
formulated as �(±� )=0. Again, we explicitly find a
bounded solution by first decomposing (41) in the acausal
and causal decoupled form as

żac = �̂1/2zac + �̂yd/�2,

żc =� �̂1/2zc + �̂yd/�2,

where 

�zac

zc
�=

1
�2� ˆ

�1/2

�
ˆ
�1/2

I
I��

and then integrating along the stable manifold forward in
time, and backward along the unstable manifold to obtain
the only stable solution as

zac(t)=
1

�2
� 0

��
e

�̂1/2��̂yd(t��) d�,

zc(t)=
1

�2
� �

0
e�

ˆ
�1/2��̂yd(t��) d�.

Vector �(t) can be obtained by

�=� q̂0(t)
˙̂q0(t)

�=��̂�1/2(zac(t)�zc(t))/�2
(zac(t)+zc(t))/�2 �.

Then the nominal torque �̂d follows from the approximation
form of (35), that is,

�̂d = �̂�1(q̂0)(yd ��0q̂0)+Hc0(q̂0, ˙̂q0), (42)

where

�̂(q̂0)=��f
TK�1Ĥ0f

T H00
�1(q̂0).

If needed, based on the above approximation formulation
the internal dynamics (36) can be solved iteratively as done
in Hunt and Meyer9

q̄0
1 = q̂0, (43)

¨̄q0
k+1 = �̂q̄0

k+1 +s(q̄0
k, ˙̄q0

k, yd), k ≥ 1 (44)

where 

s(q̄0
k, ˙̄q0

k, yd)=(�(q̄0
k)� �̂)q̄0

k +
(q̄0
k, ˙̄q0

k)+�(q̄0
k)yd.

The noncausal bounded solution for (44) can be found in the
same way as solving (40). Recall (37)–(39), the above
perturbation term s(q̄0

k, ˙̄q0
k, yd) is nearly linear and slowly

time-varying and the uniformly Lipschitz condition9 is
easily satisfied so that the above iterative process can be
guaranteed to converge the solution of the internal dynamics
(36) for most practical applications.

Similarly as in the case of a single-link flexible
manipulator, we need to stabilize the error dynamics arising
from the approximation via the perturbed truncation. In
Appendix B, we show that the joint-based PD type feedback
control integrated with the passive control provided by the
structure stiffness and damping can be used to stabilize the
error dynamics locally. It should be noted that much
sophisticated analysis and design procedures should be
sought if the structure passive control is not available. This
is out of the focus of this paper.

As a summary of this section, we assert that there are two
potential advantages arising from the above formulation of
the inverse dynamics. First, like in the case of a single-link
flexible arm, the inverse dynamics control design developed
here can be used to track trajectories being unnecessarily
twice differentiable. Thus the solution holds great promise
to a much wider range of practical applications. Second, this
new formulation leads to nearly linear and time-invariant
internal dynamics with a relatively lower order, its sim-
plicity makes the inverse dynamics control design
practically useful.

4. NUMERICAL SIMULATION FOR CASE
STUDIES
To demonstrate the potential advantages arising from the
perturbed truncation model for the inverse dynamics control
design, numerical simulation studies are conducted for the
two cases. One case is a planar single-link flexible arm. In
this case, we intend to illustrate the ill-defined jumping
behavior of the relative degree and compare the inverse
dynamics based on the perturbed truncation model with that
based on the direct truncation model. Another case is a
planar elbow arm. This case study is expected to provide a
basic understanding of the inverse dynamics control design
based on the perturbed truncation model for more complex
systems. These two experimental setups have been
developed at the control engineering laboratory of Ruhr-
University Bochum.21 The extended experimental studies
will be reported later.

4.1. A planar single-link flexible arm
The implementation of the simulation requires the following
basic parameters: l=0.92 m, EI=15.75 N.m2, �=0.81 kg/m,
Jh =1.081 kg.m2, Mt =0.412 kg. Table II lists the calculated
values of the modal parameters 	n

2, �n and 
n.
The asymptotic behavior between �̃N and �̄N with respect

to the truncation index N is compared in Table III. These
numerical results confirm the analysis results on the
jumping behavior of the ill-defined relative degree. In

Table II. Modal parameters of flexible beam.

Mode index 	2
n �n 
n

0 0 0.7184 0.7809
1 1.5480 � 102 1.0861 �0.5538
2 7.7114 � 103 �0.5600 �0.0862
3 7.2206 � 104 0.3619 �0.0283
4 3.0446 � 105 �0.2628 �0.0138
5 8.7906 � 105 0.2061 �0.0081
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addition, except in the extreme case of N=0, there is little
difference between the models via the perturbed truncation
and the direct truncation because �̄N is too small.

At first, we consider two cases for the trajectories to be
tracked, which are shown in Figure 2. The first is a typical
Bang-Bang profile with the starting time ts =0.4 s and the
final time tf =2.8 s. We are interested in it because it
contains significant high-frequency contents. Another is a
smooth profile generated by

yd
(4)(t)=yd

(3)(t)=yd
(2)(t)=yd

(1)(t)=yd(t)=0, t < 0.4,

yd
(5)(t)+29.75yd

(4)(t)+354.03yd
(3)(t)+2088yd

(2)(t)+

6264.1yd
(1)(t)+7543yd(t)�7543=0, t ≥ 0.4

For these two command trajectories, the inverse dynamics
based on the perturbed truncation model in the extreme case
of N=0 and the direct truncation model in the case of N=1
are used to produce the calculated torque trajectories shown
in Figure 3. We denote them as the perturbed and
unperturbed torque for simplicity.

Then these calculated torque trajectories are applied to
drive the flexible manipulator as feedforward commands;

the tracking errors are plotted in Figure 4. In case 1, the
perturbed torque works much better than the unperturbed
torque; this is not surprising, as the direct truncation model
even in the case of N=1 leads to the ill-conditioned inverse
dynamics at high frequencies;17 the high-frequency contents
contained in the bang-bang profiles cause high-frequency
saturation effects that deteriorate tracking performance,
while the perturbed truncation model excludes the fast
transient of the flexible dynamics and the resulting inverse
dynamics is well-conditioned at high frequencies and no
high-frequency saturation effects occur. The situation in
case 2 is in contrast to that in case 1. The smoothing
trajectory to be tracked alleviates the high-frequency
saturation effects and makes the direct truncation model
more close to the original system than the perturbed
truncation model so that a better tracking performance is
achieved by the unperturbed torque.

To understand the ability of tracking trajectories being
unnecessarily twice differentiable, the following tip refer-
ence trajectory is considered:

ẏd(t)=

0
�0

�0/4
�0/8
�0/16

0

0 ≤ t < 0.4
0.4 ≤ t < 1.4
1.4 ≤ t < 2.2
2.2 ≤ t < 2.6
2.6 ≤ t < 2.8
2.8 ≤ t ≤ 3.2

where �0 =0.3125[m/sec]. The perturbed torque profile is
shown in the top of Figure 5, and the comparison result on
the tip tracking in the bottom. As expected, there exist some

Table III. Asymptotic behavior of perturbation parameters.

Truncation index �̃N �̄N

0 5.6099 � 10�1 �3.8798 � 10�3

1 �4.0599 � 10�2 6.1293 � 10�6

2 7.7241 � 10�3 �1.3198 � 10�7

3 �2.5298 � 10�3 1.0030 � 10�8

4 1.1053 � 10�3 �1.9101 � 10�9

Fig. 2. Reference tip trajectories: (top) case 1; (bottom) case 2; solid line for acceleration; dotted line for displacement.
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Fig. 3. Comparison results of the calculated torque: (top) case 1; (bottom) case 2; solid line for the direct truncation model with N=1;
dotted line for the perturbed truncation model with N=0.

Fig. 4. Comparison results of the tracking errors: (top) case 1; (bottom) case 2; solid line for the direct truncation model with N=1;
dotted line for the perturbed truncation model with N=0.
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peaks in the calculated torque trajectory at the discontinuous
points of the tip velocity. This calculated torque can drive
the tip of the flexible manipulator to follow smoothly and
swing slightly along the given tip reference trajectory.

4.2. A planar elbow manipulator
This section consider a planar elbow manipulator to track
the desired endpoint motion of the x-component line
movement shown in Figure 6. The basic link parameters are
listed in Table IV for an ideal model from which the

perturbed truncation based inverse dynamics control design
can be developed.

Let rd(t) denote the reference endpoint trajectory with
respect to the inertia frame, then the reference trajectories of
the link tips are obtained by solving the inverse kinematics
problem:

yd(t)=
arccos	l 2

1 � l 2
2 +r2

d

2l1rd



arccos	l 2
1 + l 2

2 �r2
d

2l1l2

��

.

Here we assume that �1 ≤ �2 for the elbow-up configuration.
The endpoint reference trajectory and the link tip trajecto-
ries are plotted in Figure 7. Figure 8 shows the calculated
torque trajectories, generated by the perturbed inverse
dynamics developed here, which are compared with those
obtained by the rigid inverse dynamics when ignoring link
flexibility. Two assumed modes are used to model the planar
elbow arm. The inverse dynamics control design for
tracking the above endpoint reference trajectory has been
simulated using Kp0 =Kd0 =diag(18.6, 6.0). The additional
torque trajectories for stabilizing the error dynamics are
shown in Figure 9, and the tracking error profiles of the link
tips are compared with those without stabilizing the error
dynamics in Figure 10. In short, these numerical results
show that incorporating with feedback stabilizing control,
the feedforward commands generated by the new formula-
tion of the inverse dynamics can achieve asymptotically
exact tracking of the reference endpoint trajectory.

Fig. 5. Tracking trajectory without twice differentiation: (top) calculated torque; (bottom) tip displacement profiles (solid line for the
reference trajectory).

Fig. 6. Initial and final states of a planar elbow arm.

Table IV. Link parameters of a planar elbow arm.

Link Jh [kg.m2] Mt [kg] l [m] � [kg/m] EI [N.m2]

Upperarm 0.1042 6.14 0.60 0.5033 1050
Forearm 0.1042 0 0.55 0.5033 1050
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Fig. 7. Reference trajectories: (top) arm endpoint; (middle) upperarm tip (bottom) forearm tip; solid line for acceleration; dotted line
for displacement.

Fig. 8. Calculated torque trajectories: (top) upperarm; (bottom) forearm; solid line for the rigid dynamics; dotted line for the new
formulation.
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Fig. 9. Additional torque trajectories: (top) upperarm; (bottom) forearm.

Fig. 10. Tracking errors: (top) upperarm; (bottom) forearm; solid line for the case with feedback stabilizing; dotted line for the case
without feedback stabilizing.
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CONCLUSIONS
There are two main contributions of this paper: (i) The
jumping behavior of the ill-defined relative degree of a
flexible manipulator is revealed by constructing a perturbed
truncation model; (ii) Based on the perturbed truncation
model in the extreme case, that is, truncating all transients
of the flexible dynamics, the inverse dynamics control
design is reformulated in a novel way.

The departual point of this work is the multi-time-scale
characteristics of the dynamics of a flexible manipulator.
This allows us to treat the flexible dynamics as fast-time-
scale perturbations to the rigid dynamics. To account for the
contributions from the flexible dynamics in constructing the
finite dimensional approximation, we retain all quasi-
steady-states of the flexible dynamics as perturbations but
truncate their transients. In this way, the perturbed trunca-
tion model is much more attractive than that obtained by the
direct truncation. The first important thing for this perturbed
truncation model is that it can predict the jumping behavior
of the ill-defined relative degree which the direct truncation
cannot offer. This is a new consideration on this aspect. In
addition, the inverse dynamics control design can benefit
from the perturbed truncation. With the perturbed trunca-
tion, the inverse dynamics control design can be used to
track trajectories being unnecessarily differentiable, thus it
holds great promise for a much wider range of practical
applications. Also, the perturbed truncation leads to nearly
linear and time-invariant internal dynamics with a relatively
lower order for a multi-link flexible manipulator. Its
simplicity makes the inverse dynamics control design
practically useful.
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APPENDIX A
Neglecting the effect of the shear deformation and rotatory
inertia, and according to Euler-Bernoulli beam theory, the
motion equations of a planar single-link flexible manip-
ulator are

�z̈(t, x)+EID4z(t, x)=0, t≥0, 0≤x≤l, (45)

Jh�̈(t)�EID2z(t, 0)=�(t), t≥0, (46)

with the boundary conditions

z(t, 0)=0, Dz(t, 0)=�(t), (47)

Mtz̈(t, l)=EID3z(t, l), EID2z(t, l)=0. (48)

The differential notations used here are Df=�f/�x and
ḟ =�f/�t. The modal expansion of z(t, x) is

z(t, x)=��

n=0
�n(x)qn(t), where qn(t) is the modal coordinate

of the nth unconstrained mode function �n(x). It is
convenient to write it in dimensionless form by defining

�=x/l, �̄n(�)=�n(x)/l, Di�̄n(�)= l i�1Di�n(x).

For periodical solutions qn(t)=ej	nt, where 	n is the natural
frequency of the nth mode. Inserting the modal expansion in
dimensionless form into (45)–(48) gives

D4�̄n =d n
4�̄n,

where dn
4 =�l4	n

2/EI and the boundary conditions

�̄n(0)=0, 
Jhd n

4

�l3 D�̄n(0)+D2�̄n(0)=0,

D3�̄n(1)=�
Mtdn

4

l�
�̄n(1), EID2�̄n(1)=0.

The general solution for �̄n can be expressed by

�̄n(�)=F1,n sin dn�+F2,n sinh dn�+F3,n cos dn�

+F4,n cosh dn�.

The above boundary conditions are more conveniently
expressed in matrix form

[nij(dn)]
F1,n

F2,n

F3,n

=
0
0
0

,

where nij are given by

n11(dn)=�cos dn +
Mt dn

l�
sin dn,

n12(dn)=cosh dn +
Mt dn

l�
sinh dn,

n13(dn)=sin dn � sinh dn +
Mt dn

l�
(cos dn �cosh dn),

n21(dn)=�sin dn,

n22(dn)=sinh dn,

n23(dn)=�cos dn �cosh dn,

n31(dn)=�
Jhd n

5

l 3�
,

n32(dn)=�
Jhd n

5

l 3�
,

n33(dn)=2d n
2.

For non-trivial solutions, det([nij(dn)])=0, giving the charac-
teristic equation:

Q(dn):=(sin dn cosh dn �cos dn sinh dn)

+
Jhd n

3

�l 3 (1+cos dncosh dn)+2
Mt dn

�l
sin dn sinh dn

+
JhM td n

4

�l 4 (cos dn sinh dn �sin dncosh dn)=0.

For larger number n, we have

(d�4
n e�dn)Q(dn)�

Jh Mt

�l 4 (cos dn �sin dn),
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which implies that dn tends to satisfy cos dn �sin dn =0, thus
dn has the asymptotic expression as

dn �	n+
1
4
�,

that is, 	n
2 =O(n4). Here O(h) denotes a term of order h, i.e.,

�O(h)�<kh for some fixed k>0. For each n, the constants F2,n

and F3,n can be expressed in terms of F1,n and dn. To fix F1,n,
use is made of the orthogonality properties of the modes

� l

0
��i(x)�j(x) dx+Mt�i�j +Jh
i
j =�ij,

where �ij is the Kronecker delta. Multiply (45) by �n(x) and
integrate it from 0 to l, applying the above orthogonality
property yields the modal equation in the form of

q̈n +	n
2qn =
n�.

For larger number n, it is easily verified that �n and 
n tend
to be

�n � (�1)n�2l(F1,n �F2,n),


n �
�l3

Jh
	n+

1
4
�2

��2F3,n,

and Fi,n, i=1, 2, 3, tend to be

F1,n �F3,n ��F2,n �F=(8Mtl
2 +�l3)�1/2.

These together imply the following asymptotic expressions

�n
n � (�1)n2�2
�l 4

Jh
	n+

1
4
�2

��2F 2.

It is straightforward to verify that {[�n(x) �n 
n]
T} forms a

complete orthonormal system in L2(0, l )� �2 endowed with
the inner products

�u,v�=� l

0
�u1�1dx+Mtu2�2 +Jhu3�3.

We expand [0 0 Jh]
T in L2(0,l)� �2 as

0
0
Jh

=��

n=0


n

�n(x)
�n


n

,

in which the second component is

��

n

�n
n =0.

Let �̃N =�N

n=0
�n
n =���

n=N+1
�n
n. Note that (�1)n�n
n >0

decreases strictly as n increases, thus we have

�̃N =(�1)N�O(�N+1
N+1)�=(�1)N�O((N+1)�2)�.

Also, for the term �̄N =��

n=N+1
	n

�2�n
n, note that

(�1)n	n
�2�n
n >0 decreases strictly as n increases, thus we

have

�̄N =(�1)N+1�O(	N+1
�2 �N+1
N+1)�=(�1)N+1�O((N+1)�6)�.

APPENDIX B
Hereafter, we use the notations �̄(·) and �(·) to indicate the
largest and smallest eigenvalues of a matrix, respectively.
The Euclidean norm for a vector is used, that is,

 q 
 =�qTq. The norm of a matrix H is corresponding
induced norm 
 H 
 =��̄(HTH). Some well-known proper-
ties of the dynamic model (22) under the small deformation
assumption, which are used in the sequel, are summarized
as follows

(P1) H(q) is symmetric positive definite and there exists
km >0 such that for any q, q̄��Nf


 H(q)�H(q̄) 
 ≤ 
 q� q̄ 
 ;

(P2) there exist kc1 >0 and kc2 >0 such that for any q,
q̄��Nf


 C(q,q̇)�C(q̄, ˙̄q) 
 ≤kc1 
 q̇� ˙̄q 
 +kc2 
 ˙̄q 
 
 q� q̄ 
 ,

and


 C(q, q̇) 
 ≤kc1 
 q̇ 
 ;

(P3) the matrix Ḣ(q)�2C(q, q̇) is skew symmetric, that is,

Ḣ(q)=C(q,q̇)+C(q,q̇)T;

(P4) the matrices K and D are diagonal and positive
definite.

Note the quasi-steady-states of the fast modes are constant
during fast transient, that is, ˙̄qf = ¨̄qf =0. Let �e denote the
additional torque that is used to stabilize the error dynamics.
Applying �= �̄d +�e to (22) yields the error dynamics of

H(q)ë+Kee+Deė+(H(q)�H(q̄0)) ¨̄q+

Hc(q, q̇)�Hc(q̄0, ˙̄q0)=B�e, (49)

where e=q� q̄ or [e0
T ef

T]T =[q0
T � q̄0

T qf
T � q̄f

T]T. The resulting
tracking error is

ye =�0e0 +�f
Tef. (50)

Consider the Lyapunov candidate function given by

V=
1
2�e

ė�T�Kp +�Kd

�H(q)
�H(q)
H(q) � �e

ė�, (51)

where �>0 is a scalar, Kp =diagblock(Kp0, K) and Kd =diag-
block(Kd0, D). Here N� N matrices Kp0 and Kd0 are diagonal
and positive definite. V is a positive definite function if and
only if 34

Kp +�Kd >�2H(q). (52)
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Differentiating this function with respect to time yields

V̇=eT(Kp +�Kd )ė+�ėTH(q)ė+
1
2

�ėTḢ(q)e+

(�e+ ė)T	H(q)ë+
1

2
Ḣ(q)ė
. (53)

Solving for H(q)ë in (49) and substituting it into (53) with
the property (P3) gives

V̇= ėT(Kp +�Kd )ė+�ėTH(q)q̇+�ėTC(q, q̇)e+

(�e+ ė)T(B�e �Kee�Deė+�), (54)

where � is given by

�=(H(q̄0)�H(q)) ¨̄q+(C(q̄0, ˙̄q0)�C(q,q̇)) ˙̄q.

Recalling the properties (P1) and (P2) we have the
estimation as


 � 
 ≤ ( 
 H(q̄0)�H(q) 
 ) 
 ¨̄q0 
 + 
 C(q̄0, ˙̄q0)�C(q̄, ˙̄q0) 
 
 ˙̄q0 

≤ (km 
 ¨̄q0 
 +kc2 
 ˙̄q0 
 2) 
 e 
 +kc1 
 ˙̄q0 
 
 ė 

=:c1( ¨̄q0, ˙̄q0) 
 e 
 +c2( ˙̄q0) 
 ė 
 .

With this in mind, we take the feedback control law as the
form of

�e =�Kp0e0 �Kd0ė0, (55)

then (54) becomes

V̇ ≤�ėTH(q)ė� ėTKd ė��eTKpe+�c1 
 e 
 2

+(c1 +�c2) 
 e 
 
 ė 
 +c2 
 ė 
 2 +�kc1 
 e 
 
 ė 
 2 (56)

≤��
 e 


 ė 
�T

��
 e 


 ė 
�+� kc1 
 e 
 
 ė 
 2,

where

�=��(�(Kp)�c1)
� (c1 +�c2)/2

� (c1 +�c2)/2
�(Kd )���̄(H)�c2

�.

For smaller values of 
 e 
 and 
 ė 
 , the quadratic term in the
left hand side of (56) dominates the cubic one. Therefore, if
� is positive definite, then V̇ will be a locally negative
definite function. This is true if and only if 34

�(Kp)>c1, (57)

�(Kd )>
(c1 +�c2)

2

4�(�(Kp)�c1)
+��̄(H)+c2. (58)

Also, (57) and (58) imply (52), thus they assure that V is
positive definite. Note that ¨̄q0, ˙̄q0 and q̄0 are bounded
solutions via solving the internal dynamics, thus c1 and c2

are bounded. Now we assume that the structure stiffness
matrix K and the structure damping matrix D are in the form
of

K=�Ks, D=�Ds,

where �>0 is a structure design parameter. This means that
the structure stiffness and damping can provide passive

control. With this assumption, selecting appropriate �>0,
�>0, Kp0 and Kd0 in agreement with (57) and (58) can assure
that V is a positive definite function and V̇ a negative definite
function. This means that e(t)→0, thus ye(t)→0, as t→� . In
short, the joint-based PD type feedback control law in (55)
integrated with the structure passive control can be used to
stabilize the error dynamics locally.
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